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Abstract We study the nodal sets of eigenfunctions of the Laplacian on the
standard d-dimensional flat torus. The question we address is: Can a fixed hy-
persurface lie on the nodal sets of eigenfunctions with arbitrarily large eigen-
value? In dimension two, we show that this happens only for segments of
closed geodesics. In higher dimensions, certain cylindrical sets do lie on nodal
sets corresponding to arbitrarily large eigenvalues. Our main result is that this
cannot happen for hypersurfaces with nonzero Gauss-Kronecker curvature.

In dimension two, the result follows from a uniform lower bound for the
L2-norm of the restriction of eigenfunctions to the curve, proved in an earlier
paper (Bourgain and Rudnick in C. R. Math. 347(21–22):1249–1253, 2009).
In high dimensions we currently do not have this bound. Instead, we make use
of the real-analytic nature of the flat torus to study variations on this bound
for restrictions of eigenfunctions to suitable submanifolds in the complex do-
main. In all of our results, we need an arithmetic ingredient concerning the
cluster structure of lattice points on the sphere. We also present an indepen-
dent proof for the two-dimensional case relying on the “abc-theorem” in func-
tion fields.
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1 Introduction and statement of results

Our goal in this paper is to study the nodal sets of high-frequency eigenfunc-
tions on the standard flat torus T

d =R
d/Z

d . The eigenvalues of the Laplacian
on T

d are of the form 4π2λ2, with λ2 an integer, with corresponding eigen-
functions which are trigonometric polynomials of the form

ϕ(x)=
∑

|ξ |=λ

ξ∈Zd

aξ e
2πi〈ξ,x〉 (1.1)

all of whose frequencies are integer points on the sphere |x| = λ. If λ �= 0
then the mean value

∫
Td ϕ(x) dx = 0 vanishes. The nodal set is the locus of
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zeros {ϕ(x) = 0}, which is a hypersurface (codimension one) in T
d , neces-

sarily real-analytic, possibly with singularities. We would like to study how
the nodal sets vary when we increase the eigenvalue. It is known that for any
real-analytic Riemannian manifold, the volume of the nodal sets is commen-
surable with λ [5]. In this paper, we address a different question: As λ grows,
can a fixed hypersurface lie on infinitely many nodal sets?

1.1 Dimension d = 2

In the flat torus in two dimensions, we can have fixed curves where many
eigenfunctions vanish, as in the case the line y = 0 which is on the nodal
set of all the eigenfunction sin(2πmx) sin(2πny). More generally, if � is a
closed geodesic, one can easily construct an infinite sequence of eigenval-
ues with eigenfunctions vanishing on �. However this is essentially the only
such possibility for the flat torus in two dimensions, where we can settle this
problem completely:

Theorem 1.1 Let � ⊂ T
2 be a real-analytic curve. Then a necessary and

sufficient condition that there are eigenfunctions ϕλ with arbitrarily large fre-
quencies which vanish on � is that it be a segment of a closed geodesic.

Theorem 1.1 is an easy consequence of our uniform L2-restriction theo-
rem [1] on the torus, which shows that for any smooth curve � ⊂ T

2 with
nowhere zero curvature, there is some λ� > 0 and C� > 0 so that for all
eigenfunctions ϕλ with λ≥ λ� , we have

∫

�

|ϕλ|2 ≥ C�‖ϕλ‖2 (1.2)

The restriction lower bound (1.2) can be used to show nonvanishing on curves
(Theorem 1.1) which are not segments of closed geodesics: Indeed, since the
curve is real-analytic, if it is not flat it has only finitely many flat points,
hence by shrinking it we may assume that it has nowhere-zero curvature, and
then non-vanishing follows from the lower bound (1.2). If � is flat, but not a
segment of a closed geodesic, then it is a segment of an unbounded geodesic,
in which case it is easy to check that no eigenfunction can vanish on it (though
we do not know the restriction bound (1.2) in this case, see [14]).

We also have a completely different proof of Theorem 1.1 using an alge-
braic argument, relying on the “ABC theorem” of Brownawell-Masser [3] and
Voloch [16] which we present in Appendix A.

1.2 Higher dimensions

Suppose now that � ⊂ T
d is a hypersurface (codimension one). A special

role is played by flat hypersurfaces, which on the torus are affine hyper-
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planes. As in the two-dimensional case, if � is flat and closed (a closed
totally geodesic hypersurface), then it is contained in the nodal set of eigen-
functions with arbitrarily large eigenvalues, e.g. if � = {x ∈ T

d : 〈ξ, x〉 = c}
for some ξ ∈ Z

d , then it is part of the nodal set of the eigenfunctions
ϕn(x) = sin 2πn(〈ξ, x〉 − c) for all n ≥ 1. However, in more than two di-
mensions, we do have non-flat hypersurfaces (that is such that not all prin-
cipal curvatures vanish) contained in the nodal set of eigenfunctions with
arbitrarily large eigenvalues. For instance, let ϕ0(x, y) be an eigenfunction
on the two-dimensional torus with eigenvalue λ2

0, and S0 ⊂ T
2 a curved seg-

ment contained in its nodal set. For n≥ 0 let ϕn(x, y, z)= ϕ0(x, y) cos 2πnz,
which is an eigenfunction on T

3 with eigenvalue λ2
n = λ2

0 + n2, whose nodal
set contains the cylindrical set � = S0 × S1. Thus if S0 is curved then �

is not flat yet lies within the nodal set of all the ϕn. A similar construction
works to show that there are � ⊂ T

d which are cylindrical in the direction of
any closed geodesic for which there are eigenfunctions with arbitrarily large
eigenvalues vanishing on �.

So assume that � has nowhere zero Gauss-Kronecker curvature, meaning
all principal curvatures are nowhere zero (see Sect. 3 for a discussion). We
then show a higher-dimensional version of Theorem 1.1:

Theorem 1.2 Let � ⊂ T
d be a real analytic (codimension one) hypersur-

face, with nowhere-vanishing Gauss-Kronecker curvature. Then there is some
λ� > 0 so that if λ≥ λ� , then � cannot lie within the nodal set of any eigen-
function ϕλ.

A key ingredient in this result deals with any hypersurface which is not flat.
As noted above, there are examples of such hypersurfaces contained in the
nodal set of eigenfunctions with arbitrarily large eigenvalues. Our next result
constrains the possible frequencies of such eigenfunctions, showing that the
Fourier coefficients aξ are negligible for frequencies ξ whose directions ξ/|ξ |
lie outside a fixed cap on the sphere:

Theorem 1.3 Let � ⊂ T
d be a real analytic hypersurface which is not flat.

Then there is a cap �� ⊂ Sd−1 so that for all eigenfunctions ϕλ which vanish
on � we have

|aξ | 	 ‖ϕλ‖2

λN
, ∀N > 1 (1.3)

for all ξ ∈ E such that ξ/|ξ | ∈�� .

Here and elsewhere we use the notation f 	 g to mean that there is some
c > 0 so that f ≤ cg.
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1.3 About the proofs

At this time we do not have an analogue of the uniform restriction theorem
(1.2) in arbitrary dimension (except dimension three [2]). We refer to [4, 9]
for upper bounds in a more general context. We are also not able to use an
analogue of the “abc theorem” as in Appendix A. However, we retain the
feature of passing to the complex domain, combined with some ideas from the
L2-restriction theorem, to prove Theorem 1.3 in arbitrary dimension. The idea
is that the eigenfunctions ϕ are naturally extended to holomorphic functions
ϕC on the complexification C

d/Z
d of T

d , and since � is real-analytic it too
admits a complexification �C ⊂ C

d/Z
d . We then show in Sect. 3 that there

is a fixed cap of directions �� ⊂ Sd−1, and τ = τ� > 0 depending only on
�, so that for v ∈�� , there is a submanifold �(v, τ)⊂�C such that for all
Z ∈ �(v, τ) the imaginary part ImZ = tv is parallel to v, and τ < t < 2τ .
For frequencies ξ for which v := −ξ/|ξ | ∈ �� , we give in Sect. 5 a lower
bound for the L2-restriction of ϕC(Z)e−2πi〈ξ,Z〉 to �(v, τ) of the form

∫

�(v,τ)

∣∣∣ϕC(Z)e−2πi〈ξ,Z〉
∣∣∣
2
dμ(Z)� |aξ |2 +O

(
1

λN

)
(1.4)

where dμ is a smooth measure on �(v, τ). To compare with the restriction
theorem (1.2), note that in that case the RHS is

∑
ξ |aξ |2. That � is not flat

is used to guarantee decay of certain oscillatory integrals in Sect. 4.2. On
the other hand, if ϕ vanishes on � then its holomorphic extension ϕC will
vanish on �C and in particular the LHS of (1.4) will vanish. This will prove
Theorem 1.3.

To get vanishing of all Fourier coefficients and hence Theorem 1.2, we
need all principal curvatures to be nonzero. The extra argument needed to
deduce it from Theorem 1.3 is given in Sect. 6. In all of our results we need an
arithmetic ingredient, concerning the structure of lattice points on the sphere,
which is given in Sect. 2.

1.4 The sphere and Legendre polynomials

One may investigate corresponding questions for the nodal sets of eigenfunc-
tions on other manifolds. However even in seemingly simple situations the
problem is as yet open. Consider the situation on the two-dimensional sphere
S2 ⊂R

3, where the Laplace-Beltrami operator has eigenvalues n(n+ 1) with
the dimension of the corresponding eigenspace Hn being 2n + 1. We use
spherical coordinates: the colatitude θ ∈ [0, π] and longitude φ ∈ [0,2π]. In
these coordinates, we may take as a basis of the eigenspace Hn the spherical
harmonics

Ym
n (θ,φ)= P m

n (cos θ)eimφ, −n≤m≤ n
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where P m
n (x) are Legendre functions (to get real valued functions replace

eimφ by sine and cosine). In particular for m= 0 one gets the zonal spherical
functions Yn(θ,φ)= Pn(cos θ) where Pn(x) are Legendre polynomials

Pn(x)= 1

2n


n/2�∑

j=0

(−1)j
(

n

j

)(
2n− 2j

n− 2j

)
xn−2j (1.5)

which are orthogonal polynomials on the interval [−1,1]. The Legendre poly-
nomial Pn(x) has n simple zeros xn,j ∈ [−1,1].

The nodal set of the zonal spherical harmonic Y 0
n is the union of the paral-

lels θ = θn,j , j = 1, . . . , n where xn,j = cos θn,j are the zeros of the Legen-
dre polynomial Pn(x). Since Pn(−x) = (−1)nPn(x), for odd n we have
Pn(0) = 0, and so we find that the zonal spherical harmonics Y 0

n vanish on
the equator θ = π/2 for odd n.

The equator θ = 0 was singled out by our choice of coordinates, but by
symmetry a corresponding construction works for all rotations of the equator.
Thus every closed geodesic on the sphere lies within the nodal set of eigen-
functions with arbitrarily large eigenvalues, as happens on the flat torus.

A simple version of our results for the flat torus is to ask whether the other
parallels (besides the equator) lie on nodal sets of infinitely many eigenfunc-
tions. As a special case, one can conjecture that a parallel (other than the
equator) cannot lie within the nodal set of more than one zonal spherical har-
monic. This special case is equivalent to the conjecture of Stieltjes [15] that
Pm(x) and Pn(x) have no common roots except x = 0 when m,n are both
odd. In fact, in the same letter [15], Stieltjes put forth the stronger conjecture
that P2n(x) and P2n+1(x)/x are irreducible. This was taken up by Holt [8]
in 1912, and by Schur and his student Hildegard Ille [10], see also [17, 18].
Around 1960 irreducibility was known for all n≤ 500 with a few exceptions
(which nowadays are easily checked by computer).

2 Cluster structure of lattice points on the sphere

For R ≥ 1, we denote by E = ER = Z
d ∩ RSd−1 the set of lattice points on

the sphere of radius R (assuming R2 is an integer):

ER := {ξ ∈ Z
d : |ξ | =R}

As is well known, the number of points in E satisfies ER 	 Rε for all
ε > 0 in dimension d = 2, while in higher dimension #ER grows polyno-
mially. Jarnik’s theorem [11] places constraints on location of lattice points
in small caps:
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Theorem 2.1 (Jarnik’s Theorem) There is some cd > 0 so that all lattice
points in the cap

E ∩ {|x| =R : |x − x0|< cdR
1

d+1 }
lie on an affine hyperplane.

We will need more information about the “cluster structure” of the set E .
We define recursively two sequences c(d), δ(d) with initial conditions

δ(2) <
1

3
, c(2)= 0 (2.1)

and satisfying for d ≥ 3,

c(d)= 2 max

(
c(d − 1),

d

δ(d − 1)

)
(2.2)

δ(d)= 1

2(d + 1)(1+ c(d))
(2.3)

Proposition 2.2 Let E ⊆ Z
d ∩{|x| =R} be a subset of the set of lattice points

on the sphere of radius R. If ρ < Rδ(d) then:

(a) For any subset F ⊂ E , there is an overset F ⊆ F̃ ⊂ E satisfying

diam(F̃ ) ≤ diam(F )+ ρ1+c(d) (2.4)

dist(F̃ , E\F̃ ) > ρ (2.5)

(b) We may decompose E =∐
α Eα into subsets satisfying

dist(Eα, Eβ) > ρ, α �= β (2.6)

diam Eα < ρ1+c(d) (2.7)

To prove Proposition 2.2, we will need:

Lemma 2.3 If 1 < ρ < Rδ(d), and x0, . . . , xK ∈ E are distinct elements sat-
isfying

dist(xi, xi+1)≤ ρ, i = 0, . . . ,K − 1 (2.8)

then K 	 ρc(d).

Proof We prove the claim by induction on the dimension d .
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For d = 2, we note that by Jarnik’s theorem, there is some c2 > 0 such that
all lattice points in an arc {|x| = R : |x − x0| < c2R

1/3} are co-linear, an in
particular there can be at most two of them. Thus if ρ < 1

2c2R
1/3 then we

cannot have a chain x0, x1, x2 with dist(xi, xi+1) < ρ since then we would
have three lattice point in cap of size c2R

1/3.
Now let d ≥ 3 and assume the contrary, that there is some chain x0, . . . , xK

of length K > ρc(d). Let K ′ = 
ρc(d)� and consider the initial chain C′ =
{x0, . . . , xK ′ } of length K ′. The diameter of this chain is at most diam(C′)≤
K ′ρ 	 ρc(d)+1 < Rδ(d)(1+c(d)) and hence by (2.3), diam(C′) < R1/2(d+1) =
o(R1/(d+1)). Therefore by Jarnik’s theorem, this subchain is contained in
some hyperplane H , that is in the intersection of the sphere of radius R with
the hyperplane H , which is a (d − 2)-dimensional sphere of some radius
R1 	R.

Thus we get a ρ-chain of length K ′ in dimension d − 1. There are two
possibilities:

(1) If ρ < R
δ(d−1)
1 then the inductive hypothesis allows us to conclude K ′ <

ρc(d−1) = o(ρc(d)) by (2.2) , contradicting K ′ ≈ ρc(d).
(2) If ρ > R

δ(d−1)
1 then we bound the number of lattice points on a (d − 2)-

dimensional sphere of radius R1 by (1+ 2R1)
d 	 Rd

1 by replacing the
sphere by a d-dimensional cube containing the sphere (this is crude but

uniform with respect to the hyperplane H ). Hence K ′ 	 Rd
1 	 ρ

d
δ(d−1) ,

which contradicts K ′ ≈ ρc(d) by (2.2). �

We may now prove Proposition 2.2:

Proof We set F0 := F and define

Fi := F ∪ {x ∈ E : dist(x, Fi−1)≤ ρ}
to be the set of lattice points at distance less than ρ from the previous set. So
we have an ascending sequence

F0 = F ⊆ F1 ⊆ F2 ⊆ · · ·
If F0, F1, . . . , Fk are all distinct then k < ρc(d) since then we can form a
chain x0, . . . , xk of distinct elements xi ∈ Fi\Fi−1, with dist(xi, xi+1) ≤ ρ.
Hence by Lemma 2.3 we have k < ρc(d).

Thus for some 0 ≤ K < ρc(d) we must have FK = FK+1. Note that if
FK+1 = FK then FK+j = FK for all j ≥ 1 and by definition, if y ∈ E\FK

then dist(y, FK) > ρ. Thus taking F̃ := FK we get a set which is well sep-
arated from its complement, that is (2.5) holds, and for any y ∈ F̃ there is
some x ∈ F with dist(x, y) < Kρ < ρ1+c(d), so that (2.4) holds.
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To prove the second part, we take some lattice point x1 ∈ E and let
F = E ∩Ball(x1, ρ

1+c(d)). Using the first part we find an overset F ⊆ F̃ ⊆ E
satisfying (2.5) and (2.4) and set E1 = F̃ , so that diam E1 	 ρ1+c(d) and
dist(E1, E\E1) > ρ. Now replace E by E\E1 and continue the process. �

3 Some geometric constructions

3.1 Background from differential geometry

Let � ⊂ T
d be a real-analytic hypersurface, which we assume is non-singular.

We consider a small parametric patch on � which we may assume looks like
a graph, that is there is a real-analytic function f (x1, . . . , xd−1) so that

γ (x)= (x, f (x)), |x|< δ

is a parametrization of �.
For each point p ∈�, denote by Tp� the tangent space to � at p. On �

we have the frame field

Xj := ∂γ

∂xj

=
(

0, . . . ,

j︷︸︸︷
1 , . . . ,0,

∂f

∂xj

)
(3.1)

which gives at each point p a basis of Tp�. The general tangent vector may
be given as the linear combination

v =
d−1∑

j=1

wjXj = (ω,∇f ·ω), ω= (w1, . . . ,wd−1) (3.2)

A choice of a unit normal field to the hypersurface � at the point p =
(x, f (x)) is given by

Np := 1√
1+ |∇f (x)|2 (−∇f (x),1) (3.3)

The unit normal field defines the Gauss map N :�→ Sd−1. The shape oper-
ator for the hypersurface �, determined by the choice (3.3) of unit normal, is
the linear map

Sp : Tp�→ Tp�, v �→ −∇vNp (3.4)

that is Sp is (minus) the derivative of the Gauss map.
The shape operator is self-adjoint:

〈Sp(u), v〉 = 〈u,Sp(v)〉 (3.5)
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and associated to it one has a symmetric bilinear form, the second fundamen-
tal form

IIp(u, v)= 〈Sp(u), v〉 (3.6)

The coefficients of the second fundamental form with respect to the frame
field {Xj } may be computed explicitly in terms of the derivatives

Xi,j = ∂2γ

∂xi∂xj

=
(
�0,

∂2f

∂xi∂xj

)

as

〈S(Xi),Xj 〉 = 〈N,Xi,j 〉 =
∂2f

∂xi∂xj√|∇f |2 + 1
(3.7)

The eigenvalues of the shape operator are the principal curvatures of �,
and the determinant of S is called the Gauss-Kronecker curvature of �. The
hypersurface � is flat, i.e. is an affine hyper-plane, if and only if the unit
normal Np is constant, which happens if and only if all principal curvatures
vanish, that is the shape operator is identically zero.

Given a unit tangent vector u ∈ Tp�, the normal curvature of � at p in
the direction u is defined as

k(u)= 〈Sp(u), u〉
If we cut the hypersurface � by the plane spanned by u and the unit normal
Np , we get a curve whose tangent at p is the vector u, and whose curvature
at p is k(u). For any nonzero tangent vector v given as in (3.2), the normal
curvature in direction v is

k(v)=
〈
S

(
v

|v|
)

,
v

|v|
〉
= 1√|∇f |2 + 1

ωT Dx,xf ω

|ω|2 + (∇f ·ω)2
(3.8)

where Dx,xf = (
∂2f

∂xi∂xj
) is the Hessian matrix of f .

Directions for which the normal curvature vanishes are called asymptotic
directions. Thus a tangent vector v as in (3.2) points in an asymptotic direc-
tion if and only if

ωT Dx,xf ω= 0 (3.9)

The set of asymptotic directions at a point p is called the asymptotic cone.
The hypersurface � is flat at the point p if and only if every direction is as-
ymptotic, that is the asymptotic cone coincides with the whole tangent space.

Lemma 3.1 Suppose � is not flat. Then after shrinking �, we can find a cap
�� ⊂ Sd−1 of directions v = (ω,wd) so that:
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(i) There is a point p = γ (x) ∈� so that v is tangent to � at p, equivalently
satisfies

∇f (x) ·ω=wd (3.10)

(ii) The direction v is not an asymptotic direction for all p ∈ �, that is for
all x and all v = (ω,wd) ∈�� we have

ωT Dxxf (x)ω �= 0 (3.11)

Proof Since � is not flat, the Hessian Dx,xf is not identically zero (if it
were, f (x)= a+ b · x would be linear hence � would be flat). Then we may
assume by further shrinking � that in fact the Hessian matrix Dx,xf (x) �= 0
is nonzero for all |x|< δ.

Since Dx,xf (0) is not the zero matrix, the asymptotic cone

{ω ∈R
d−1 : ωT Dx,xf (0)ω= 0}

has lower dimension and hence there is an open cone of directions for which
ωT Dx,xf (0)ω �= 0. Moreover, by continuity of x �→Dx,xf (x), we get some
δ > 0 and an open cone C so that

ωT Dx,xf (x)ω �= 0, ∀|x|< δ, ∀ω ∈ C (3.12)

Consider the map

V : Ball(�0, δ)× C →R
d

(x,ω) �→ v =
d−1∑

j=1

wjXj = (ω,∇f (x) ·ω)
(3.13)

We claim that the map V is a submersion, i.e. the Jacobian of V has maximal
rank for each (x,ω), hence the image of V contains an open set of directions
�� ⊂ Sd−1.

To see this, compute the Jacobian of V :

Dx,ωV =
(

∂V

∂ωi

,
∂V

∂xj

)
=

(
Id−1 0d−1
∇f (x) Dx,xf (x) ·ω

)
(3.14)

Since ωT Dx,xf (x)ω �= 0 for all x and ω ∈ C , hence Dx,xf (x) · ω �= �0, it
follows that the rank of Dx,ωV is d as claimed.

Thus for each unit vector v = (ω,wd) ∈�� , there is a point p = γ (x) ∈�

so that v is tangent to � at p, equivalently is orthogonal to the normal, so
satisfies

∇f (x) ·ω=wd (3.15)

Moreover, for all such x we have ωT Dx,xf (x)ω �= 0. �
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Note that if v satisfies (3.10), (3.11) then so does −v.

3.2 The complexification of � and the submanifolds �(v)

Since f is real-analytic, there is a holomorphic extension F(z) of f to some
neighborhood U ⊂C

d−1. This gives a holomorphic extension of the parame-
trization

γ C : z ∈ U �→ (z,F (z)) (3.16)

and we define the image

�C := {γ C(x + iy)= (z,F (z)), z ∈ U} (3.17)

to be the holomorphic extension of the surface �.
Let v ∈ Sd−1 be a unit vector in the cap guaranteed by Lemma 3.1, so

there is some p = (x0, f (x0)) ∈� with v ⊥Np . For such v, we will define a
submanifold �(v)⊂�C so that

• If Z ∈�(v) then ImZ = tv is parallel to v.
• �(v)∩� ⊆ {p ∈� :Np ⊥ v}, i.e. at the real points p of �(v), the normal

vector Np is orthogonal to v, equivalently v is tangent to � at p.

To do so, write v = (ω,wd) and note that the vector-valued function
Imγ C(x + itω) − t �v is real-analytic in t and vanishes at t = 0. Hence we
can write

Imγ C(x + itω)− t �v = t (�0, h(x, t)) (3.18)

with h(x, t)= hv(x, t) real analytic. We want to define �(v) by the vanishing
of h(x, t). To do so, we need:

Lemma 3.2 For v = (ω,wd) ∈ �� , let p = (x0, f (x0)) ∈ � be such that
v ∈ Tp�. Then

h(x0,0)= 0 (3.19)

and

∇h(x0,0)= (Dx,xf (x0)ω,0) �= �0 (3.20)

Proof Start at a point p = (x0, f (x0)) ∈� with Np ⊥ v. To find the value of
the function h(x, t) at t = 0, expand

ImF(x, tω)= ImF(x,0)+ t∇y ImF(x,0) ·ω+O(t2) (3.21)

By the Cauchy-Riemann equations, ∇y ImF(x,0)=∇x ReF(x,0)=∇f (x)

and since ImF(x,0)= 0 we find

h(x,0)= lim
t→0

ImF(x, tω)

t
−wd =∇f (x) ·ω−wd (3.22)
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Since the normal direction to the surface � at p is given by the vector
(−∇f (x0),1), we find that if Np ⊥ v then h(x0,0)= 0.

To show (3.20), note that since f (x) is real-analytic, its holomorphic ex-
tension F satisfies F(z)= F(z̄), that is

ReF(z̄)= ReF(z), ImF(z̄)=− ImF(z)

showing that ImF(x + itω) is odd in t , hence h(x, t) is even in t . Therefore
we have

∂h

∂t
(x,0)= 0

Moreover since ImF(x, tω) is odd in t ,

ImF(x, tω)= t (∇y ImF)(x,0) ·ω+O(t3)

and hence

∇x

ImF(x, tω)

t
=Dxy ImF(x,0) ·ω+O(t2)

By Cauchy-Riemann, Dxy ImF(x0,0) = Dxx ReF(x0,0) = Dxxf (x0) and
hence we find

∇xh(x0)=Dxxf (x0) ·ω
proving (3.20).

By construction of the cap �� in Lemma 3.1, we know that ωT Dx,xf (x)ω

�= 0 for all x; in particular Dxx(f )(x0) ·ω �= �0 and therefore ∇h(x0,0) �= �0. �

Since ∇xh(x0,0) = Dx,xf (x0)ω �= �0, we may use the Implicit Function
Theorem to guarantee that there is a neighborhood of (x0,0) in the (x, t)

domain where ∇xh(x, t) �= �0 and the condition h(x, t)= 0 defines a smooth
(d − 1)-dimensional submanifold. After shrinking � and relabeling, we may
then assume that for all (x, t),

∂h

∂x1
(x, t) �= 0 (3.23)

Using the Implicit Function Theorem, we can then write

x1 = x1(t, x̂ ), x̂ := (x2, . . . , xd−1) (3.24)

We then define

�(v) := {γ C((x1(t, x̂ ), x̂ )+ itω) : |t |< δ, |̂x|< δ} (3.25)
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Note that since v varies in a compact set, we may choose δ > 0 to work
uniformly for all such v. Hence for τ 	 δ , �(v) contains the set

�(v, τ) := {Z = γ C((x1(t, x̂ ), x̂ )+ itω) ∈�(v) : τ < t < 2τ, |̂x|< δ}
(3.26)

so that Z ∈�(v, τ) implies that ImZ = tv, with t ∈ (τ,2τ).
We define a smooth measure dμ on �(v, τ) by taking a smooth bump

function ψ(t, x̂ ), supported in t ∈ [τ,2τ ], and setting
∫

�(v,τ)

g(Z)dμ(Z)

:=
∫

τ<t<2τ

∫

|̂x|<δ

g(γ C((x1(t, x̂ ), x̂ )+ itω))ψ(t, x̂ ) dt dx̂ (3.27)

We will restrict ψ by requiring that its support is disjoint from the lower-
dimensional set of (t, x̂ ) satisfying

〈(∇x ReF)(x, tω),ω〉 =wd

〈(∇y ReF)(x, tω),ω〉 = 0
(3.28)

This condition will be used in Sect. 4.2 to ensure decay of an oscillatory
integral.

4 Using complexification

We start with an eigenfunction of the Laplacian with eigenvalue λ2

ϕλ( �X)=
∑

ξ∈E
aξ e

2πi〈ξ, �X〉, �X ∈ T
d (4.1)

which we normalize by ∑

ξ

|aξ |2 = 1 (4.2)

We want to show that if � has nowhere zero Gauss-Kronecker curvature, then
for λ > λ� , ϕλ cannot vanish on the fixed hypersurface �. We proceed to do
so by showing initially that the Fourier coefficients aξ are negligible for all
frequencies whose directions ξ/|ξ | lie in a cap �� depending only on �. All
that is required for this is that � not be flat:

Theorem 4.1 Assume � ⊂ T
d is not flat. Then there is a cap �� ⊂ Sd−1 so

that for all eigenfunctions ϕλ which vanish on � we have

|aξ | 	 1

λN
, ∀N > 1 (4.3)

for all ξ ∈ E such that −ξ/|ξ | ∈�� .
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4.1 The strategy

Fix ξ0 ∈ E so that

v0 =− ξ0

|ξ0| ∈�� (4.4)

lies in the set of directions guaranteed by Lemma 3.1.
We have a holomorphic extension ϕC( �Z) of ϕ by replacing �X by �Z =

�X+ i �Y ∈C
d , which is a function on C

d/Z
d . We will give a lower bound for

the mean square of ϕC(Z)e−2πi〈ξ0,Z〉 restricted to the submanifold �(v0, τ ):
∫

�(v0,τ )

∣∣∣ϕC(Z)e−2πi〈ξ0,Z〉
∣∣∣
2
dμ(Z)� |aξ0 |2 +O

(
1

λN

)
(4.5)

where dμ is the smooth measure on �(v0) constructed in (3.27).
On the other hand, vanishing of ϕ on � implies vanishing of ϕC( �Z) on the

holomorphic extension �C of our surface �. In particular, the mean square
of ϕC(Z)e−2πi〈ξ0,Z〉 along �(v0, τ ) vanishes:

∫

�(v0,τ )

∣∣∣ϕC(Z)e−2πi〈ξ0,Z〉
∣∣∣
2
dμ(Z)= 0 (4.6)

and combining with the lower bound (4.5), this will prove Theorem 4.1.
To prove the lower bound on the mean square (4.5), we show that on

�(v0, τ ) we may represent ϕC(Z)e−2πi〈ξ0,Z〉 up to negligible error by a sum
over frequencies in a small cap:

ϕC( �Z)e−2πi〈ξ0, �Z〉 =
∑

E ′
aξ e

2πi〈ξ−ξ0,Z〉 +O

(
1

λN

)
, Z ∈�(v0, τ )

where the sum is over a certain set E ′ of frequencies contained in a cap of size
≈√λ logλ around ξ0.

On squaring out the sum in we will be faced with oscillatory integrals of
the form

Jξ,ξ ′ :=
∫

�(v0,τ )

e2πi(〈ξ−ξ0,Z〉−〈ξ ′−ξ0,Z̄〉) dμ(Z) (4.7)

We will bound these integrals by

Jξ,ξ ′ 	 1

|ξ − ξ ′|N , ξ �= ξ ′ ∈ E ′ (4.8)

Here the fact that � is not flat is crucial. Armed with this estimate, we will
prove (4.5) by using the cluster structure of the set of frequencies E shown in
Sect. 2.
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4.2 An oscillatory integral

We want to bound the oscillatory integral Jξ,ξ ′ in (4.7), or writing out explic-
itly,

Jξ,ξ ′ =
∫

e2πi|ξ−ξ ′|φu(t ,̂x )Aξ,ξ ′(t, x̂ ) dt dx̂ (4.9)

where we write u = ξ−ξ ′
|ξ−ξ ′| and for any vector u = (u1, . . . , ud) the phase

function φu is defined by

φu(t, x̂ )= 〈u,G(t, x̂ )〉 = 〈u, (x,ReF(x, tω))〉 (4.10)

x̂ = (x2, . . . , xd−1), x = (x1, x̂ )

G(t, x̂ )= Reγ C(x + itω)= (x,ReF(x, tω))

and with amplitude

Aξ,ξ ′(t, x̂ )= e−2πt(A(ξ)+A(ξ ′))ψ(t, x̂ ) (4.11)

A(ξ)= 〈ξ − ξ0, v0〉 (4.12)

and ψ(t, x̂ ) is a bump function. The region of integration in the (t, x̂ ) domain
is a small ball such that τ < t < 2τ .

Lemma 4.2 Let v0 = (ω,wd) be as given in (4.4). Then for all unit vectors
u orthogonal to v0, the phase function φu(t, x̂ ) is non constant, and the sta-
tionary points of φu lie on a subset of lower dimension, which is independent
of u, namely the points (t, x̂ ) where

〈(∇x ReF)(x, tω),ω〉 =wd

〈(∇y ReF)(x, tω),ω〉 = 0
(4.13)

Proof Write out the phase function explicitly as

φu(t, x̂ )= u1x1(t, x̂ )+
d−1∑

j=2

ujxj + ud ReF(x1, x̂, tω) (4.14)

Assume first that

∂x1

∂t
�= 0

on the domain of integration.
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We first dispose of the possibility that ud = 0. In that case,

φu(t, x̂ )= u1x1(t, x̂ )+
d−1∑

j=2

ujxj (4.15)

At a stationary point,

0= ∂φu

∂t
= u1

∂x1

∂t
(4.16)

and since ∂x1
∂t
�= 0 on the support of ψ , we find u1 = 0 so that u =

(0, u2, . . . , ud−1,0) and φu =∑d−1
j=2 ujxj is linear, ∇φu = u and φu has no

stationary points.
Assume from now that ud �= 0. Consider the differential operator

L = w1
∂x1
∂t

∂

∂t
+

d−1∑

j=2

wj

(
∂

∂xj

−
∂x1
∂xj

∂x1
∂t

∂

∂t

)
=A

∂

∂t
+

d−1∑

j=2

wj

∂

∂xj

(4.17)

with

A= 1
∂x1
∂t

(
w1 −

d−1∑

j=2

wj

∂x1

∂xj

)

A calculation using the chain rule shows that for a function of the form
H(x, tω) we have

L{H(x, tω)} = 〈∇xH,ω〉 +A〈∇yH,ω〉 (4.18)

Applying L to the phase function φu, using Lxj =wj , gives

Lφu =
d−1∑

j=1

ujwj + ud(〈∇x ReF,ω〉 +A〈∇y ReF,ω〉) (4.19)

Hence at a stationary point, where Lφu = 0, we find on using the orthogonal-
ity of u and v0, that

ud(〈∇x ReF,ω〉 +A(〈∇y ReF,ω〉)=−
d−1∑

j=1

ujwj = udwd (4.20)

and since ud �= 0 we get

〈∇x ReF,ω〉 +A〈∇y ReF,ω〉 =wd (4.21)
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Likewise, applying L to the relation ImF(x, tω) = twd we get on using
Lt =A that

〈∇x ImF,ω〉 +A〈∇y ImF,ω〉 =Awd (4.22)

Applying the Cauchy-Riemann equations ∇x ImF = −∇y ReF , ∇y ImF =
∇x ReF gives

A〈∇x ReF,ω〉 − 〈∇y ReF,ω〉 =Awd (4.23)

The unique solution of the system (4.21), (4.23) is then

〈∇x ReF,ω〉 =wd, 〈∇y ReF,ω〉 = 0 (4.24)

Now assume that φu is constant, so that (4.24) holds for all t, x̂. Then we
may apply the differential operator L to (4.24) to get

L〈∇x ReF,ω〉 = ωT∇x,x ReFω+AωT∇x,y ReFω= 0 (4.25)

and

L〈∇y ReF,ω〉 = ωT∇x,y ReFω+AωT∇y,y ReFω= 0 (4.26)

By the Cauchy-Riemann equations, ∇y,y ReF =−∇x,x ReF and we find

ωT∇x,y ReFω−AωT∇x,x ReFω= 0 (4.27)

The unique solution of the system (4.25), (4.27) is

ωT∇x,x ReFω= 0= ωT∇x,y ReFω (4.28)

which assuming that φu is constant on �(v0), holds throughout �(v0) and in
particular on the real locus t = 0, where ReF(x,0)= f (x), where we find

ωT∇x,xf (x)ω= 0, ∀x ∈�(v0)∩� (4.29)

This contradicts (3.11), that is that v0 is not an asymptotic direction at any
point on �. Thus φu is non-constant, and being real-analytic its stationary
points (where ∇φu = �0) lie on a lower-dimensional subset Crit(u) of �(v0).

Since (4.13) holds at the stationary points, which is independent of u,
Crit(u) are confined to lie inside a lower-dimensional subset which is inde-
pendent of u.

Next consider the case ∂x1
∂t
≡ 0 on the support of ψ . We claim that still

(4.13) holds.
We first dispose of the case ud = 0 when φu = u1x1 +∑d−1

j=2 ujxj with

u ·w =∑d−1
j=1 ujwj = 0. (We leave the case d = 2 as an exercise). If u1 = 0
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then φu is a non-zero linear function and has no stationary points. Otherwise,
at a stationary point,

0= ∂φu

∂xj

= u1
∂x1

∂xj

+ uj (4.30)

Differentiating the relation ImF(x, tω)= twd with respect to xj gives

0= ∂x1

∂xj

∂ ImF

∂x1
+ ∂ ImF

∂xj

=−∂x1

∂xj

∂ ReF

∂y1
− ∂ ReF

∂yj

(4.31)

by the Cauchy-Riemann equations. Hence

〈∇y ReF,ω〉 =w1
∂ ReF

∂y1
+

d−1∑

j=2

wj

∂ ReF

∂yj

=w1
∂ ReF

∂y1
−

d−1∑

j=2

wj

∂x1

∂xj

∂ ReF

∂y1

= ∂ ReF

∂y1

(
w1 +

d−1∑

j=2

wj

uj

u1

)
= 0

since by orthogonality of u and v0 and vanishing of ud , we have w1 +∑d−1
j=2 wj

uj

u1
= 0.

Assume now that ud �= 0. Then at a stationary point,

0= ∂φu

∂t
= ud〈∇y ReF,ω〉 (4.32)

and ud �= 0 implies 〈∇y ReF,ω〉 = 0. Differentiating the relation
ImF(x, tω)= twd with respect to t , using independence of x1 relative to t ,
gives

wd = 〈∇y ImF,ω〉 = 〈∇x ReF,ω〉 (4.33)

by the Cauchy-Riemann equations. Thus in all cases (4.13) hold at a station-
ary point.

Now differentiate the relation 〈∇y ReF(x, tω),ω〉 = 0 with respect to t ,
keeping in mind that x1 is independent of t , to get ωT∇y,y ReFω = 0 and
using the Cauchy-Riemann equation we get ωT∇x,x ReFω= 0. Specializing
to the real locus t = 0 again gives a contradiction. �
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Lemma 4.3 Let v0 be as in (4.4), and set D = (logλ)2. Then for all ξ �= ξ ′
lying in a cap of size

√
λD around λv0 we have

|Jξ,ξ ′ | 	 1

|ξ − ξ ′|r , ∀r ≥ 1 (4.34)

Proof Write

Jξ,ξ ′ =
∫

e2πi|ξ−ξ ′|�ξ,ξ ′ (t ,̂x )Aξ,ξ ′(t, x̂ ) dt dx̂ dx

where

�ξ,ξ ′(t, x̂ ) :=
〈

ξ − ξ ′

|ξ − ξ ′| ,G(t, x̂ )

〉
(4.35)

We claim that there is some C > 0 for which for all ξ �= ξ ′ in our cap, the
phase functions satisfy

‖∇�ξ,ξ ′(t, x̂ )‖ ≥ C (4.36)

Indeed, decompose ξ − ξ ′ into components along v0 and orthogonal to it:

ξ − ξ ′ = ku+ 〈ξ − ξ ′, v0〉v0, u⊥ v0, ‖u‖ = 1

Since ξ, ξ ′ lie in a cap of size
√

λD on the sphere of radius λ, the difference
ξ − ξ ′ is almost orthogonal to v0 and we claim that

∣∣∣∣

〈
ξ − ξ ′

|ξ − ξ ′| , v0

〉∣∣∣∣	
√

λD

λ
= o(1) (4.37)

Indeed, writing ξ = ξ0 + η, ξ ′ = ξ0 + η′, with |η|, |η′| ≤ √λD we get

2〈η, ξ0〉 + |η|2 = 0= 2〈η′, ξ0〉 + |η′|2

and since ξ0 =−λv0,
∣∣∣∣

〈
ξ − ξ ′

|ξ − ξ ′| , v0

〉∣∣∣∣=
∣∣∣∣

〈
η− η′

|η− η′| , v0

〉∣∣∣∣=
∣∣∣∣
|η|2 − |η′|2
2λ|η− η′|

∣∣∣∣≤
|η| + |η′|

2λ
=
√

λD

λ

as claimed. Likewise we have

A(ξ),A(ξ ′)≤ D

2
(4.38)

because

A(ξ)= 〈η, v0〉 = −
〈
η,

ξ0

λ

〉
= |η|

2

2λ
≤ D

2
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Therefore we find

|k| ∼ |ξ − ξ ′| (4.39)

Thus

�ξ,ξ ′(t, x̂ )= k

|ξ − ξ ′|φu(t, x̂ )+ o(1)〈v0,G(t, x̂ )〉

By our choice (3.28) of ψ and as a consequence of Lemma 4.2, we know
that φu has no critical point in suppψ for all u ⊥ v0 and so there is some
C > 0 so that |∇φu(t, x̂ )|> 2C for all u⊥ v0 and all (t, x̂ ) ∈ suppψ . There-
fore (recalling that |k| ∼ |ξ − ξ ′|) for λ� 1 we have

|∇�ξ,ξ ′(t, x̂ )|> C

as claimed.
Integrating by parts we get that

Jξ,ξ ′ 	 ‖Aξ,ξ ′‖Cr
1

|ξ − ξ ′|r , ∀r ≥ 1 (4.40)

Since 0 ≤ A(ξ),A(ξ ′) ≤ D, and τ ≤ t ≤ 2τ on suppψ , we may bound the
Cr -norm of the amplitude function Aξ,ξ ′ = e−2πt(A(ξ)+A(ξ ′))ψ(t, x̂ ) by

‖Aξ,ξ ′‖Cr 	ψ (1+A(ξ)+A(ξ ′))r+1e−2πτ(A(ξ)+A(ξ ′)) =O(1) (4.41)

(the implied constant depends only on ψ , τ and r , not on ξ, ξ ′), which gives
the required estimate. �

5 A lower bound for the mean-square of ϕC(Z)e−2πi〈ξ0,Z〉

5.1 Representing ϕC on �(v0, τ ) by a short sum

We show that for Z ∈ �(v0, τ ) we may represent ϕC( �Z)e−2πi〈ξ0, �Z〉 by the
part of its Fourier expansion whose frequencies lie in a small cap around ξ0,
up to a negligible error.

For ξ ∈ E , set

A(ξ)= 〈ξ − ξ0, v0〉 (5.1)

Observe that since all vectors ξ ∈ E lie on a sphere, and thus no two vectors
can lie on the same positive ray, we have 〈ξ, ξ0〉 < 〈ξ0, ξ0〉 for all vectors
ξ �= ξ0 and hence

A(ξ) > 0, ξ �= ξ0, A(ξ0)= 0 (5.2)
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Let

D ≈ (logλ)2 (5.3)

The set

E ′ := {ξ ∈ E :A(ξ) < D} (5.4)

is contained in a cap of size ≈ √λD centered at ξ0. Note that for ξ in this
cap, ξ − ξ0 is almost perpendicular to v0.

Lemma 5.1 For �Z = �X+ i �Y ∈�(v0, τ ), we have

ϕC( �Z)e−2πi〈ξ0, �Z〉 =
∑

A(ξ)≤D

aξe
2πi〈ξ−ξ0, �X〉e−2πtA(ξ) +O

(
1

λN

)
(5.5)

for all N ≥ 1.

Proof We define a subset T (v0)⊂C
d/Z

d by

T (v0) := { �Z ∈C
d : Im �Z = | Im �Z|v0} (5.6)

that is the complex vectors whose imaginary parts point along the ray in the
direction of v0. Restricting ϕC to T (v0), we have

ϕC( �Z)e−2πi〈ξ0, �Z〉 =
∑

ξ

aξ e
2πi〈ξ−ξ0, �X〉e−2πtA(ξ), t := | Im �Z| (5.7)

Now restrict �Z further by assuming that it lies in the set

T (v0; τ) := { �Z ∈ T (v0) : τ < | Im �Z|< 2τ }
Then for �Z ∈ T (v0; τ) we have

∣∣∣∣
∑

A(ξ)>D

aξe
2πi〈ξ−ξ0, �Z〉

∣∣∣∣ ≤
∑

A(ξ)>D

|aξ |e−2π | Im �Z|D

	 (#E )1/2e−2πτD 	 1

λN
, ∀N > 1 (5.8)

using
∑

ξ |aξ |2 = 1, #E 	 λd−2+ε and A(ξ)≥D, | Im �Z|> τ .

Hence for �Z ∈ T (v0; τ) we have

ϕC( �Z)e−2πi〈ξ0, �Z〉 =
∑

A(ξ)≤D

aξe
2πi〈ξ−ξ0, �X〉e−2πtA(ξ) +O

(
1

λN

)
(5.9)

In particular, since �(v0, τ )⊂ T (v0, τ ) we proved (5.5). �
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5.2 Proof of the lower bound on the mean square

We now want to prove the lower bound (4.5) for the mean square, namely that

∫

�(v0,τ )

|ϕC(Z)e−2πi〈ξ0,Z〉|2 dμ(Z)� |aξ0 |2 +O

(
1

λN

)

Hence what we need follows from the following proposition, once we recall
that A(ξ)≥ 0 for all ξ ∈ E ′ and that A(ξ0)= 0:

Proposition 5.2 There is some C > 0 so that

∫

�(v0,τ )

∣∣∣∣∣
∑

ξ∈E ′
aξ e

2πi〈ξ−ξ0,Z〉
∣∣∣∣∣

2

dμ(Z)≥ C
∑

ξ∈E ′
|aξ |2e−8πτA(ξ) +O

(
1

λN

)

(5.10)
for all N > 1.

Proof We note that for Z ∈�(v0, τ ),

〈ξ − ξ0,Z〉 = 〈ξ − ξ0,G(t, x̂ )〉 + itA(ξ)

where

G(t, x̂ )= Reγ C((x1, x̂ )+ itω)= (x1, x̂,ReF((x1, x̂ )+ itω)) (5.11)

and so we need to show that

∫ ∣∣∣∣∣
∑

ξ∈E ′
aξ e

−2πtA(ξ)e2πi〈ξ−ξ0,G(t,̂x )〉
∣∣∣∣∣

2

dμ(t, x̂ )

≥ C
∑

ξ∈E ′
|aξ |2e−8πτA(ξ) +O

(
1

λN

)
(5.12)

for all N > 1, where dμ(t, x̂ )=ψ(t, x̂ ) dt dx̂.
Let d(E ′) be the minimal dimension of an affine hyperplane which contains

all the frequencies E ′, so d(E ′)≤ d . We show by induction on d ′ = d(E ′) that
(5.12) holds.

The case d ′ = 1: This means all frequencies lie on a line, and hence (since
they lie on a sphere) there are at most two of them. If there is exactly one
frequency the claim is clear, so we need to treat the case E ′ = {ξ, ξ ′} consists
of two distinct frequencies. That is we want to show that
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∫ ∣∣∣aξ e
2πi〈ξ−ξ0,G(t,̂x )〉e−2πtA(ξ) + aξ ′e

2πi〈ξ ′−ξ0,G(t,̂x )〉e−2πtA(ξ ′)
∣∣∣
2
dμ

≥C(|aξ |2e−8πτA(ξ) + |aξ ′ |2e−8πτA(ξ ′)) (5.13)

Write

Aξ (t)= |aξ |e−2πtA(ξ), aξ = |aξ |e2πiαξ

Then we want to give a lower bound for
∫ ∣∣∣Aξ (t)e

2πi(αξ+〈ξ−ξ0,G(t,̂x )〉) +Aξ ′(t)e
2πi(αξ ′+〈ξ ′−ξ0,G(t,̂x )〉)

∣∣∣
2

dμ (5.14)

We have
∣∣∣Aξ (t)e

2πi(αξ+〈ξ−ξ0,G(t,̂x )〉) +Aξ ′(t)e
2πi(αξ ′+〈ξ ′−ξ0,G(t,̂x )〉)

∣∣∣
2

= Aξ (t)
2 +Aξ ′(t)

2 + 2Aξ (t)Aξ ′(t) cos 2πφ(t, x̂ ) (5.15)

where the phase function is

φ(t, x̂ )= αξ−αξ ′ +|ξ−ξ ′|�ξ,ξ ′(t, x̂ ), �ξ,ξ ′(t, x̂ )=
〈

ξ − ξ ′

|ξ − ξ ′| ,G(t, x̂ )

〉

(5.16)
Let

Sδ = {(t, x̂ ) ∈ suppψ : cos 2πφ(t, x̂ )≥−1+ δ}
According to (4.36),

|∇φ(t, x̂ )| ≥ |ξ − ξ ′|C ≥ C (5.17)

for all (t, x̂ ) ∈ suppψ and all ξ �= ξ ′ ∈ E ′ (using integrality for |ξ − ξ ′| ≥ 1).
Therefore since the phase varies by at least a fixed amount, there is some
δ > 0 and C > 0 (independent of ξ, ξ ′) so that

∫

Sδ

dμ≥ C

δ
(5.18)

On the set Sδ we have

Aξ (t)
2 +Aξ ′(t)

2 + 2Aξ (t)Aξ ′(t) cos 2πφ(t, x̂ )

≥ Aξ (t)
2 + Aξ ′(t)

2 + (−1+ δ)2Aξ (t)Aξ ′(t)
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= δ(Aξ (t)
2 +Aξ ′(t)

2)+ (1− δ)
∣∣Aξ (t)−Aξ ′(t)

∣∣2

≥ δ(|aξ |2e−8πτA(ξ) + |aξ ′ |2e−8πτA(ξ ′))

Therefore we find that

(5.14)=
∫ {

Aξ (t)
2 +Aξ ′(t)

2 + 2Aξ (t)Aξ ′(t) cos 2πφ(t, x̂ )
}

dμ

≥
∫

Sδ

{
Aξ (t)

2 +Aξ ′(t)
2 + 2Aξ (t)Aξ ′(t) cos 2πφ(t, x̂ )

}
dμ

≥ δ(|aξ |2e−8πτA(ξ) + |aξ ′ |2e−8πτA(ξ ′))
∫

Sδ

dμ

≥ C(|aξ |2e−8πτA(ξ) + |aξ ′ |2e−8πτA(ξ ′))

as claimed.
The case d ′ ≥ 2: By Proposition 2.2 we may partition E ′ =∐

Eα where

diam Eα 	 λ
1

d+1 , dist(Eα, Eβ)� λ
1

(d+1)(1+c(d)) , α �= β (5.19)

Then

∫ ∣∣∣∣∣
∑

ξ∈E ′
aξ e

2πi〈ξ−ξ0,G(t,̂x )〉e−2πtA(ξ)

∣∣∣∣∣

2

dμ

=
∑

α

∫ ∣∣∣∣∣
∑

ξ∈Eα

aξ e
2πi〈ξ−ξ0,G(t,̂x )〉e−2πtA(ξ)

∣∣∣∣∣

2

dμ+
∑

α �=β

∑

ξ∈Eα

∑

ξ ′∈Eβ

aξaξ ′Jξ,ξ ′

where the oscillatory integral Jξ,ξ ′ is given in (4.9). By Lemma 4.3 we have

|Jξ,ξ ′ | 	 1

|ξ − ξ ′|r 	
1

λN
, ∀N > 1 (5.20)

since |ξ − ξ ′| � λ
1

(d+1)(1+c(d)) for ξ ∈ Eα , ξ ′ ∈ Eβ with α �= β . Hence we have
an upper bound for the off-diagonal terms

∑

α �=β

∑

ξ∈Eα

∑

ξ ′∈Eβ

aξaξ ′Jξ,ξ ′ 	 1

λN

∑

ξ∈E ′
|aξ |2 ≤ 1

λN
, ∀N > 1 (5.21)

taking into account the normalization
∑

ξ |aξ |2 = 1.
We now want to derive a lower bound for the diagonal terms. By Jarnik’s

theorem, since diam Eα 	 λ
1

d+1 , the set Eα is contained in an affine hyper-
plane Hα and hence d(Eα) ≤ d − 1. Thus by the induction hypothesis we
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have

∫ ∣∣∣∣∣
∑

ξ∈Eα

aξ e
2πi〈ξ−ξ0,G(t,̂x )〉e−2πtA(ξ)

∣∣∣∣∣

2

dμ

≥ C
∑

ξ∈Eα

|aξ |2e−8πτA(ξ) +O

(
1

λN

)
(5.22)

Combining with the upper bound (5.21) for the off-diagonal terms and sum-
ming over α we get the required lower bound (5.12). �

6 Non-zero curvature: proof of Theorem 1.2

Assume now that the hypersurface � has nowhere zero Gauss-Kronecker cur-
vature, i.e. all principal curvatures are nowhere zero. (The condition that �

is not flat means that at least one of the principal curvatures is nonzero.) We
will use Theorem 4.1 to prove Theorem 1.2, namely that for λ > λ� , an eigen-
function ϕλ cannot vanish identically on �.

6.1 The strategy

We keep the normalization
∑

ξ |aξ |2 = 1. We assume that there is some cap

�0 = Cap(w0, θ0)⊂ Sd−1 (6.1)

around w0, with opening angle θ of size O(1) so that

|aξ |< 1

λN
, ∀ ξ

|ξ | ∈�0 (6.2)

guaranteed by Theorem 4.1. We shall call such frequencies “negligible”.
We aim to show that there is a larger cap

�1 = Cap(w1, θ1)⊂ Sd−1

for which all frequencies E1 := λ�1 ∩ E in direction �1 are negligible. Here
“larger” means that say

θ1 ≥ θ0 + δ0 (6.3)

for some fixed δ0 > 0 (independent of λ). We will show that all frequencies
in E1 are “negligible”. Proceeding in this way we will eventually show that
all frequencies are “negligible”, contradicting

∑
ξ |aξ |2 = 1.
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6.2 An oscillatory integral

Since � has non-vanishing curvature, the unit normals to � sweep out at least
a cap Cap(u0, δ1) for some δ1 > 0. If δ0 < δ1/2, then for any u ∈ Cap(u0,

δ1
2 )

we have

Cap(u, δ0)⊂ Cap(u0, δ1) (6.4)

We choose δ0 sufficiently small so that for any such u, we have a patch
�u ⊂� on the surface so that the Gauss map

N :�u→ Cap(u, δ0) (6.5)

is a diffeomorphism.
Fix a bump function ψ supported in the cap Cap(u0, δ0), from which we

get a smooth measure dμ on the cap; applying rotations give smooth measure
on any cap Cap(u, δ0), and pulling back to the patch �u via the Gauss map
N we get a smooth measure μu on �u, which depends in a bounded way on
u ∈ Cap(u0, δ1/2). Denote by

μ̂u(ξ) :=
∫

�u

e−2πi〈ξ,x〉 dμu(x) (6.6)

its Fourier transform.
Fourier transforms of surface-carried measure are known to decay polyno-

mially in the presence or curvature [6, 7], in fact if the surface is not flat [12].
However there is faster decay in directions which are disjoint from the image
of the Gauss map. We use this to prove:

Lemma 6.1 For all vectors y �= 0 which do not lie in the direction of the
bigger cap Cap(u,2δ0), we have

μ̂(y)	N

1

|y|N ,
y

|y| /∈ Cap(u,2δ0), ∀N > 0 (6.7)

where the implied constants can be taken uniform in u ∈ Cap(u0, δ1/2)

Proof We take a regular parametrization X : t = (t1, . . . , td−1) �→X(t) of the
patch �u. Then the Fourier transform becomes

μ̂u(y)=
∫

Rd−1
e−2πi|y|φ(t)�(t) dt

for a suitable amplitude � ∈ C∞c (Rd−1) and with phase function

φ(t)= 〈ŷ,X(t)〉, ŷ := y

|y|
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Our claim will follow by integration by parts if we give a uniform lower
bound for the gradient of the phase function

|∇φ| ≥ C > 0 (6.8)

The gradient of the phase function is given by

∇φ =DX(t)ŷ

where we think of ŷ ∈ Sd−1 as a column vector and the derivative DX =
(
∂Xi

∂tj
) is a (d − 1) × d matrix. Choose a row vector ω ∈ R

d−1 for which
ωDX(t) is the orthogonal projection P(ŷ) of ŷ on the tangent space TX(t)�.
Thus

ω∇φ(t)= ωDX(t)ŷ = P(ŷ) · ŷ
Let α be the angle between the unit normal NX(t) and ŷ. Then α > δ0 since

by assumption NX(t) ∈ Cap(u, δ0) while ŷ /∈ Cap(u,2δ0). Therefore

|P(ŷ)| = |̂y| sinα = sinα ≥ sin δ0

and therefore

ω∇φ(t)= P(ŷ) · ŷ = |P(ŷ)|2 ≥ (sin δ0)
2

On the other hand,

|ω∇φ(t)| ≤ |ω||∇φ(t)|
and so we find

|∇φ| ≥ (sin δ0)
2

|ω|
and it remains to give an upper bound for |ω|.

We have

|P ŷ|2 = |ωDX|2 = ωDXDXT ωT

Now P(ŷ) has length at most |̂y| = 1, being the orthogonal projection of the
unit vector ŷ, and so we find

1≥ ωDX(t)DX(t)T ωT

The rows of DX(t) are linearly independent since we assume that X is a
regular parametrization. Hence the quadratic form DX(t)DX(t)T is positive
definite (it is the first fundamental form of the hypersurface) and so

ωDX(t)DX(t)T ωT ≥ c(t)|ω|2
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for some c(t) > 0, and taking c :=min{c(t)}> 0 we find 1≥ c|ω|2, that is

|ω| ≤ 1√
c

Thus

|∇φ| ≥ (sin δ0)
2

√
c

(6.9)

giving the required lower bound. �

6.3 Geometric considerations

For a unit vector u ∈ Sd−1 let

τu(x)= x − 2〈x,u〉u (6.10)

be the reflection in the hyperplane orthogonal to u.
Fix u0 ∈ Sd−1, and δ > 0. Then there is some ε = εd(δ) > 0 so that for

every w ∈ Sd−1, the set of reflected points τuw, for u ranging over all points
in the cap Cap(u0, δ), contains a cap Cap(w1, ε):

∀w ∃w1 such that Cap(w1, ε)⊆ {τuw : u ∈ Cap(u0, δ)} (6.11)

By symmetry, ε is independent of the base point u0, and depends only on the
dimension d and on δ.

Now let u0 ∈ Sd−1, δ1 > 0 be as in Sect. 6.2. We fix δ0 > 0, with δ0 < δ1/2
sufficiently small so that the Gauss map gives a diffeomorphism (6.5), and
Lemma 6.1 holds. In addition we require

δ0 <
1

6
εd

(
δ1

2

)
(6.12)

Recall that Cap(w0, θ0)=�0 is a cap where we assume the Fourier coef-
ficients aξ ≈ 0 are negligible for all frequencies with ξ/|ξ | ∈�0.

Lemma 6.2 Let u ∈ Cap(u0, δ1/2) and B ⊂ τu Cap(w0, θ0 − 4δ0). Then for
all unit vectors y /∈ B , either y ∈�0 = Cap(w0, θ0) or else

x − y

|x − y| /∈ Cap(u,2δ0), ∀x ∈ τu Cap(w0, θ0 − 4δ0), x �= y (6.13)

Proof Let y ∈ Sd−1\B and assume that (6.13) fails, that is there is some
x ∈ τu Cap(w0, θ0 − 4δ0) and u1 ∈ Cap(u,2δ0) so that

y = x − |x − y|u1 (6.14)

We then need to show that y ∈�0.
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The condition (6.14) means that

y = τu1(x) (6.15)

This is because y lies on the intersection of the sphere with the line through
x ∈ Sd−1 in the direction of u1; that intersection contains (at most) two points,
one of them being x, which we assume is distinct from y. Clearly the reflec-
tion τu1(x) also has this properties, so that y = τu1(x). Hence we find that

y = τu1x ∈ τu1 ◦ τu Cap(w0, θ0 − 4δ0)

The composition of two distinct reflections τu ◦ τu1 is a rotation in the
plane spanned by the two vectors u,u1 (assumed not to be co-linear) by an
angle which is twice the angle α between the two vectors. In our case, since
u1 ∈ Cap(u,2δ0) lies in cap centered at u, we have α ≤ 2δ0. Hence

τu1 ◦ τu Cap(w0, θ0 − 4δ0)⊆ Cap(w0, θ0 − 4δ0 + 2α)⊆ Cap(w0, θ0)

so that y ∈�0 as claimed. �

6.4 Vanishing of Fourier coefficients in the larger caps

For each u ∈ Cap(u0, δ1/2), apply the reflection τu to the cap Cap(w0, θ0 −
5δ0) to get a cap

�1(u) := τu Cap(w0, θ0 − 5δ0)= Cap(τuw0, θ0 − 5δ0) (6.16)

We now claim that the Fourier coefficients aξ for frequencies whose direc-
tions lie in the cap �1(u) are negligible:

Proposition 6.3 If ξ/|ξ | ∈�1(u) then

|aξ | 	 1

λN
, ∀N ≥ 1 (6.17)

Proof Let

F = λ�1(u)∩ E (6.18)

and use Proposition 2.2 with ρ = λδ(d) to get an overset F̃ , F ⊆ F̃ ⊂ E so
that

dist(F̃ , E\F̃ ) > λδ(d) (6.19)

and

diam F̃ ≤ diam F + λ
1

2(d+1) ≤ λdiam�1(u){1+O(λ
−1+ 1

2(d+1) )} (6.20)
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Since 1
λ

F̃ ⊃ 1
λ

F ⊂ �1(u) = τu Cap(w0, θ0 − 5δ0), condition (6.20) implies
that for λ sufficiently large,

1

λ
F̃ ⊂ τu Cap(w0, θ0 − 4δ0) (6.21)

Set

E1(u)= F̃ (6.22)

so that

dist(E1(u), E\E1(u)) > λδ(d) (6.23)

and

1

λ
E1(u)⊂ τu Cap(w0, θ0 − 4δ0) (6.24)

Consider the integral

0=
∫

�u

ϕ(x)
∑

ξ∈E1(u)

aξ e
2πi〈ξ,x〉dμu(x) (6.25)

which equals zero, since we assume ϕ = 0 on �.
On the other hand, expanding

ϕ =
∑

ξ∈E1(u)

aξ e
2πi〈ξ,x〉 +

∑

ξ /∈E1(u)

aξ e
2πi〈ξ,x〉

gives a sum of “diagonal” and “off-diagonal” terms:

0=
∫

�u

∣∣∣∣∣
∑

ξ∈E1(u)

aξ e
2πi〈ξ,x〉

∣∣∣∣∣

2

dμu(x)+
∑

ξ∈E1(u)

∑

η/∈E1(u)

aξ aημ̂u(η− ξ)

= diagonal+ off-diagonal

The diagonal term can be bounded from below:

∫

�u

∣∣∣∣∣
∑

ξ∈E1(u)

aξ e
2πi〈ξ,x〉

∣∣∣∣∣

2

dμu(x)≥C
∑

ξ∈E1(u)

|aξ |2 (6.26)

by arguing as in Proposition 5.2 (in fact by using it in the special case
A(ξ)= 0).
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We will show that the off-diagonal part is “negligible” which will give the
required upper bound (6.17). To do so, decompose the off-diagonal term as

off-diagonal=
∑

ξ∈E1(u)

∑

η∈E0\E1(u)

aξaημ̂u(η− ξ)

+
∑

ξ∈E1(u)

∑

η∈E\(E0∪E1(u))

aξ aημ̂u(η− ξ)

The first term is negligible because all the coefficients aη ≈ 0 are negligible
for η ∈ E0.

In the second term, we claim that all Fourier transforms μ̂u(ξ − η)≈ 0 are
negligible for ξ ∈ E1(u), η /∈ E1(u) ∪ E0: Indeed, denoting by x = ξ/|ξ | and
y = η/|η| (note x �= y), apply Lemma 6.2 with

B = 1

λ
E1(u)⊂ τu Cap(w0, θ0 − 4δ0)

Then y /∈�0 since η /∈ E0 hence

x − y

|x − y| /∈ Cap(u,2δ0)

Since |ξ | = |η| = λ, we have ξ−η
|ξ−η| = x−y

|x−y| . Therefore

ξ − η

|ξ − η| =
x − y

|x − y| /∈ Cap(u,2δ0)

and hence by the non-stationary phase Lemma 6.1, we have

μ̂u(η− ξ)	 1

|ξ − η|M , ∀M ≥ 1

Moreover, since ξ ∈ E1(u) and η /∈ E1(u),

|ξ − η| ≥ dist(E1(u), E\E1(u)) > λδ(d)

Hence we get

μ̂(η− ξ)	 1

λN
, ξ ∈ E1(u), η /∈ E1(u)∪ E0 (6.27)

that is the Fourier transforms are negligible as required. Thus the off-diagonal
term is negligible, which shows that

∑
ξ∈E1(u) |aξ |2 is negligible. Since 1

λ
F =

�1(u)∩ 1
λ

E ⊂ 1
λ

E1(u), we get |aξ | 	 1
λN if ξ/|ξ | ∈�1(u). �
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Finally, we claim

Proposition 6.4 There is a cap �1 = Cap(w1, θ0+ δ0) for which all frequen-
cies ξ in direction �1, the Fourier coefficients aξ are negligible

Proof We note that the union
⋃

u∈Cap(u0,δ1/2)

�1(u)=
⋃

u∈Cap(u0,δ1/2)

Cap(τuw0, θ0 − 5δ0) (6.28)

contains a cap �1 = Cap(w1, θ1) with θ1 ≥ θ0 + δ0.
This follows since the set of reflected centers

{τuw0 : u ∈ Cap(u0, δ1/2)}
contains a cap Cap(w1, εd(

δ1
2 )), where εd(δ) is defined in (6.11), since we

chose δ0 sufficiently small so that εd( δ1
2 ) > 6δ0, and hence

⋃

u∈Cap(u0,δ1/2)

�1(u)⊃ Cap

(
w1, θ0 − 5δ0 + εd

(
δ1

2

))
⊃ Cap(w1, θ0 + δ0)

(6.29)
Therefore for all frequencies in direction �1 the Fourier coefficients aξ are
negligible, since the same holds for each of the small caps �1(u) contain-
ing �1. �

By continuing this process, we see that all coefficients aξ are negligible,
contradicting the normalization

∑
ξ |aξ |2 = 1. This concludes the proof of

Theorem 1.2.
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Appendix A: The two-dimensional case: using the ABC theorem

In this section we give a proof of Theorem 1.1 using the function-field “abc
theorem” of Brownawell-Masser [3] and Voloch [16]. We recall the statement:
Let K =C(X) be the function field of an algebraic curve of genus g over the
complex numbers, S a finite set of places of K , and u1, . . . , um ∈K a set of
S-units, that is rational functions whose zeros and poles lie in S. The degree,
or height, of a non-constant rational function x ∈K is defined as the degree
of K over the field extension C(x): H(x)= [K :C(x)], which is the number
of zeros (or poles) of x, counted with multiplicities.
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Theorem A.1 [3, 16] Let u1, . . . , um ∈ K be non-constant S-units, linearly
independent over C, satisfying

m∑

j=1

uj = 1 (A.1)

Then

max
j

H(uj )≤ m(m− 1)

2
(2g − 2+ #S) (A.2)

This result improves that of R.C. Mason [13], where the quadratic term
m(m− 1)/2 is replaced by a term exponential in m, which is not sufficiently
strong for our purposes.

A.1 Complexification

Let ϕ be an eigenfunction, −�ϕ = 4π2λ2ϕ, which vanishes on the curve �.
Write

ϕ(x)=
∑

ξ

aξ e
2πi〈ξ,x〉 (A.3)

Let

supp ϕ̂ = {ξ : aξ �= 0} (A.4)

be the set of frequencies of ϕ, and set

r = # supp ϕ̂ (A.5)

to be the number of frequencies; necessarily r ≥ 2.
We can embed the torus T

2 ! S1 × S1 in C
2 via the map (x, y) �→

(z1, z2) = (e2πix, e2πiy). This allows us to associate with each trigonomet-
ric polynomial (A.3) a Laurent polynomial

F(z)=
∑

ξ

aξ z
ξ (A.6)

where for z= (z1, z2) ∈C
2 and ξ = (n1, n2) ∈ Z

2 we denote

zξ := z
n1
1 z

n2
2

We can further write

F(z1, z2)= P(z1, z2)

z
a1
1 z

a2
2

(A.7)
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for a unique polynomial P ∈C[z1, z2] so that z1 � P , z2 � P . If ϕ �= ae2πi〈ξ,x〉
is not composed of a single frequency (which it cannot if we assume that it is
real-valued) then P is non-constant. Thus to each trigonometric polynomial
ϕ (not a single exponential) we associate the plane curve

XP = {z : P(z)= 0} ⊂C
2

which is possibly reducible and singular.
The nodal set of ϕ must be contained in XP , since zi do not vanish on

T
2 = S1 × S1 ⊂ C

2. Thus if ϕ vanishes on the (real) smooth curve � ⊂ T
2,

then � must be contained in an irreducible component of XP (possibly in
more than one component). Thus we get an irreducible component (possibly
singular)

XD = {z :D(z)= 0}
containing �. Here D ∈ C[z1, z2] is an irreducible divisor of P of positive
degree. Note that in that case D(z1, z2) cannot depend only on one of the
variables, say on z1. Indeed in that case D(z1) is a one-variable polynomial,
and is then irreducible only in the case that it is linear: D(z1)= z1− c, whose
zero set is a closed geodesic, contradicting our choice of �.

Let λ0 be minimal where an eigenfunction ϕ0 with eigenvalue 4π2λ2
0 van-

ishes on �. We can choose an irreducible D0 ∈C[z1, z2] so that � ⊂XD0 =:
X0. Let C(X0) be the function field of the curve X0, that is the field of frac-
tions of the integer domain C[z1, z2]/(D0). The curve X0 is irreducible but
possibly singular. Let X → X0 be its normalization, whose ring of regular
functions is the integral closure of C[z1, z2]/(D0), and has the same function
field as X0. The map X→X0 is one-to-one outside of finitely many points.

Restricting the monomials zξ (ξ ∈ Z
2) to X0 gives rational functions which

we still denote by zξ , in C(X0)=C(X), which have all their zeros and poles
in the set S0 given by

S0 =X0 ∩ {(z1, z2) ∈ P
2 : zi = 0,∞} (A.8)

Note that S0 is finite because X0 is not a line of the form zi = 0,∞, since
D(z1, z2) depends on both variables. By pulling back to the normalization X,
we get rational functions, still denoted by zξ , on X which are S-units for the
pullback S of S0 to X.

A.2 A lower bound for the height of monomials

In order to apply Theorem A.1, we need to compute the height of the mono-
mials zξ as rational functions on the curve X. The assumption that � is not a
segment of a closed geodesic allows us to obtain a useful lower bound:
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Lemma A.2 Suppose that � is not a segment of a closed geodesic. Then
there is some constant c� > 0 so that

H(z
n1
1 z

n2
2 )≥ c� max(|n1|, |n2|)

for all (n1, n2) ∈ Z
2.

Proof Let divX be the vector space of divisors of X, that is of (finite) formal
sums

∑
P∈X nP P (we include points at infinity). The degree of such a divisor

is
∑

P np . For a rational function u on X, we have an associated principal
divisor divu = div0 u− div∞ u where div0 u and div∞ u are the divisors of
zeros and poles. Then the degree of a principal divisor is zero: deg divu =
deg div0 u− deg div∞ u= 0 and the height of u equals

H(u)= deg div0 u= deg div∞ u

On the vector space divX we have the �1-norm

∥∥∥∥
∑

P

nP P

∥∥∥∥
1
:=

∑

P

|nP |

which for a principal divisor equals twice the height of u.

‖divu‖1 = deg div0 u+ deg div∞ u= 2H(u)

We claim that if � is not a segment of a closed geodesic, then div z1 and
div z2 are linearly independent elements of divX. Indeed, a linear dependence
means that there are integers a1, a2 ∈ Z for which

a1 div z1 = a2 div z2

or equivalently that z
a1
1 /z

a2
2 ≡ c is the constant function when restricted to the

curve X0. That means that on �, we have

e2πi(a1x1−a2x2) = c

whose zero set is a union of closed geodesics. Hence div z1 and div z2 are
linearly independent.

Since div z1 and div z2 are linearly independent, their span V is a two-
dimensional vector space in divX. On V we then have two norms: The re-
striction of the �1-norm and the �∞-norm

‖div(z
n1
1 z

n2
2 )‖∞ = ‖n1 div z1 + n2 div z2‖∞ =max(|n1|, |n2|)
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which is indeed a norm since div z1 and div z2 are linearly independent. Since
on any finite-dimensional vector space all norms are equivalent, we find that
there is some c= cV > 0 for which

‖div(z
n1
1 z

n2
2 )‖1 ≥ c|div(z

n1
1 z

n2
2 )‖∞ = c max(|n1|, |n2|)

for all n ∈ Z
2, and hence

H(z
n1
1 z

n2
2 )= 1

2
‖div(z

n1
1 z

n2
2 )‖1 ≥ 1

2
c max(|n1|, |n2|)

as claimed. �

A.3 Proof of Theorem 1.1

We assume that � is not a segment of a closed geodesic. We choose λ suffi-
ciently large so that

λ� (#S + 2gX − 2)1+ε (A.9)

and show that no eigenfunction ϕ with eigenvalue 4π2λ2 can vanish on �.
Suppose λ admits an eigenfunction (A.3) which vanishes on �. Among

such eigenfunctions, choose such ϕ with the number of frequencies r being
minimal. If r = 2 then after scaling,

ϕ(x)= e2πi〈ξ,x〉 − ae2πi〈ξ ′,x〉, a ∈C

and for its nodal set to contain a real point, we need |a| = 1, that is a = e2πiα ,
α ∈R. In that case the nodal set consists of x ∈ T

2 with

〈ξ − ξ ′, x〉 ∈ α+Z

which is a union of straight lines with rational slopes, i.e. closed geodesics.
So we may assume r ≥ 3.

In the expansion (A.3), choose one of the frequencies ξ0 and divide all
terms in (A.3) by aξ0e

2πi〈ξ0,x〉 to get a relation:

∑

ξ0 �=ξ∈supp ϕ̂

− aξ

aξ0

zξ−ξ0 = 1 (A.10)

Set

uξ := − aξ

aξ0

zξ−ξ0 ∈C(X0) (A.11)
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Then we get a relation in C(X0)=C(X) (an S-unit equation)

∑

ξ∈supp ϕ̂
ξ �=ξ0

uξ = 1 (A.12)

where uξ are linearly independent, by the minimality assumption on ϕ. To the
relation (A.12) we apply the “abc-theorem” (Theorem A.1) which says that if
r ≥ 3 then

max(H(uξ ) : ξ0 �= ξ ∈ supp ϕ̂)≤ (r − 1)(r − 2)

2
(#S + 2gX − 2) (A.13)

where gX is the genus of the smooth curve X. Since

H(uξ )=H(zξ−ξ0)≥ c�‖ξ − ξ0‖∞
by Lemma A.2, we find that

max
ξ �=ξ0

‖ξ − ξ0‖∞ 	 (r − 1)(r − 2)

2
(#S + 2gX − 2) (A.14)

Now the number of frequencies r is at most the total number of lattice
points on the circle |x| = λ, hence is bounded by r 	 λε for all ε > 0. Thus
by (A.14) we find that all frequencies of ϕ are contained in a box of size
	 λε around ξ0. By Jarnik’s theorem (Theorem 2.1), any arc of size 	 λ1/3

contains at most two lattice points, hence this forces r = 2 contradicting our
assumption r ≥ 3. This gives a contradiction for λ sufficiently large. �
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