THE MULTIPLICATIVE GROUP OF A FINITE FIELD IS CYCLIC UNDERGRADUATE SEMINAR

These notes present a self-contained proof of Lemma 7.1.5 in the photocopied page (from the book "Abstract Algebra", by N. Herstein) handed out in class:

Lemma 7.1.5 Let G be a finite abelian group so that for any n, the number of $x \in G$ with $x^n = 1$ is at most n. Then G is cyclic.

Let G be a group. Recall the *order* of an element $x \in G$ is the least integer $k \geq 1$ such that $x^k = 1$ (notation : $\operatorname{ord}(x)$). A basic property is that

 $x^k = 1$ if and only if $\operatorname{ord}(x) \mid k$.

and that

$$\operatorname{ord}(x) \mid \#G$$
.

In your number theory course you should have seen the following fact:

Lemma 1. $\operatorname{ord}(x^j) = \operatorname{ord}(x) / \operatorname{gcd}(j, \operatorname{ord}(x))$

In particular, we see that in the cyclic group generated by x,

$$#\{y \in \langle x \rangle : \operatorname{ord}(y) = \operatorname{ord}(x)\} = #\{1 \le j \le \operatorname{ord}(x) : \gcd(j, \operatorname{ord}(x)) = 1\} \\ = \phi(\operatorname{ord}(x))$$

Denote by

$$f(d) := \#\{x \in G : \operatorname{ord}(x) = d\}$$

Then f(d) = 0 unless $d \mid \#G$. We want to show that $f(\#G) \neq 0$. We will in fact show that

Proposition 2. Let G be a finite abelian group so that for any n, the number of $x \in G$ with $x^n = 1$ is at most n. Then for all $d \mid \#G$, $f(d) = \phi(d)$.

As a first step, we claim

Lemma 3. If $f(d) \neq 0$ then $f(d) = \phi(d)$.

Proof. Assume that $f(d) \neq 0$, that is there is some $x_0 \in G$ with $\operatorname{ord}(x_0) = d$. We claim that under our assumptions,

$$\{y \in G : y^d = 1\} = \{x_0^j : 1 \le j \le d\}$$

Indeed, all elements on the RHS satisfy $y^d = 1$ and there are exactly d of them (why?), and by our assumptions there are no more solutions in G of this equation.

This implies that

$$\{y \in G : \operatorname{ord}(y) = d\} = \{x_0^j : \gcd(j, d) = 1\}$$

Indeed, if $\operatorname{ord}(y) = d$ then certainly $y^d = 1$, and so $y = x_0^j$ for some $1 \leq j \leq d$, and we know that $\operatorname{ord}(x^j) = d = \operatorname{ord}(x_0)$ if and only if $\operatorname{gcd}(j, \operatorname{ord}(x_0)) = 1$.

Thus if $f(d) \neq 0$ then

$$f(d) = \#\{1 \le j \le d : \gcd(j, d) = 1\} = \phi(d)$$
.

as claimed.

We clearly have

(1)
$$\sum_{d|\#G} f(d) = \#G$$

-this says that every element has an order which divides #G. By Lemma 3, we have

(2)
$$\sum_{d|\#G} f(d) \le \sum_{d|\#G} \phi(d)$$

We will thus prove Proposition 2 (why?), hence Lemma 7.1.5, if we show:

Lemma 4. For every $N \ge 1$, $\sum_{d \mid N} \phi(d) = N$

Proof. In the cyclic group $\mathbb{Z}/N\mathbb{Z}$ (with addition as the group law), we have $f(d) = \phi(d)$ for all $d \mid N$ because $f(d) \neq 0$, e.g. the element x = N/d has order exactly d in $\mathbb{Z}/N\mathbb{Z}$. Applying (1) gives the claim. \Box

Lemma 7.1.5 is used to show that any finite subgroup of the multiplicative group of a field is cyclic, because in a field the equation $x^n = 1$ has at most n solutions.