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Abstract
We study the distribution of lattice points with prime coordinates lying in the dilate of
a convex planar domain having smooth boundary, with nowhere vanishing curvature.
Counting lattice points weighted by a von Mangoldt function gives an asymptotic
formula, with the main term being the area of the dilated domain, and our goal is
to study the remainder term. Assuming the Riemann Hypothesis, we give a sharp
upper bound, and further assuming that the positive imaginary parts of the zeros of the
Riemann zeta function are linearly independent over the rationals allows us to give a
formula for the value distribution function of the properly normalized remainder term.
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1 Introduction

Our goal in this note is to investigate the distribution of lattice points with prime
coordinates lying in dilates of a planar convex set. Before stating our findings, we
recall what is known for the classical lattice point problem.

Communicated by A. Constantin.

Dedicated to Dorian Goldfeld on the occasion of his 71st birthday.

B Bingrong Huang
bingronghuangsdu@gmail.com

Zeév Rudnick
rudnick@post.tau.ac.il

1 Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University,
69978 Tel Aviv, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-018-1226-3&domain=pdf
http://orcid.org/0000-0002-8987-0015


B. Huang, Z. Rudnick

1.1 Lattice points

There is a vast body of work dedicated to the question of the number of lattice points
lying in the family of dilates of a planar domain. A typical context is when one takes
a domain � ⊂ R

2, which is compact, convex, contains the origin in its interior, with
smooth boundary having nowhere zero curvature. One can call such a domain an
“oval”. For R > 0, let R� denote the dilated domain, and let

N�(R) := #Z2 ∩ R�

be the number of lattice points in the dilated domain R�. Under our assumptions, it
is known that N�(R) ∼ area(�)R2 as R → ∞, and much work has been devoted to
bounding the size of the remainder term. In the beginning of the twentieth century, it
was shown that

N�(R) = area(�)R2 + O(R2/3)

and since then the exponent 2/3 has been improved somewhat, starting with van der
Corput [23], see [13]. It is conjectured that the correct exponent is 1/2 + o(1). One
cannot improve the exponent beyond 1/2, and there exists arbitrarily large R such that
the remainder term is, in absolute value, � R1/2(log R)1/4 [15]; in the case of the
circle, this is a classical result of Hardy (see [21]). Note that if one allows points of
vanishing curvature, then the remainder term can in some cases be larger than R2/3,
for instance in the case of the superellipse {x2k + y2k ≤ 1} the remainder term may
be larger than R1−1/(2k) for arbitrarily large R [6,17].

The normalized remainder term

F�(R) := N�(R) − area(�)R2

R1/2

has a limiting value distribution [3,4,25], that is there is a measure dν� so that for any
bounded (piecewise) continuous function G,

lim
T→∞

1

T

∫ T

0
G

(
F�(R)

)
dR =

∫ ∞

−∞
G(u)dν�(u).

When � is a circle [4,12], or for certain ellipses [5], the limiting distribution is abso-
lutely continuous, that is dν�(u) = f�(u)du; and the density f� is real analytic, in
particular supported on all of the real line, though with very rapidly decaying tails:
f�(u) 	 exp(−u4) as |u| → ∞, and in particular is non-Gaussian.
Our goal here is to treat the problem of counting prime lattice points in the dilated

domain R�, seeking to address the analogue of the above properties of the lattice
point count N�(R).
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Prime lattice points in ovals

1.2 Prime lattice points

We consider a convex domain �, which we assume is symmetric about the coordinate
axes, that is under the reflections (x, y) 
→ (±x,±y) (this is natural if we want to
count primes, which do not come with a definite sign). We further assume that � is an
oval, meaning convex with smooth boundary ∂� having nowhere zero curvature. This
latter assumption ismade as a convenient working hypothesis, and there are interesting
variants of the problem which do not satisfy this assumption.

Let

π�(R) := #
{
(p, q) ∈ R� ∩ Z

2 : |p|, |q| prime
}

be the number of lattice points in the dilated domain R� with both coordinates being
prime. Also let

ψ�(R) :=
∑

(m,n)∈R�∩Z2

�(|m|)�(|n|)

where �(n) is the von Mangoldt function, which equals log p if n = pk is a power
of a prime p (k ≥ 1), and is zero otherwise, and the sum is over all lattice points
lying in the dilated domain R�, whose coordinates are both prime powers. To start
our investigation, we give a prime number theorem for lattice points in R�:

Theorem 1.1 Assume that � is a symmetric oval as above. Then

π�(R) ∼ area(�)
R2

(log R)2
and ψ�(R) ∼ area(�)R2, as R → ∞.

Assuming the Riemann Hypothesis (RH), we have

ψ�(R) = area(�)R2 + O(R3/2).

Our main goal is to study the distribution of the normalized remainder term

H�(R) = ψ�(R) − area(�)R2

R3/2 .

The appropriate scale to use is logarithmic: We show that assuming RH, there is a
probability measure dμ�, supported in [−A, A] (where A = sup |H�|) so that for any
bounded continuous function G,

lim
X→∞

1

log X

∫ X

1
G

(
H�(R)

) dR

R
=

∫ ∞

−∞
G(u)dμ�(u).

To proceed further, we need the Linear Independence Hypothesis (LI) for the zeros
of the Riemann zeta function. Recall that the Riemann Hypothesis is the statement
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that the nontrivial zeros of the Riemann zeta function are of the form ρ = 1
2 + iγ ,

with γ real. Due to the functional equation of the Riemann zeta function, the zeros
come in conjugate pairs, so that if ρ = 1

2 + iγ is a zero, then so is ρ̄ = 1
2 − iγ . In

addition to assuming RH, we assume:

Hypothesis LI. The imaginary parts of all nontrivial zeros ρ = 1
2 + iγ with γ > 0,

are linearly independent over the rationals.

This hypothesis was used by Wintner [26], and extensively since, for instance in the
study of prime number races [19]. While plausible, it seems unlikely to be provable in
the foreseeable future. See [2, Table 2] for numerical checks that the first few zeros do
not satisfy any linear relations with small coefficients, for instance that the first 500
zeros do not admit any nontrivial linear relations with coefficients of size at most 105.

From general properties of the value distribution of uniformly almost periodic
functions with linearly independent frequencies [24], we deduce that

Theorem 1.2 Assume the Linear IndependenceHypothesis. Then dμ�(u) = p�(u)du
is absolutely continuous, with a smooth density p�, which is symmetric: p�(−u) =
p�(u). It is the probability distribution function of the random function

g�(x) =
∞∑
n=1

An cos(xn)

where x = (x1, x2, . . . ) are independent random variables, uniformly distributed in
[0, π ],

An = B�(γn)

where {γn : n = 1, 2, . . . } are the imaginary parts of the nontrivial Riemann zeros
(γn > 0), andB� is a certain function depending on the domain (see (4.2)), satisfying

B�(γ ) 	 γ −3/2, γ → ∞,

and is nonzero infinitely often.

Theorem 1.2 allows us to use a formula for the limiting distribution of a sum of
sine waves with random phases to deduce

p�(u) = 1

2A
+ 1

A

∞∑
k=1

( ∞∏
n=1

J0

(
πk An

A

))
cos

(πku

A

)
, |u| < A (1.1)

where A = ∑
n An . See Fig. 1 for the value distribution for the circle and for an

ellipse, by using (1.1) with 500 zeros.
According to Theorem 1.2, the value distribution function p� is symmetric:

p�(−u) = p�(u). Note that for the corresponding problem of counting all lattice
points, the distribution need not be symmetric, for instance for the circle, the third
moment is negative [22].
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Fig. 1 The value distribution function p�(u) for the circle x2 + y2 ≤ 1 (dashed) and the ellipse (x/a)2 +
(y/b)2 ≤ 1 (solid) with a = 1, b = 0.65. The plots have been rescaled, replacing p�(u) by Ap�(Au).
Note that for this particular ellipse, the distribution is bimodal

Fig. 2 The value distribution function pT for the triangle T = {x + y ≤ 1, x, y ≥ 0}. The inset displays
the bimodal nature of the distribution

As mentioned earlier, the assumption that � has smooth boundary, with nowhere
zero curvature, is made to get a simple set of examples. There are other natural cases
one can consider, for instance when� is the triangle T = {x+ y ≤ 1, x, y > 0}. Then
ψT (R) = ∑R

n=1 r(n) where r(k) = ∑
m+n=k �(m)�(n), so that ψT (R)/R is related

to the average number of representations of an integer as a sum of two primes. In this
guise, the value distribution of (ψT (R)− 1

2 R
2)/R3/2 was studied by Fujii [9,10]. See

Fig. 2 for a plot of the corresponding value distribution function pT , by using (1.1)
with 500 zeros.
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1.3 The one-dimensional case

It is instructive to compare our findings on the remainder term for ovals in dimension
two with the one-dimensional case, where we take a symmetric interval � = [−1, 1],
and then

ψ�(R) = 2ψ(R) = 2
∑
n≤R

�(n)

and we are simply studying the remainder term in the Prime Number Theorem. In
that case, Littlewood showed [14] (assuming RH) that the normalized remainder term
(ψ(R) − R)/R1/2 is unbounded, unlike what we find in the case of 2-dimensional
ovals. Wintner [26] proved the existence of a limiting distribution p(u) (assuming
RH), which is not compactly supported. In comparison, for our symmetric ovals,
the normalized remainder term (ψ�(R) − area(�)R2)/R3/2 is bounded, so that the
limiting distribution p� is compactly supported.

2 Symmetric ovals

2.1 Geometric preliminaries

We take a planar domain � to be an oval, that is bounded by a smooth, convex curve,
which has nowhere-vanishing curvature. We further assume that � is symmetric with
respect to reflections in the coordinate axes (x, y) 
→ (± x,± y), so it necessarily
contains the origin. We may then display the top half of the boundary as the graph of
a function:

∂� ∩ {y > 0} =
{
(x, f (x)) : |x | ≤ a

}

where f (x) is an even function (to take into account the reflection symmetry in the
y-axis), which is smooth, f (a) = 0, f (x) is monotonically decreasing for x > 0 (to
allow convexity), and f ′′(x) < 0 to give the nowhere vanishing curvature condition,
since the curvature of � at (x, f (x)) is

κ(x, f (x)) = − f ′′(x)
(1 + f ′(x)2)3/2

, |x | < a.

Likewise, we may display the right half of the boundary as a graph:

∂� ∩ {x > 0} =
{
(g(y), y) : |y| ≤ b

}

with

g = f −1

the inverse function to f .
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Fig. 3 The Cassini ovals ((x −α)2 + y2)((x +α)2 + y2) = β4 with α = 1, and β = 2 (LHS) and β = 1.1
(RHS)

For instance, if � is the ellipse (x/a)2 + (y/b)2 ≤ 1, then we take f (x) =
b
√
1 − (x/a)2, |x | ≤ a, and g(y) = a

√
1 − (y/b)2, |y| ≤ b.

Other examples areCassini ovals, which are the locus of points such that the product
of their distances from two fixed points a distance 2α apart is a constantβ2. In cartesian
coordinates, if we locate the two points on the x-axis at (±α, 0), then the equation of
the boundary curve is

(
(x − α)2 + y2

)(
(x + α)2 + y2

)
= β4, (2.1)

which intersects the x-axis at ±√
β2 + α2, and the y-axis at ±√

β2 − α2 (assuming
β > α) . If β >

√
2α then we get an oval, if α < β <

√
2α then we get a non-convex

curve (a “dog-bone”), see Fig. 3, while for 0 < β < α we get two disconnected curves.
For the Cassini oval (2.1) with β >

√
2α, we take

f (x) =
√√

4α2x2 + β4 − α2 − x2, |x | ≤
√

β2 + α2

and

g(y) =
√

α2 − y2 +
√

β4 − 4α2y2, |y| ≤
√

β2 − α2.

2.2 Singularities at the vertices

We note that for symmetric ovals, the intersection points {(±a, 0), (0,±b)} of ∂�

with the coordinate axes are vertices, that is local extrema of the curvature. We will
need to know the nature of the singularities of f (x) as x ↗ a and of the inverse
function g(y) = f −1(y) as y ↗ b:

Lemma 2.1 Let κ(x, y) be the curvature at a point (x, y) ∈ ∂� of the boundary. Then

f (x) =
√

2

κ(a, 0)
· √

a − x ·
(
1 + O(a − x)

)
, as x ↗ a (2.2)
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and

g(y) =
√

2

κ(0, b)
· √

b − y ·
(
1 + O(b − y)

)
, as y ↗ b. (2.3)

Proof We write x = g(y) for y ↘ 0, when x ↗ a, and expand g(y) in a Taylor series
around y = 0

x = g(y) = g(0) + g′(0)y + 1

2
g′′(0)y2 + 1

3!g
(3)(0)y3 + O(y4).

We use g(0) = a and the vanishing of the odd derivatives at 0 since g is even:
g′(0) = 0 = g(3)(0), and obtain

x = a + 1

2
g′′(0)y2 + O(y4)

or

y = f (x) =
√

−2

g′′(0)
√
a − x

(
1 + O(x − a)

)
.

Now we recall that the curvature of a graph (g(y), y) is given by

κ(g(y), y) = − g′′(y)
(1 + g′(y)2)3/2

and at y = 0 this reduces to
κ(a, 0) = −g′′(0). (2.4)

Hence we have found

f (x) =
√

2

κ(a, 0)

√
a − x

(
1 + O(a − x)

)
, x ↗ a

giving (2.2). The argument for (2.3) is identical. ��
Lemma 2.2 Let

A(x) := f (x) −
√

2

κ(a, 0)
(a − x), B(y) := g(y) −

√
2

κ(0, b)
(b − y).

Then the derivative of A satisfies A′(x) = O(
√
a − x) as x ↗ a, and in particular

A′(a) = 0. The second derivative of A satisfies

A′′(x) = O
( 1√

a − x

)
, as x ↗ a
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and in particular A′′ is integrable on (0, a). Likewise, B ′(b) = 0 and B ′′ is integrable
on (0, b).

Proof From x = g(y) we have 1 = g′(y)y′ or

y′ = 1

g′(y)
(2.5)

Hence the second derivative of y = f (x) is given by

y′′ =
(

1

g′(y)

)′
= − g′′(y)y′

(g′(y))2
= − g′′(y)

(g′(y))3

after inserting (2.5).
Expanding about y = 0, and recalling that since g is even, all the odd derivatives

vanish at y = 0, we obtain

g′′(y) = g′′(0) + O(y2) = −κ(a, 0)
(
1 + O(y2)

)

after using (2.4), and

g′(y) = 0 + g′′(0)y + O(y3) = −κ(a, 0)y
(
1 + O(y2)

)
.

Hence

y′ = 1

g′(y)
= − 1

κ(a, 0)y

(
1 + O(y2)

)
.

Inserting y =
√

2
κ(a,0) (a − x)(1 + O(a − x)) we obtain

f ′(x) = y′ = − 1√
2κ(a, 0)(a − x)

+ O
(√

a − x
)
, x ↗ a

and so

A′(x) = f ′(x) −
(√

2

κ(a, 0)
(a − x)

)′ = O
(√

a − x
)

and in particular, A′(a) = 0.
Similarly

y′′ = − g′′(y)
(g′(y))3

= − −κ(a, 0)(1 + O(y2))

(−κ(a, 0)y)3(1 + O(y2))
= − 1

κ(a, 0)2y3
+ O

( 1
y

)
.
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and so

f ′′(x) = − 1√
8κ(a, 0)

1

(a − x)3/2
+ O

( 1√
a − x

)

which gives, after identifying the first term as the second derivative of
√

2
κ(a,0) (a − x),

that

A′′(x) = f ′′(x) −
(√

2

κ(a, 0)
(a − x)

)′′
= O

(
1√
a − x

)

as claimed. ��

2.3 An oscillatory integral

Given a symmetric oval � as above, define

I1(ρ):=
∫ a

0
f (x)xρ−1dx, I2(ρ):=

∫ b

0
g(y)yρ−1dy (2.6)

which are the Mellin transforms of f and g. We want to asymptotically evaluate the
oscillatory integrals as | Im ρ| → +∞ (|Re ρ| ≤ 1/2). The result is

Lemma 2.3 Let κ(x, y) be the curvature of the boundary ∂� at the point (x, y). Then

I1(ρ) =
√

π

2κ(a, 0)

a
1
2+ρ

ρ3/2 + O
( 1

|ρ|2
)
, I2(ρ) =

√
π

2κ(0, b)

b
1
2+ρ

ρ3/2 + O
( 1

|ρ|2
)

as |ρ| → ∞ (|Re ρ| ≤ 1/2).

Proof We use Lemma 2.2 to write

f (x) =
√

2

κ(a, 0)
· √

a − x + A(x)

with A′′ ∈ L1(0, a), and insert this into the integral I1 to obtain

I1(ρ) =
√

2

κ(a, 0)

∫ a

0

√
a − x · xρ−1dx +

∫ a

0
A(x)xρ−1dx . (2.7)
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We have

√
2

κ(a, 0)

∫ a

0

√
a − x · xρ−1dx =

√
2

κ(a, 0)
a
1
2+ρ

∫ 1

0
(1 − z)1/2zρ−1dz

=
√

2

κ(a, 0)
a
1
2+ρB( 32 , ρ)

where B(x, y) is the Euler Beta function. By Stirling’s formula,

B( 32 , ρ) =
1
2

√
π

ρ3/2

(
1 + O

(
1

|ρ|
))

.

For the second term in (2.7), we can integrate by parts twice, using A(a) = A′(a) =
0, to find

∫ a

0
A(x)xρ−1dx = 1

ρ(ρ + 1)

∫ a

0
A′′(x)xρ+1dx = O

( 1

|ρ|2
)

since A′′ is integrable by Lemma 2.2. Thus we find

I1(ρ) =
√

π

2κ(a, 0)

a
1
2+ρ

ρ3/2 + O
( 1

|ρ|2
)

as claimed. The integral I2 can be treated identically. ��
Lemma 2.3 gives an upper bound for I1(ρ) + I2(ρ). In Sect. 4, we will also need

a non-vanishing result for I1(ρ) + I2(ρ). The following lemma will suffice:

Lemma 2.4 For infinitely many (in fact a positive proportion) of the zeros ρ = 1
2 + iγ ,

we have

|I1(ρ) + I2(ρ)| � 1

γ 3/2

and in particular I1(ρ) + I2(ρ) is nonzero infinitely often.

Proof According to Lemma 2.3, we have

|I1(ρ) + I2(ρ)| =
√

π√
2|ρ|3/2

∣∣∣ a√
κ(a, 0)

aiγ + b√
κ(0, b)

biγ
∣∣∣ + O

( 1

|ρ|2
)

= C

|ρ|3/2
∣∣∣eiγ log(b/a) + c

∣∣∣ + O
( 1

|ρ|2
)

where C > 0, c > 0 are independent of γ .
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Now if a = b then we get

|I1(ρ) + I2(ρ)| ∼ C(1 + c)

γ 3/2 � 1

γ 3/2

for all γ � 1 as we claim.
If a �= b, that is log(b/a) �= 0, then we use a result of Hlawka [11] (see also

Rademacher [16] for a proof assuming RH), for any α �= 0, the sequence {αγ : γ > 0}
is uniformly distributed modulo one. Hence for a positive proportion of γ ’s, we have
Re eiγ log(b/a) > 1

2 , and hence for these we have

∣∣∣eiγ log(b/a) + c
∣∣∣ ≥ 1

2
+ c ≥ 1

2

so that for a positive proportion of γ ’s,

|I1(ρ) + I2(ρ)| � 1

γ 3/2

as claimed. ��

3 Counting prime points

Now we want to consider prime points in a symmetric oval � as above.
Let y = f (x) be the function which gives the boundary of � in the first quadrant.

By our assumptions, we know f (x) satisfies that

f (0) = b > 0, f (a) = 0, f ′(0) = 0 and f ′(x) ↘ −∞ as x ↗ a.

Since the curvature of the boundary is non-vanishing, we know that f ′(x) < 0 for all
x ∈ (0, a). Let R > 0 be a large parameter.

3.1 Themain term

We first give the main terms in Theorem 1.1, as a simple consequence of the Prime
Number Theorem:

Proposition 3.1 Let � be a symmetric oval. Then

ψ�(R) ∼ area(�)R2 and π�(R) ∼ area(�)R2

(log R)2
, R → ∞.

Proof Using the symmetry of �, it suffices to perform the analysis in the positive
quadrant, where we sum over lattice points with prime power coordinates lying under
the graph of y = f (x):
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ψ�(R) = 4
∑
m≤aR

�(m)
∑

n≤R f (m/R)

�(n).

By the Prime Number Theorem, the inner sum is

∑
n≤R f (m/R)

�(n) = R f
(m
R

)
+ o(R)

and so

ψ�(R) = 4R
∑
m≤aR

�(m) f
(m
R

)
+ o(R2).

Applying summation by parts, using the Prime Number Theorem again, gives

ψ�(R) = 4R2
∫ a

0
f (v)dv + o(R2) = area(�)R2 + o(R2).

To prove the claim about π�, we first bound the contribution to ψ�(R) of pairs
(m, n) where at least one of them is less than R/(log R)10 by

∑
m,n	R

min(m,n)<R/(log R)10

�(m)�(n)

	 (log R)2#

{
(m, n) : m, n 	 R,min(m, n) <

R

(log R)10

}

	 (log R)2
R2

(log R)10

which is negligible for our purposes.
Moreover, the contribution of (m, n) forwhich at least one is not a prime, is bounded

by

	 log R
∑

p	R1/2

log p
∑
q	R

log q 	 R3/2(log R)3

which is again negligible. Thus

1

4
ψ�(R) ∼

∑
R/(log R)10<p<aR

log p
∑

R/(log R)10<q<R f (p/R)

log q

the sum over primes.
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For p ∈ (R/(log R)10, R), we have log p ∼ log R and likewise for the sum over
q. Hence we find

1

4
ψ�(R) ∼ (log R)2

∑
R/(log R)10<p<aR

∑
R/(log R)10<q<R f (p/R)

1.

Arguing as above, we find

∑
R/(log R)10<p<aR

∑
R/(log R)10<q<R f (p/R)

1 = 1

4
π�(R) + O

( R2

(log R)10

)
.

Therefore we find

ψ�(R) ∼ (log R)2π�(R)

and hence

π�(R) ∼ area(�)R2

(log R)2

as claimed. ��

3.2 Using RH

In this section, we give a formula for ψ�(R) in terms of a sum over zeros of the
Riemann zeta function: Define

H̃�(R) := −4
∑
ρ

Rρ−1/2
(
I1(ρ) + I2(ρ)

)
(3.1)

where theMellin transforms I j are given in (2.6). Thenwe show that up to a negligible
error, H̃�(R) coincides with the normalized remainder term H�(R) = (ψ�(R) −
area(�)R2)/R3/2:

Proposition 3.2 Assume RH. Then

ψ�(R) = area(�)R2 + R3/2 H̃�(R) + O
(
R4/3(log R)7/2

)
.

Proof By the approximate explicit formula (see e.g. Davenport [7, §17, eq. (9) and
(10)]), for x ≥ 2 and T > 1,

∑
n≤x

�(n) = x −
∑
ρ

|γ |≤T

xρ

ρ
+ O

(
x(log xT )2

T
+ log x

)
.
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Prime lattice points in ovals

Together with the symmetry of �, we have

1

4
ψ�(R) =

∑
m≤aR

�(m)
∑

n≤R f (m/R)

�(n)

= R
∑
m≤aR

�(m) f (m/R)

−
∑
m≤aR

�(m)
∑
ρ

|γ |≤T

(R f (m/R))ρ

ρ
+ O

(
R2(log R)2

T

)

=: I + II + O

(
R2(log R)2

T

)
,

(3.2)

say, where we assume 1 < T 	 R.
By the partial summation, for 1 < T ′ 	 R, we have

∑
m≤aR

�(m) f (m/R)ρ =
∫ aR

2
f (u/R)ρd

∑
m≤u

�(m)

=
∫ aR

2
f (u/R)ρd

⎛
⎜⎜⎜⎝u −

∑
ρ′

|γ |≤T ′

uρ′

ρ′

⎞
⎟⎟⎟⎠ + O

(
R(log R)2

T ′

∫ aR

2
|d f (u/R)ρ |

)

=
∫ aR

2
f (u/R)ρd

(
u −

∑
ρ′

|γ |≤T ′

uρ′

ρ′

)

+ O

(
R(log R)2

T ′
|ρ|
R

∫ aR

2
f
( u

R

)−1/2∣∣∣ f ′( u

R

)∣∣∣du
)

=
∫ aR

0
f (u/R)ρdu −

∑
ρ′

|γ ′|≤T ′

1

ρ′

∫ aR

2
f (u/R)ρduρ′ + O

( |ρ|R(log R)2

T ′

)
.

We have again

∑
ρ′

|γ ′|≤T ′

1

ρ′

∫ 2

0
f (u/R)ρduρ′ =

∑
ρ′

|γ ′|≤T ′

1

ρ′

(
f (u/R)ρuρ′ ∣∣∣2

0
−

∫ 2

0
uρ′

d f (u/R)ρ
)

= O
(
(log R)2 + |ρ|R−1(log R)2

)
.

123



B. Huang, Z. Rudnick

Hence ∑
m≤aR

�(m) f (m/R)ρ = R
∫ a

0
f (v)ρdu

− Rρ′ ∑
ρ′

|γ ′|≤T ′

∫ a

0
f (v)ρvρ′−1dv + O

( |ρ|R(log R)2

T ′

)
.

(3.3)

The above asymptotic formula holds for ρ = 1 by a similar argument.
Note that R2

∫ a
0 f (v)dv = 1

4 area(�)R2. By (3.3) with ρ = 1, we get

I = 1

4
area(�)R2 − R

∑
ρ

|γ |≤T

RρI1(ρ) + O

(
R2(log R)2

T

)
. (3.4)

with the Mellin transform I1(ρ) given by (2.6).
Now we handle the second term. By (3.3) again, we have

II = −
∑
m≤aR

�(m)
∑
ρ

|γ |≤T

Rρ f (u/R)ρ

ρ
= −

∑
ρ

|γ |≤T

Rρ

ρ

∑
m≤aR

�(m) f (u/R)ρ

= −R
∑
ρ

|γ |≤T

Rρ

ρ

∫ a

0
f (v)ρdv +

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T ′

Rρ+ρ′

ρ

∫ a

0
f (v)ρvρ′−1dv

+ O

(
T R3/2(log R)3

T ′

)
.

We change variable u = f (v), so v = g(u), to transform

1

ρ

∫ a

0
f (v)ρdv = −

∫ b

0

uρ

ρ
dg(u) = −uρ

ρ
g(u)

∣∣∣b
0

+
∫ b

0
uρ−1g(u)du

=
∫ b

0
uρ−1g(u)du =: I2(ρ)

and obtain

II = −R
∑
ρ

|γ |≤T

RρI2(ρ) +
∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T ′

Rρ+ρ′

ρ

∫ a

0
f (v)ρvρ′−1dv

+ O
(T R3/2(log R)3

T ′
)
. (3.5)
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Combining (3.2), (3.4), and (3.5), and assuming that 2 < T ≤ T ′ 	 R, we have

ψ�(R) = area(�)R2 − 4R
∑
ρ

|γ |≤T

Rρ
(
I1(ρ) + I2(ρ)

)

+ 4S + O

(
R2(log R)2

T
+ T R3/2(log R)3

T ′

)
,

(3.6)

where
S :=

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T ′

Rρ+ρ′

ρ

∫ a

0
f (v)ρvρ′−1dv. (3.7)

Then we have

S =
∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T ′

Rρ+ρ′

ρρ′

(
f (v)ρvρ′

∣∣∣∣
a

0

−
∫ a

0
ρ f (v)ρ−1 f ′(v)vρ′

dv

)

= −
∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T ′

Rρ+ρ′

ρ′

∫ a

0
f (v)ρ−1 f ′(v)vρ′

dv

= −
∫ a

0
f ′(v)

∑
ρ

|γ |≤T

Rρ f (v)ρ−1
∑
ρ′

|γ ′|≤T ′

Rρ′

ρ′ vρ′
dv.

We now assume RH, and write the zeros as ρ = 1
2 + iγ , ρ′ = 1

2 + iγ ′ . By
Cauchy–Schwarz,

S 	 R

⎛
⎜⎜⎝

∫ a

0
| f ′(v)|

∣∣∣∣
∑
ρ

|γ |≤T

Riγ f (v)ρ−3/4
∣∣∣∣
2

dv

⎞
⎟⎟⎠

1/2

·

⎛
⎜⎜⎜⎝

∫ a

0
| f ′(v)| f (v)−1/2

∣∣∣∣
∑
ρ′

|γ ′|≤T ′

Riγ ′

ρ′ v1/2+iγ ′
∣∣∣∣
2

dv

⎞
⎟⎟⎟⎠

1/2

	 R

⎛
⎜⎜⎝

∫ a

0
| f ′(v)|

∣∣∣∣
∑
ρ

|γ |≤T

Riγ f (v)−1/4+iγ
∣∣∣∣
2

dv

⎞
⎟⎟⎠

1/2

·
(

(log R)4
∫ a

0
| f ′(v)| f (v)−1/2dv

)1/2
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on using, for |v| ≤ a,

∑
ρ′

|γ ′|≤T ′

∣∣∣∣ R
iγ ′

ρ′ v1/2+iγ ′
∣∣∣∣ 	

∑
ρ′

|γ ′|≤T ′

1

|ρ′| 	 (log T ′)2 	 (log R)2.

Note that
∫ a
0 | f ′(v)| f (v)−1/2dv = −2 f (v)1/2

∣∣∣∣
a

0

= 2
√
b. So we have

S 	 R(log R)2

⎛
⎜⎜⎜⎝

∫ a

0
| f ′(v)| f (v)−1/2

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T

(R f (v))i(γ−γ ′)dv

⎞
⎟⎟⎟⎠

1/2

	 R(log R)2

⎛
⎜⎜⎜⎝

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T

Ri(γ−γ ′)
∫ a

0
f (v)−1/2+i(γ−γ ′)(− f ′(v))dv

⎞
⎟⎟⎟⎠

1/2

.

Hence we obtain

S 	 R(log R)2

⎛
⎜⎜⎜⎝

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T

∣∣∣∣
∫ a

0
f (v)−1/2+i(γ−γ ′)d f (v)

∣∣∣∣

⎞
⎟⎟⎟⎠

1/2

	 R(log R)2

⎛
⎜⎜⎜⎝

∑
ρ

|γ |≤T

∑
ρ′

|γ ′|≤T

1

1 + |γ − γ ′|

⎞
⎟⎟⎟⎠

1/2

	 RT 1/2(log R)7/2.

Now by taking T = R2/3 and T ′ = R5/6, we have

ψ�(R) = area(�)R2 − 4R
∑
ρ

|γ |≤R2/3

Rρ

(
I1(ρ) + I2(ρ)

)
+ O

(
R4/3(log R)7/2

)
.

Using Lemma 2.3, we may extend the sum over all zeros, introducing an error of
O(R7/6+o(1))which is negligible relative to the other remainders. Thus define H̃�(R)

as in (3.1). Then we have

ψ�(R) = area(�)R2 + R3/2 H̃�(R) + O
(
R4/3(log R)7/2

)
.

This completes the proof. ��
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Prime lattice points in ovals

Corollary 3.3 Assuming RH, we have

ψ�(R) = area(�)R2 + O(R3/2).

Proof Indeed, from RH, |Rρ−1/2| = 1 and inserting that into the definition (3.1) of
H̃�(R) and using Lemma 2.3 shows that H̃�(R) = O(1). The statement then follows
from Proposition 3.2. ��

4 The value distribution function pÄ

We now compare the empirical remainder term

H�(R) = ψ�(R) − area(�)R2

R3/2

with the sum (3.1)

H̃�(R) = −4
∑
ρ

Rρ− 1
2

(
I1(ρ) + I2(ρ)

)

the sum over the nontrivial zeros of the Riemann zeta function. Assuming the Riemann
Hypothesis, we write them as ρ = 1

2 + iγ , γ ∈ R. As an immediate consequence of
Proposition 3.2 we obtain

Lemma 4.1 The (logarithmic) value distributions of H� and of H̃� coincide.

Therefore, the logarithmic value distribution of H� is the (ordinary) value distri-
bution of the sum

h�(t) = H̃�(et ) = −4
∑
ρ

(
I1(ρ) + I2(ρ)

)
eitγ .

Noting that

I j (ρ) = I j (ρ̄)

we find that

h�(t) = −4
∑
ρ

(
I1(ρ) + I2(ρ)

)
eitγ =

∑
γ>0

B�(γ ) cos(tγ + ϕγ ) (4.1)

where the sum is over zeros with positive imaginary part γ > 0, and

B�(γ ) := 8

∣∣∣∣I1(ρ) + I2(ρ)

∣∣∣∣, ϕγ := arg

(
− I1(ρ) − I2(ρ)

)
. (4.2)

According to Lemma 2.3,

B�(γ ) 	 γ −3/2, γ → +∞.
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Since the n th zero γn ≈ n/ log n by the Riemann–von Mangoldt formula, we see
that the sum (4.1) is absolutely convergent, and defines a uniformly almost periodic
function, hence has a limiting value distribution measure, (see e.g. [3, Theorem 4.1]),
as follows from applying the Kronecker–Weyl ergodic theorem:

lim
T→∞

1

T

∫ T

0
G

(
h�(t)

)
dt =

∫ A

−A
G(u)dμ�(u)

for all bounded continuous functions on [−A, A], where
A = max

t
|h�(t)|.

Note that by Lemma 2.4, we know that B�(γ ) is nonzero infinitely often.
We now assume the Linear Independence Hypothesis. Wintner [24] studied the

value distribution of a sum of infinitely many cosine waves with incommensurate
frequences

h(t):=
∞∑
n=1

an cos(γnt − ϕn)

where an > 0, with A := ∑
n an < ∞, and {γn} are linearly independent over the

rationals, showing that there is a smooth1 value distribution function p(u), whose
characteristic function is given by

∫ A

−A
p(u)eisudu =

∞∏
n=1

J0(ans) (4.3)

and that the value distribution is even: p(u) = p(−u).
A form of Nyquist’s Sampling Theorem gives a formula for the probability distri-

bution function p(u) that is useful for computational purposes, compare [1, equation
(25)].2

Lemma 4.2 Let

h(t) =
∞∑
n=1

an cos(γnt − ϕn)

where an > 0, with A:= ∑
n an < ∞, and {γn} are linearly independent over the

rationals. Then the value distribution function p(u) of h is smooth and even, and
given for |u| ≤ A by the convergent Fourier series

p(u) = 1

2A
+ 1

A

∞∑
k=1

( ∞∏
n=1

J0

(
πkan
A

))
cos

(
πku

A

)
, |u| ≤ A (4.4)

1 Smoothness breaks down if we only take a finite sum.
2 There is an unfortunate typo in [1, equation (25)].
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and p(u) = 0 outside the interval [−A, A].

Proof We define a new, 2A-periodic function on whole real line by

pper(u):=
∑
�∈Z

p(u + 2A�)

which is still smooth, and coincides with p(u) on [−A, A]. The Fourier coefficients
of pper(u) are

p̂per(k) = 1

2A

∫ A

−A
pper(u)e−2π ik u

2A du = 1

2A

∫ ∞

−∞
p(u)e−2π ik u

2A du = 1

2A
p̂

(
k

2A

)

where p̂(ξ) = ∫ ∞
−∞ p(u)e−2π iuξdu is the Fourier transform of p. In particular

p̂per(0) = 1/(2A). Thus we have

pper(u) = 1

2A
+

∑
k �=0

1

2A
p̂

(
k

2A

)
eiπk

u
A .

The expansion converges pointwise because pper(u) is smooth. Since p(u) is even,
we rewrite

pper(u) = 1

2A
+ 1

A

∞∑
k=1

p̂

(
k

2A

)
cos

(
πk

u

A

)
.

Due to (4.3), we have p̂(s) = ∏∞
n=1 J0(2πans). Therefore

pper(u) = 1

2A
+ 1

A

∞∑
k=1

( ∞∏
n=1

J0

(
πkan
A

))
cos

(
πku

A

)
.

Now for |u| < A, pper(u) = p(u) and so we obtain the result. ��

Corollary 4.3 Assume RH and Hypothesis LI. Then the logarithmic value distribution
function p�(u)of H�(R) is given by (4.4) with γn > 0 being the imaginary parts of
the Riemann zeros, and an = |B�(γn)|.

Note that p�(u) is the probability distribution function (PDF) of the random cosine
sum

g�(t) =
∞∑
n=1

B�(γn) cos xn
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Fig. 4 The superellipse x2k + y2k ≤ 1, for k = 1 (a circle), k = 2 and k = 4

with xn ∈ [0, π ] uniform independent identically distributed (IID) random variables.
Random combinations of cosine waves of the form

Z =
N∑

n=1

an cos xn

with an > 0 and xn uniform IID random variables, have been studied, starting with
Lord Rayleigh [18] in the context of random flights (Pearson’s problem of the random
walk), where one wants to find the distribution of the sum of N vectors with specified
lengths an and randomly distributed phases, Z being the real part of the sum of the
random vectors aneixn . They were used for in the theory of multi-channel carrier
telephony (see [1,20]) or for modeling sea waves (see [8]).

5 Prime points in a superellipse

The superellipse is the planar domain �k bounded by the Lamé curve x2k + y2k = 1,
where k ≥ 2 is an integer. The boundary curve ∂�k is smooth, but the curvature
vanishes at the points (± 1, 0), (0,± 1), which are the vertices of the curve, see Fig. 4.

As noted in the Introduction, the ordinary lattice point count N�k (R) = #{Z2 ∩
R�k} is anomalous in that the remainder term is larger than in ovals, due to the
existence of points (namely the vertices) on the boundary ∂�k where the curvature
vanishes to order 2k − 2 (recall k ≥ 2), and at which the normal to the curve has
rational slope. Indeed, already van der Corput in his thesis (see also [6,17]) showed
that the remainder term N�k (R) − area(�k)R2 is as large as R1−1/(2k) for arbitrarily
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Fig. 5 The value distribution function p� (rescaled) for the superellipse x2k + y2k ≤ 1, for k = 2 (dashed)
and k = 4 (solid)

large R, unlike the upper bound of O(R2/3) (and conjecturally O(R1/2+o(1))) for
ovals.

We examine our prime lattice point count ψ�k (R) for the superellipse, and find
that unlike the ordinary lattice point count, the prime lattice point count behaves in
the same way as it does for ovals, namely that

ψ�k (R) = area(�k)R
2 + O(R3/2)

and that the remainder term

H�k (R) = ψ�k (R) − area(�k)R2

R3/2

has a limiting (logarithmic) distribution function, given by a similar formula as for the
case of ovals.

Most arguments in Sect. 3 carry over to this case. The only change is in the asymp-
totic evaluation of the Mellin transforms (2.6) in Lemma 2.3, where nonvanishing
curvature at the vertices is used. Here, we can evaluate them directly: The boundary
in the positive quadrant is defined as the graph of the function f (x) = (1− x2k)1/(2k)

which coincides with its inverse: g(y) = f (y). The Mellin transforms are given by

I1(ρ) = I2(ρ) =
∫ 1

0
(1 − x2k)1/(2k)xρ−1dx = 1

2k
B

(
1 + 1

2k
,

ρ

2k

)

and hence

I1(ρ) ∼ �(1 + 1
2k )

2k
ρ

−(1+ 1
2k )
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by Stirling’s formula (note the exponent 1 + 1
2k is smaller than the exponent 3/2

obtained in Lemma 2.3 for ovals). Hence we obtain

ψ�k (R) = area(�k)R
2 + R3/2 H̃�k (R) + O

(
R4/3(log R)7/2

)

with

H̃�k (R) = −4

k

∑
ρ

B
(
1 + 1

2k
,

ρ

2k

)
Rρ−1/2.

See Fig. 5 for plots of the value distribution p�k , by using (1.1) with 1000 zeros.
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