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Prime-producing Polynomials and
Principal Ideal Domains

If a certain polynomial yields ‘“‘enough’’ prime
values, then a corresponding number ring will
be a principal ideal domain, and conversely.

DanieL FENDEL
San Francisco State University
Suan Francisco, CA 94132

Consider the well-known polynomial

x2 4 x + 41,

which produces prime values for every integer x with 0 < x < 39. A classic problem is to find the
constants C which could replace 41. That is, we ask:

For what integers C = 1 does the polynomial

x*+x+C
produce prime values for all integers x with 0 < x < C — 27

(Of course, C — 2 is the largest upper limit on x for which such an assertion could be true; for if
x=C—1, then x?+ x + C= C?, which is not prime.)
Interestingly, all such values C are known, and 41 is the largest of them. The values of C which
answer the above question are:
c=1,2,3,5,11,17, and 41.
There is a natural connection between the polynomials x* + x + C and imaginary quadratic
fields. We can see this by factoring the polynomial over the complex numbers:

*+x+C=(x+a)(x+a),
where
a=1+v1—4C 1-v1-4C
2 b

a=—;

a is the complex conjugate of a. For convenience, we set

n=4C~1.
It is reasonable to look for a relationship between the “prime-producing” character of the
polynomial x? + x + C and factorization in the field Q(V —n). In fact, a strong relationship of
this type does exist. Specifically, let D, be the ring of “algebraic integers” in O/ —n). (This will
be defined and described in the next section.) We will prove the following (given as Theorem 4
below):

() If D, is a unique factorization domain (UFD), with n=4C —1, then the polynomial
x2 + x + C produces prime values for all integers x with 0 < x < C — 2.

Perhaps more surprising is that there is also a connection between these polynomials and the
question of whether D, is a principal ideal domain. We will prove a result of the following type:

2

(1) If the polynomial x*+ x + C produces prime values for “enoug
principal ideal domain (PID).

integers x, then D, is a
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The “enough” here turns out to be an interval 0 < x < C*, where C* depends on #n, but is always
less than or equal to C — 2. The details are spelled out in Theorem 3. Because of the elementary
fact that every PID is a UFD (see [2]), statement (II) is thus a kind of “strong converse” to (I).

Together with a simple discussion of the cases n=1 or 2 mod 4, (I) and (II) constitute an
elementary proof of the following well-known result:

COROLLARY. If D, is a unique factorization domain, then it is also a principal ideal domain.

(There is actually a much broader result known for general algebraic number rings, but the proof
requires considerable background in ideal theory (see [4]). However, it is not true for arbitrary
rings that a UFD must be a PID.)

Our results (I) and (II) also allow us to deduce the complete list of values for C given earlier,
based on the following very deep theorem of Stark (see [3]):

THEOREM (Stark). D, is a principal ideal domain ( for positive n) if and only if n is one of the
following values:

n=1,2,3,7,11,19,43,67,163.
Since we are using n = 4C — 1, we can ignore the values n = 1, 2. The remaining seven values of »n

give precisely the values of C listed earlier.
The proofs of (I) and (II) are based on the complex norm ¢, defined as follows:

¢(v) =yy=Iv?, foryeC.
There is a simple condition using ¢ (given as Theorem 1 below) for determining which D,’s are
euclidean domains “with respect to ¢.” (The precise meaning of this phrase is given later.) If we
visualize D, and the field K= Q(/—n) in the complex plane, then Theorem 1 can be expressed in
geometric terms as follows:

(IIT) D, is a euclidean domain (ED) with respect to ¢ if and only if it satisfies:
(*) if v isin K, then it is within one unit of some element of D,.

Using the elementary fact that every ED is a PID (see [2]), (III) yields some of the values of n
in Stark’s list. But not all: in particular, the last four values (n=19,43,67,163) give rings D,
which are principal ideal domains but not euclidean domains with respect to ¢. (An elementary
proof that D, is not euclidean under any norm is given by Wilson [5].) Therefore something more
subtle than (III) is needed to handle PID’s.

The key idea in the proof of (II) is the existence of an analogue to Theorem 1 for identifying
PID’s. This analogue (given as Theorem 2 below) can also be expressed geometrically, as follows:

(IV) D, is a principal ideal domain if and only if it satisfies:
(**) if v isin K but not in D,, then some multiple xy of y (with x in D,) is within one unit
of , but not equal to, some element of D, .

(Note: (IV) extends naturally to arbitrary algebraic number fields. In the extended version, K is
any algebraic number field, D is its ring of integers, and “distance” is measured by the field
norm.)

The bulk of the proof of (II) consists of an analysis of condition (**) above. This analysis is
eventually tied in with our polynomials by the fact that ¢(x + )= x?+ x + C, for integers x
(with a as defined earlier).

Preliminaries

We consider the field K= Q(/—n), where Q is the field of rational numbers, and 7 is a
positive, square-free integer. Thus, modulo 4, n is congruent to 1, 2, or 3. The case # =3 mod 4 is
of primary importance for this paper, since it corresponds to the situation of the polynomial
x*+ x + C, where n=4C — 1, in our opening question.
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Recall that an element of K is an algebraic integer if it is the root of some monic polynomial
with integral coefficients. The algebraic integers within K form a ring, which will be denoted by
D, . All congruences considered here will be modulo 4 unless otherwise indicated, so we will write
n=a to mean n=a mod 4. We will also use the following standard notation:

Z: the ring of integers
(v): the ideal generated by an element vy in D,
[al: the largest integer m such that m < a
alb: ais adivisor of b (where a and b arein 7).

The following lemma gives a concrete description of the ring D, :
LEMMA 1. D, is the set of elements of the form a + ba, with a and b in Z, where

V—n ifn=1or2

a= 1+vV—
Tn lan3.

(For a proof, see [1].) In terms of the complex plane, Lemma 1 says that the elements of D, form

a lattice, which will look like FIGURE 1 or FIGURE 2, depending on whether n=1,2 orn = 3.
Elements of K can be written as a + ba, with ¢ and b in Q. We can express the norm

¢(y)=|y|* on K in terms of this description, as follows:
a® + nb? ifn=1or2
¢latba)= (a+g)z+yg—2=a2+ab+n:1b2 if n=3.
Note that, in the n =3 case, if we set a = x and b =1, we obtain
where ¢ =" : 1 . (1)

d(x+a)=x*+x+C,

The following is a summary of some elementary facts we will need about ¢:

LEMMA 2. (i) o(1172) = ¢ (1) d(72)
@) if v+ 0, then ¢(y)>0.

(iii) if y € D,, then ¢(y) € Z.

@) if yeD,, and $(y)=1, then vy is a unit.
(V) if 1 and vy, are in D,, with (1) S (V2), then $(v,) < ¢(v;).
i) if a, b, ¢, d, and t are integers, with a=c mod t and b=d mod t, then

¢(a+ba)y=o¢(c+da) modt.
(vil) if n=3 mod 4 and x € Z, then ¢(x+a)=¢(—1—x+ a).

(Verification of these properties of ¢ is left to the reader.) We also need the following result,

which says, in effect, that elements of D, \ Z cannot be “small”:

LEMMA 3. Suppose y€ D, \ Z.

@) If n=1 or 2, then ¢(y)=n.

(ii) If n=3, then ¢(y)=(n+1)/4.

Proof. Write y as a+ ba, so b+ 0. Thus (i) is obvious. If |b| =1, then (a + b/2)*> > 1/4, so

(ii) follows. But if |b| > 1, then ¢(y) = nb>/4 > n, and (ii) follows as well.

Finally, we have the following simple consequence.
LEMMA 4. Ifn>3 withn=3 and 0 <t </n/3, then the equation t = ¢(x + ) has no integral

solution for x.
This follows from Lemma 3, (ii), since /n/3 <(n+1)/4 for n>3,and x +a isin D, \ Z.
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Conditions for euclidean and principal ideal domains

We say that a ring D of complex numbers is a euclidean domain (ED) (with respect to the
norm ¢) if
(1) ¢(v) is an integer for all y in D,
and
(ii) (division algorithm) if y; and y, are in D, with y, # 0, then there are elements in &
and - in D satisfying y; = v,0 + 71, and such that ¢(1) < ¢(v,).

The following theorem is a formal statement of result (III) from the introduction.

THEOREM 1. The following are equivalent:
(i) D, is a euclidean domain.
(ii) For each y € K, there exists a 8 € D, such that ¢(y —8)<1.

Proof. (i) — (ii): Suppose y € K, and let ¢ be an integer such that 1y € D,, and divide ty by ¢
using the division algorithm. This gives ¢ty =18 + 7, with § and n in D, and ¢(n) < ¢(¢). Then
s(y—8)=d(n/n<1.

(ii) — (i): First note that ¢(y) € Z for all y in D,, by Lemma 2, (iii). Next, suppose that 7y,
and v, are in D,, with y, # 0. Set v =, /7,, and choose § € D, as provided so that ¢(y —8) <1,
and set =17, — v,8. Then y; = v,0 + 1, and ¢(n) =¢(v,)d(y — ) < ¢(v,), as desired.

Using Theorem 1 and FIGURES 1 and 2, it is fairly routine to show the following:

COROLLARY 1. D, is a euclidean domain (with respect to ¢) if and only if n is one of the
following values:

n=1,2,3,7,11.
We will need the cases n =1 and n =2 to complete the discussion of the situation where n=1 or
2. The cases n =3 and 7 will allow us to avoid problems with later inequalities.

We now give the analogue of Theorem 1 for principal ideal domains. (The following is (IV)
from the introduction.)

THEOREM 2. The following are equivalent:
(i) D, is a principal ideal domain.
(ii) For each y € K\ D,, there exist x and & in D, such that 0 < ¢(xy—8)<1.

Proof. (i) — (ii): Suppose y € K\ D,, and let ¢ be an integer such that ty € D,. Let I be the
ideal of D, generated by ¢y and ¢. By assumption, there exists 8 € I with I = (). Choose x and
8 in D, with B = x(ty)—6¢. Since y & D,, we have ty & (1), so (¢) S (B8). By Lemma 2, (v), we
have ¢(B) < ¢(¢). Since B # 0, we have 0 < d(B/t)=¢d(xy — 8) <1, as desired.

. Ao . R A . e
A
0 1 0 1
FIGURE 1. n=1 or 2 mod 4. FIGURE 2. n=3 mod 4.
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(i1) = (i): Let I be a nonzero ideal of D,, and choose B € I, B # 0, with ¢(B) minimal. Thus
(B) C I. Suppose I # (), so there exists § €I\ (B). Let y=0/8€ K\ D,, and choose x and §
in D, as described in (ii), so 0 <¢(xy —98)<1. Then x0 —88=(xy—06)B €I\ {0}, and so
0<¢(x0—08B)=od(xy—8)d(B)<¢(B), contradicting the choice of B. Thus, I=(B), so D, is
a principal ideal domain.

The polynomial x2+ x + C and principal ideal domains

Our goal in this section is to prove the following more precise version of (II) from the
introduction (recall n=4C —1).

1
THEOREM 3. If x* + x + C produces prime values for all integers x with 0 < x < [E vn/3 ], then
D, is a principal ideal domain.

Thus, the C* of (II) is actually [(1/2)y/n/3]. Clearly C* < (n—7)/4 (= C —2) for large n; in
fact, this holds for n > 11. Corollary 1 already tells us that D; and D, are PID’s, and we shall
assume n > 11.

Our results will therefore give us the following curious situation. The primality of x* + x + C
over the short interval 0 < x <[(1/ 2)\/m ] will guarantee that D, is a PID, and hence also a
UFD. We will see (Theorem 4) that this in turn guarantees the primality of the polynomial over
the generally longer interval 0 < x < (n—7)/4!

In the proof of Theorem 3, we will use the identity (1),

o(x+a)=x’+x+C
together with the criterion for PID’s given by Theorem 2. Thus, following Theorem 2, we consider
an arbitrary y € K\ D,. We must find elements x, § € D, such that 0 <¢(xy—6)<1.

The following technical lemma is based on a famous approximation theorem of Dirichlet. It
holds for any field K= Q(/—n), n=3 mod 4, and any y € K, whether or not the ring D, is a
PID. We defer the proof to the end of our article.

LEMMA 5. There is a positive integer t, with t <\/n/3, and an element § in D,, such that

o(1y—8)<1.

We shall now make two attempts to satisfy condition (ii) of Theorem 2, first with x = ¢ (as in
Lemma 5), and if that fails, with x = ¢¥. If both of these fail, we shall show that the polynomial
x?+ x+ C takes a composite value somewhere in the interval 0 < x < C*, contradicting the
assumption of Theorem 3. Here are the details:

Let ¢ be the smallest integer satisfying Lemma 5, and § as provided there. If ¢y is notin D,,
then we also have 0 < ¢(¢y — 8), and so we have fulfilled condition (ii) of Theorem 2, using x = .
So we now assume ty € D,. This implies that ¢y is also in D,, and so we can use it as a new
candidate for x. Thus let x = ¢y. Then xy = (1/¢)¢(¢y), which is a rational number, and so xy
must in fact be less than one unit from some ordinary integer 8 in D,. Thus once again we will
have satisfied (ii) of Theorem 2, unless xy = 8, i.e., xy € Z. This can only happen if ¢|¢(¢y).

The following lemma tells us what we need in order to prevent that:
LEMMA 6. If t|d(t7y), then ¢(x + o) is composite for some integer x with 0 < x <t/2.

Proof. Since ty € D,, we can write ty = a + ba, with a, b € Z. We first show that » and ¢ are
relatively prime, as follows: any prime dividing ¢ must also divide ¢(¢y) by hypothesis, but
& (ty)=a*+ ab+ ((n+1)/4)b% Thus any prime which divides both » and ¢ must also divide
a?, and hence a. This would mean that a, b, and ¢ would have a common factor, contradicting
the minimality of .

Now, since b and ¢ are relatively prime, there exists y € Z with yb=1 mod ¢. We then find
x € Z, with ya = x mod ¢; we can choose x so that —¢/2 < x <t/2. Thus ¢(yty)=¢(ya + yba)
=¢(x+ a) mod ¢ (see Lemma 2, (vi)). By assumption, #|¢(¢y), and so clearly #|¢(yty), and
hence ¢|¢(x + a). But ¢+# ¢(x+ «) by Lemma 4 (we have n>3 here). On the other hand,
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Theorem 2 provides that y & D,, but we are assuming ¢ty € D,, and so ¢ # 1. Thus ¢ (x + «) must
be composite.

Finally, we can improve the restriction on x as follows: if —¢/2 <x <0, then we let
x* = —1 — x, which satisfies 0 < x* < ¢/2. Since ¢(x + a) = ¢(—1 — x + a) (Lemma 2, (vii)), we
have that ¢(x* + «) is also composite, completing the proof.

Thus, to get D, to be a PID, we need only assure that the conclusion of Lemma 6 is false.
Using 7<y/n/3, and the identity ¢(x+a)=x>+ x+ C, this is precisely the hypothesis of
Theorem 3.

The polynomial x2+ x + C and unique factorization domains

Before looking at our specific situation, we mention an elementary result about UFD’s in
general. Recall that an element w of a ring is called irreducible if a factorization w = uv implies
that u or v is a unit. We will need the following well-known result.

LEMMA 7. If a ring D is a unique factorization domain, and an irreducible element w € D divides
a product of elements in D, then w divides one of the factors. (For a proof, see [2].)

The main result of this section is the following (this is (I) from the introduction):

THEOREM 4. Suppose that n=3. If D, is a unique factorization domain, then x*+ x+ C
produces prime values for all integers x with 0 < x < C—2 (where C=(n+1)/4).

It turns out that we can take care of the cases n=1,2 with the same basic analysis. The result in
that case is the following.

THEOREM 5. Suppose n=1 or 2. If n> 2, then D, is not a unique factorization domain.

Corollary 1 tells us that D, and D, are ED’s, and hence PID’s and UFD’s. Using that fact and
Theorem 5 if n=1 or 2, and Theorems 3 and 4 if n=3, we get the following consequence,
mentioned in the introduction:

COROLLARY 2. If D, is a unique factorization domain, then it is also a principal ideal domain.

We now turn to the proofs of Theorems 4 and 5, initially handling all cases together. We noted
in Lemma 3 that there is a lower bound for ¢(y) if y is in D, \ Z. For convenience in handling
the different cases, we set

n ifn=1or2
L={n+1

4

ifn=3.

Thus, if y € D, \ Z, then ¢(y) = L. From this we get the following:
LEMMA 8. If p is a prime in Z, with p < L, then p is irreducible in D,,.

Proof. Suppose p =v,v,, with y;, v, € D,, and neither a unit. Then y, and vy, are not integers,
since p is a prime, so p? =¢(p)=d(v;)$(y,) > L?, which is a contradiction.

LEMMA 9. If D, is a UFD and a € Z, then ¢(a + ) has no prime factors less than L.

Proof. Suppose p is such a prime, so it is irreducible by Lemma 8. Then p|(a + &) or p|(a + )
by Lemma 7 since ¢p(a+a)=(a+a)a+a). If n=1 or 2 then a + a=a—a; if n=3 then
a+a=a+1- a. In either case, p divides neither a + a nor a + a, since the coefficient of the
basis element « is +1.

We leave it to the reader to verify the following simple inequality:

LEMMA 10. Ifn=3 and 0 < x <(n—7)/4, then ¢(x+ a) < L*
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Our main results are now easy.

Proof of Theorem 4. Suppose ¢(x + a)= x> + x + C is not prime, with x in the given range of
values. Then ¢(x + a) < L?, by Lemma 10, and so ¢(x + a) has a prime factor less than L,
contradicting Lemma 9.

Proof of Theorem 5. We have ¢(n+ a)=n? + n, so ¢(n + a) has the prime factor 2. But 2 < L
by assumption (here L = n). Thus Lemma 9 says D, cannot be a UFD.

Proof of Lemma 5. The following result concludes the proof of Theorem 3.

LEMMA 5. Suppose n=3. For any y € K, there is a positive integer t, with t <\/n/3, and an
element 8 in D, such that ¢(t1y—8)<1.

no

To prove Lemma 5, we write y = a + ba and set m=[y/n/3 ]+ 1. Our final lemma tells how to
choose ¢:

LeEMMA 11. Let m be an integer >2, and b€ Q. Then there exists t€ Z, with 1 <t<m—1,
and m, € Z, with |tb—m;|<1/m.

Proof. The proof uses the “pigeonhole principle.” Let ((x)) denote the fractional part of x, i.e.,
(x)=x—[x]. Set b=((jb)), j=1,....,m—1,and I,=[j/m,(j+1)/m], j=0,...,m—1If
some b, is in either I, or I,,_,, then b is within 1/m of an integer, as desired. If not, then we
have m—1 b;’s and only m — 2 remaining intervals, so two b;’s must be in the same interval.
Thus, some b, and b, are in the same interval, with 1 <r <s<m— 1. Then (s — r)b is within
1/m of some integer, so ¢ = s — r satisfies the stated condition.

We now complete the proof of Lemma 5. Choose ¢ and m; as in Lemma 11, and set
¢ = tb— m,. Then choose m, € Z as close as possible to ta + ¢/2, (so that [ta+ ¢/2 — m,| < 1/2),
and set § = m, + m;a. Then

$(1y—8)=o[(1a—my) +(tb—m,)a]
=¢[(ta—m,) + ca]

=(t— +£)2+1’—2
a—my+ 3 4¢
_l,n 1
4 4 2

1 n 3
<z+z';—1,

as desired.

I wish to express my thanks to the referee whose suggestions were very helpful in preparing the final draft of this
article.
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