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 Prime-producing Polynomials and
 Principal Ideal Domains

 If a certain polynomial yields "enough" prime

 values, then a corresponding number ring will

 be a principal ideal domain, and conversely.

 DANIEL FENDEL

 San Francisco State Uniiversity

 Sani Francisco, CA 94132

 Consider the well-known polynomial

 x2+ x + 41,

 which produces prime values for every integer x with 0 < x < 39. A classic problem is to find the

 constants C which could replace 41. That is, we ask:

 For what integers C ? 1 does the polynomial

 X2 + x + C

 produce prime values for all integers x with 0 < x < C - 2?

 (Of course, C - 2 is the largest upper limit on x for which such an assertion could be true; for if
 x = C - 1, then x2 + x + C = C2, which is not prime.)

 Interestingly, all such values C are known, and 41 is the largest of them. The values of C which

 answer the above question are:

 C= 1,2,3,5,11,17, and 41.

 There is a natural connection between the polynomials x2 + x + C and imaginary quadratic
 fields. We can see this by factoring the polynomial over the complex numbers:

 X 2+ x + C= (x + cx) (x + c)
 where

 1 + 1 /1 -4C _ 1 - +/1 -4C

 a - 2 ' a 2

 cx is the complex conjugate of a. For convenience, we set

 n= 4C- 1.

 It is reasonable to look for a relationship between the "prime-producing" character of the
 polynomial x2 + x + C and factorization in the field Q( - n). In fact, a strong relationship of

 this type does exist. Specifically, let D,, be the ring of "algebraic integers" in Q( - n). (This will
 be defined and described in the next section.) We will prove the following (given as Theorem 4

 below):

 (I) If D,, is a unique factorization domain (UFD), with n = 4C - 1, then the polynomial
 x2 + x + C produces prime values for all integers x with 0 < x < C - 2.

 Perhaps more surprising is that there is also a connection between these polynomials and the

 question of whether D,, is a principal ideal domain. We will prove a result of the following type:

 (II) If the polynomial X2 + X + C produces prime values for "enough" integers x, then D,, is a
 principal ideal domain (PID).
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 The "enough" here turns out to be an interval 0 < x < C*, where C* depends on n, but is always

 less than or equal to C - 2. The details are spelled out in Theorem 3. Because of the elementary

 fact that every PID is a UFD (see [2]), statement (II) is thus a kind of "strong converse" to (I).

 Together with a simple discussion of the cases n 1 or 2 mod 4, (I) and (II) constitute an

 elementary proof of the following well-known result:

 COROLLARY. If D, is a unique factorization domain, then it is also a principal ideal domain.

 (There is actually a much broader result known for general algebraic number rings, but the proof

 requires considerable background in ideal theory (see [4]). However, it is not true for arbitrary

 rings that a UFD must be a PID.)

 Our results (I) and (II) also allow us to deduce the complete list of values for C given earlier,

 based on the following very deep theorem of Stark (see [3]):

 THEOREM (Stark). D, is a principal ideal domain (for positive n) if and only if n is one of the

 following values:

 n = 1,2,3,7,11,19,43,67,163.

 Since we are using n = 4C - 1, we can ignore the values n = 1, 2. The remaining seven values of n
 give precisely the values of C listed earlier.

 The proofs of (I) and (II) are based on the complex norm p, defined as follows:

 P(y)= y =Iy_1, for y ?C.

 There is a simple condition using P (given as Theorem 1 below) for determining which D,,'s are
 euclidean domains "with respect to O." (The precise meaning of this phrase is given later.) If we
 visualize D, and the field K= Q (-- n) in the complex plane, then Theorem 1 can be expressed in
 geometric terms as follows:

 (III) D, is a euclidean domain (ED) with respect to p if and only if it satisfies:

 (*) if y is in K, then it is within one unit of some element of D,.

 Using the elementary fact that every ED is a PID (see [2]), (III) yields some of the values of n

 in Stark's list. But not all: in particular, the last four values (n= 19,43,67,163) give rings D,

 which are principal ideal domains but not eucidean domains with respect to 4. (An elementary
 proof that D19 is not euclidean under any norm is given by Wilson [5].) Therefore something more
 subtle than (III) is needed to handle PID's.

 The key idea in the proof of (II) is the existence of an analogue to Theorem 1 for identifying
 PID's. This analogue (given as Theorem 2 below) can also be expressed geometrically, as follows:

 (IV) D, is a principal ideal domain if and only if it satisfies:

 (**) if y is in Kbut not in D,, then some multiple xy of y (with X in D,,) is within one unit
 of, but not equal to, some element of D,.

 (Note: (IV) extends naturally to arbitrary algebraic number fields. In the extended version, K is
 any algebraic number field, D is its ring of integers, and "distance" is measured by the field
 norm.)

 The bulk of the proof of (II) consists of an analysis of condition (**) above. This analysis is

 eventually tied in with our polynomials by the fact that O(x + a) = x2 + x + C, for integers x
 (with a as defined earlier).

 Preliminaries

 We consider the field K= Q( - n), where Q is the field of rational numbers, and n is a
 positive, square-free integer. Thus, modulo 4, n is congruent to 1, 2, or 3. The case n 3 mod 4 is
 of primary importance for this paper, since it corresponds to the situation of the polynomial
 x2 + x + C, where n = 4C - 1, in our opening question.
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 Recall that an element of K is an algebraic integer if it is the root of some monic polynomial

 with integral coefficients. The algebraic integers within K form a ring, which will be denoted by

 D,. All congruences considered here will be modulo 4 unless otherwise indicated, so we will write

 n a to mean n a mod 4. We will also use the following standard notation:

 Z: the ring of integers

 (y): the ideal generated by an element y in D,

 [a]: the largest integer m such that m < a

 alb: a is a divisor of b (where a and b are in Z).

 The following lemma gives a concrete description of the ring D,,:

 LEMMA 1. D, is the set of elements of the form a + bha, with a and b in Z, where

 J-n if n-1or 2

 1+2 If n-n3.
 (For a proof, see [1].) In terms of the complex plane, Lemma 1 says that the elements of D, form

 a lattice, which will look like FIGURE 1 or FIGuRE 2, depending on whether n 1, 2 or n 3.
 Elements of K can be written as a + ba, with a and b in Q. We can express the norm

 0(Y)= I-Y2 on K in terms of this description, as follows:

 {a2 + nb2 if n 1 or 2

 P(a + ba)= ( b )2 nb2 n + 1
 a+ + =a2?ab?n? b2 if n 3.
 2 4 4

 Note that, in the n 3 case, if we set a = x and b = 1, we obtain

 (x + ?a) = x2 + x + C, whereC= C 4 (1)

 The following is a summary of some elementary facts we will need about 0:

 LEMMA 2. (i) p(7172) = P(71P)(72)-
 (ii) if y+ O, then P(y)>O.
 (iii) if yE D,, then (y) c Z.
 (iv) if y c D,, and q (y) = 1, then y is a unit.
 (v) if y1 and y2 are in D,, with (71) C (72)' then P(Y2) < (Y)-
 (vi) if a, b, c, d, and t are integers, with a c mod t and b d mod t, then

 4(a +ba) O(c+da) modt.

 (vii) if n-3 mod 4 andx c Z, then O(x+ a)= (- x+ a).

 (Verification of these properties of 0 is left to the reader.) We also need the following result,
 which says, in effect, that elements of D,, \ Z cannot be "small":

 LEMMA 3. Suppose y E D,Q \ Z.
 (i) If n-1 or 2, then 0(y)?n.
 (ii) If n-3, then 0(y) 2 (n + 1)/4.

 Proof. Write y as a + b a, so b * 0. Thus (i) is obvious. If IbI = 1, then (a + b/2)2 > 1/4, so
 (ii) follows. But if Ibl > 1, then p(y) 2 nb2/4 ? n, and (ii) follows as well.

 Finally, we have the following simple consequence.

 LEMMA 4. If n > 3 with n 3 and 0 < t < n/3, then the equation t = O(x + a) has no integral
 solution for x.

 This follows from Lemma 3, (ii), since n/3 < (n + 1)/4 for n > 3, and x + a is in D, \ Z.
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 Conditions for euclidean and principal ideal domains

 We say that a ring D of complex numbers is a euclidean domain (ED) (with respect to the

 norm 0) if
 (i) j(y) is an integer for all y in D,

 and

 (ii) (division algorithm) if yi and 72 are in D, with y2 * 0, then there are elements in 8
 and -7q in D satisfying Y1 = 728 + q, and such that +(nq) < P(y2 ).

 The following theorem is a formal statement of result (III) from the introduction.

 THEOREM 1. The following are equivalent:
 (i) D, is a euclidean domain.

 (ii) For each y E K, there exists a 8 E D, such that 0(y - 8) < 1.

 Proof. (i) > (ii): Suppose y E K, and let t be an integer such that ty E D, , and divide ty by t

 using the division algorithm. This gives ty = t3 + 7, with 8 and q in D, and 0({4) < p(t). Then
 4 - 8) = 4)(71/t) <1.

 (ii) (i): First note that 0(y) E Z for all y in D,, by Lemma 2, (iii). Next, suppose that y1
 and 72 are in D,, with 72 * 0. Set y = 71/72, and choose 8 E D,l as provided so that 0(y - 8) < 1,
 and set 'q = Y1 - 728. Then Y1 = 728 + -q, and p(q) = (Y72 )(Y - 8) < + (72), as desired.

 Using Theorem 1 and FIGURES 1 and 2, it is fairly routine to show the following:

 COROLLARY 1. D, is a euclidean domain (with respect to p) if and only if n is one of the

 following values:

 n = 1,2,3,7,11.

 We will need the cases n = 1 and n = 2 to complete the discussion of the situation where n 1 or

 2. The cases n = 3 and 7 will allow us to avoid problems with later inequalities.

 We now give the analogue of Theorem 1 for principal ideal domains. (The following is (IV)

 from the introduction.)

 THEOREM 2. The following are equivalent:

 (i) D,, is a principal ideal domain.
 (ii) For each y c K \ D, , there exist X and 8 in D, such that 0 < (xy -8) < 1.

 Proof. (i) -> (ii): Suppose y c K\ D,, and let t be an integer such that ty c D,. Let I be the

 ideal of D,, generated by ty and t. By assumption, there exists ,B c I with I = (,B). Choose X and
 8 in D,, with = x(ty) - 8t. Since y C D,, we have ty 4 (t), so (t) C (3). By Lemma 2, (v), we
 have 4(/3) < +(t). Since /B 0 0, we have 0 < 4(,B/t) = P(xy - 8) < 1, as desired.

 . . a . . . . . *- .f.

 0 1

 FIGURE 1. n 1 or 2 mod 4. FIGURE 2. n-3 mod 4.
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 (ii) -- (i): Let I be a nonzero ideal of D,, and choose /3 E 1, /B * 0, with p(,B) minimal. Thus
 (,B) c I. Suppose I (,B), so there exists O e I \ (/3). Let y = O//3 E K \ D,, and choose X and 8

 in D,, as described in (ii), so 0 < q(Xy - 8) < 1. Then XO - 8,/ = (Xy - 8)/3 e I \ {0}, and so
 0 < 4 (X - 8f) = k (Xy - 8)q(3) < q(3), contradicting the choice of /3. Thus, I= (/3), so D,, is
 a principal ideal domain.

 The polynomial x2 + x + C and principal ideal domains

 Our goal in this section is to prove the following more precise version of (II) from the

 introduction (recall n = 4 C - 1).

 THEOREM 3. IfX2 + X + C produces prime values for all integers x with 0 < x < 2 n13 , then

 D,, is a principal ideal domain.

 Thus, the C* of (II) is actually [(1/2)`n/3]. Clearly C* < (n - 7)/4 (= C - 2) for large n; in
 fact, this holds for n ? 11. Corollary 1 already tells us that D3 and D7 are PID's, and we shall

 assume n 2 11.

 Our results will therefore give us the following curious situation. The primality of x2 + x + C

 over the short interval 0 < x < [(1/2) n/3] will guarantee that D,, is a PID, and hence also a
 UFD. We will see (Theorem 4) that this in turn guarantees the primality of the polynomial over

 the generally longer interval 0 < x < (n - 7)/4 !
 In the proof of Theorem 3, we will use the identity (1),

 k(x+ a) =x2+x+ C

 together with the criterion for PID's given by Theorem 2. Thus, following Theorem 2, we consider

 an arbitrary y E K \ D,?. We must find elements X, 8 E D,* such that 0 < (Xy -8) < 1.
 The following technical lemma is based on a famous approximation theorem of Dirichlet. It

 holds for any field K = Q( - n ), n 3 mod 4, and any y E K, whether or not the ring D,, is a
 PID. We defer the proof to the end of our article.

 LEMMA 5. There is a positive integer t, with t < n/3, and an element 8 in D,, such that

 0(ty - 8) < 1.

 We shall now make two attempts to satisfy condition (ii) of Theorem 2, first with X = t (as in
 Lemma 5), and if that fails, with X = t-y. If both of these fail, we shall show that the polynomial
 x2 + x + C takes a composite value somewhere in the interval 0 < x < C*, contradicting the
 assumption of Theorem 3. Here are the details:

 Let t be the smallest integer satisfying Lemma 5, and 8 as provided there. If ty is not in D,,

 then we also have 0 < p (ty - 8), and so we have fulfilled condition (ii) of Theorem 2, using X = t.
 So we now assume ty e D,. This implies that t- is also in D,?, and so we can use it as a new

 candidate for X. Thus let X = t-. Then Xy = (1/t)q(ty), which is a rational number, and so xY
 must in fact be less than one unit from some ordinary integer 8 in D,. Thus once again we will

 have satisfied (ii) of Theorem 2, unless xy = 8, i.e., xy E Z. This can only happen if t1p(ty).
 The following lemma tells us what we need in order to prevent that:

 LEMMA 6. If t 14(t y), then k (x + a) is composite for some integer x with 0 < x < t/2.

 Proof. Since ty e D,, we can write ty = a + b a, with a, b E Z. We first show that b and t are
 relatively prime, as follows: any prime dividing t must also divide p (ty) by hypothesis, but

 0(ty) = a2 + ab + ((n + 1)/4)b2. Thus any prime which divides both b and t must also divide
 a2, and hence a. This would mean that a, b, and t would have a common factor, contradicting
 the minimality of t.

 Now, since b and t are relatively prime, there exists y E Z with yb 1 mod t. We then find

 x E Z, with ya x mod t; we can choose x so that - t/2 < x < t/2. Thus 4(yty) = 0(ya + yb a)
 - k(x + a) mod t (see Lemma 2, (vi)). By assumption, t14(ty), and so clearly t14(yty), and

 hence tI4(x + a). But t * q(x + a) by Lemma 4 (we have n > 3 here). On the other hand,
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 Theorem 2 provides that y t D,, but we are assuming ty E D,, and so t * 1. Thus O(x + a) must
 be composite.

 Finally, we can improve the restriction on x as follows: if - t/2 < x < 0, then we let

 x -1 - x1 , which satisfies 0 < x* < t/2. Since k (x + a) = -1-x + a) (Lemma 2, (vii)), we
 have that +(x* + a) is also composite, completing the proof.

 Thus, to get D,, to be a PID, we need only assure that the conclusion of Lemma 6 is false.
 Using t< n/3, and the identity (x + a) = x2 + x + C, this is precisely the hypothesis of
 Theorem 3.

 The polynomial x2 + x + C and unique factorization domains

 Before looking at our specific situation, we mention an elementary result about UFD's in

 general. Recall that an element w of a ring is called irreducible if a factorization w = uv implies

 that u or v is a unit. We will need the following well-known result.

 LEM.A 7. If a ring D is a unique factorization domain, and an irreducible element w E D divides

 a product of elements in D, then w divides one of the factors. (For a proof, see [2].)

 The main result of this section is the following (this is (I) from the introduction):

 THEOREM 4. Suppose that n 3. If D,, is a unique factorization domain, then x2 + x + C
 produces prime values for all integers x with 0 < x < C - 2 (where C = (n + 1)/4).

 It turns out that we can take care of the cases n 1, 2 with the same basic analysis. The result in
 that case is the following.

 THEOREM 5. Suppose n 1 or 2. If n > 2, then D,, is not a unique factorization domain.

 Corollary 1 tells us that D1 and D2 are ED's, and hence PID's and UFD's. Using that fact and

 Theorem 5 if n 1 or 2, and Theorems 3 and 4 if n 3, we get the following consequence,
 mentioned in the introduction:

 COROLLARY 2. If D,, is a unique factorization domain, then it is also a principal ideal domain.

 We now turn to the proofs of Theorems 4 and 5, initially handling all cases together. We noted

 in Lemma 3 that there is a lower bound for +(y) if y is in D,, \ Z. For convenience in handling
 the different cases, we set

 (n if n-1 or2

 L=(, n+1

 Ln4 if nn3.

 Thus, if y c D,, \ Z, then +(y) ? L. From this we get the following:

 LEMMA 8. If p is a prime in Z, with p < L, then p is irreducible in D,,.

 Proof. Suppose p = yl y2, with yil Y2 E D,, and neither a unit. Then yl and y2 are not integers,
 since p is a prime, so p2 = 0 (p) = ' (yl) ' (y2) ? L2, which is a contradiction.

 LEMMA 9. If D,, is a UFD and a E Z, then ':(a + a) has no prime factors less than L.

 Proof. Suppose p is such a prime, so it is irreducible by Lemma 8. Then p l(a + a) or p l(a + a)
 by Lemma 7 since p(a + a)= (a + a)(a + a). If n-1 or 2 then a + a = a-a; if n-3 then
 a + a = a + 1 - a. In either case, p divides neither a + a nor a + a, since the coefficient of the
 basis element a is ? 1.

 We leave it to the reader to verify the following simple inequality:

 LEMMA 10. If n-3 and 0 <x < (n-7)/4, then O(x+ a)< L2.
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 Our main results are now easy.

 Proof of Theorem 4. Suppose +(x + a) = x2 + x + C is not prime, with x in the given range of

 values. Then 4 (x +a)< L2, by Lemma 10, and so O(x + a) has a prime factor less than L,
 contradicting Lemma 9.

 Proof of Theorem 5. We have k(n + a) = n2 + n, so p (n + a) has the prime factor 2. But 2 < L

 by assumption (here L = n). Thus Lemma 9 says D,, cannot be a UFD.

 Proof of Lemma 5. The following result concludes the proof of Theorem 3.

 LEMMA 5. Suppose n 3. For any y E K, there is a positive integer t, with t < n/3, and an

 element 8 in D,, such that (P(ty-8) < 1.

 To prove Lemma 5, we write y = a + ba and set m = [ n/3 ] + 1. Our final lemma tells how to

 choose t:

 LEMMA 11. Let m be an integer ? 2, and b E Q. Then there exists t E Z, with 1 < t < m -1

 and m1 E Z, with Itb-mlI < 1/m.

 Proof. The proof uses the "pigeonhole principle." Let ((x)) denote the fractional part of x, i.e.,

 ((x)) = x-[x]. Set bj = ((jb)), j = 1,..., m-1, and Ij = [ j/m,(Ij + 1)/m], j = 0,..., m m-1. If
 some b, is in either lo or I, - , then tb is within 1/nm of an integer, as desired. If not, then we
 have mi-I bj 's and only m - 2 remaining intervals, so two bj 's must be in the same interval.
 Thus, some br and bk are in the same interval, with 1 < r < s < m - 1. Then (s - r) b is within
 /rm of some integer, so t = s - r satisfies the stated condition.

 We now complete the proof of Lemma 5. Choose t and ml as in Lemma 11, and set
 c = tb - ml. Then choose m 2 E Z as close as possible to ta + c/2, (so that Ita + c/2 -m21 < 1/2),
 and set 8 =m2 + mla. Then

 P(ty- 8) = [(ta-m2) ?(tb-ml) a]

 =p[(ta-m2)+ ca]

 =(ta-m2?c )2 nc ( 2 2 ) 4

 1 n 1

 4 4 M2

 1 n 3

 4 4 n

 as desired.

 I wish to express my thanks to the referee whose suggestions were very helpful in preparing the final draft of this

 article.
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