Prime-producing Polynomials and Principal Ideal Domains

If a certain polynomial yields “enough” prime values, then a corresponding number ring will be a principal ideal domain, and conversely.

DANIEL FENDEL
San Francisco State University
San Francisco, CA 94132

Consider the well-known polynomial

\[x^2 + x + 41, \]

which produces prime values for every integer \(x \) with \(0 \leq x \leq 39 \). A classic problem is to find the constants \(C \) which could replace 41. That is, we ask:

For what integers \(C \geq 1 \) does the polynomial

\[x^2 + x + C \]

produce prime values for all integers \(x \) with \(0 \leq x \leq C - 2 \)?

(Of course, \(C - 2 \) is the largest upper limit on \(x \) for which such an assertion could be true; for if \(x = C - 1 \), then \(x^2 + x + C = C^2 \), which is not prime.)

Interestingly, all such values \(C \) are known, and 41 is the largest of them. The values of \(C \) which answer the above question are:

\(C = 1, 2, 3, 5, 11, 17, \text{ and } 41. \)

There is a natural connection between the polynomials \(x^2 + x + C \) and imaginary quadratic fields. We can see this by factoring the polynomial over the complex numbers:

\[x^2 + x + C = (x + \alpha)(x + \overline{\alpha}), \]

where

\[\alpha = \frac{1 + \sqrt{1 - 4C}}{2}, \quad \overline{\alpha} = \frac{1 - \sqrt{1 - 4C}}{2}. \]

\(\overline{\alpha} \) is the complex conjugate of \(\alpha \). For convenience, we set

\(n = 4C - 1. \)

It is reasonable to look for a relationship between the “prime-producing” character of the polynomial \(x^2 + x + C \) and factorization in the field \(\mathbb{Q}(\sqrt{-n}) \). In fact, a strong relationship of this type does exist. Specifically, let \(D_n \) be the ring of “algebraic integers” in \(\mathbb{Q}(\sqrt{-n}) \). (This will be defined and described in the next section.) We will prove the following (given as Theorem 4 below):

(I) \(\) If \(D_n \) is a unique factorization domain \((UFD) \), with \(n = 4C - 1 \), then the polynomial \(x^2 + x + C \) produces prime values for all integers \(x \) with \(0 \leq x \leq C - 2 \).

Perhaps more surprising is that there is also a connection between these polynomials and the question of whether \(D_n \) is a principal ideal domain. We will prove a result of the following type:

(II) \(\) If the polynomial \(x^2 + x + C \) produces prime values for “enough” integers \(x \), then \(D_n \) is a principal ideal domain \((PID) \).
The “enough” here turns out to be an interval $0 < x < C^*$, where C^* depends on n, but is always less than or equal to $C - 2$. The details are spelled out in Theorem 3. Because of the elementary fact that every PID is a UFD (see [2]), statement (II) is thus a kind of “strong converse” to (I).

Together with a simple discussion of the cases $n \equiv 1$ or $2 \mod 4$, (I) and (II) constitute an elementary proof of the following well-known result:

Corollary. If D_n is a unique factorization domain, then it is also a principal ideal domain.

(There is actually a much broader result known for general algebraic number rings, but the proof requires considerable background in ideal theory (see [4]). However, it is not true for arbitrary rings that a UFD must be a PID.)

Our results (I) and (II) also allow us to deduce the complete list of values for C given earlier, based on the following very deep theorem of Stark (see [3]):

Theorem (Stark). D_n is a principal ideal domain (for positive n) if and only if n is one of the following values:

$$n = 1, 2, 3, 7, 11, 19, 43, 67, 163.$$

Since we are using $n = 4C - 1$, we can ignore the values $n = 1, 2$. The remaining seven values of n give precisely the values of C listed earlier.

The proofs of (I) and (II) are based on the complex norm ϕ, defined as follows:

$$\phi(\gamma) = \gamma\overline{\gamma} = |\gamma|^2, \quad \text{for} \quad \gamma \in \mathbb{C}.$$

There is a simple condition using ϕ (given as Theorem 1 below) for determining which D_n's are euclidean domains “with respect to ϕ.” (The precise meaning of this phrase is given later.) If we visualize D_n and the field $K = \mathbb{Q}(\sqrt{-n})$ in the complex plane, then Theorem 1 can be expressed in geometric terms as follows:

(III) D_n is a euclidean domain (ED) with respect to ϕ if and only if it satisfies:

(*) if γ is in K, then it is within one unit of some element of D_n.

Using the elementary fact that every ED is a PID (see [2]), (III) yields some of the values of n in Stark’s list. But not all: in particular, the last four values ($n = 19, 43, 67, 163$) give rings D_n which are principal ideal domains but not euclidean domains with respect to ϕ. (An elementary proof that D_{19} is not euclidean under any norm is given by Wilson [5].) Therefore something more subtle than (III) is needed to handle PID’s.

The key idea in the proof of (II) is the existence of an analogue to Theorem 1 for identifying PID’s. This analogue (given as Theorem 2 below) can also be expressed geometrically, as follows:

(IV) D_n is a principal ideal domain if and only if it satisfies:

(**) if γ is in K but not in D_n, then some multiple $\chi\gamma$ of γ (with χ in D_n) is within one unit of, but not equal to, some element of D_n.

(Note: (IV) extends naturally to arbitrary algebraic number fields. In the extended version, K is any algebraic number field, D is its ring of integers, and “distance” is measured by the field norm.)

The bulk of the proof of (II) consists of an analysis of condition (**) above. This analysis is eventually tied in with our polynomials by the fact that $\phi(x + a) = x^2 + x + C$, for integers x (with a as defined earlier).

Preliminaries

We consider the field $K = \mathbb{Q}(\sqrt{-n})$, where \mathbb{Q} is the field of rational numbers, and n is a positive, square-free integer. Thus, modulo 4, n is congruent to 1, 2, or 3. The case $n \equiv 3 \mod 4$ is of primary importance for this paper, since it corresponds to the situation of the polynomial $x^2 + x + C$, where $n = 4C - 1$, in our opening question.
Recall that an element of \(K \) is an algebraic integer if it is the root of some monic polynomial with integral coefficients. The algebraic integers within \(K \) form a ring, which will be denoted by \(D_n \). All congruences considered here will be modulo 4 unless otherwise indicated, so we will write \(n \equiv a \) to mean \(n \equiv a \) mod 4. We will also use the following standard notation:

\[
\begin{align*}
Z & : \text{the ring of integers} \\
(\gamma) & : \text{the ideal generated by an element } \gamma \text{ in } D_n \\
[a] & : \text{the largest integer } m \text{ such that } m \leq a \\
|a| & : \text{a is a divisor of } b \text{ (where } a \text{ and } b \text{ are in } Z). \\
\end{align*}
\]

The following lemma gives a concrete description of the ring \(D_n \):

Lemma 1. \(D_n \) is the set of elements of the form \(a + b\zeta \), with \(a \) and \(b \) in \(Z \), where

\[
\zeta = \begin{cases}
\sqrt{-n} & \text{if } n = 1 \text{ or } 2 \\
\frac{1 + \sqrt{-n}}{2} & \text{if } n = 3.
\end{cases}
\]

(For a proof, see [1].) In terms of the complex plane, Lemma 1 says that the elements of \(D_n \) form a lattice, which will look like Figure 1 or Figure 2, depending on whether \(n = 1, 2 \) or \(n = 3 \).

Elements of \(K \) can be written as \(a + b\zeta \), with \(a \) and \(b \) in \(Q \). We can express the norm \(\phi(\gamma) = |\gamma|^2 \) on \(K \) in terms of this description, as follows:

\[
\phi(a + b\zeta) = \begin{cases}
a^2 + nb^2 & \text{if } n = 1 \text{ or } 2 \\
(a + b/2)^2 + nb^2/4 & \text{if } n = 3.
\end{cases}
\]

Note that, in the \(n = 3 \) case, if we set \(a = x \) and \(b = 1 \), we obtain

\[
\phi(x + \zeta) = x^2 + x + C, \quad \text{where } C = \frac{n+1}{4}.
\]

The following is a summary of some elementary facts we will need about \(\phi \):

Lemma 2.

(i) \(\phi(\gamma_1\gamma_2) = \phi(\gamma_1)\phi(\gamma_2) \).

(ii) if \(\gamma \neq 0 \), then \(\phi(\gamma) > 0 \).

(iii) if \(\gamma \in D_n \), then \(\phi(\gamma) \in Z \).

(iv) if \(\gamma \in D_n \) and \(\phi(\gamma) = 1 \), then \(\gamma \) is a unit.

(v) if \(\gamma_1 \) and \(\gamma_2 \) are in \(D_n \), with \((\gamma_1) \subseteq (\gamma_2) \), then \(\phi(\gamma_2) < \phi(\gamma_1) \).

(vi) if \(a, b, c, d, \) and \(t \) are integers, with \(a \equiv c \text{ mod } t \) and \(b \equiv d \text{ mod } t \), then \(\phi(a + b\zeta) \equiv \phi(c + d\zeta) \text{ mod } t \).

(vii) if \(n \equiv 3 \text{ mod } 4 \) and \(x \in Z \), then \(\phi(x + \zeta) = \phi(-1 - x + \zeta) \).

(Verification of these properties of \(\phi \) is left to the reader.) We also need the following result, which says, in effect, that elements of \(D_n \setminus Z \) cannot be "small":

Lemma 3. Suppose \(\gamma \in D_n \setminus Z \).

(i) If \(n = 1 \) or \(2 \), then \(\phi(\gamma) \geq n \).

(ii) If \(n = 3 \), then \(\phi(\gamma) \geq (n + 1)/4 \).

Proof. Write \(\gamma \) as \(a + b\zeta \), so \(b \neq 0 \). Thus (i) is obvious. If \(|b| = 1 \), then \((a + b/2)^2 \geq 1/4 \), so (ii) follows. But if \(|b| > 1 \), then \(\phi(\gamma) \geq nb^2/4 > n \), and (ii) follows as well.

Finally, we have the following simple consequence.

Lemma 4. If \(n > 3 \) with \(n \equiv 3 \) and \(0 \leq t \leq \sqrt{n/3} \), then the equation \(t = \phi(x + \zeta) \) has no integral solution for \(x \).

This follows from Lemma 3, (ii), since \(\sqrt{n/3} < (n+1)/4 \) for \(n > 3 \), and \(x + \zeta \) is in \(D_n \setminus Z \).
Conditions for euclidean and principal ideal domains

We say that a ring D of complex numbers is a euclidean domain (ED) (with respect to the norm ϕ) if

(i) $\phi(\gamma)$ is an integer for all γ in D,

and

(ii) (division algorithm) if γ_1 and γ_2 are in D, with $\gamma_2 \neq 0$, then there are elements in δ and η in D satisfying $\gamma_1 = \gamma_2\delta + \eta$, and such that $\phi(\eta) < \phi(\gamma_2)$.

The following theorem is a formal statement of result (III) from the introduction.

Theorem 1. The following are equivalent:

(i) D_n is a euclidean domain.

(ii) For each $\gamma \in K$, there exists a $\delta \in D_n$ such that $\phi(\gamma - \delta) < 1$.

Proof. (i) \Rightarrow (ii): Suppose $\gamma \in K$, and let t be an integer such that $t\gamma \in D_n$, and divide $t\gamma$ by t using the division algorithm. This gives $t\gamma = t\delta + \eta$, with δ and η in D_n and $\phi(\eta) < \phi(t)$. Then $\phi(t\gamma/t) = \phi(\eta/t) < 1$.

(ii) \Rightarrow (i): First note that $\phi(\gamma) \in \mathbb{Z}$ for all γ in D_n, by Lemma 2, (iii). Next, suppose that γ_1 and γ_2 are in D_n, with $\gamma_2 \neq 0$. Set $\gamma = \gamma_1/\gamma_2$, and choose $\delta \in D_n$ as provided so that $\phi(\gamma - \delta) < 1$, and set $\eta = \gamma_1 - \gamma_2\delta$. Then $\gamma_1 = \gamma_2\delta + \eta$, and $\phi(\eta) = \phi(\gamma_2)\phi(\gamma - \delta) < \phi(\gamma_2)$, as desired.

Using Theorem 1 and Figures 1 and 2, it is fairly routine to show the following:

Corollary 1. D_n is a euclidean domain (with respect to ϕ) if and only if n is one of the following values:

$$n = 1, 2, 3, 7, 11.$$

We will need the cases $n = 1$ and $n = 2$ to complete the discussion of the situation where $n = 1$ or 2. The cases $n = 3$ and 7 will allow us to avoid problems with later inequalities.

We now give the analogue of Theorem 1 for principal ideal domains. (The following is (IV) from the introduction.)

Theorem 2. The following are equivalent:

(i) D_n is a principal ideal domain.

(ii) For each $\gamma \in K \setminus D_n$, there exist χ and δ in D_n such that $0 < \phi(\chi\gamma - \delta) < 1$.

Proof. (i) \Rightarrow (ii): Suppose $\gamma \in K \setminus D_n$, and let t be an integer such that $t\gamma \in D_n$. Let I be the ideal of D_n generated by $t\gamma$ and t. By assumption, there exists $\beta \in I$ with $I = (\beta)$. Choose χ and δ in D_n with $\beta = \chi(t\gamma) - \delta t$. Since $\gamma \notin D_n$, we have $t\gamma \notin (t)$, so $(t) \subseteq (\beta)$. By Lemma 2, (v), we have $\phi(\beta) < \phi(t)$. Since $\beta \neq 0$, we have $0 < \phi(\beta/t) = \phi(\chi\gamma - \delta) < 1$, as desired.

![Figure 1. $n = 1$ or 2 mod 4.](image1)

![Figure 2. $n = 3$ mod 4.](image2)
(ii) → (i): Let \(I \) be a nonzero ideal of \(D_n \), and choose \(\beta \in I, \beta \neq 0 \), with \(\phi(\beta) \) minimal. Thus \((\beta) \subseteq I \). Suppose \(I \neq (\beta) \), so there exists \(\theta \in I \setminus (\beta) \). Let \(\gamma = \theta / \beta \in K \setminus D_n \), and choose \(\chi \) and \(\delta \) in \(D_n \) as described in (ii), so \(0 < \phi(\chi \gamma - \delta) < 1 \). Then \(\chi \theta - \delta \beta = (\chi \gamma - \delta) \beta \in I \setminus \{0\} \), and so \(0 < \phi(\chi \theta - \delta \beta) = \phi(\chi \gamma - \delta \phi(\beta)) \), contradicting the choice of \(\beta \). Thus, \(I = (\beta) \), so \(D_n \) is a principal ideal domain.

The polynomial \(x^2 + x + C \) and principal ideal domains

Our goal in this section is to prove the following more precise version of (II) from the introduction (recall \(n = 4C - 1 \)).

Theorem 3. If \(x^2 + x + C \) produces prime values for all integers \(x \) with \(0 \leq x \leq \left[\frac{1}{2} \sqrt{n/3} \right] \), then \(D_n \) is a principal ideal domain.

Thus, the \(C^* \) of (II) is actually \((1/2)\sqrt{n/3} \). Clearly \(C^* < (n - 7)/4 \) (\(= C - 2 \)) for large \(n \); in fact, this holds for \(n \geq 11 \). Corollary 1 already tells us that \(D_3 \) and \(D_7 \) are PID's, and we shall assume \(n \geq 11 \).

Our results will therefore give us the following curious situation. The primality of \(x^2 + x + C \) over the short interval \(0 \leq x \leq \left[(1/2)\sqrt{n/3} \right] \) will guarantee that \(D_n \) is a PID, and hence also a UFD. We will see (Theorem 4) that this in turn guarantees the primality of the polynomial over the generally longer interval \(0 \leq x \leq \left(n - 7 \right)/4 \) !

In the proof of Theorem 3, we will use the identity (1),

\[
\phi(x + a) = x^2 + x + C
\]

together with the criterion for PID's given by Theorem 2. Thus, following Theorem 2, we consider an arbitrary \(\gamma \in K \setminus D_n \). We must find elements \(\chi, \delta \in D_n \) such that \(0 < \phi(\chi \gamma - \delta) < 1 \).

The following technical lemma is based on a famous approximation theorem of Dirichlet. It holds for any field \(K = \mathbb{Q}(\sqrt{-n}) \), \(n \equiv 3 \mod 4 \), and any \(\gamma \in K \), whether or not the ring \(D_n \) is a PID. We defer the proof to the end of our article.

Lemma 5. There is a positive integer \(t \), with \(t \leq \sqrt{n/3} \), and an element \(\delta \) in \(D_n \), such that \(0 < \phi(t \gamma - \delta) < 1 \).

We shall now make two attempts to satisfy condition (ii) of Theorem 2, first with \(\chi = t \) (as in Lemma 5), and if that fails, with \(\chi = t \gamma \). If both of these fail, we shall show that the polynomial \(x^2 + x + C \) takes a composite value somewhere in the interval \(0 \leq x \leq C^* \), contradicting the assumption of Theorem 3. Here are the details:

Let \(t \) be the smallest integer satisfying Lemma 5, and \(\delta \) as provided there. If \(t \gamma \) is not in \(D_n \), then we also have \(0 < \phi(t \gamma - \delta) \), and so we have fulfilled condition (ii) of Theorem 2, using \(\chi = t \). So we now assume \(t \gamma \in D_n \). This implies that \(t \gamma \) is also in \(D_n \), and so we can use it as a new candidate for \(\chi \). Thus let \(\chi = t \gamma \). Then \(\chi \gamma = (1/t) \phi(t \gamma) \), which is a rational number, and so \(\chi \gamma \) must in fact be less than one unit from some ordinary integer \(\delta \) in \(D_n \). Thus once again we will have satisfied (ii) of Theorem 2, unless \(\chi \gamma = \delta \), i.e., \(\chi \gamma \in D_n \). This can only happen if \(t|\phi(t \gamma) \).

The following lemma tells us what we need in order to prevent that:

Lemma 6. If \(t|\phi(t \gamma) \), then \(\phi(x + a) \) is composite for some integer \(x \) with \(0 \leq x < t/2 \).

Proof. Since \(t \gamma \in D_n \), we can write \(t \gamma = a + b \alpha \), with \(a, b \in \mathbb{Z} \). We first show that \(b \) and \(t \) are relatively prime, as follows: any prime dividing \(t \) must also divide \(\phi(t \gamma) \) by hypothesis, but \(\phi(t \gamma) = a^2 + ab + ((n + 1)/4)b^2 \). Thus any prime which divides both \(b \) and \(t \) must also divide \(a^2 \), and hence \(a \). This would mean that \(a, b, \) and \(t \) would have a common factor, contradicting the minimality of \(t \).

Now, since \(b \) and \(t \) are relatively prime, there exists \(y \in \mathbb{Z} \) with \(yb = 1 \mod t \). We then find \(x \in \mathbb{Z} \), with \(ya \equiv x \mod t \); we can choose \(x \) so that \(-t/2 < x < t/2 \). Thus \(\phi(yt \gamma) = \phi(ya + yb \alpha) = \phi((x + a) \mod t) \) (see Lemma 2, (vii)). By assumption, \(t|\phi(t \gamma) \), and so clearly \(t|\phi(yt \gamma) \), and hence \(t|\phi(x + a) \). But \(t \neq \phi(x + a) \) by Lemma 4 (we have \(n > 3 \) here). On the other hand,
Theorem 2 provides that \(t \in D_n \), but we are assuming \(t \gamma \in D_n \), and so \(t \neq 1 \). Thus \(\phi(x + \alpha) \) must be composite.

Finally, we can improve the restriction on \(x \) as follows: if \(-t/2 \leq x < 0 \), then we let \(x^* = -1 - x \), which satisfies \(0 \leq x^* < t/2 \). Since \(\phi(x + \alpha) = \phi(-1 - x + \alpha) \) (Lemma 2, (vii)), we have that \(\phi(x^* + \alpha) \) is also composite, completing the proof.

Thus, to get \(D_n \) to be a PID, we need only assure that the conclusion of Lemma 6 is false. Using \(t \leq \sqrt{n/3} \), and the identity \(\phi(x + \alpha) = x^2 + x + C \), this is precisely the hypothesis of Theorem 3.

The polynomial \(x^2 + x + C \) and unique factorization domains

Before looking at our specific situation, we mention an elementary result about UFD’s in general. Recall that an element \(w \) of a ring is called irreducible if a factorization \(w = uv \) implies that \(u \) or \(v \) is a unit. We will need the following well-known result.

LEMMA 7. If a ring \(D \) is a unique factorization domain, and an irreducible element \(w \in D \) divides a product of elements in \(D \), then \(w \) divides one of the factors. (For a proof, see [2].)

The main result of this section is the following (this is (I) from the introduction):

THEOREM 4. Suppose that \(n = 3 \). If \(D_n \) is a unique factorization domain, then \(x^2 + x + C \) produces prime values for all integers \(x \) with \(0 \leq x \leq C - 2 \) (where \(C = (n + 1)/4 \)).

It turns out that we can take care of the cases \(n = 1, 2 \) with the same basic analysis. The result in that case is the following.

THEOREM 5. Suppose \(n = 1 \) or \(2 \). If \(n > 2 \), then \(D_n \) is not a unique factorization domain.

Corollary 1 tells us that \(D_1 \) and \(D_2 \) are ED’s, and hence PID’s and UFD’s. Using that fact and Theorem 5 if \(n = 1 \) or \(2 \), and Theorems 3 and 4 if \(n = 3 \), we get the following consequence, mentioned in the introduction:

COROLLARY 2. If \(D_n \) is a unique factorization domain, then it is also a principal ideal domain.

We now turn to the proofs of Theorems 4 and 5, initially handling all cases together. We noted in Lemma 3 that there is a lower bound for \(\phi(\gamma) \) if \(\gamma \) is in \(D_n \setminus \mathbb{Z} \). For convenience in handling the different cases, we set

\[
L = \begin{cases}
\frac{n}{2} & \text{if } n = 1 \text{ or } 2 \\
\frac{n + 1}{4} & \text{if } n = 3.
\end{cases}
\]

Thus, if \(\gamma \in D_n \setminus \mathbb{Z} \), then \(\phi(\gamma) \geq L \). From this we get the following:

LEMMA 8. If \(p \) is a prime in \(\mathbb{Z} \), with \(p < L \), then \(p \) is irreducible in \(D_n \).

Proof. Suppose \(p = \gamma_1 \gamma_2 \), with \(\gamma_1, \gamma_2 \in D_n \), and neither a unit. Then \(\gamma_1 \) and \(\gamma_2 \) are not integers, since \(p \) is a prime, so \(p^2 = \phi(p) = \phi(\gamma_1)\phi(\gamma_2) \geq L^2 \), which is a contradiction.

LEMMA 9. If \(D_n \) is a UFD and \(a \in \mathbb{Z} \), then \(\phi(a + \alpha) \) has no prime factors less than \(L \).

Proof. Suppose \(p \) is such a prime, so it is irreducible by Lemma 8. Then \(p | (a + \alpha) \) or \(p | (a - \alpha) \) by Lemma 7 since \(\phi(a + \alpha) = (a + \alpha)(a - \alpha) \). If \(n = 1 \) or \(2 \) then \(a + \alpha = a - \alpha \); if \(n = 3 \) then \(a + \alpha = a + 1 - \alpha \). In either case, \(p \) divides neither \(a + \alpha \) nor \(a + a \), since the coefficient of the basis element \(\alpha \) is \(\pm 1 \).

We leave it to the reader to verify the following simple inequality:

LEMMA 10. If \(n = 3 \) and \(0 \leq x \leq \frac{n - 7}{4} \), then \(\phi(x + \alpha) < L^2 \).
Our main results are now easy.

Proof of Theorem 4. Suppose \(\phi(x + \alpha) = x^2 + x + C \) is not prime, with \(x \) in the given range of values. Then \(\phi(x + \alpha) \leq L^2 \), by Lemma 10, and so \(\phi(x + \alpha) \) has a prime factor less than \(L \), contradicting Lemma 9.

Proof of Theorem 5. We have \(\phi(n + \alpha) = n^2 + n \), so \(\phi(n + \alpha) \) has the prime factor 2. But \(2 < L \) by assumption (here \(L = n \)). Thus Lemma 9 says \(D_n \) cannot be a UFD.

Proof of Lemma 5. The following result concludes the proof of Theorem 3.

\textbf{Lemma 5.} Suppose \(n \equiv 3 \). For any \(\gamma \in K \), there is a positive integer \(t \), with \(t \leq \sqrt{n}/3 \), and an element \(\delta \) in \(D_n \), such that \(\phi(ty - \delta) < 1 \).

To prove Lemma 5, we write \(\gamma = a + b\alpha \) and set \(m = \lfloor \sqrt{n}/3 \rfloor + 1 \). Our final lemma tells how to choose \(t \):

\textbf{Lemma 11.} Let \(m \) be an integer \(\geq 2 \), and \(b \in Q \). Then there exists \(t \in Z \), with \(1 \leq t \leq m - 1 \), and \(m_1 \in Z \), with \(|tb - m_1| \leq 1/m \).

\textit{Proof.} The proof uses the “pigeonhole principle.” Let \((x)\) denote the fractional part of \(x \), i.e., \((x) = x - \lfloor x \rfloor \). Set \(b_j = ((\frac{jb}{m}) \), \(j = 1, \ldots, m - 1 \), and \(I_j = [\frac{j}{m}, (j + 1)/m] \), \(j = 0, \ldots, m - 1 \). If some \(b_j \) is in either \(I_0 \) or \(I_{m-1} \), then \(tb \) is within \(1/m \) of an integer, as desired. If not, then we have \(m - 1 \) \(b_j \)'s and only \(m - 2 \) remaining intervals, so two \(b_j \)'s must be in the same interval. Thus, some \(b_r \) and \(b_s \) are in the same interval, with \(1 \leq r < s \leq m - 1 \). Then \((s - r)b \) is within \(1/m \) of some integer, so \(t = s - r \) satisfies the stated condition.

We now complete the proof of Lemma 5. Choose \(t \) and \(m_1 \) as in Lemma 11, and set \(c = tb - m_1 \). Then choose \(m_2 \in Z \) as close as possible to \(ta + c/2 \), (so that \(|ta + c/2 - m_2| \leq 1/2 \)), and set \(\delta = m_2 + m_1\alpha \). Then

\[
\phi(ty - \delta) = \phi\left((ta - m_2) + (tb - m_1)\alpha\right)
= \phi\left((ta - m_2) + c\alpha\right)
= \left((ta - m_2) + \frac{c}{2}\right)^2 + \frac{n}{4}c^2
\leq \frac{1}{4} + \frac{n}{4} \cdot \frac{1}{m^2}
< \frac{1}{4} + \frac{n}{4} \cdot \frac{3}{n} = 1,
\]

as desired.

I wish to express my thanks to the referee whose suggestions were very helpful in preparing the final draft of this article.

References