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LOW-LYING ZEROS OF QUADRATIC DIRICHLET
L-FUNCTIONS, HYPER-ELLIPTIC CURVES

AND RANDOM MATRIX THEORY

Alexei Entin, Edva Roditty-Gershon and Zeév Rudnick

Abstract. The statistics of low-lying zeros of quadratic Dirichlet L-functions were
conjectured by Katz and Sarnak to be given by the scaling limit of eigenvalues from
the unitary symplectic ensemble. The n-level densities were found to be in agreement
with this in a certain neighborhood of the origin in the Fourier domain by Rubinstein
in his Ph.D. thesis in 1998. An attempt to extend the neighborhood was made in the
Ph.D. thesis of Peng Gao (n-level density of the low-lying zeros of quadratic Dirichlet
L-functions, 2005), who under GRH gave the density as a complicated combinatorial
factor, but it remained open whether it coincides with the Random Matrix Theory
factor. For n ≤ 7 this was recently confirmed by Levinson and Miller. We resolve
this problem for all n, not by directly doing the combinatorics, but by passing to
a function field analogue, of L-functions associated to hyper-elliptic curves of given
genus g over a field of q elements. We show that the answer in this case coincides with
Gao’s combinatorial factor up to a controlled error. We then take the limit of large
finite field size q → ∞ and use the Katz–Sarnak equidistribution theorem, which
identifies the monodromy of the Frobenius conjugacy classes for the hyperelliptic
ensemble with the group USp(2g). Further taking the limit of large genus g → ∞
allows us to identify Gao’s combinatorial factor with the RMT answer.

1 Introduction

1.1 One-level densities for quadratic L-functions. Our goal in this paper
is to study statistics of low-lying zeros of quadratic Dirichlet L-functions. To simplify
the discussion, we restrict to discriminants of the form 8d, where d > 0 is an odd,
square-free integer. The corresponding quadratic characters χ8d are then all primitive
and even, and have conductor 8d. Denote the nontrivial zeros of the corresponding
L-function L(s, χ8d) by

1
2

+ iγ8d,j , j = ±1, ±2, . . . (1.1)
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where the labeling is so that γ8d,−j = −γ8d,j . The number N(T, 8d) of such zeros
with 0 ≤ �γ8d,j ≤ T is asymptotically, for T > 1,

N(T, 8d) =
T

2π
log

8dT

2π
− T

2π
+ O(log 8dT ). (1.2)

We wish to study statistics of the zeros of L(s, χ8d) for random d. To do so, set

D(X) = {X ≤ d ≤ 2X : d odd, square-free} (1.3)

Then #D(X) ∼ 4
π2 X, as X → ∞. To define what it means to pick a “random”

discriminant from D(X), we take a smooth weight function Φ ≥ 0 supported in
the interval (1, 2), satisfying

∫
Φ(u) du = 1, and define an averaging operator for

functions f on D(X) by

〈f〉D(X) :=
1

#D(X)

∑

d∈D(X)

Φ
(

d

X

)

f(d). (1.4)

Thus we obtain a probability measure on D(X) which endows it with the structure
of a probability space (ensemble), which we call the quadratic ensemble.

To count the number of zeros on the scale of the mean spacing log 8d/2π between
the low-lying zeros, we define the linear statistic, or one-level density, by taking an
even Schwartz function f(r), which is analytic in a strip |
r| ≤ 1/2, and setting for
d ∈ D(X)

Wf (d) :=
∑

j

f(Lγ8d,j). (1.5)

Here L = log X/2π.
The expectation values of the one-level densities for the quadratic ensemble were

studied by Katz and Sarnak [KS99,KS97] (see also [ÖS93,ÖS06]) who showed that,
assuming GRH, in the “scaling limit” X → ∞, their expected value coincides with
the analogous quantity for the eigenphases of random matrices from unitary sym-
plectic groups USp(2g) in the limit g → ∞, that is

lim
X→∞

〈Wf 〉D(X) =

∞∫

−∞
f(x)

(

1 − sin 2πx

2πx

)

dx (1.6)

under the condition that the Fourier transform f̂(u) =
∫

R
f(x)e−2πixu dx is sup-

ported in the interval

|u| < 2. (1.7)

The Density Conjecture [KS99] is that (1.6) holds for any test function f . See [Sto09]
for numerical support for the conjecture and [Mil08] for a refined version.
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1.2 Higher moments and the n-level densities. We want to study the mo-
ments of the linear statistic. The goal is to show that in the scaling limit the moments
coincide with the analogous quantity for the eigenphases of random matrices from
unitary symplectic groups.

The moments are determined by multi-linear statistics known as the n-level den-
sities. To define these, one starts with a Schwartz function f ∈ S(Rn), which is even
in all variables. The n-level density for d ∈ D(X) is

W
(n)
f (d) :=

∑

j1,...,jn=±1,±2,...

|jk| distinct

f(Lγ8d,j1 , . . . , Lγ8d,jn
) , (1.8)

where the sum is over n-tuples of indices j1, . . . , jn = ±1, ±2, . . . with jr �= ±js for
r �= s, and L = log X/2π. The density conjecture [KS99] for low lying zeros of this
family of L-functions is that the scaling limit coincides with the scaling limit of the
n-level densities for random matrices in the unitary symplectic group USp(2g), that
is

lim
X→∞

〈
W

(n)
f

〉

D(X)
=
∫

Rn

f(x)W (n)
USp(x) dx, (1.9)

where

W
(n)
USp(x) = det(K(xi, xj))i,j=1,...,n,

K(x, y) =
sinπ(x − y)

π(x − y)
− sin π(x + y)

π(x + y)
. (1.10)

The higher densities for this ensemble were investigated in the Ph.D. thesis of
Mike Rubinstein [Rub98,Rub01], who assuming GRH established (1.9) under the
condition that the Fourier transform f̂(u) =

∫
Rn f(x)e−2πix·u dx is supported in the

set
n∑

j=1

|uj | < 1. (1.11)

Note that for n = 1, (1.11) is only half the range in (1.7).
In his Ph.D. thesis [Gao05,Gao13], Peng Gao attempted to double the range in

Rubinstein’s result. He showed, assuming GRH, that if f is of the form f(x1, . . . , xn)
= Πn

j=1fj(xi) and each f̂j is supported in the range |uj | < sj with
∑

sj < 2 so that
f is supported on the range

n∑

j=1

|uj | < 2, (1.12)

then
〈
W

(n)
f

〉

D(X)
= A(f) + o(1), X → ∞, (1.13)
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where A(f) = A(f1, . . . , fn) is a complicated combinatorial expression, taking almost
a page to write down (see Theorem 7.2). In view of (1.13), proving (1.9) in this range
is reduced to a purely combinatorial problem, of proving an identity

A(f) =
∫

Rn

f(x)W (n)
USp(x) dx (1.14)

which Gao verified for n = 2, 3. More recently, Levinson and Miller [LM12] have
confirmed (1.14) for n = 4, 5, 6, 7, aided by a machine calculation. In this paper we
confirm the equality for all n.

Theorem 1.1. Assume GRH. For test functions whose Fourier transform f̂ is
supported in the region

∑n
j=1 |uj | < 2, we have

lim
X→∞

〈
W

(n)
f

〉

D(X)
=
∫

Rn

f(x)W (n)
USp(x) dx. (1.15)

Instead of directly attacking the combinatorial problem, we approach it by com-
paring the densities of the zeros with a function field analogue, of zeros of L-functions
for hyperelliptic curves of genus g defined over a finite field Fq. We then use the
equidistribution results of Deligne and Katz–Sarnak to pass to the large finite field
limit q → ∞ and identify the limit with RMT. This is similar in spirit to one of the
ingredients in the work of Ngô on the “Fundamental Lemma”, where a complicated
combinatorial identity arising from a number field setup is proved via a passage to
the function field setting [Ngô10]. To explain how we do it, we first describe the
RMT context and then move on to the function field setting.

1.3 Random matrix theory (RMT). For any continuous function F on the
set of conjugacy classes of USp(2g), we denote by 〈F 〉USp(2g) its average with respect
to the Haar probability measure on USp(2g):

〈F 〉USp(2g) =
∫

USp(2g)

F (U) dU. (1.16)

Recall that for a unitary symplectic matrix U ∈ USp(2g), if eiθ is an eigenvalue
then so is e−iθ. We can then label the eigenvalues of U as eiθ±j , j = 1, . . . , g with
the eigenphases θ1, . . . , θg ∈ [0, π] and θ−j = −θj .

To define n-level densities, one starts with a Schwartz function f ∈ S(Rn), which
is even in all variables, and sets

f̃(θ) =
∑

m∈Zn

f
( g

π
(θ + 2πm)

)
, (1.17)

which is 2π-periodic and localized on a scale of 1/g. The n-level density is

W
(n)
f (U) =

∑

j1,...,jn=±1,...,±g

|jk| distinct

f̃(θj1 , . . . , θjn
) , (1.18)
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where the sum is over n-tuples of indices j1, . . . , jn = ±1, . . . ,±g with jr �= ±js if
r �= s.

If we restrict the Fourier transform f̂(u) to be supported in the region |u| < 1
n

then the first n moments of the linear statistic W
(1)
f in RMT are Gaussian [HR03].

This was called “mock-Gaussian” behavior in [HR03]. The higher moments are also
known, but no longer have a simple expression (however see [HM07] for some nice
expressions for the centered moments of orthogonal families). It is the n-level density
which has a clean expression: In the scaling limit, the n-level densities are given by

lim
g→∞

〈
W

(n)
f

〉

USp(2g)
=
∫

Rn

f(x)W (n)
USp(x) dx, (1.19)

where W
(n)
USp is given by (1.10).

1.4 The hyperelliptic ensemble. For a finite field Fq of odd cardinality q
consider the family H(2g + 1, q) of all curves given in affine form by an equation

Ch : y2 = h(x)

where

h(x) = x2g+1 + a2gx
2g + · · · + a0 ∈ Fq[x]

is a square-free, monic polynomial of degree 2g+1. The curve Ch is thus nonsingular
and of genus g. We consider H(2g + 1, q) as a probability space (ensemble) with
the uniform probability measure, so that the expected value of any function F on
H(2g + 1, q) is defined as

〈F 〉H(2g+1,q) :=
1

#H(2g + 1, q)

∑

h∈H(2g+1,q)

F (h). (1.20)

The zeta function associated with the hyperelliptic curve Ch ∈ H(2g + 1, q) has
the form

Zh(u) =
det(I − u

√
qΘh)

(1 − u)(1 − qu)
(1.21)

for a unique conjugacy class of 2g×2g unitary symplectic matrices Θh ∈ USp(2g) so
that the eigenvalues eiθj of Θh correspond to zeros q−1/2e−iθj of Zh(u). The matrix
(or rather the conjugacy class) Θh is called the unitarized Frobenius class of Ch.
Katz and Sarnak showed [KS99] that as q → ∞, the Frobenius classes Θh become
equidistributed in the unitary symplectic group USp(2g): for any continuous function
on the space of conjugacy classes of USp(2g),

lim
q→∞ 〈F (Θh)〉H(2g+1,q) = 〈F (U)〉USp(2g) . (1.22)
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This implies that various statistics of the eigenvalues can, in this limit, be computed
by integrating the corresponding quantities over USp(2g). In particular, the n-level
densities for the hyper-elliptic ensemble H(2g +1, q) when g is fixed are given in the
large finite field limit by

lim
q→∞

〈
W

(n)
f

〉

H(2g+1,q)
=
〈
W

(n)
f

〉

USp(2g)
. (1.23)

Therefore, on further taking the large genus limit g → ∞ one gets

lim
g→∞

(

lim
q→∞

〈
W

(n)
f

〉

H2g+1

)

=
∫

Rn

f(x)W (n)
USp(x) dx. (1.24)

1.5 Comparing the hyperelliptic and quadratic ensembles. We will com-
pute the averages of the n-level densities for the hyper-elliptic ensemble. We will
show that in the range (1.12) they are asymptotically equal to a complicated com-
binatorial expression up to a remainder term that is negligible for large g, the same
expression A(f) which appears in Gao’s result (1.13).

Theorem 1.2. Assume that f(x1, . . . , xn) =
∏n

j=1 fj(xj), with fj ∈ S(R) even

and each f̂j(uj) is supported in the range |uj | < sj , with
∑

sj < 2. Then

〈
W

(n)
f

〉

H(2g+1,q)
= A(f) + Of

(
log g

g

)

, (1.25)

the implied constant independent of the finite field size q, and with A(f) = A(f1, . . . ,
fn) as in Theorem 7.2.

To prove Theorem 1.2 we use a similar approach to that in [Gao05,KS97] with some
simplifications and variations arising from our function field setting. In particular
Poisson summation, which is used critically in [Gao05,KS97] is replaced by the
functional equation of the zeta-function Zh.

What is crucial in Theorem 1.2 is that the bound on the remainder term is
uniform in q.Taking the iterated limit limg→∞(limq→∞) of (1.25) and using the
Katz–Sarnak result (1.24) gives our main result on the quadratic ensemble, as well
as a corresponding result for the hyper-elliptic ensemble:

Corollary 1.3. Let f ∈ S(Rn) be even in all variables, and assume that f̂(u) is
supported in the region

∑n
j=1 |uj | < 2. Then for q fixed,

lim
g→∞

〈
W

(n)
f

〉

H(2g+1,q)
=
∫

Rn

f(x)W (n)
USp(x) dx, (1.26)

and assuming GRH,

lim
X→∞

〈
W

(n)
f

〉

D(X)
=
∫

Rn

f(x)W (n)
USp(x) dx. (1.27)
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Proof. For both (1.26) and (1.27) we may assume that f =
∏

fj(xj), with each f̂j

even and supported on |uj | < sj and
∑

sj < 2, since any f satisfying the conditions
of the corollary can be approximated by a linear combination of functions of this
form. Now it follows from Theorem 1.2 and (1.24) that (1.27) holds and

A(f) = A(f1, . . . , fn) =
∫

Rn

f(x)W (n)
USp(x) dx.

This is obtained by taking the limit g → ∞ in Theorem 1.2 and comparing with
(1.24). Now (1.26) follows from (1.13). ��
1.6 Further applications. The method of this paper can in principle be used
to compute statistics of zeros of other families of L-functions, provided a good func-
tion field analogue can be found. For instance, one of us (A.E.) has given an alternate
proof of the result of Rudnick and Sarnak [RS96] that the n-level correlation of the
Riemann zeros (that is of a single L-function) are given by Random Matrix The-
ory, by making a comparison with a family of Artin–Schreier curves [Ent13]. Very
recently a different combinatorial proof of the result of [RS96] was given by Conrey
and Snaith [CS12].

2 Background on Function Field Arithmetic

We review some elements of the arithmetic of Fq[x]. A good general reference for
this material is [Ros02].

2.1 Quadratic characters. Let P ∈ Fq[x] be a prime polynomial. The quadr-

atic residue symbol
(

f
P

)
∈ {±1} is defined for f coprime to P by
(

f

P

)

≡ f
|P |−1

2 (mod P ).

For arbitrary monic Q ∈ Fq[x] and for f coprime to Q, the Jacobi symbol ( f
Q) is

defined by writing Q =
∏

Pj as a product of prime polynomials and setting
(

f

Q

)

=
∏(

f

Pj

)

.

If f, Q are not coprime we set
(

f
Q

)
= 0.

The law of quadratic reciprocity asserts that for A, B ∈ Fq[x] monic polynomials
(

B

A

)

= (−1)(
q−1
2 ) deg A deg B

(
A

B

)

.

For D ∈ Fq[x] a monic polynomial of positive degree which is not a perfect square,
we define the quadratic character χD by

χD(f) =
(

D

f

)

.
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2.2 L-functions. For the quadratic character χD, the corresponding L-function
is defined for |u| < 1

q by

L(u, χD) :=
∏

P prime

(
1 − χD(P )udeg P

)−1
=
∑

β≥0

AD(β)uβ ,

with

AD(β) :=
∑

deg B=β
B monic

χD(B) . (2.1)

If D is nonsquare of positive degree, then AD(β) = 0 for β ≥ deg D and hence the
L-function is in fact a polynomial of degree at most deg D − 1.

Now, assume that D is also square-free. Then L(u, χD) has a trivial zero at u = 1
if and only if deg D is even. Thus

L(u, χD) = (1 − u)λL∗(u, χD), λ =
{

1 deg D even,
0 deg D odd,

where L∗(u, χD) is a polynomial of even degree

2δ = deg D − 1 − λ

satisfying the functional equation

L∗(u, χD) = (qu2)δL∗
(

1
qu

, χD

)

. (2.2)

We write

L∗(u, χD) =
2δ∑

β=0

A∗
D(β)uβ ,

where A∗
D(0) = 1, and the coefficients A∗

D(β) satisfy

A∗
D(β) = qβ−δA∗

D(2δ − β). (2.3)

In particular, the leading coefficient is A∗
D(2δ) = qδ.

2.3 The explicit formula. For h monic, square-free, and of positive degree,
the zeta function of the hyperelliptic curve y2 = h(x) is

Zh(u) =
L∗(u, χh)

(1 − u)(1 − qu)
. (2.4)

By the Riemann Hypothesis (proved by Weil) we may write

L∗(u, χh) = det(I − u
√

qΘh) (2.5)

for a unitary 2g × 2g matrix Θh. Taking a logarithmic derivative of (2.5) gives

− tr Θn
h =

λ

qn/2
+

1
qn/2

∑

deg f=n

Λ(f)χh(f). (2.6)
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2.4 The Weil bound. Assume that B is monic of positive degree and not a
perfect square. Then the Riemann Hypothesis and (2.6) gives Weil’s bound for the
character sum over primes:

∣
∣
∣
∣
∣
∣
∣
∣

∑

deg P=n
P prime

(
B

P

)
∣
∣
∣
∣
∣
∣
∣
∣

� deg B

n
qn/2. (2.7)

2.5 Averaging over H2g+1. The number of square-free monic polynomials of

degree d in Fq[x] is qd
(
1 − 1

q

)
for d ≥ 2, and in particular we have, for g ≥ 1,

#H2g+1 = (q − 1)q2g.

We can execute the averaging over H2g+1 using the Möbius function μ of Fq[x],
by recalling that

∑

A2|h
μ(A) =

{
1 h is square-free,
0 otherwise,

and hence

〈F (h)〉 =
1

(q − 1)q2g

∑

2α+β=2g+1

∑

deg B=β

∑

deg A=α

μ(A)F (A2B), (2.8)

the sum being over all monic A, B.
For a given polynomial f ∈ Fq[x] apply (2.8) to the quadratic character h �→

χh(f) to get

〈χh(f)〉 =
1

(q − 1)q2g

∑

2α+β=2g+1

∑

deg A=α
gcd(A,f)=1

μ(A)
∑

deg B=β

(
B

f

)

. (2.9)

3 A Sum of Möbius Values

Define

σ(f, α) :=
∑

deg A=α
gcd(A,f)=1

μ(A). (3.1)

Note that σ(f, α) depends only on the degrees of the primes dividing f , hence we can
write for P1, . . . , Pn distinct primes of degrees r1, . . . , rn respectively: σ (

∏n
i=1 Pi, α)

= σ(�r; α).
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Lemma 3.1. Assume min(r1, . . . , rn) ≥ 2, then

σ(�r; α) =

⎧
⎨

⎩

1 α = 0,
−q α = 1,
0 2 ≤ α < min(r1, . . . , rn).

(3.2)

In any case we have a bound

|σ(�r, α)| ≤ (q + 1)
αn

∏n
j=1 rj

. (3.3)

Proof. The lemma follows from the identity
∞∑

α=0

σ(f, α)Xα =
∑

gcd(A,f)=1

μ(A)Xdeg A =
1 − qX

∏
P |f (1 − Xdeg P )

, (3.4)

the product being over all prime divisors of f . ��

For distinct primes P1, . . . , Pn of degrees deg Pj = rj , we define

φδ(�r) :=
∑

D|∏Pj

deg D≤δ

μ(D)
qdeg D

. (3.5)

As the notation signifies, φδ(�r) depends only on the degrees of the primes Pj , and
we can rewrite it as

φδ(�r) =
∑

I⊂n
σ(I)≤δ

(−1)|I|q−σ(I) (3.6)

where for a subset I ⊂ n = {1, . . . , n} we define

σ(I) :=
∑

i∈I

ri

and denote by |I| the cardinality of the index set I.
Assume now that β is odd and

∑
rj is even, and

∑
rj > β. Define

Φβ(�r) := −qLφL(�r) + (q − 1)
L−1∑

l=0

qlφl(�r), (3.7)

where 2L =
∑

rj − 1 − β.

Lemma 3.2. Assume β is odd,
∑

rj is even, and β ≤
∑

rj − 2. Then

Φβ(�r) = −
∑

I⊆n
σ(I)≤L

(−1)|I|. (3.8)
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Proof. From the definition,

Φβ(�r) = −qL
∑

σ(I)≤L

(−1)|I|q−σ(I) + (q − 1)
L−1∑

l=0

ql
∑

σ(I)≤l

(−1)|I|q−σ(I). (3.9)

Changing order of summation, we get

Φβ(�r) =
∑

I⊆n
σ(I)≤L

(−1)|I|q−σ(I)

⎧
⎨

⎩
−qL + (q − 1)

∑

σ(I)≤l≤L−1

ql

⎫
⎬

⎭
. (3.10)

Summing the geometric series gives

− qL + (q − 1)
∑

σ(I)≤l≤L−1

ql = −qσ(I) (3.11)

and inserting in (3.10) proves the claim. ��

4 Multiple Character Sums

Define

S(β;�r) :=
∑

deg B=β
B monic

∑

deg Pj=rj

Pi �=Pj

(
B

∏n
j=1 Pj

)

. (4.1)

These sums will play a crucial role in what follows.
By quadratic reciprocity

S(β;�r) = (−1)
q−1
2

β(
∑

rj)
∑

deg Pj=rj

Pi �=Pj

A∏n
j=1 Pj

(β),

where the sum is over distinct primes Pj and AF (β) given by (2.1) is the coefficient of
the L-polynomial L(u, χF ). Since the L-function is a polynomial of degree deg F −1,
we have

Lemma 4.1. If β ≥
∑n

j=1 rj then S(β;�r) = 0.

4.1 Duality.

4.1.1 Duality for
∑

rj odd. Assume
∑

rj is odd and β ≤
∑

rj−1. Let P1, . . . , Pn

be distinct primes. Then L(u, χ∏n
j=1 Pj

) = L∗(u, χ∏n
j=1 Pj

), and so the coefficients
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A∏n
j=1 Pj

(β) = A∗∏n
j=1 Pj

(β)

coincide. Therefore, from (2.3) we have

A∏n
j=1 Pj

(β) = A∏n
j=1 Pj

(∑
rj − 1 − β

)
qβ−

∑
rj−1

2 .

Hence if
∑

rj is odd and β ≤
∑

rj − 1 then

S(β;�r) = qβ−
∑

rj−1

2 S
(∑

rj − 1 − β;�r
)

. (4.2)

4.1.2 Duality for
∑

rj even. Assume
∑

rj is even and β ≤
∑

rj − 2. Let
P1, . . . , Pn be distinct primes. Then the equation

L(u, χ∏n
j=1 Pj

) = (1 − u)L∗(u, χ∏n
j=1 Pj

)

implies (here we write A(β) for A∏Pj
(β))

A(0) = A∗(0) = 1,

A(
∑

rj − 1) = −A∗(
∑

rj − 2),

A∗(β) = A(β) + A(β − 1) + · · · + A(0),

and

A(β) = A∗(β) − A∗(β − 1). (4.3)

From (2.3) we have

A∗(β) = qβ−
∑

rj−2

2 A∗
(∑

rj − 2 − β
)

. (4.4)

Hence

A∗
(∑

rj − 2
)

= q
∑

rj−2

2 ,

and so

A
(∑

rj − 1
)

= −q
∑

rj−2

2 .

Therefore, if
∑

rj is even then

S
(∑

rj − 1;�r
)

=
∑

deg Pj=rj

Pi �=Pl

−q
∑

rj−2

2

= −q
∑

rj−2

2 π(r1) · · ·π(rn) + O
(
q

3
∑

rj

2
−min rj

)
. (4.5)
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If β ≤
∑

rj − 2 then by (4.3) and (4.4) we have

A(β) = qβ−
∑

rj

2

⎛

⎝−A
(∑

rj − 1 − β
)

+ (q − 1)

∑
rj−2−β∑

l=0

A(l)

⎞

⎠ . (4.6)

Hence

S(β;�r) = qβ−
∑

rj

2

(

−S (
∑

rj − 1 − β;�r) + (q − 1)

∑
rj−2−β∑

l=0

S(l;�r)

)

. (4.7)

4.2 Estimates for S(β;�r). For the convenience of writing we assume from
now on that

r1 = min(r1, . . . , rn) .

Lemma 4.2.

S(β;�r) = ηβqβ/2φβ/2(�r)
∏

π(rj) + O
(
φβ/2(�r)β

nqmax(
∑

rj+
β

2
−r1,

∑ rj

2
+β)
)

,

where φδ(�r) is as defined in (3.5).

Proof. We write

S(β;�r) = ηβ

∑

deg B=β
B=�

∑

deg Pj=rj

Pi �=Pl

(
B

∏n
j=1 Pj

)

+
∑

deg B=β
B �=�

∑

deg Pj=rj

Pi �=Pl

(
B

∏n
j=1 Pj

)

,

where the squares only occur when β is even. We write the sum over squares B = C2

as

∑

deg Pj=rj

Pi �=Pl

∑

deg C= β

2

(
C2

∏n
j=1 Pj

)

.

The inner sum is the number of C’s coprime to
∏n

j=1 Pj , which is q
β

2 φβ/2(�r) (this
is seen by the definition (3.5) of φβ/2 and inclusion–exclusion). Summing over the
distinct Pj we get that the sum over square B’s is

q
β

2 π(r1) · · ·π(rn)φ β

2
(�r) + O

(
φβ/2(�r)q

∑
rj+

β

2
−r1

)
.

For B not a perfect square, we use Weil’s theorem (2.7). Hence summing over all
non-square B of degree β, of which there are at most qβ , gives

∑

deg B=β
B �=�

∑

deg Pj=rj

Pi �=Pl

(
B

∏n
j=1 Pj

)

� βnq
∑ rj

2
+β

and with the contribution of square B, this concludes the lemma. ��
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By using duality, we can improve the estimate of the lemma when β is odd and∑
rj < 2β.

Proposition 4.3. Assume β is odd, and β ≤
∑

rj − 2. Then

S(β;�r) = η∑ rj
qβΦβ(�r)

∏ π(rj)
qrj/2

+ O
((∑

rj

)n
q
∑

rj

)

where Φβ(�r) is given in (3.7).

Proof. Assume
∑

rj is odd. Since β ≤
∑

rj − 2 we may use (4.2) for
∑

rj odd,

S(β;�r) = qβ−
∑

rj−1

2 S
(∑

rj − 1 − β;�r
)

and inserting the inequality of Weil’s theorem with β replaced by
∑

rj − 1 − β we
get

S
(∑

rj − 1 − β;�r
)

�
(∑

rj

)n
q
∑

rj

2
+(
∑

rj−1−β),

hence

S(β;�r) � qβ−
∑

rj−1

2

(∑
rj

)n
q
∑

rj

2
+(
∑

rj−1−β) �
(∑

rj

)n
q
∑

rj

as claimed.
Now assume

∑
rj is even. Using (4.7) and Lemma 4.2 we get

S(β;�r) = qβ−
∑

rj

2

⎛

⎝−S
(∑

rj − 1 − β;�r
)

+ (q − 1)

∑
rj−β−2∑

l=0

S(l;�r)

⎞

⎠

= qβ−
∑

rj

2 π(r1) · · ·π(rn)

(

− η∑ rj−1−βq
∑

rj−1−β

2 φ∑
rj−1−β

2

(�r)

+(q − 1)

∑
rj−β−2∑

l=0

ηlq
l

2 φ l

2
(�r)

)

+O
(

φβ/2(�r)qβ−
∑

rj

2
+1∑

∑
rj−β−2

l=0 lnqmax(
∑

rj

2
+l,
∑

rj+
l

2
−r1)

)
.

The remainder term is O((
∑

rj)nq
∑

rj ). For the main term, we note that
∑

rj −1−β
is even since β is odd and

∑
rj is even. Denote 2L :=

∑
rj − 1 − β, then we can

write the main term as

qβ

(

−qLφL(�r) + (q − 1)
L−1∑

l=0

qlφl(�r)
)∏ π(rj)

qrj/2
= qβΦβ(�r)

∏ π(rj)
qrj/2

by definition (3.7) of Φβ(�r). ��
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5 The n-Level Density

In the present section we begin the calculation of the n-level density for the hyper-
elliptic ensemble. First we recall the definition of n-level density. Let n be a natural
number and suppose we are given n real-valued even test function f1, . . . , fn ∈ S(R)
(by S(R) we denote the Schwartz space). Let

f̂k(s) =
∫

R

fk(t)e−2πist dt

be the Fourier transforms of fk. We will assume that each f̂j is supported on the
interval (−sj , sj) and

∑
sj < 2. Let h ∈ H(2g + 1, q) be a polynomial defining a

curve y2 = h(x) with normalized L-zeros eiθj , j = ±1, . . . ,±g, θ−j = −θj . Let

f̃k(t) =
∑

m∈Z

fk

(

2g

(
t

2π
+ m

))

be the associated periodic test functions (with period 2π). We denote

W
(n)
f (h) =

∑

θj1 ,...,θjn

1≤|jk|≤g

jk �=±jl if k �=l

f̃1(θj1) . . . f̃n(θjn
).

For the rest of the section whenever we use the averaging notation we mean averaging
over h ∈ H(2g+1, q) and whenever we use the asymptotic big-O notation the implicit
constant may depend on n, f1, . . . , fn (and other test functions we introduce) but
not on g, q. The aim of this section is to prove that

〈W (n)
f (h)〉 = A(f1, . . . , fn) + O(log g/g), (5.1)

where A(f1, . . . , fn) is an explicit expression in the fi and their Fourier transforms
independent of g, q.

5.1 Passage to unrestricted sums. To express W
(n)
f in terms of unrestricted

sums over zeros we use a standard combinatorial sieving method (see [Gao05,Rub01,
RS96] for usage of this method in a similar context). First of all since the fi are even
we may write

W
(n)
f = 2n

∑

1≤j1,...,jn≤g

dist.

f̃1(θj1) . . . f̃n(θjn
)

(here the summation is over distinct j1, . . . , jn).
Denote by Πn the set of partitions of the set 1, . . . , n. For two partitions F , G ∈

Πn we say that F refines G and write F ≺ G if each set appearing in G is a union
of sets appearing in F . We denote O = {{1}, . . . , {n}} ∈ Πn. For any finite set F we
denote by |F | its cardinality. For a partition F = {F1, . . . , Fν} we denote |F | = ν.
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Now suppose we have a function R : Πn → R and denote C(F ) =
∑

F≺G R(G). The
combinatorial Möbius inversion formula states that R(F ) =

∑
F≺G μ(F , G)C(G),

where μ(F , G) is the Möbius function for the partially ordered set Πn. It is known
that if F = {F1, . . . , Fν} then

μ(O, F ) =
ν∏

l=1

(−1)|Fl|−1(|Fl| − 1)!

(see [LW92, Section 12]), so we have

R(O) =
∑

F∈Πn

|F |∏

l=1

(−1)|Fl|−1(|Fl| − 1)!C(F )

(here F = F1, . . . , Fν , ν = |F |).
Now for F = {F1, . . . , Fν} ∈ Πn take

C(F ) =
∑

1≤j1,...,jν≤g

ν∏

l=1

∏

k∈Fl

f̃k(θjl
),

R(F ) =
∑

1≤j1,...,jν≤g

dist.

ν∏

l=1

∏

k∈Fl

f̃k(θjl
).

It is easy to see that C(F ) =
∑

F≺G R(G) and so denoting

ŨF (θ) =
∏

k∈F

f̃k(θ),

we have

W
(n)
f = 2nR(O) = 2n

∑

F∈Πn

|F |∏

l=1

(−1)|Fl|−1(|Fl| − 1)!
∑

1≤j1,...,j|F |≤g

ŨFl
(θjl

)

= 2n
∑

F

|F |∏

l=1

(−1)|Fl|−1(|Fl| − 1)!
∑

1≤j≤g

ŨFl
(θj).

Since the fj and hence also the ŨF are even, we may also rewrite this with a sum
over all zeros:

W
(n)
f =

∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
|F |∏

l=1

∑

j=±1,...,±g

ŨFl
(θj). (5.2)
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5.2 Passage to a sum over primes. Next we will replace the sum over zeros
in (5.2) with a sum over primes. For any f ∈ S(R) with compactly supported Fourier
transform we denote

T (f ; h) :=
1
g

∞∑

r=1

rq−r/2f̂

(
r

2g

) ∑

deg P=r
prime

(
h

P

)

. (5.3)

Proposition 5.1. Let f ∈ S(R) be a real-valued even function with compactly

supported Fourier transform f̂ and let f̃(t) =
∑

m∈Z
f
(
2g
(

t
2π + m

))
be its asso-

ciated periodic function. Then for any h ∈ H(2g + 1, q) with normalized L-zeros
eiθj , j = ±1, . . . ,±g we have

∑

1≤|j|≤g

f̃(θj) = f̂(0) − 1
2
f(0) − T (f ; h) + O(log g/g)

(the implicit constant may depend on f).

Proof. The Fourier coefficients of f̃ are ̂̃f(r) = 1
2g f̂

(
r
2g

)
, so we have

f̃(t) =
∑

r∈Z

1
2g

f̂

(
r

2g

)

eirt =
1
2g

f̂(0) +
1
g

∞∑

r=1

f̂

(
r

2g

)

eirt. (5.4)

The explicit formula states that

∑

1≤|j|≤g

eirθj = −q−r/2
∑

deg Q=r
monic

(
h

Q

)

Λ(Q), (5.5)

where Λ is the von Mangoldt function. Combining (5.4) and (5.5) we obtain

∑

1≤|j|≤g

f̃(θj) = f̂(0) − 1
g

∞∑

r=1

q−r/2f̂

(
r

2g

) ∑

deg Q=r
monic

(
h

Q

)

Λ(Q). (5.6)

The contribution to this sum from prime Q is exactly the term appearing in the
statement of the proposition. Now we consider the contribution of the squares Q =
P 2 with P prime, deg P = r/2 (for r even). We use the fact that

(
h

P 2

)
is 1 unless P |h,

in which case it is 0. We denote by π(r) the number of monic irreducible polynomials
in Fq[x] of degree r. Since π(r) = qr/r + O(qr/2/r), we have

∑

deg P=r/2
prime

(
h

P 2

)

Λ(P 2) = π(r/2) r
2 − r

2 · #{P prime, P |h}

= qr/2 + O(qr/4 + min(g, qr/2)) ,
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since the number of prime P |h of degree r/2 is O(min(g/r + qr/2/r)). We see that
the contribution of these squares to the sum in (5.6) is

1
g

∞∑

r=1

f̂(r/2g)
(
1 + O

(
q−r/4 + min(gq−r/2, 1)

))

= 2

∞∫

0

f̂(t) dt + O(log g/g) = f(0) + O(log g/g),

because
∑

r>log g gq−r/2 = O(1). The contribution of higher prime powers Q =
P k, k>3 is O(1/g) because the number of prime P with deg P ≤r/3 is O(qr/3/r). ��

Corollary 5.2.

W
(n)
f =

∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!

·
(

ÛFl
(0) − 1

2
UFl

(0) − T (ÛFl
; h) + O

(
log g

g

))

,

where UF (t) =
∏

k∈F fk(t), ÛF is its Fourier transform.

Proof. This follows from (5.2) and Proposition 5.1. Note that ŨF (t) is the associated
periodic function of UF . ��

Now let u1, . . . , uk ∈ S(R) with k ≤ n be real-valued even functions with Fourier
transforms ûl. We denote

M(u1, . . . , uk) =

〈
k∏

l=1

T (ul; h)

〉

,

(T (ul; h) is defined by (5.3)). In the next subsection we will prove that if ûl is
supported in (−δl, δl) and

∑k
l=1 δl < 2 then

M(u1, . . . , uk) = B(u1, . . . , uk) + O(log g/g), (5.7)

where B(u1, . . . , uk) is an explicit expression in the ul and their Fourier transforms
which is independent of g, q.

Proposition 5.3. Suppose that (5.7) holds under the appropriate conditions on
the supports of ûl. Then

〈W (n)
f 〉 = A(f1, . . . , fn) + O(log g/g)
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holds with

A(f1, . . . , fn) =
∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
∑

S⊂{1,...,l}

(
∏

l∈Sc

ÛFl
(0)

)

·
∑

S2⊂S

(−1/2)|Sc
2 |

⎛

⎝
∏

l∈Sc
2

UFl
(0)

⎞

⎠ (−1)|S2|B(Ul1 , . . . , Ul|S2|),

where the first summation is over all partitions F = {F1, . . . , F|F |} ∈ Πn, the second
is over all subsets S ∈ {1, . . . , l}, Sc denotes the complement of S in {1, . . . , l}, the
third summation is over all subsets S2 = {l1, . . . , l|S2|} ⊂ S, and Sc

2 = S \ S2.

Proof. First we note that if we could ignore the O(log g/g) terms in Corollary 5.2
then the Proposition would follow at once by expanding the product, averaging and
using (5.7). Here we use the fact that Ûlj is supported on the interval (−δj , δj)
where δj =

∑
k∈Flj

sk (recall that f̂k is supported on (−sk, sk)), because the Fourier

transform takes products to convolutions, so we have
∑|S2|

j=1 δj ≤
∑n

k=1 sk < 2, which
makes (5.7) applicable.

To deal with the error terms O(log g/g) we prove by induction on m that for
any even real-valued u1, . . . , um ∈ S(R), with each ûl supported on (−δl, δl) and∑

δl < 2, we have
〈

m∏

l=1

(

ul(0) − 1
2
ûl(0) − T (u; h) + O(log g/g)

)〉

=

〈
m∏

l=1

(

ul(0) − 1
2
ûl(0) − T (u; h)

)〉

+ O(log g/g)

(see [Rub01, Lemma 2] for a similar argument). Assuming by induction that this
holds for m − 1 it is enough to show that

〈

O(log g/g) ·
m−1∏

l=1

(

ul(0) − 1
2
ûl(0) − T (ul; h)

)〉

= O(log g/g). (5.8)

But

ul(0) − 1
2
ûl(0) − T (ul; h) =

∑

1≤|j|≤g

ũl(θj) + O(log g/g),

(by Proposition 5.1, here eiθj are the normalized L-zeros corresponding to h and ũl

is the periodic function associated with ul), so by induction it is enough to show
that

〈O(log g/g) ·
m−1∏

l=1

∑

1≤|j|≤g

ũl(θj)〉 = O(log g/g).
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For this we may replace each ul with an even real-valued function vl ∈ S(R) s.t.
vl(t) > |ul(t)| for all t ∈ R and each v̂l supported on (−δl, δl). That such functions
always exist is shown in [Rub01], proof of Lemma 2. Now applying 5.7 and using
the induction hypothesis we see that

〈
m−1∏

l=1

∑

1≤|j|≤g

ṽl(θj)

〉

= O(1),

which implies (5.8). ��

5.3 Evaluation of M(u1, . . . , um): reduction to sums over distinct primes.
In the rest of this section we evaluate

M(u1, . . . , um) =

〈
m∏

l=1

T (ul; h)

〉

up to O(log g/g) for even real-valued uk ∈ S(R) s.t. ûk is supported on (−δk, δk)
with

∑m
k=1 δk < 2. We want to derive a result of the form (5.7), so we assume by

induction that it already holds for all m′ < m. We denote m = {1, . . . , m}.
Let F be a subset of m. Denote

C(F ) = C(F ; h) =
1

g|F |

∞∑

r=1

q−|F |r/2r|F | ∏

k∈F

ûk

(
r

2g

) ∑

deg P=r
prime

(
h

P |F |

)

.

For a partition F = {F1, . . . , Fν} of a set S ⊂ m we denote C(F ) =
∏ν

l=1 C(Fl). For
two elements i, j ∈ S we say that i ∼F j if they lie in the same element of F . We
have

C(F ) =
1

g|S|

∞∑

r1,...,r|S|=1

(
∏

k∈S

ûk

(
rk

2g

)
rk

qrk/2

)
∑

P1,...,P|S|
prime

Pi=Pj if i∼F j

(
h

P1 · · ·P|S|

)

. (5.9)

Define also

R(F ) =
1

g|S|

∞∑

r1,...,r|S|=1

(
∏

k∈S

ûk

(
rk

2g

)
rk

qrk/2

)
∑

P1,...,P|S|
prime

Pi=Pj iff i∼F j

(
h

P1 . . . P|S|

)

(5.10)

(same expression except that the “if” is replaced with an “iff”). We have

C(F ) =
∑

F≺G

R(G), R(F ) =
∑

F≺G

μ(F , G)C(G). (5.11)
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Proposition 5.4. Let F be a subset of m. If F = {a, b} consists of two (distinct)
elements then

C(F ) = 2
∫

R

ûa(t)ûb(t)|t| dt + O(log g/g).

If |F | > 2 then C(F ) = O(1/g).

Proof. First suppose F = {a, b}. Then

C(F ) =
1
g2

∞∑

r=1

ûa

(
r

2g

)

ûb

(
r

2g

)

r2q−r
∑

deg P=r
prime

(
h

P 2

)

.

As in the proof of Proposition 5.1 we see that

rq−r
∑

deg P=r
prime

(
h

P 2

)

= 1 + O(q−r/2 + min(1, gq−r/2))

and so

C(F ) = 4
∞∑

r=1

ûa

(
r

2g

)

ûb

(
r

2g

)
r

2g
· 1
2g

+ O(log g/g)

= 2
∫

R

ûa(t)ûb(t)|t| dt + O(log g/g).

Now suppose that |F | = e ≥ 3. Then

C(F ) �
∞∑

r=1

1
ge

q(1−e/2)rre−1 = O(g−e). ��

For any subset S ⊂ m denote

OS = {{k}|k ∈ S}, O = {{1}, . . . , {m}}.

Lemma 5.5. For any proper subset S ⊂ m there is a function X : H(2g+1, q) → R≥0

s.t. X(h) ≥ |C(OS ; h)| for all h and 〈X(h)〉 = O(1).

Proof. Since C(OS) =
∏

i∈S T (ui; h) and by Proposition 5.1 we can write

C(OS) =
∏

i∈S

∑

θ

ui(θ) +
∑

T�S

C(OT ) · O(1),

where the sum is over the normalized L-zeros corresponding to h. We may assume by
induction that C(OT ), T � S (and therefore also C(OT ) ·O(1)) satisfy the assertion,
so it is enough to prove it for

∏
i∈S

∑
θ ui(θ). For this we may replace the ui with
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vi ≥ |ui| s.t. v̂i is supported on (−si, si), as we did in the proof of Proposition 5.3,
so that

∏

i∈S

∑

θ

vi(θ) ≥|
∏

i∈S

∑

θ

ui(θ) |

for all h. Now since S is proper we can apply our induction hypothesis. ��

If S = {k1, . . . , kν} we have M(uk1 , . . . , ukν
) = 〈C(OS)〉. If S is a proper subset

of m we may assume by induction that

M(uk1 , . . . , ukν
) = B(uk1 , . . . , ukν

) + O(log g/g),

where B(uk1 , . . . , ukν
) depends only on uk1 , . . . , ukν

.

Proposition 5.6. Let F ∈ Πm be a partition. let {ai, bi}, i = 1, . . . , μ be the two-
element sets appearing in F and {ci}, i = 1, . . . , κ, the one-element sets appearing
in F . Assume that at least one element of F ∈ F satisfies |F | > 1. If some F ∈ F
has more than two elements then 〈C(F )〉 = O(1/g). Otherwise

〈C(F )〉 = B(uk1 , . . . , ukκ
)2μ

μ∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt + O(log g/g).

Proof. Denote S = {ci, 1 ≤ i ≤ κ}. We have 〈C(OS)〉 = B(uc1 , . . . , ucμ
)+O(log g/g).

Denote G = F \ OS (these are exactly the sets with more than one element in
F ). If at least one set in F has more than two elements then by Proposition 5.4
C(G) = O(1/g). Otherwise

C(G) = 2μ
μ∏

i=1

∫

R

ûai
(t)ûbi

(t)|t|dt + O(log g/g).

In both cases we want to show that if we multiply the corresponding error by C(OS)
and average we get the same order of error. This follows from Lemma 5.5, since we
can bound C(OS) by a suitable X(h). ��

In the next subsection we will show that

〈R(O)〉 = D(u1, . . . , um) + O(1/g), (5.12)

where D(u1, . . . , um) is an explicit expression depending only on u1, . . . , um. For a
subset S = {k1, . . . , kν} ∈ m we denote D(S) = D(uk1 , . . . , ukν

). Assuming (5.12)
we prove the following:
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Proposition 5.7. M = B + O(log g/g), where

B(u1, . . . , um) = 2m/2
∑

pairupm

m/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt

+
∑

S�m

2|S|/2
∑

pairup S

|S|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt · D(Sc).

Here the first sum is over all perfect pairings of m, i.e. partitions of m of the form

{{ai, bi}, i = 1, . . . , m/2}, ai �= bi

(if m is odd the sum is empty), the second sum is over the proper subsets S ⊂ m,
the third sum is like the first only for S and Sc = {1, . . . , m} \ S.

Proof. We have

M(u1, . . . , um) = C(O) =
∑

F∈Πm

R(F ). (5.13)

First we note that if F is a partition of S ⊂ m that has an element F ∈ F with
|F | > 2 then 〈R(F )〉 = O(1/g). This follows from (5.11) and Proposition 5.6. Next
we observe that if |F | = 2 for all the elements F ∈ F then 〈R(F )〉 = 〈C(F )〉, because
of (5.11), the fact that μ(F , F ) = 1 and because every proper G � F has F ∈ G
with more than two elements. More generally, if a1, . . . , aμ, b1, . . . , bμ, c1, . . . , cκ ∈ m
are distinct elements and

F = {{a1, b1}, . . . , {aμ, bμ}, {c1}, . . . , {cκ}}, S = {{c1}, . . . , {cκ}},

then
(

μ∏

i=1

C({ai, bi})

)

R(OS) = R(F ) +
∑

G�F

R(G),

where the sum is only over those proper G � F which leave the elements of S in
different sets. In particular each G contains a set with more than two elements. We
conclude that

〈R(F )〉 =

〈(
μ∏

i=1

C({ai, bi})

)

R(OS)

〉

+ O(1/g).

Now the proof of Proposition 5.6 can be imitated to show that

〈R(F )〉 = D(S) · 2μ
μ∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt + O(log g/g)

(the required bound |R(OS)| ≤ X(h) with 〈X(h)〉 = O(1) follows from (5.11),
Lemma 5.5 and Proposition 5.6). Combining this with (5.13) gives the assertion.
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It remains for us to evaluate 〈R(O)〉 and show that

〈R(O)〉 = D(u1, . . . , um) + O(log g/g),

where D(u1, . . . , um) is an explicit expression depending on u1, . . . , um (and find this
expression). We recall that (compare (5.10))

R(O) =
1

gm

∞∑

r1,...,rm=1

(
m∏

i=1

ûi

(
ri

2g

)
ri

qri/2

)
∑

deg Pi=ri

distinct primes

(
h

P1 · · ·Pm

)

. (5.14)

To evaluate the average of this expression we need to know, for a particular tuple
(r1, . . . , rm), the average of

P(r1, . . . , rm) :=

(
m∏

i=1

ri

qri/2

)
∑

deg Pi=ri

distinct primes

(
h

P1 · · ·Pm

)

. (5.15)

We will compute this average in the following section.

6 Estimation of 〈P(�r)〉
In this section we focus on the contribution P(�r) of different primes defined by
(5.15). We use (2.9) and the explicit formula of (2.6) for the mean value of P(�r):

〈P(�r)〉 =

∏m
j=1 rj

q
∑

rj

2
+2g(q − 1)

∑

deg Pj=rj

Pi �=Pl

∑

2α+β=2g+1

∑

deg A=α
gcd(A,Pj)=1

μ(A)
∑

deg B=β

(
B

∏m
j=1 Pj

)

=

∏m
j=1 rj

q
∑

rj

2
+2g(q − 1)

∑

0≤α≤g

σ(�r; α)S(2g + 1 − 2α;�r). (6.1)

Proposition 6.1. Assume that
∑

rj < (1 − δ)4g. Then

〈P(�r)〉 =

∏m
j=1 rj

q
∑

rj

2
+2g(q − 1)

(S(2g + 1;�r) − qS(2g − 1;�r)) + O(q−δg + q−r1/2).

Proof. It suffices to show that the terms with α ≥ 2 contributes O(q−δg + q−r1/2).
Note that σ(�r, α) = 0 unless α ≥ r1 := min rj by Lemma 3.1. Thus it suffices to take
α ≥ r1. Recall that in any case,

|σ(�r; α)| ≤ (q + 1)
αm

∏
rj

. (6.2)

If
∑

rj ≤ 2g − 3 then S(2g + 1 − 2α,�r) = 0 for α ≥ 2 by Lemma 4.1. Thus we
may assume that

∑
rj ≥ 2g − 2.
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We first assume that
∑

rj ≥ 2g − 1 so that for α ≥ 2, we have β ≤
∑

rj − 2.
Using duality, we obtained a bound for the sums S(β;�r) in Proposition 4.3 which
implies that if β ≤

∑
rj − 2,

|S(β;�r)| � qβ− 1
2

∑
rj

∏
π(rj) + (

∑
rj)mq

∑
rj . (6.3)

We insert (6.3) into (6.1) and first bound the contributions of the second term
on the RHS of (6.3), call it II, namely of (

∑
rj)mq

∑
rj . Inserting (6.2) and using∑

rj < (1 − δ)4g we get

II � 1
q2g+1

∏ rj

qrj/2

∑

r1≤α≤g

q
αm

∏
rj

(
∑

rj)mq
∑

rj

� q
1
2

∑
rj−2gg2m+1 � q−δg. (6.4)

Now for the contribution of the first term on the RHS of (6.3), call it I, which
we can bound by

I � 1
q2g+1

∏ rj

qrj/2

∑

r1≤α≤g

q
αm

∏
rj

q2g+1−2α− 1
2

∑
rj

∏
π(rj)

� q
∏

rj

∑

α≥r1

αm

q2α
� q
∏

rj

rm
1

q2r1
� q−r1/2 (6.5)

on using the bound
∑

α≥r αmzα �m rmzr, (|z| ≤ 1
4 , r ≥ 1, m ≥ 1), giving our claim

when
∑

rj ≥ 2g − 1.
It remains to deal with the case

∑
rj = 2g − 2 and α = r1 = 2, where we need

to bound the contribution to 〈P(�r)〉 of

1
(q − 1)q2g

∏ rj

qrj/2
σ(�r, 2)S(2g − 3, �r) � 1

q2g+ 1
2

∑
rj

|S(2g − 3, �r)|. (6.6)

By (4.5), if
∑

rj − 1 = 2g − 3 then

|S(2g − 3, �r)| � q3g−3

(
1

q
∏

rj
+

1
qr1

)

and hence

(6.6) � 1
q2

(
1

q
∏

rj
+

1
qr1

)

,

and since
∏

rj ≥ max rj ≥
∑

rj/m ≥ g/m, we recover the proposition in this case
as well. ��

We now compute 〈P(�r)〉. For a subset of indices I ⊆ m = {1, . . . , m} we denote
its complement by Ic. Each subset I ⊆ m defines a hyperplane

σ(Ic) − σ(I) = 2g . (6.7)

We will call these 2m hyperplanes “exceptional”.
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Proposition 6.2. Assume
∑

rj < (1 − δ)4g.

(i) If
∑m

j=1 rj > 2g + 2 and
∑m

j=1 rj is even, then away from the exceptional
hyperplanes (6.7) we have

〈P(�r)〉 = −
∑

σ(I)<σ(Ic)−2g

(−1)|I| + O(q−δg + q−r1/2). (6.8)

(ii) If
∑m

j=1 rj = 2g, 2g + 2 or if
∑m

j=1 rj > 2g + 2 and (6.7) holds for some I ⊂ m,
then

| 〈P(�r)〉 | = O(1). (6.9)

(iii) If
∑m

j=1 rj < 2g or if
∑m

j=1 rj > 2g and
∑m

j=1 rj is odd, then

| 〈P(�r)〉 | � q−δg + q−r1/2.

Proof. The case
∑m

j=1 rj < 2g: We use Proposition 6.1 and note that in this case
S(2g ± 1;�r) = 0 by Lemma 4.1. Hence

〈P(�r)〉 = O(q−δg + q−r1/2).

The case
∑m

j=1 rj = 2g: For
∑

rj = 2g we have S(2g +1;�r) = 0 by Lemma 4.1.
Thus by Proposition 6.1

〈P(�r)〉 = −
∏m

j=1 rj

q
∑m

j=1 rj/2+2g(q − 1)
qS(2g − 1;�r) + O(q−δg + q−r1/2).

By (4.5) and using
∑

rj = 2g, we have

〈P(�r)〉 =
∏

rj

q
1
2

∑
rj+2g(q − 1)

q · q
1
2

∑
rj−1#{deg Pj = rj , Pi �= Pj}

+O(q−δg + q−r1/2)

=
1

q − 1
+ O(q−δg + q−r1/2) = O(1).

The case
∑m

j=1 rj = 2g + 1: We have S(2g + 1;�r) = 0 by Lemma 4.1. Thus by
Proposition 6.1

〈P(�r)〉 = −
∏m

j=1 rj

q
∑m

j=1 rj/2+2g(q − 1)
qS(2g − 1;�r) + O(q−δg + q−r1/2).

By Proposition 4.3, and using
∑

rj = 2g + 1 in (4.5), we have

〈P(�r)〉 � g2m

qg− 1
2

+ q−δg + q−r1/2 = O(q−δg + q−r1/2).
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The case
∑m

j=1 rj = 2g + 2: By Proposition 6.1

〈P(�r)〉 =

∏m
j=1 rj

q3g+1(q − 1)
(S(2g + 1;�r) − qS(2g − 1;�r)) + O(q−δg + q−r1/2).

Using (4.5) we have

S(2g + 1;�r) =
−q3g+2

∏
rj

(
1 + O(q−r1/2)

)
,

and by Proposition 4.3,

S(2g − 1;�r) = O

(
q3g

∏
rj

)

.

Hence 〈P(�r)〉 = O(1).
The case

∑m
j=1 rj > 2g+2: In this case β = 2g±1 satisfies β ≤

∑m
j=1 rj−2, hence

we may use Proposition 4.3 which gives that for
∑

rj even, β odd, and
∑

rj −2 ≥ β,

S(β,�r) = qβΦβ(�r)
∏ π(rj)

qrj/2
+ O(q−δg + q−r1/2). (6.10)

If
∑

rj is odd then there is no main term.
We now insert (6.10) and Lemma 3.2 in the computation of 〈P(�r)〉 to get that,

up to a remainder term of O(q−δg + q−r1/2), we have that if
∑

rj > 2g,
∑

rj even
then

〈P(�r)〉 ∼ 1
q2g(q − 1)

∏

j

rj

qrj/2
(S(2g + 1, �r) − qS(2g − 1, �r))

∼ Φ2g+1(�r) +
Φ2g+1(�r) − Φ2g−1(�r)

q − 1

= −
∑

σ(I)≤L+

(−1)|I| +
Φ2g+1(�r) − Φ2g−1(�r)

q − 1
, (6.11)

where 2L+ =
∑

rj − 1 − (2g + 1).
We have σ(I) + σ(Ic) =

∑
rj and hence the condition σ(I) ≤ L+ becomes

σ(I) − σ(Ic) ≤ −(2g + 2), and since
∑

rj = σ(I) + σ(Ic) is even, so is σ(I) − σ(Ic)
and thus this condition is equivalent to

σ(I) − σ(Ic) < −2g .

Moreover,

Φ2g+1(�r) − Φ2g−1(�r) =
∑

σ(Ic)−σ(I)=2g

(−1)|I|

and so the second term in (6.11) vanishes off the exceptional hyperplanes (6.7). Thus
we have shown (6.8) and (6.9). ��
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7 Conclusion

Now we are ready to prove

Proposition 7.1. The mean value of R(O) is

〈R(O)〉 = −2m−1
∑

I⊂m

(−1)|I|
∫

t1,...,tm≥0∑
ti≥1∑

i∈I ti≤∑i∈Ic ti−1

m∏

i=1

(ûi(ti)dti) + O(1/g) .

Proof. We average (5.14) over H(2g+1, q) substituting the values provided by Propo-
sition 6.2. First let us ignore the errors and examine the contribution of the main
terms. We get that the main term in 〈R(O)〉 is

−2m
∑

I⊂m

(−1)|I| ∑

r1,...,rm≥1∑
ri>2g+2 even∑

i∈I ri<
∑

i∈Ic ri−2g

m∏

i=1

(

ûi

(
ri

2g

)

· 1
2g

)

= −2m−1
∑

I⊂m

(−1)|I|
∫

R
m
≥0∑
ti≥1∑

i∈I ti≤∑i∈Ic ti−1

m∏

i=1

(ûi(ti)dti) + O(1/g)

using an approximation of the integral by a Riemann sum with step 1/2g, with the
restriction that

∑
rj is even providing a factor of 1/2. This is the main term in the

assertion.
Now we consider the various error terms. Due to the condition on the supports

of ûi we only need to consider
∑

ri < (1 − δ)4g for some fixed δ > 0. For the error
term of the form O(q−δg), we use that the number of suitable tuples ri is O(gm),
so the total contribution of these errors is O(q−δggm) � O(1/g). For error terms
of the form O(q− min rj/2), note that for any r the number of suitable r1, . . . , rm

s.t. min(ri) = r is O(gm−1), each contributing an error term of g−mq−r/2, so the
total contribution of these errors is O(1/g). Finally, the number of r1, . . . , rm on
exceptional hyperplanes is also O(gm−1), so the total contribution of the additional
errors is O(1/g). ��

Putting together Propositions 5.3, 5.7, 7.1 we obtain

Theorem 7.2. Assume that fj ∈ S(R) are even and each f̂j(uj) is supported in
the range |uj | < sj , with

∑
sj < 2. Then

〈W (n)
f 〉 = A(f1, . . . , fn) + O(log g/g),
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where

A(f1, . . . , fn) =
∑

F∈Πn

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
∑

S⊂{1,...,|F |}

(
∏

l∈Sc

ÛFl
(0)

)

·
∑

S2⊂S

(−1/2)|Sc
2 |

⎛

⎝
∏

l∈Sc
2

UFl
(0)

⎞

⎠

(

2|S2|/2
∑

pair up S2

|S2|/2∏

i=1

∫

R

Ûai
(t)Ûbi

(t)|t|dt

−1
2

∑

S3�S2

2|S3|/2
∑

pair up S3

⎛

⎝
|S3|/2∏

i=1

∫

R

Ûai
(t)Ûbi

(t)|t|dt

⎞

⎠

·(−2)|Sc
3 | ∑

I⊂Sc
3

(−1)|I|
∫

R
|Sc

3|
≥0∑

i∈I ti≤∑i∈Ic ti−1

∏

i∈Sc
3

(Ûi(t)dti)

)

.

Here F = {F1, . . . , F|F |} ranges over the partitions of {1, . . . , n}, S over the subsets
of {1, . . . , |F |}, UFl

(t) =
∏

k∈Fl
fk(t), S2 ranges over the subsets of S, a pair up sum

ranges over partitions {{a1, b1}, . . . , {a|T |/2, b|T |/2}} of a set T (it is empty if |T | is
odd), S3 ranges over the proper subsets of S2 and I ranges over the subsets of S3.

This coincides with the expression obtained in [Gao05] for the n-level density
statistics of the family of quadratic L-functions.

Proof. We go through the verification. From Proposition 5.3,

〈
W

(n)
f

〉
∼
∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
∑

S⊂{1,...,l}

(
∏

l∈Sc

ÛFl
(0)

)

·
∑

S2⊂S

(−1/2)|Sc
2 |

⎛

⎝
∏

l∈Sc
2

UFl
(0)

⎞

⎠ (−1)|S2|B(Ul1 , . . . , Ul|S2|).

By Proposition 5.7,

B(Ul1 , . . . , Ul|S2|) ∼ 2|S2|/2
∑

pair up S2

|S2|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt

+
∑

S3�S2

2|S3|/2
∑

pair upS3

|S3|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt · D(Sc
3).
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Taking into account that the first term above only occurs if |S2| is even, so that
(−1)|S2| = 1, gives

〈
W

(n)
f

〉
∼
∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
∑

S⊂{1,...,l}

(
∏

l∈Sc

ÛFl
(0)

)

·
∑

S2⊂S

(−1/2)|Sc
2 |

⎛

⎝
∏

l∈Sc
2

UFl
(0)

⎞

⎠

×

⎧
⎨

⎩
2|S2|/2

∑

pair up S2

|S2|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt

+(−1)|S2| ∑

S3�S2

2|S3|/2
∑

pair up S3

|S3|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t| dt · D(Sc
3)

⎫
⎬

⎭
.

We also note that the term with S3 only occur if |S3| is even, so that we may replace
(−1)|S2| = (−1)|Sc

3 |. Inserting Proposition 7.1 (which says 〈R〉 ∼ D) gives

〈
W

(n)
f

〉
∼
∑

F

(−2)n−|F |
|F |∏

l=1

(|Fl| − 1)!
∑

S⊂{1,...,l}

(
∏

l∈Sc

ÛFl
(0)

)

·
∑

S2⊂S

(−1
2
)|Sc

2 |

⎛

⎝
∏

l∈Sc
2

UFl
(0)

⎞

⎠

×
{

2|S2|/2
∑

pair up S2

|S2|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t|dt

−1
2

∑

S3�S2

2|S3|/2
∑

pair up S3

|S3|/2∏

i=1

∫

R

ûai
(t)ûbi

(t)|t|dt

·(−2)|Sc
3 | ∑

I⊂Sc
3

(−1)|I|
∫

t1,...,t|Sc
3|≥0

∑
ti≥1∑

i∈I ti≤∑i∈Ic ti−1

|Sc
3 |∏

i=1

ûi(ti)dti

}

,

with a remainder of O(log g/g). This is exactly the expression derived in Gao’s thesis
(see [Gao05, Theorem II.1] or [Gao13, Theorem 2.1]). ��
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