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Abstract
We study the zeros of cusp forms of large weight for the
modular group, which have a very large order of van-
ishing at infinity, so that they have a fixed number 𝐷 of
finite zeros in the fundamental domain. We show that
for large weight the zeros of these forms cluster near 𝐷
vertical lines, with the zeros of a weight 𝑘 form lying
at height approximately log 𝑘. This is in contrast to pre-
viously known cases, such as Eisenstein series, where
the zeros lie on the circular part of the boundary of
the fundamental domain, or the case of cuspidal Hecke
eigenforms where the zeros are uniformly distributed in
the fundamental domain. Our method uses the Faber
polynomials. We show that for our class of cusp forms,
the associated Faber polynomials, suitably renormal-
ized, converge to the truncated exponential polynomial
of degree 𝐷.

MSC 2020
11F11 (primary)

1 INTRODUCTION

For an even integer 𝑘 ⩾ 0 let𝑀𝑘 be the space of modular forms of weight 𝑘 for the full modular
group SL(2, ℤ). Any 𝑓 ∈ 𝑀𝑘 has an expansion

𝑓(𝜏) =

∞∑
𝑛=0

𝑎𝑓(𝑛)𝑞
𝑛,
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where 𝑞 = 𝑒2𝜋𝑖𝜏, 𝜏 ∈ ℍ = {𝜏 ∶ Im(𝜏) > 0}, and one defines

ord∞(𝑓) = min(𝑛 ∶ 𝑎𝑓(𝑛) ≠ 0).

The space of such forms 𝑀𝑘 is finite-dimensional, spanned by the holomorphic Eisenstein
series 𝐸𝑘(𝜏) =

1

2

∑
gcd(𝑐,𝑑)=1(𝑐𝜏 + 𝑑)

−𝑘 (𝑘 ⩾ 4) and the space of cusp forms 𝑆𝑘, made up of forms
which vanish at infinity (ord∞(𝑓) ⩾ 1). Writing

𝑘 = 12𝓁 + 𝑘′, 𝑘′ ∈ {0, 4, 6, 8, 10, 14}

then 𝓁 = dim𝑆𝑘 when 𝓁 ⩾ 1, and for any nonzero 𝑓 ∈ 𝑀𝑘, we have ord∞(𝑓) ⩽ 𝓁.
A nonzero modular form of weight 𝑘 has roughly 𝑘∕12 − ord∞(𝑓) zeros (see (2.2)) in the

fundamental domain

 = {𝜏 ∈ ℍ ∶ Re(𝜏) ∈ [−1∕2, 1∕2), |𝜏| ⩾ 1},
where if |𝜏| = 1 then we take Re(𝜏) ⩽ 0; see Figure 1. The question we address is how are these
zeros distributed as 𝑘 → ∞.
There are two main types of known results on zeros of modular forms: The first of these origi-

nates in 1970, when Rankin and Swinnerton-Dyer [6] showed, by a remarkably simple argument,
that all the zeros of the Eisenstein series 𝐸𝑘 lie on the bounding arc  = {𝑒𝑖𝑡 ∶ 𝜋∕2 ⩽ 𝑡 ⩽ 2𝜋∕3},
and as 𝑘 → ∞ they become uniformly distributed there. Several authors have used the argument
of Rankin and Swinnerton-Dyer as an ingredient in proving analogous results for other distin-
guished forms, for instance Duke and Jenkins [1] studied certain “gap forms,” see below. The
second type of result concerns cuspidal Hecke eigenforms. In this case, the zeros are equidis-
tributed in the fundamental domain with respect to the hyperbolic measure [3, 7]; see also [2, 4]
for further results on this case.
Our goal is to present a different distribution result, for zeros of cusp form with a high order of

vanishing at infinity. We investigate the zeros of cusp forms with very high order of vanishing at

F IGURE 1 The fundamental domain  and the points
√
−1

2𝜋
log

(
2𝑘𝑧4,𝑟

)
, 𝑟 = 1,… , 4 and 𝑘 = 1000𝑗, 𝑗 = 1, 20

where 𝑧4,𝑟 are the inverse zeros of 4(𝑡) = 1 + 𝑡 + 𝑡2∕2 + 𝑡3∕6 + 𝑡4∕24.
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ZEROS OF MODULAR FORMS AND FABER POLYNOMIALS 3 of 12

infinity, by which wemean that we fix𝐷 ⩾ 1 and a bounding parameter 𝐶 > 0, and consider cusp
forms with ord∞(𝑓) = 𝓁 − 𝐷,

𝑓 = 𝑞𝓁−𝐷
(
1 + 𝑦𝑓(1)𝑞 +⋯ + 𝑦𝑓(𝐷)𝑞

𝐷
)
+ 𝑂

(
𝑞𝓁+1

)
(1.1)

with coefficients |𝑦𝑓(𝑗)| ⩽ 𝐶, and take 𝑘 ≫ 1. A principal example are the cofinal elements of the
“Miller basis” of𝑀𝑘, which are the unique elements 𝑓𝑘,𝑚 of𝑀𝑘 with 𝑞-expansion

𝑓𝑘,𝑚 = 𝑞𝑚 + 𝑂(𝑞𝓁+1), 𝑚 = 0,… ,𝓁.

If we fix 𝐷, then 𝑓𝑘,𝓁−𝐷 = 𝑞𝓁−𝐷 + 𝑂(𝑞𝓁+1) is of the required form.
We show that for these forms, the zeros do not lie on the arc  as is the case for the Eisen-

stein series [6], or for the “gap form” 𝑓𝑘,0 [1], nor are the zeros equidistributed as is the case
for cuspidal Hecke eigenforms of large weight. Instead, we find that the zeros asymptotically
lie on 𝐷 lines at height log 2𝑘. Precisely, let 𝐷(𝑡) be the truncated exponential polynomial of
degree 𝐷:

𝐷(𝑡) = 1 + 𝑡 +⋯ +
𝑡𝐷

𝐷!

and denote by {𝑧𝐷,𝑟} the inverse zeros: 𝐷(𝑡) =
∏𝐷

𝑟=1

(
1 − 𝑧𝐷,𝑟𝑡

)
.

Theorem 1.1. Fix 𝐷 ⩾ 1, 𝐶 > 0, and let 𝑓 ∈ 𝑆𝑘 be as in (1.1). Then the zeros 𝜏1, … , 𝜏𝐷 of 𝑓 in the
fundamental domain, suitably labeled, satisfy

𝜏𝑟 =

√
−1

2𝜋
log

(
2𝑘𝑧𝐷,𝑟

)
+ 𝑂

(
1

𝑘

)
.

So in particular, the zeros of 𝑓 cluster around the vertical lines

𝑟 = {Re(𝜏) = −
arg(𝑧𝐷,𝑟)

2𝜋
}, 𝑟 = 1,… , 𝐷,

where the argument is chosen so that arg(𝑧𝐷,𝑟) ∈ [−𝜋, 𝜋); see Figure 1.
Our argument uses Faber polynomials: Given a nonzero 𝑓 ∈ 𝑀𝑘, the associated Faber

polynomial 𝐹𝑓(𝑡) ∈ ℂ[𝑡] is a polynomial of degree 𝐷 = 𝓁 − ord∞(𝑓), uniquely determined by

𝑓

Δ𝓁𝐸𝑘′
= 𝐹𝑓(𝑗),

where

𝑗 =
1

𝑞
+ 744 + 196 884𝑞 + …

is Klein’s absolute invariant. The zeros of 𝐹𝑓 are at 𝑗(𝜏𝑟), where {𝜏𝑟} are the zeros of 𝑓∕𝐸𝑘′ . In §4
we show:
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4 of 12 RUDNICK

Theorem 1.2. Let 𝑓 ∈ 𝑆𝑘 be as in (1.1) and 𝐹𝑓(𝑡) its Faber polynomial. Then

1

(2𝑘)𝐷
𝐹𝑓(2𝑘𝑡) =

𝐷∑
𝑠=0

1

𝑠!

(
1 + 𝑂

(
1

𝑘

))
𝑡𝐷−𝑠.

Noting that
∑𝐷
𝑠=0

𝑡𝐷−𝑠

𝑠!
= 𝑡𝐷𝐷(

1

𝑡
), wewill then obtain the limit distribution of the zeros of𝐹𝑓(𝑡):

Corollary 1.3. As 𝑘 → ∞, the zeros 𝑡1, … , 𝑡𝐷 of 𝐹𝑓(𝑡) satisfy

𝑡𝑟 = 2𝑘 ⋅ 𝑧𝐷,𝑟 + 𝑂(1), 𝑟 = 1,… , 𝐷,

where 𝑧𝐷,1, … , 𝑧𝐷,𝐷 are the inverse zeros of 𝐷 .

In §5 we will deduce Corollary 1.3 and Theorem 1.1 from Theorem 1.2.

2 BACKGROUND ONMODULAR FORMS

2.1 Basic definitions

For an even integer 𝑘 ⩾ 0, the space ofmodular forms𝑀𝑘 consists of holomorphic functions on the
upper half-plane ℍ = {𝜏 = 𝑥 + 𝑖𝑦 ∶ 𝑦 > 0} which transform under Möbius transformations from
SL(2, ℤ) as 𝑓(𝑎𝜏+𝑏

𝑐𝜏+𝑑
) = (𝑐𝜏 + 𝑑)𝑘𝑓(𝜏) for all

(
𝑎 𝑏
𝑐 𝑑

)
∈ SL(2, ℤ), and are bounded as Im(𝜏) → +∞.

The subspace 𝑆𝑘 ⊂ 𝑀𝑘 of cusp forms consists of those forms which vanish as Im(𝜏) → +∞. A
modular form has an expansion in terms of the nome 𝑞 = 𝑒2𝜋𝑖𝜏:

𝑓(𝜏) =

∞∑
𝑛=0

𝑎(𝑛)𝑞𝑛

and is a cusp form when 𝑎(0) = 0.
Some examples are the (normalized) Eisenstein series

𝐸𝑘(𝑧) =
1

2

∑
(𝑐,𝑑)∈ℤ2

gcd(𝑐,𝑑)=1

(𝑐𝑧 + 𝑑)−𝑘

which have Fourier expansion

𝐸𝑘(𝜏) = 1 − 𝛾(𝑘)

∞∑
𝑛=1

𝜎𝑘−1(𝑛)𝑞
𝑛,

where𝜎𝑠(𝑛) =
∑
𝑑∣𝑛 𝑑

𝑠 are divisor sums, 𝛾(𝑘) = 2𝑘∕𝐵𝑘 with𝐵𝑘 the Bernoulli numbers; see Table 1.
For instance,

𝐸4 = 1 + 240
∑
𝑛⩾1

𝜎3(𝑛)𝑞
𝑛, 𝐸6 = 1 − 504

∑
𝑛⩾1

𝜎5(𝑛)𝑞
𝑛.
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ZEROS OF MODULAR FORMS AND FABER POLYNOMIALS 5 of 12

TABLE 1 The numbers 𝛾(𝑘) = 2𝑘∕𝐵𝑘 .

𝑘 4 6 8 10 12 14
𝛾(𝑘) −240 504 −480 264 −65 520/691 24

An example of a cusp form is the modular discriminant Δ ∈ 𝑆12, the unique (up to multiple) cusp
form of weight 12, with Fourier expansion

Δ(𝜏) = 𝑞

∞∏
𝑛=1

(1 − 𝑞𝑛)24 = 𝑞 − 24𝑞2 + 252𝑞3⋯ + .

We will also need Klein’s absolute invariant, the 𝑗-function

𝑗 =
𝐸3
4

Δ

which is a modular function (weight zero), meromorphic at infinity, with 𝑞-expansion

𝑗 =
1

𝑞
+ 744 + 196 884𝑞 + 21 493 760𝑞2 +⋯ ∈ ℤ[[𝑞]]. (2.1)

The 𝑗-function gives an isomorphism 𝑗 ∶ SL(2, ℤ)∖ℍ → ℂ. Any meromorphic modular form
which is entire in the finite half-plane (its only possible poles are at infinity) is a polynomial
in 𝑗.
For 𝜏 in the standard fundamental domain  , 𝑗(𝜏) is real if and only if 𝜏 lies on the boundary of

 or on the imaginary axis, more precisely, 𝑗 maps the arc 𝑒𝑖𝑡 ∶ 𝑡 ∈ [𝜋∕2, 2𝜋∕3] onto [0,1728], the
imaginary axis {𝑖𝑦 ∶ 𝑦 ⩾ 1} to [1728,∞) and the left boundary segment {−1

2
+ 𝑖𝑦 ∶ 𝑦 >

√
3∕2} to

the negative reals.

2.2 Zeros

Let 𝑓 ∈ 𝑀𝑘 be a nonzero modular form of weight 𝑘 > 0. Then the valence formula is

ord∞ 𝑓 +
∑
𝑧∈
𝑧≁𝑖,𝜌

ord𝑧 𝑓 +
1

2
ord𝑖 𝑓 +

1

3
ord𝜌 𝑓 =

𝑘

12
, (2.2)

where 𝜌 = (−1 +
√
−3)∕2 and the sum is over the zeros of 𝑓 in the fundamental domain  other

than 𝜌 and 𝑖.
From the valence formula (2.2) we see that if 𝑘′ ∈ {4, 6, 10} then the zeros of 𝐸𝑘′ are all

simple; if 𝑘′ = 8 then there is a double zero at 𝜌 and no others; and if 𝑘′ = 14 then there
is a simple zero at 𝑖 and a double zero at 𝜌. We also see that, writing as before 𝑘 = 12𝓁 +
𝑘′, and form of weight 𝑘 has at least the same zeros as 𝐸𝑘′ , so is divisible by 𝐸𝑘′ (for
𝑘′ = 0 we set 𝐸0 = 1). We will use the term “trivial zeros” for the zeros of 𝑓 ∈ 𝑀𝑘 aris-
ing from these symmetries. The nontrivial zeros of 𝑓 are thus the zeros of the quotient
𝑓∕𝐸𝑘′ .
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6 of 12 RUDNICK

3 FABER POLYNOMIALS

3.1 Definition

To any modular form 𝑓 ∈ 𝑀𝑘 we can associate a polynomial 𝐹𝑓 ∈ ℂ[𝑡] so that

𝑓 = Δ𝓁𝐸𝑘′ ⋅ 𝐹𝑓(𝑗)

(recall 𝑘 = 12𝓁 + 𝑘′, 𝑘′ ∈ {0, 4, 6, 8, 10, 14}). Indeed, the quotient𝑓∕Δ𝓁𝐸𝑘′ is ameromorphicmod-
ular form, whose only possible poles are at infinity, hence 𝑓∕Δ𝓁𝐸𝑘′ must be a polynomial in 𝑗, of
degree

𝐷 = deg𝐹𝑓 = 𝓁 − ord∞(𝑓).

By definition, for 𝑘′ ∈ {0, 4, 6, 8, 10, 14} we have 𝐹𝐸𝑘′ (𝑡) = 1 and likewise for 𝑓 = Δ𝓁 . Also by
definition, multiplying 𝑓 by a power of Δ does not change the Faber polynomial: 𝐹Δ𝑚𝑓 = 𝐹𝑓 .
The polynomial 𝐹𝑓 accounts for all the “nontrivial” zeros of 𝑓 (that is except for the common

zeros with 𝐸𝑘′), in the sense that for these zeros 𝜏, we have 𝑓(𝜏) = 0 iff 𝐹𝑓(𝑗(𝜏)) = 0.

3.2 Computation

To compute the Faber polynomial 𝐹𝑓(𝑡), expand 𝑓∕Δ𝓁𝐸𝑘′ as Laurent series in 𝑞 and then match
the principal part with that of a polynomial of degree 𝐷 in 𝑗: With𝑚 ∶= ord∞(𝑓), expand

𝑞𝑚

Δ𝓁𝐸𝑘′
=

𝑞𝑚

𝑞𝓁
∏∞

𝑛=1(1 − 𝑞
𝑛)24𝓁

{
1 − 𝛾(𝑘′)

∑
𝑛⩾1 𝜎𝑘′−1(𝑛)𝑞

𝑛
}

=
𝐴𝑘(0) + 𝐴𝑘(1)𝑞 +⋯ + 𝐴𝑘(𝐷)𝑞

𝐷

𝑞𝐷
+ 𝑂(𝑞),

with 𝐴𝑘(0) = 1, and

𝑓 = 𝑞𝑚
∞∑
𝑛=0

𝑦𝑓(𝑛)𝑞
𝑛,

with 𝑦𝑓(0) ≠ 0, so that

𝑓

Δ𝓁𝐸𝑘′
=
𝐴𝑘(0) + 𝐴𝑘(1)𝑞 +⋯ + 𝐴𝑘(𝐷)𝑞

𝐷

𝑞𝐷

∞∑
𝑛=0

𝑦𝑓(𝑛)𝑞
𝑛 + 𝑂(𝑞)

=

𝐷∑
𝑠=0

𝑞−𝑠
𝐷−𝑠∑
𝑛=0

𝐴𝑘(𝐷 − 𝑠 − 𝑛)𝑦𝑓(𝑛) + 𝑂(𝑞).

(3.1)

Further, expand

𝑗𝑟 =
1

𝑞𝑟
+
744𝑟

𝑞𝑟−1
+⋯ =

𝑟∑
𝑠=0

𝑐𝑟,𝑠𝑞
−𝑠 + 𝑂(𝑞),
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ZEROS OF MODULAR FORMS AND FABER POLYNOMIALS 7 of 12

with 0 ⩽ 𝑐𝑟,𝑠 ∈ ℤ,

𝑐𝑟,𝑟 = 1, 𝑐𝑟,𝑟−1 = 744 ⋅ 𝑟

so that

𝐹𝑓(𝑗) =

𝐷∑
𝑟=0

𝑥𝐷−𝑟𝑗
𝑟 =

𝐷∑
𝑠=0

𝑞−𝑠
𝐷∑
𝑟=𝑠

𝑥𝐷−𝑟𝑐𝑟,𝑠 + 𝑂(𝑞). (3.2)

Comparing (3.1) with (3.2) gives a system of equations for the coefficients 𝑥0, 𝑥1, … 𝑥𝐷 of the
Faber polynomial:

𝐷∑
𝑟=𝑠

𝑐𝑟,𝑠𝑥𝐷−𝑟 =

𝐷−𝑠∑
𝑛=0

𝐴𝑘(𝐷 − 𝑠 − 𝑛)𝑦𝑓(𝑛), 𝑠 = 0, 1, … , 𝐷. (3.3)

For 𝑠 = 𝐷,𝐷 − 1,𝐷 − 2 these are

𝑥0 = 𝑦𝑓(0)

744𝐷𝑥0 + 𝑥1 = 𝐴𝑘(1)𝑦𝑓(0) + 𝑦𝑓(1)

𝑐𝐷,𝐷−2𝑥0 + 𝑐𝐷−1,𝐷−2𝑥1 + 𝑥2 = 𝐴𝑘(2)𝑦𝑓(0) + 𝐴𝑘(1)𝑦𝑓(1) + 𝑦𝑓(2).

3.3 Examples

We determine in this way the Faber polynomials 𝐹𝑘,𝑚(𝑡) for some examples in the Miller basis
𝑓𝑘,𝑚 = 𝑞𝑚 + 𝑂(𝑞𝓁+1). For instance, for the “gap form” 𝑓𝑘,0 = 1 + 𝑂(𝑞𝓁+1),

𝐹24,0(𝑡) = 125 280 − 1440 𝑡 + 𝑡2

with zeros 93.0072, 1346.99, and

𝐹36,0 = −27 302 400 + 965 520 𝑡 − 2160 𝑡2 + 𝑡3

with zeros 30.3029, 582.232, 1547.46. Duke and Jenkins [1] show the gap form 𝑓𝑘,0 has all it zeros
on the arc {𝑒𝑖𝜃 ∶ 𝜋

2
⩽ 𝜃 ⩽ 2𝜋

3
}, equivalently that the Faber polynomial has all its zeros in [0,1728].

Here are some examples of 𝐹𝑘,𝓁−𝐷 when 𝑘 = 12𝓁 and 𝐷 = 𝓁 −𝑚 is small:

𝐹12𝓁,𝓁−1(𝑡) = 𝑡 + (2𝑘 − 744).

𝐹12𝓁,𝓁−2(𝑡) = 𝑡2 + 24(𝓁 − 62)𝑡 + 36(8𝓁2 − 495𝓁 + 4438)

= 𝑡2 + (2𝑘 − 1488)𝑡 +

(
(2𝑘)2

2
− 1485𝑘 + 159 768

)
.

𝐹12𝓁,𝓁−3(𝑡) = 𝑡3 + 24(−93 + 𝓁)𝑡2 + 36(29 721 − 991𝓁 + 8𝓁2)𝑡

+ 32(−1 152 093 + 118 990𝓁 − 6669𝓁2 + 72𝓁3)
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8 of 12 RUDNICK

= 𝑡3 + (2𝑘 − 2232)𝑡2 +

(
(2𝑘)2

2
− 2973𝑘 + 1 069 956

)
𝑡

+

(
(2𝑘)3

6
− 1482𝑘2 +

951 920

3
𝑘 − 36 866 976

)
.

4 PROOF OF THEOREM 1.2

Recall that we fix 𝐷 = 𝓁 −𝑚, fix 𝐶 > 0, and consider cusp forms of the shape

𝑓 = 𝑞𝑚
(
1 + 𝑦𝑓(1)𝑞 +⋯ + 𝑦𝑓(𝐷)𝑞

𝐷
)
+ 𝑂(𝑞𝓁+1)

with bounded coefficients:

|𝑦𝑓(1)|, … |𝑦𝑓(𝐷)| ⩽ 𝐶.
We will prove Theorem 1.2, which states that

1

(2𝑘)𝐷
𝐹𝑓(2𝑘𝑡) =

𝐷∑
𝑠=0

1

𝑠!

(
1 + 𝑂

(
1

𝑘

))
𝑡𝐷−𝑠.

Proof. Using

1

(1 − 𝑥)𝑁
= 1 + 𝑁𝑥 +⋯ =

∞∑
𝑟=0

(
𝑁 − 1 + 𝑟

𝑟

)
𝑥𝑟

we obtain

1∏𝐷
𝑛=1(1 − 𝑞

𝑛)24𝓁
=

𝐷∏
𝑛=1

𝐷∑
𝑟𝑛=0

(
24𝓁 − 1 + 𝑟𝑛

𝑟𝑛

)
𝑞𝑛𝑟𝑛 + 𝑂(𝑞𝐷+1)

=

𝐷∑
𝑟=0

𝑞𝑟
∑

𝑟1+2𝑟2+⋯+𝐷𝑟𝐷=𝑟

𝐷∏
𝑛=1

(
24𝓁 − 1 + 𝑟𝑛

𝑟𝑛

)
+ 𝑂(𝑞𝐷+1).

As 𝓁 →∞, the coefficient 𝐵24𝓁(𝑟) of 𝑞𝑟 in the above expansion is dominated by the contribution
of the 𝑑-tuple (𝑟1, … , 𝑟𝐷) = (𝑟, 0, … , 0):

𝐵24𝓁(𝑟) =
∑

𝑟1+2𝑟2+⋯+𝐷𝑟𝐷=𝑟

𝐷∏
𝑛=1

(
24𝓁 − 1 + 𝑟𝑛

𝑟𝑛

)

=
∑

𝑟1+2𝑟2+⋯+𝐷𝑟𝐷=𝑟

(24𝓁)𝑟1+𝑟2+⋯+𝑟𝐷

𝑟1!𝑟2! … 𝑟𝐷!

(
1 + 𝑂

(
1

𝓁

))

=
(24𝓁)𝑟

𝑟!

(
1 + 𝑂

(
1

𝓁

))
=
(2𝑘)𝑟

𝑟!

(
1 + 𝑂

(
1

𝑘

))
.
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ZEROS OF MODULAR FORMS AND FABER POLYNOMIALS 9 of 12

We next expand 𝑓∕(𝑞𝑚𝐸𝑘′) up to 𝑂(𝑞𝐷+1):

𝑓

𝑞𝑚𝐸𝑘′
=
1 + 𝑦𝑓(1)𝑞 +⋯ + 𝑦𝑓(𝐷)𝑞

𝐷

1 − 𝛾(𝑘′)
∑𝐷
𝑛=1 𝜎𝑘′−1(𝑛)𝑞

𝑛
+ 𝑂(𝑞𝐷+1) =

𝐷∑
𝑠=0

𝛼𝑠𝑞
𝑠 + 𝑂

(
𝑞𝐷+1

)
with 𝛼0 = 1 and

𝛼𝑠 = 𝑂(1)

because we assume that the coefficients 𝑦𝑓(1), … , 𝑦𝑓(𝐷) are uniformly bounded as 𝑘 → ∞.
Multiplying by

∏𝐷
𝑛=1(1 − 𝑞

𝑛)−24𝓁 gives that the Taylor polynomial of degree𝐷 in the expansion
of 1∕(𝐸𝑘′

∏𝐷
𝑛=1(1 − 𝑞

𝑛)24𝓁) is

𝐷∑
𝑟=0

(24𝓁)𝑟

𝑟!
𝑞𝑟
(
1 + 𝑂

(
1

𝑘

)) 𝐷∑
𝑠=0

𝛼𝑠𝑞
𝑠 =

𝐷∑
𝑖=0

𝑞𝑖
∑
𝑟+𝑠=𝑖
𝑟,𝑠⩾0

(24𝓁)𝑟

𝑟!
𝛼𝑠

(
1 + 𝑂

(
1

𝑘

))

=

𝐷∑
𝑖=0

(24𝓁)𝑖

𝑖!

(
1 + 𝑂

(
1

𝑘

))
𝑞𝑖

since 𝛼0 = 1 and 𝛼𝑠 = 𝑂(1). Therefore, the terms up to 𝑂(𝑞) of 𝑓∕(Δ𝓁𝐸𝑘′) are

1

𝑞𝐷

𝐷∑
𝑟=0

(24𝓁)𝑟

𝑟!

(
1 + 𝑂

(
1

𝑘

))
𝑞𝑟.

Finally, replacing 24𝓁 by 2𝑘 = 24𝓁 + 𝑂(1) we obtain

𝑓

Δ𝓁𝐸′
𝑘

=
1

𝑞𝐷

𝐷∑
𝑟=0

𝐴𝑘(𝑟)𝑞
𝑟 + 𝑂(𝑞)

with

𝐴𝑘(𝑟) =
(2𝑘)𝑟

𝑟!

(
1 + 𝑂

(
1

𝑘

))
, 𝑟 = 0, … , 𝐷.

Now compare with 𝐹𝑓(𝑗) = 𝑗𝐷 + 𝑥1𝑗
𝐷−1 +⋯ + 𝑥𝐷 : Using the equations (3.3) gives

744𝐷 + 𝑥1 = 2𝑘
(
1 + 𝑂

(
1

𝑘

))
which says that

𝑥1 = 2𝑘 + 𝑂(1).

Next, we have

𝑐𝐷,𝐷−2 + 𝑐𝐷−1,𝐷−2𝑥1 + 𝑥2 =
(2𝑘)2

2!
+ 𝑂(𝑘)
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10 of 12 RUDNICK

and since 𝑥1 = 𝑂(𝑘) we get

𝑥2 =
(2𝑘)2

2!
+ 𝑂(𝑘).

Continuing, we assume by induction that

𝑥1 = 𝑂(𝑘), … , 𝑥𝑠−1 = 𝑂(𝑘𝑠−1)

and then obtain

𝑐𝐷,𝐷−𝑠 +

𝑠−1∑
𝑖=1

𝑐𝐷−𝑖,𝐷−𝑠𝑥𝑖 + 𝑥𝑠 =
(2𝑘)𝑠

𝑠!
+ 𝑂(𝑘𝑠−1)

which gives

𝑥𝑠 =
(2𝑘)𝑠

𝑠!
+ 𝑂(𝑘𝑠−1).

Thus

1

(2𝑘)𝐷
𝐹𝑓(2𝑘𝑡) =

1

(2𝑘)𝐷

𝐷∑
𝑠=0

(2𝑘)𝑠

𝑠!
(2𝑘𝑡)𝐷−𝑠

(
1 + 𝑂

(
1

𝑘

))

=

𝐷∑
𝑠=0

1

𝑠!

(
1 + 𝑂

(
1

𝑘

))
𝑡𝐷−𝑠.

as claimed. □

5 BACK TO ZEROS OFMODULAR FORMS

Having at hand the convergence of the coefficients of the renormalized Faber polynomials
𝐹𝑓(2𝑘𝑡)∕(2𝑘)

𝐷 to those of 𝑡𝐷𝐷(1∕𝑡), we can deduce convergence of zeros.

5.1 Proof of Corollary 1.3

We set

g𝑘(𝑧) =
𝐹𝑓(2𝑘 ⋅ 𝑧)

(2𝑘)𝐷
, g(𝑧) = 𝑧𝑑

(
1

𝑧

)
=

𝐷∑
𝑟=0

𝑧𝐷−𝑟

𝑟!
.

The zeros of g(𝑧) are simple, as follows from the corresponding fact for 𝐷(𝑧), which is in fact
irreducible; see [8] for a survey.
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ZEROS OF MODULAR FORMS AND FABER POLYNOMIALS 11 of 12

Moreover,

g𝑘(𝑧) =

𝐷∑
𝑟=0

(2𝑘)𝑟

𝑟!

(
1 + 𝑂

(
1

𝑘

)) (2𝑘𝑧)𝐷−𝑟
(2𝑘)𝐷

=

𝐷∑
𝑟=0

𝑧𝐷−𝑟

𝑟!

(
1 + 𝑂

(
1

𝑘

))
.

Therefore, we deduce that for 𝑘 ≫ 1, the zeros 𝑧𝑘,1, … , 𝑧𝑘,𝐷 of g𝑘 are simple and converge to the
zeros 𝑧1, … , 𝑧𝐷 of g , with a rate

𝑧𝑘,𝑟 = 𝑧𝑟 + 𝑂
(
1

𝑘

)
. (5.1)

This follows for instance from [5, Appendix A, Theorem] which states that given monic poly-
nomials 𝑓(𝑡) = 𝑡𝐷 +

∑𝐷
𝜈=1 𝑎𝜈𝑡

𝐷−𝜈 with zeros 𝑥1, … , 𝑥𝐷 and g(𝑡) = 𝑡𝐷 +
∑𝐷
𝜈=1 𝑏𝜈𝑡

𝐷−𝜈 with zeros
𝑦1, … , 𝑦𝐷 , then possibly after relabeling the zeros, we have a bound on their differences

max
𝜈=1,…,𝐷

|𝑥𝜈 − 𝑦𝜈| ⩽ 2𝐷
(

𝐷∑
𝜈=1

|𝑎𝜈 − 𝑏𝜈| Γ𝐷−𝜈
)1∕𝐷

,

where

Γ = max
𝜈=1,…,𝐷

(|𝑎𝜈|1∕𝜈, |𝑏𝜈|1∕𝜈).
In our case, taking 𝑓 = g𝑘 for 𝑘 ≫ 1, and g(𝑧) =

∑𝐷
𝜈=0 𝑧

𝐷−𝜈∕𝜈!, we clearly have |𝑎𝜈 − 𝑏𝜈|≪ 1∕𝑘

and Γ = 𝑂(1) and so we obtain (5.1)
The zeros of 𝐹𝑓 are 𝑡𝑘,𝑟 = 2𝑘𝑧𝑘,𝑟, hence (5.1) implies that they satisfy

𝑡𝑘,𝑟 = 2𝑘𝑧𝑟 = 2𝑘𝑧𝑟 + 𝑂(1)

which proves Corollary 1.3.

5.2 Proof of Theorem 1.1

The nontrivial zeros 𝜏1, … , 𝜏𝐷 of 𝑓, are the zeros of 𝐹𝑓 (𝑗 (𝜏)), so their 𝑗-values satisfy

𝑗(𝜏𝑟) = 2𝑘𝑧𝐷,𝑟 + 𝑂(1), 𝑟 = 1,… , 𝐷.

Therefore these 𝑗-values tend to infinity, and in terms of the nome 𝑞𝑟 = 𝑒2𝜋𝑖𝜏𝑟 ,

1

𝑞𝑟
+ 𝑂(1) = 𝑗(𝜏𝑟) = 2𝑘𝑧𝐷,𝑟 + 𝑂(1).

Hence

𝑒−2𝜋𝑖𝜏𝑟 = 2𝑘𝑧𝐷,𝑟 + 𝑂(1)
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12 of 12 RUDNICK

giving

𝜏𝑟 =
𝑖

2𝜋𝑖
log

(
2𝑘𝑧𝐷,𝑟

)
+ 𝑂

(
1

𝑘

)
as claimed in Theorem 1.1.
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