

Prime-Producing Polynomials and Principal Ideal Domains

Author(s): Daniel Fendel

Source: Mathematics Magazine, Vol. 58, No. 4 (Sep., 1985), pp. 204-210

Published by: Taylor & Francis, Ltd. on behalf of the Mathematical Association of America

Stable URL: https://www.jstor.org/stable/2689515

Accessed: 09-03-2020 15:25 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd., Mathematical Association of America are collaborating with JSTOR to digitize, preserve and extend access to Mathematics Magazine

Prime-producing Polynomials and Principal Ideal Domains

If a certain polynomial yields "enough" prime values, then a corresponding number ring will be a principal ideal domain, and conversely.

DANIEL FENDEL

San Francisco State University San Francisco, CA 94132

Consider the well-known polynomial

$$x^2 + x + 41$$
.

which produces prime values for every integer x with $0 \le x \le 39$. A classic problem is to find the constants C which could replace 41. That is, we ask:

For what integers $C \ge 1$ does the polynomial

$$x^{2} + x + C$$

produce prime values for all integers x with $0 \le x \le C - 2$?

(Of course, C-2 is the largest upper limit on x for which such an assertion could be true; for if x = C-1, then $x^2 + x + C = C^2$, which is not prime.)

Interestingly, all such values C are known, and 41 is the largest of them. The values of C which answer the above question are:

$$C = 1, 2, 3, 5, 11, 17$$
, and 41.

There is a natural connection between the polynomials $x^2 + x + C$ and imaginary quadratic fields. We can see this by factoring the polynomial over the complex numbers:

$$x^2 + x + C = (x + \alpha)(x + \overline{\alpha}),$$

where

$$\alpha = \frac{1 + \sqrt{1 - 4C}}{2} \; , \qquad \overline{\alpha} = \frac{1 - \sqrt{1 - 4C}}{2} \; ;$$

 $\bar{\alpha}$ is the complex conjugate of α . For convenience, we set

$$n = 4C - 1$$
.

It is reasonable to look for a relationship between the "prime-producing" character of the polynomial $x^2 + x + C$ and factorization in the field $Q(\sqrt{-n})$. In fact, a strong relationship of this type does exist. Specifically, let D_n be the ring of "algebraic integers" in $Q(\sqrt{-n})$. (This will be defined and described in the next section.) We will prove the following (given as Theorem 4 below):

(I) If D_n is a unique factorization domain (UFD), with n = 4C - 1, then the polynomial $x^2 + x + C$ produces prime values for all integers x with $0 \le x \le C - 2$.

Perhaps more surprising is that there is also a connection between these polynomials and the question of whether D_n is a principal ideal domain. We will prove a result of the following type:

(II) If the polynomial $x^2 + x + C$ produces prime values for "enough" integers x, then D_n is a principal ideal domain (PID).

The "enough" here turns out to be an interval $0 \le x \le C^*$, where C^* depends on n, but is always less than or equal to C-2. The details are spelled out in Theorem 3. Because of the elementary fact that every PID is a UFD (see [2]), statement (II) is thus a kind of "strong converse" to (I).

Together with a simple discussion of the cases $n \equiv 1$ or $2 \mod 4$, (I) and (II) constitute an elementary proof of the following well-known result:

COROLLARY. If D_n is a unique factorization domain, then it is also a principal ideal domain.

(There is actually a much broader result known for general algebraic number rings, but the proof requires considerable background in ideal theory (see [4]). However, it is *not* true for arbitrary rings that a UFD must be a PID.)

Our results (I) and (II) also allow us to deduce the complete list of values for C given earlier, based on the following very deep theorem of Stark (see [3]):

THEOREM (Stark). D_n is a principal ideal domain (for positive n) if and only if n is one of the following values:

$$n = 1, 2, 3, 7, 11, 19, 43, 67, 163.$$

Since we are using n = 4C - 1, we can ignore the values n = 1, 2. The remaining seven values of n = 1, 2. The remaining seven values of n = 1, 2.

The proofs of (I) and (II) are based on the complex norm ϕ , defined as follows:

$$\phi(\gamma) = \gamma \bar{\gamma} = |\gamma|^2$$
, for $\gamma \in \mathbb{C}$.

There is a simple condition using ϕ (given as Theorem 1 below) for determining which D_n 's are euclidean domains "with respect to ϕ ." (The precise meaning of this phrase is given later.) If we visualize D_n and the field $K = Q(\sqrt{-n})$ in the complex plane, then Theorem 1 can be expressed in geometric terms as follows:

- (III) D_n is a euclidean domain (ED) with respect to ϕ if and only if it satisfies:
 - (*) if γ is in K, then it is within one unit of some element of D_n .

Using the elementary fact that every ED is a PID (see [2]), (III) yields *some* of the values of n in Stark's list. But not all: in particular, the last four values (n = 19, 43, 67, 163) give rings D_n which are principal ideal domains but not euclidean domains with respect to ϕ . (An elementary proof that D_{19} is not euclidean under any norm is given by Wilson [5].) Therefore something more subtle than (III) is needed to handle PID's.

The key idea in the proof of (II) is the existence of an analogue to Theorem 1 for identifying PID's. This analogue (given as Theorem 2 below) can also be expressed geometrically, as follows:

- (IV) D_n is a principal ideal domain if and only if it satisfies:
 - (**) if γ is in K but not in D_n , then some multiple $\chi \gamma$ of γ (with χ in D_n) is within one unit of, but not equal to, some element of D_n .

(Note: (IV) extends naturally to arbitrary algebraic number fields. In the extended version, K is any algebraic number field, D is its ring of integers, and "distance" is measured by the field norm.)

The bulk of the proof of (II) consists of an analysis of condition (**) above. This analysis is eventually tied in with our polynomials by the fact that $\phi(x+\alpha) = x^2 + x + C$, for integers x (with α as defined earlier).

Preliminaries

We consider the field $K = Q(\sqrt{-n})$, where Q is the field of rational numbers, and n is a positive, square-free integer. Thus, modulo 4, n is congruent to 1, 2, or 3. The case $n \equiv 3 \mod 4$ is of primary importance for this paper, since it corresponds to the situation of the polynomial $x^2 + x + C$, where n = 4C - 1, in our opening question.

VOL. 58, NO. 4, SEPTEMBER 1985

Recall that an element of K is an **algebraic integer** if it is the root of some monic polynomial with integral coefficients. The algebraic integers within K form a ring, which will be denoted by D_n . All congruences considered here will be modulo 4 unless otherwise indicated, so we will write $n \equiv a \mod 4$. We will also use the following standard notation:

Z: the ring of integers

 (γ) : the ideal generated by an element γ in D_n

[a]: the largest integer m such that $m \le a$

a|b: a is a divisor of b (where a and b are in Z).

The following lemma gives a concrete description of the ring D_n :

LEMMA 1. D_n is the set of elements of the form $a + b\alpha$, with a and b in Z, where

$$\alpha = \begin{cases} \sqrt{-n} & \text{if } n \equiv 1 \text{ or } 2\\ \frac{1+\sqrt{-n}}{2} & \text{if } n \equiv 3. \end{cases}$$

(For a proof, see [1].) In terms of the complex plane, Lemma 1 says that the elements of D_n form a lattice, which will look like FIGURE 1 or FIGURE 2, depending on whether n = 1, 2 or n = 3.

Elements of K can be written as $a + b\alpha$, with a and b in Q. We can express the norm $\phi(\gamma) = |\gamma|^2$ on K in terms of this description, as follows:

$$\phi(a+b\alpha) = \begin{cases} a^2 + nb^2 & \text{if } n \equiv 1 \text{ or } 2\\ \left(a + \frac{b}{2}\right)^2 + \frac{nb^2}{4} = a^2 + ab + \frac{n+1}{4}b^2 & \text{if } n \equiv 3. \end{cases}$$

Note that, in the $n \equiv 3$ case, if we set a = x and b = 1, we obtain

$$\phi(x+\alpha) = x^2 + x + C, \quad \text{where } C = \frac{n+1}{4}. \tag{1}$$

The following is a summary of some elementary facts we will need about ϕ :

LEMMA 2. (i) $\phi(\gamma_1 \gamma_2) = \phi(\gamma_1) \phi(\gamma_2)$.

- (ii) if $\gamma \neq 0$, then $\phi(\gamma) > 0$.
- (iii) if $\gamma \in D_n$, then $\phi(\gamma) \in Z$.
- (iv) if $\gamma \in D_n$, and $\phi(\gamma) = 1$, then γ is a unit.
- (v) if γ_1 and γ_2 are in D_n , with $(\gamma_1) \subseteq (\gamma_2)$, then $\phi(\gamma_2) < \phi(\gamma_1)$.
- (vi) if a, b, c, d, and t are integers, with $a \equiv c \mod t$ and $b \equiv d \mod t$, then $\phi(a+b\alpha) \equiv \phi(c+d\alpha) \mod t$.
- (vii) if $n \equiv 3 \mod 4$ and $x \in \mathbb{Z}$, then $\phi(x + \alpha) = \phi(-1 x + \alpha)$.

(Verification of these properties of ϕ is left to the reader.) We also need the following result, which says, in effect, that elements of $D_n \setminus Z$ cannot be "small":

LEMMA 3. Suppose $\gamma \in D_n \setminus Z$.

- (i) If $n \equiv 1$ or 2, then $\phi(\gamma) \ge n$.
- (ii) If $n \equiv 3$, then $\phi(\gamma) \ge (n+1)/4$.

Proof. Write γ as $a + b\alpha$, so $b \neq 0$. Thus (i) is obvious. If |b| = 1, then $(a + b/2)^2 \geq 1/4$, so (ii) follows. But if |b| > 1, then $\phi(\gamma) \geq nb^2/4 \geq n$, and (ii) follows as well.

Finally, we have the following simple consequence.

LEMMA 4. If n > 3 with $n \equiv 3$ and $0 \le t \le \sqrt{n/3}$, then the equation $t = \phi(x + \alpha)$ has no integral solution for x.

This follows from Lemma 3, (ii), since $\sqrt{n/3} < (n+1)/4$ for n > 3, and $x + \alpha$ is in $D_n \setminus Z$.

Conditions for euclidean and principal ideal domains

We say that a ring D of complex numbers is a euclidean domain (ED) (with respect to the norm ϕ) if

(i) $\phi(\gamma)$ is an integer for all γ in D,

and

(ii) (division algorithm) if γ_1 and γ_2 are in D, with $\gamma_2 \neq 0$, then there are elements in δ and η in D satisfying $\gamma_1 = \gamma_2 \delta + \eta$, and such that $\phi(\eta) < \phi(\gamma_2)$.

The following theorem is a formal statement of result (III) from the introduction.

THEOREM 1. The following are equivalent:

- (i) D_n is a euclidean domain.
- (ii) For each $\gamma \in K$, there exists a $\delta \in D_n$ such that $\phi(\gamma \delta) < 1$.

Proof. (i) \rightarrow (ii): Suppose $\gamma \in K$, and let t be an integer such that $t\gamma \in D_n$, and divide $t\gamma$ by t using the division algorithm. This gives $t\gamma = t\delta + \eta$, with δ and η in D_n and $\phi(\eta) < \phi(t)$. Then $\phi(\gamma - \delta) = \phi(\eta/t) < 1$.

(ii) \rightarrow (i): First note that $\phi(\gamma) \in Z$ for all γ in D_n , by Lemma 2, (iii). Next, suppose that γ_1 and γ_2 are in D_n , with $\gamma_2 \neq 0$. Set $\gamma = \gamma_1/\gamma_2$, and choose $\delta \in D_n$ as provided so that $\phi(\gamma - \delta) < 1$, and set $\eta = \gamma_1 - \gamma_2 \delta$. Then $\gamma_1 = \gamma_2 \delta + \eta$, and $\phi(\eta) = \phi(\gamma_2) \phi(\gamma - \delta) < \phi(\gamma_2)$, as desired.

Using Theorem 1 and FIGURES 1 and 2, it is fairly routine to show the following:

COROLLARY 1. D_n is a euclidean domain (with respect to ϕ) if and only if n is one of the following values:

$$n = 1, 2, 3, 7, 11.$$

We will need the cases n = 1 and n = 2 to complete the discussion of the situation where $n \equiv 1$ or 2. The cases n = 3 and 7 will allow us to avoid problems with later inequalities.

We now give the analogue of Theorem 1 for principal ideal domains. (The following is (IV) from the introduction.)

THEOREM 2. The following are equivalent:

- (i) D_n is a principal ideal domain.
- (ii) For each $\gamma \in K \setminus D_n$, there exist χ and δ in D_n such that $0 < \phi(\chi \gamma \delta) < 1$.

Proof. (i) \rightarrow (ii): Suppose $\gamma \in K \setminus D_n$, and let t be an integer such that $t\gamma \in D_n$. Let I be the ideal of D_n generated by $t\gamma$ and t. By assumption, there exists $\beta \in I$ with $I = (\beta)$. Choose χ and δ in D_n with $\beta = \chi(t\gamma) - \delta t$. Since $\gamma \notin D_n$, we have $t\gamma \notin (t)$, so $(t) \subsetneq (\beta)$. By Lemma 2, (v), we have $\phi(\beta) < \phi(t)$. Since $\beta \neq 0$, we have $0 < \phi(\beta/t) = \phi(\chi\gamma - \delta) < 1$, as desired.

FIGURE 1. $n \equiv 1$ or 2 mod 4.

FIGURE 2. $n \equiv 3 \mod 4$.

(ii) \rightarrow (i): Let I be a nonzero ideal of D_n , and choose $\beta \in I$, $\beta \neq 0$, with $\phi(\beta)$ minimal. Thus $(\beta) \subseteq I$. Suppose $I \neq (\beta)$, so there exists $\theta \in I \setminus (\beta)$. Let $\gamma = \theta/\beta \in K \setminus D_n$, and choose χ and δ in D_n as described in (ii), so $0 < \phi(\chi\gamma - \delta) < 1$. Then $\chi\theta - \delta\beta = (\chi\gamma - \delta)\beta \in I \setminus \{0\}$, and so $0 < \phi(\chi\theta - \delta\beta) = \phi(\chi\gamma - \delta)\phi(\beta) < \phi(\beta)$, contradicting the choice of β . Thus, $I = (\beta)$, so D_n is a principal ideal domain.

The polynomial $x^2 + x + C$ and principal ideal domains

Our goal in this section is to prove the following more precise version of (II) from the introduction (recall n = 4C - 1).

THEOREM 3. If $x^2 + x + C$ produces prime values for all integers x with $0 \le x \le \left[\frac{1}{2}\sqrt{n/3}\right]$, then D_n is a principal ideal domain.

Thus, the C^* of (II) is actually $[(1/2)\sqrt{n/3}]$. Clearly $C^* < (n-7)/4$ (= C-2) for large n; in fact, this holds for $n \ge 11$. Corollary 1 already tells us that D_3 and D_7 are PID's, and we shall assume $n \ge 11$.

Our results will therefore give us the following curious situation. The primality of $x^2 + x + C$ over the short interval $0 \le x \le [(1/2)\sqrt{n/3}]$ will guarantee that D_n is a PID, and hence also a UFD. We will see (Theorem 4) that this in turn guarantees the primality of the polynomial over the generally longer interval $0 \le x \le (n-7)/4$!

In the proof of Theorem 3, we will use the identity (1),

$$\phi(x+\alpha) = x^2 + x + C$$

together with the criterion for PID's given by Theorem 2. Thus, following Theorem 2, we consider an arbitrary $\gamma \in K \setminus D_n$. We must find elements χ , $\delta \in D_n$ such that $0 < \phi(\chi \gamma - \delta) < 1$.

The following technical lemma is based on a famous approximation theorem of Dirichlet. It holds for any field $K = Q(\sqrt{-n})$, $n = 3 \mod 4$, and any $\gamma \in K$, whether or not the ring D_n is a PID. We defer the proof to the end of our article.

LEMMA 5. There is a positive integer t, with $t \le \sqrt{n/3}$, and an element δ in D_n , such that $\phi(t\gamma - \delta) < 1$.

We shall now make two attempts to satisfy condition (ii) of Theorem 2, first with $\chi = t$ (as in Lemma 5), and if that fails, with $\chi = t\bar{\gamma}$. If both of these fail, we shall show that the polynomial $x^2 + x + C$ takes a composite value somewhere in the interval $0 \le x \le C^*$, contradicting the assumption of Theorem 3. Here are the details:

Let t be the smallest integer satisfying Lemma 5, and δ as provided there. If $t\gamma$ is not in D_n , then we also have $0 < \phi(t\gamma - \delta)$, and so we have fulfilled condition (ii) of Theorem 2, using $\chi = t$. So we now assume $t\gamma \in D_n$. This implies that $t\bar{\gamma}$ is also in D_n , and so we can use it as a new candidate for χ . Thus let $\chi = t\bar{\gamma}$. Then $\chi\gamma = (1/t)\phi(t\gamma)$, which is a rational number, and so $\chi\gamma$ must in fact be less than one unit from some ordinary integer δ in D_n . Thus once again we will have satisfied (ii) of Theorem 2, unless $\chi\gamma = \delta$, i.e., $\chi\gamma \in Z$. This can only happen if $t|\phi(t\gamma)$.

The following lemma tells us what we need in order to prevent that:

LEMMA 6. If $t | \phi(t\gamma)$, then $\phi(x + \alpha)$ is composite for some integer x with $0 \le x < t/2$.

Proof. Since $t\gamma \in D_n$, we can write $t\gamma = a + b\alpha$, with $a, b \in Z$. We first show that b and t are relatively prime, as follows: any prime dividing t must also divide $\phi(t\gamma)$ by hypothesis, but $\phi(t\gamma) = a^2 + ab + ((n+1)/4)b^2$. Thus any prime which divides both b and t must also divide a^2 , and hence a. This would mean that a, b, and t would have a common factor, contradicting the minimality of t.

Now, since b and t are relatively prime, there exists $y \in Z$ with $yb \equiv 1 \mod t$. We then find $x \in Z$, with $ya \equiv x \mod t$; we can choose x so that $-t/2 \le x < t/2$. Thus $\phi(yt\gamma) = \phi(ya + yb\alpha) \equiv \phi(x + \alpha) \mod t$ (see Lemma 2, (vi)). By assumption, $t|\phi(t\gamma)$, and so clearly $t|\phi(yt\gamma)$, and hence $t|\phi(x+\alpha)$. But $t \neq \phi(x+\alpha)$ by Lemma 4 (we have n > 3 here). On the other hand,

Theorem 2 provides that $\gamma \notin D_n$, but we are assuming $t\gamma \in D_n$, and so $t \neq 1$. Thus $\phi(x + \alpha)$ must be composite.

Finally, we can improve the restriction on x as follows: if $-t/2 \le x < 0$, then we let $x^* = -1 - x$, which satisfies $0 \le x^* < t/2$. Since $\phi(x + \alpha) = \phi(-1 - x + \alpha)$ (Lemma 2, (vii)), we have that $\phi(x^* + \alpha)$ is also composite, completing the proof.

Thus, to get D_n to be a PID, we need only assure that the conclusion of Lemma 6 is false. Using $t \le \sqrt{n/3}$, and the identity $\phi(x + \alpha) = x^2 + x + C$, this is precisely the hypothesis of Theorem 3.

The polynomial $x^2 + x + C$ and unique factorization domains

Before looking at our specific situation, we mention an elementary result about UFD's in general. Recall that an element w of a ring is called **irreducible** if a factorization w = uv implies that u or v is a unit. We will need the following well-known result.

LEMMA 7. If a ring D is a unique factorization domain, and an irreducible element $w \in D$ divides a product of elements in D, then w divides one of the factors. (For a proof, see [2].)

The main result of this section is the following (this is (I) from the introduction):

THEOREM 4. Suppose that $n \equiv 3$. If D_n is a unique factorization domain, then $x^2 + x + C$ produces prime values for all integers x with $0 \le x \le C - 2$ (where C = (n+1)/4).

It turns out that we can take care of the cases $n \equiv 1, 2$ with the same basic analysis. The result in that case is the following.

THEOREM 5. Suppose $n \equiv 1$ or 2. If n > 2, then D_n is not a unique factorization domain.

Corollary 1 tells us that D_1 and D_2 are ED's, and hence PID's and UFD's. Using that fact and Theorem 5 if $n \equiv 1$ or 2, and Theorems 3 and 4 if $n \equiv 3$, we get the following consequence, mentioned in the introduction:

COROLLARY 2. If D_n is a unique factorization domain, then it is also a principal ideal domain.

We now turn to the proofs of Theorems 4 and 5, initially handling all cases together. We noted in Lemma 3 that there is a lower bound for $\phi(\gamma)$ if γ is in $D_n \setminus Z$. For convenience in handling the different cases, we set

$$L = \begin{cases} n & \text{if } n \equiv 1 \text{ or } 2\\ \frac{n+1}{4} & \text{if } n \equiv 3. \end{cases}$$

Thus, if $\gamma \in D_n \setminus Z$, then $\phi(\gamma) \ge L$. From this we get the following:

LEMMA 8. If p is a prime in Z, with p < L, then p is irreducible in D_n .

Proof. Suppose $p = \gamma_1 \gamma_2$, with $\gamma_1, \gamma_2 \in D_n$, and neither a unit. Then γ_1 and γ_2 are not integers, since p is a prime, so $p^2 = \phi(p) = \phi(\gamma_1)\phi(\gamma_2) \ge L^2$, which is a contradiction.

LEMMA 9. If D_n is a UFD and $a \in \mathbb{Z}$, then $\phi(a + \alpha)$ has no prime factors less than L.

Proof. Suppose p is such a prime, so it is irreducible by Lemma 8. Then $p|(a + \alpha)$ or $p|(\overline{a + \alpha})$ by Lemma 7 since $\phi(a + \alpha) = (a + \alpha)(\overline{a + \alpha})$. If n = 1 or 2 then $\overline{a + \alpha} = a - \alpha$; if n = 3 then $\overline{a + \alpha} = a + 1 - \alpha$. In either case, p divides neither $a + \alpha$ nor $\overline{a + \alpha}$, since the coefficient of the basis element α is ± 1 .

We leave it to the reader to verify the following simple inequality:

LEMMA 10. If $n \equiv 3$ and $0 \le x \le (n-7)/4$, then $\phi(x+\alpha) < L^2$.

VOL. 58, NO. 4, SEPTEMBER 1985

Our main results are now easy.

Proof of Theorem 4. Suppose $\phi(x + \alpha) = x^2 + x + C$ is not prime, with x in the given range of values. Then $\phi(x + \alpha) < L^2$, by Lemma 10, and so $\phi(x + \alpha)$ has a prime factor less than L, contradicting Lemma 9.

Proof of Theorem 5. We have $\phi(n+\alpha) = n^2 + n$, so $\phi(n+\alpha)$ has the prime factor 2. But 2 < L by assumption (here L = n). Thus Lemma 9 says D_n cannot be a UFD.

Proof of Lemma 5. The following result concludes the proof of Theorem 3.

LEMMA 5. Suppose $n \equiv 3$. For any $\gamma \in K$, there is a positive integer t, with $t \le \sqrt{n/3}$, and an element δ in D_n , such that $\phi(t\gamma - \delta) < 1$.

To prove Lemma 5, we write $\gamma = a + b\alpha$ and set $m = [\sqrt{n/3}] + 1$. Our final lemma tells how to choose t:

LEMMA 11. Let m be an integer ≥ 2 , and $b \in Q$. Then there exists $t \in Z$, with $1 \leq t \leq m-1$, and $m_1 \in Z$, with $|tb-m_1| \leq 1/m$.

Proof. The proof uses the "pigeonhole principle." Let ((x)) denote the fractional part of x, i.e., ((x)) = x - [x]. Set $b_j = ((jb))$, $j = 1, \ldots, m-1$, and $I_j = [j/m, (j+1)/m]$, $j = 0, \ldots, m-1$. If some b_t is in either I_0 or I_{m-1} , then tb is within 1/m of an integer, as desired. If not, then we have m-1 b_j 's and only m-2 remaining intervals, so two b_j 's must be in the same interval. Thus, some b_r and b_s are in the same interval, with $1 \le r < s \le m-1$. Then (s-r)b is within 1/m of some integer, so t = s-r satisfies the stated condition.

We now complete the proof of Lemma 5. Choose t and m_1 as in Lemma 11, and set $c = tb - m_1$. Then choose $m_2 \in Z$ as close as possible to ta + c/2, (so that $|ta + c/2 - m_2| \le 1/2$), and set $\delta = m_2 + m_1 \alpha$. Then

$$\begin{split} \phi(t\gamma - \delta) &= \phi \left[(ta - m_2) + (tb - m_1) \alpha \right] \\ &= \phi \left[(ta - m_2) + c\alpha \right] \\ &= \left(ta - m_2 + \frac{c}{2} \right)^2 + \frac{n}{4} c^2 \\ &\leq \frac{1}{4} + \frac{n}{4} \cdot \frac{1}{m^2} \\ &< \frac{1}{4} + \frac{n}{4} \cdot \frac{3}{n} = 1, \end{split}$$

as desired.

I wish to express my thanks to the referee whose suggestions were very helpful in preparing the final draft of this article.

References

- [1] William W. Adams and Larry Joel Goldstein, Introduction to Number Theory, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976, p. 216.
- [2] Thomas Hungerford, Algebra, Springer-Verlag, New York, 1974, Section III.3.
- [3] Harold Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math J., 14 (1967) 1–27.
- [4] Edwin Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963, chapter 4.
- [5] J. C. Wilson, A principal ideal ring that is not a euclidean ring, this MAGAZINE, 46 (1973) 34–38.