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Abstract.

The lecture explores several problems of analytic number theory in the context of
function fields over a finite field, where they can be approached by methods different
than those of traditional analytic number theory. The resulting theorems can be used
to check existing conjectures over the integers, and to generate new ones. Among the
problems discussed are: Counting primes in short intervals and in arithmetic progressions;
Chowla’s conjecture on the autocorrelation of the Möbius function; and the additive
divisor problem.
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1. Introduction

The goal of this lecture is to explore traditional problems of analytic number theory
in the context of function fields over a finite field. Several such problems which
are currently viewed as intractable over the integers, have recently been addressed
in the function field context with vastly different tools than those of traditional
analytic number theory, and the resulting theorems can be used to check existing
conjectures over the integers, and to generate new ones. The problems that I will
address concern

• Counting primes in short intervals and in arithmetic progressions

• Chowla’s conjecture on the autocorrelation of the Möbius function

• The twin prime conjecture

• The additive divisor problem

∗The research leading to these results has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 320755 .
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• The variance of sums of arithmetic functions in short intervals and arithmetic
progressions.

Before describing the problems, I will briefly survey some quantitative aspects
of the arithmetic of the ring of polynomials over a finite field.

2. Background on arithmetic in Fq[x]

2.1. The Prime Polynomial Theorem. Let Fq be a finite field of q
elements, and Fq[x] the ring of polynomials with coefficients in Fq. The polynomial
ring Fq[x] shares several qualitative properties with the ring of integers Z, for
instance having a Euclidean algorithm, hence unique factorization into irreducibles.
There are also several common quantitative aspects. To set these up, I review some
basics.

The units of the ring of integers are ±1, and every nonzero integer is a multiple
by a unit of a positive integer. Analogously, the units of Fq[x] are the nonzero
scalars F×q , and every nonzero polynomial is is a multiple by a unit of a monic
polynomial. The analogue of a (positive) prime is a monic irreducible polyno-
mial. To investigate arithmetic properties of “typical” integers, one samples them
uniformly in the dyadic interval [X, 2X] with X →∞; likewise to investigate arith-
metic properties of “typical” polynomials, one samples them uniformly from the
monic polynomials Mn of degree n, with #Mn = qn →∞.

The Prime Number Theorem (PNT) states that the number π(x) of primes
p ≤ x is asymptotically equal to

π(x) ∼ Li(x) :=

∫ x

2

dt

log t
∼ x

log x
, x→∞ . (2.1)

The Riemann Hypothesis is equivalent to the assertion that

π(x) = Li(x) +O
(
x1/2+o(1)

)
. (2.2)

The Prime Polynomial Theorem asserts that the number πq(n) of monic irre-
ducible polynomials of degree n is

πq(n) =
qn

n
+O

(qn/2
n

)
, (2.3)

the implied constant absolute. This corresponds to the PNT (and to the Riemann
Hypothesis) if we map x↔ qn, recalling that x is the number of positive integers
up to x and qn is the number of monic polynomials of degree n. Note that (2.3)
gives an asymptotic result whenever qn →∞; in comparison, the results described
below will usually be valid only in the large finite field limit, that is n fixed and
q →∞.
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2.2. Cycle structure. For f ∈ Fq[x] of positive degree n, we say its cycle
structure is λ(f) = (λ1, . . . , λn) if in the prime decomposition f =

∏
α Pα (we

allow repetition), we have #{α : degPα = j} = λj . In particular deg f =
∑
j jλj .

Thus we get a partition of deg f , which we denote by λ(f). For instance, λ1(f)
is the number of roots of f in Fq, and f is totally split in Fq[x] - that is f(x) =∏n
j=1(x − aj), aj ∈ Fq- if and only if λ(f) = (n, 0, . . . , 0). Moreover f is prime if

and only if λ(f) = (0, 0, . . . , 0, 1).
The cycle structure of a permutation σ of n letters is λ(σ) = (λ1, . . . , λn) if

in the decomposition of σ as a product of disjoint cycles, there are λj cycles of
length j. For instance, λ1(σ) is the number of fixed points of σ, and σ = I is the
identity if and only if λ(σ) = (n, 0, . . . ). Moreover σ ∈ Sn is an n-cycle if and only
if λ(σ) = (0, 0, . . . , 0, 1).

For each partition λ ` n, denote by p(λ) the probability that a random permu-
tation on n letters has cycle structure λ:

p(λ) =
#{σ ∈ Sn : λ(σ) = λ}

#Sn
. (2.4)

Cauchy’s formula for p(λ) is

p(λ) =

n∏
j=1

1

jλj · λj !
(2.5)

In particular, the proportion of n-cycles in the symmetric group Sn is 1/n.
The connection between cycle structures of polynomials and of permutations

is by means of the following observation, a straight-forward consequence of the
Prime Polynomial Theorem (2.3): Given a partition λ ` n, the probability that
a random monic polynomial f of degree n has cycle structure λ is asymptotic, as
q → ∞, to the probability p(λ) that a random permutation of n letters has that
cycle structure:

1

qn
#{f monic,deg f = n : λ(f) = λ} = p(λ) +O

(1

q

)
. (2.6)

Note that unlike the Prime Polynomial Theorem (2.3), this result (2.6) gives an
asymptotic only in the large finite field limit q →∞, n fixed.

Having set up the preliminaries, I turn to discussing new results on quantitative
aspects of arithmetic in Fq[x].

3. Asymptotics in short intervals and arithmetic
progressions

3.1. Primes in short intervals. Some of the most important problems
in prime number theory concern the distribution of primes in short intervals and
in arithmetic progressions. According to the Prime Number Theorem, the density
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of primes near x is 1/ log x. Thus one wants to know what is the number π(x,H)
of primes in an interval of length H = H(x)� x around x:

π(x,H) := #{x < p ≤ x+H : p prime} . (3.1)

We expect that for H sufficiently large,

π(x,H) ∼ H

log x
. (3.2)

The PNT implies that (3.2) holds for H ≈ x, and the Riemann Hypothesis gives
(3.2) for all H > x1/2+o(1). In 1930, Hoheisel gave an unconditional proof that
(3.2) holds for all H > x1−δ for any positive δ < 1/33, 000; this has since been
improved, currently to H > x7/12−o(1) (Heath Brown 1988). It is believed that the
result should hold for all H > xε, for any ε > 0, though Maier [30] showed that it
does not hold for H = (log x)N for any N ; see Granville and Soundararajan [15]
for a general framework for such results on irregularities of distribution and for
sharper results. Selberg (1943) showed, assuming the Riemann Hypothesis, that
(3.2) holds for almost all x provided H/(log x)2 →∞.

To set up an analogous problem for the polynomial ring Fq[x], we first need to
define short intervals. For a nonzero polynomial f ∈ Fq[x], we define its norm by

|f | = #Fq[x]/(f) = qdeg f ,

in analogy with the norm of a nonzero integer 0 6= n ∈ Z, which is |n| = #Z/nZ.
Given a monic polynomial A ∈ Mn of degree n, and h < n, the ”short interval”
around A of diameter qh is the set

I(A;h) := {f ∈Mn : |f −A| ≤ qh} . (3.3)

The number of polynomials in this ”interval” is

H := #I(A;h) = qh+1 . (3.4)

We wish to count the number of prime polynomials in the interval I(A;h).
In the limit q → ∞, Bank, Bary-Soroker and Rosenzweig [4] give an essentially
optimal short interval result:

Theorem 3.1. Fix 3 ≤ h < n. Then for every monic polynomial A of degree n,
the number of prime polynomials P in the interval I(A;h) = {f : |f − A| ≤ qh}
about A satisfies

#{P prime, P ∈ I(A;h)} =
H

n

(
1 +On(q−1/2)

)
,

the implied constant depending only on n.

For irregularities of distribution analogous to Maier’s theorem in the large de-
gree limit n→∞ (q fixed), see [36].

For other applications, we will need a version which takes into account the cycle
structure:
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Theorem 3.2 ([4]). Fix n > 1, 3 ≤ h < n and a partition λ ` n. Then for any
sequence of finite fields Fq, and every monic polynomial A of degree n,

#{f ∈ I(A;h) : λ(f) = λ} = p(λ)H
(

1 +On(q−1/2)
)
,

with p(λ) as in (2.4), (2.5), the implied constant depending only on n.

3.2. Primes in arithmetic progressions. Dirichlet’s theorem states
that any arithmetic progression n = A mod Q contains infinitely many primes
provided that A and Q are coprime, and the prime number theorem in arithmetic
progressions states that for fixed modulus Q, the number of such primes p ≤ x is

π(x;Q,A) ∼ Li(x)

φ(Q)
, x→∞ , (3.5)

where φ(Q) is Euler’s totient function, the number of residues coprime to Q. The
Generalized Riemann Hypothesis (GRH) asserts that (3.5) continues to hold for
moduli as large as Q < X1/2−o(1). An unconditional version, for almost all Q <
x1/2−o(1), and all A mod Q, is given by the Bombieri-Vinogradov theorem. Going
beyond the GRH, the Elliott-Halberstam conjecture gives a similar statement for
Q as large as x1−ε.

For Fq[x], it is a consequence of the Riemann Hypothesis for curves over a
finite field (Weil’s theorem) that given a modulus Q ∈ Fq[x] of positive degree, and
a polynomial A coprime to Q, the number πq(n;Q,A) of primes P = A mod Q,
P ∈Mn satisfies

πq(n;Q,A) =
πq(n)

Φ(Q)
+O(degQ · qn/2) ,

where Φ(Q) is the number of coprime residues modulo Q. For q → ∞, the main
term is dominant as long as degQ < n/2.

Going beyond the Riemann Hypothesis for curves, Bank, Bary-Soroker and
Rosenzweig [4] show an individual asymptotic continues to hold for even larger
moduli in the limit q →∞:

Theorem 3.3 ([4]). If 1 ≤ degQ ≤ n− 3 then

πq(n;Q,A) =
πq(n)

Φ(Q)

(
1 +On(q−

1
2 )
)
.

This should be considered as an individual version of the Elliot-Halberstam
conjecture. As in the short interval case, they have a stronger result which takes
into account the cycle structure.

4. Autocorrelations and twisted convolution

In this section we describe results on the autocorrelation of various classical arith-
metic functions in the function field context.
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4.1. Autocorrelations of the Möbius function and Chowla’s
conjecture. Equivalent formulations of the PNT and the Riemann Hypothesis
can be given in terms of growth of partial sums of the Möbius function, defined
by µ(n) = (−1)k if n is a product of k distinct primes, and µ(n) = 0 otherwise:
The PNT is equivalent to nontrivial cancellation

∑
n≤x µ(n) = o(x), and the RH

is equivalent to square-root cancellation:
∑
n≤x µ(n) = O(x1/2+o(1)).

A conjecture of Chowla on the auto-correlation of the Möbius function, asserts
that given an r-tuple of distinct integers α1, . . . , αr and εi ∈ {1, 2}, not all even,
then

lim
N→∞

1

N

∑
n≤N

µ(n+ α1)ε1 · · · · · µ(n+ αr)
εr = 0 . (4.1)

Note that the number of nonzero summands here, that is the number of n ≤ N
for which n + α1, . . . n + αr are all square-free, is asymptotically S(α)N , where
S(α) > 0 if the numbers α1, . . . , αr do not contain a complete system of residues
modulo p2 for every prime p, so that Chowla’s conjecture (4.1) addresses non-trivial
cancellation in the sum. At this time, the only known case of Chowla’s conjecture
(4.1) is r = 1 where it is equivalent with the Prime Number Theorem.

Sarnak [35] showed that Chowla’s conjecture implies that µ(n) does not cor-
relate with any “deterministic” (i. e., zero entropy) sequence. For recent studies
on the correlation between µ(n) and several sequences of arithmetic functions, see
[16, 8, 5, 29].

In joint work with Dan Carmon [6], we have resolved a version of Chowla’s
conjecture for Fq[x] in the limit q → ∞. To formulate it, one defines the Möbius
function of a nonzero polynomial F ∈ Fq[x] to be µ(F ) = (−1)r if F = cP1 . . . Pr
with 0 6= c ∈ Fq and P1, . . . , Pr are distinct monic irreducible polynomials, and
µ(F ) = 0 otherwise.

Theorem 4.1. Fix r > 1 and assume that n > 1 and q is odd. Then for any choice
of distinct polynomials α1, . . . , αr ∈ Fq[x], with max degαj < n, and εi ∈ {1, 2},
not all even,

|
∑

F∈Mn

µ(F + α1)ε1 . . . µ(F + αr)
εr | �r,n q

n− 1
2 . (4.2)

Thus for fixed r, n > 1,

lim
q→∞

1

#Mn

∑
F∈Mn

µ(F + α1)ε1 . . . µ(F + αr)
εr = 0 (4.3)

under the assumption of Theorem 4.1, giving an analogue of Chowla’s conjecture
(4.1).

Note that the number of square-free monic polynomials of degree n is, for n > 1,
equal to qn − qn−1. Hence, given r distinct polynomials α1, . . . , αr ∈ Fq[x], with
degαj < n, the number of F ∈ Mn for which all of F (x) + αj(x) are square-free
is qn +O(rqn−1) as q →∞. Thus indeed we display cancellation.
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The starting point in our argument is Pellet’s formula, which asserts that for
the polynomial ring Fq[x] with q odd, the Möbius function µ(F ) can be computed
in terms of the discriminant disc(F ) of F (x) as

µ(F ) = (−1)degFχ2(disc(F )) , (4.4)

where χ2 is the quadratic character of Fq. That allows us to express the LHS of
(4.2) as an n-variable character sum and to estimate it by freezing all but one of
the variables, and then using the Riemann Hypothesis for curves (Weil’s theorem)
to bound the one-variable sum. A key point is to bound the number of times when
there is no cancellation in the one-variable sum.

4.2. Twin primes. It is an ancient conjecture that there are infinitely many
twin primes, and a refined quantitative form, due to Hardy and Littlewood, asserts
that given distinct integers a1, . . . , ar, the number π(x; a1, . . . , ar) of integers n ≤ x
for which n+ a1, . . . , n+ ar are simultaneously prime is asymptotically

π(x; a1, . . . , ar) ∼ S(a1, . . . , ar)
x

(log x)r
, x→∞ , (4.5)

for a certain constant S(a1, . . . , ar), which is positive whenever there are no local
congruence obstructions. Despite the striking recent breakthroughs by Zhang [37]
and Maynard [31], this conjecture is still open even for r = 2 (twin primes).

Recently the function field version of the problem was solved. Bary-Soroker
[3] proved that for given n, r then for any sequence of finite fields Fq of odd car-
dinality q, and distinct polynomials a1, . . . , ar ∈ Fq[x] of degree less than n, the
number πq(n; a1, . . . , ar) of monic polynomials f ∈ Fq[x] of degree n such that
f + a1, . . . , f + ar are simultaneously irreducible satisfies

πq(n; a1, . . . , ar) ∼
qn

nr
, q →∞ . (4.6)

This improves on earlier results by Pollack [33] and by Bary-Soroker [2].

4.3. The additive divisor problem. The divisor function dr(n) is the
number of ways of writing a positive integer n as a product of r positive integers.
In particular for r = 2 we recover the classical divisor function d2(n) =

∑
d|n 1.

The mean value of dr is

1

x

∑
n≤x

dr(n) ∼ (log x)r−1

(r − 1)!
, x→∞ . (4.7)

Likewise, the divisor function dr(f) for a monic polynomial f ∈ Fq[x] is defined as
the number of r-tuples of monic polynomials (a1, . . . , ar) so that f = a1 · . . . · ar.
The mean value of dr, when averaged over all monic polynomials of degree n, is

1

qn

∑
f∈Mn

dr(f) =

(
n+ r − 1

r − 1

)
=

nr−1

(r − 1)!
+ . . . , (4.8)
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which is a polynomial of degree r − 1 in n.
The ”additive divisor problem” (other names are ”shifted divisor” and ”shifted

convolution”) is to understand the autocorrelation of the divisor function, that is
the sum (where h 6= 0 is fixed for this discussion)

Dr(X;h) :=
∑
n≤X

dr(n)dr(n+ h) . (4.9)

These sums are of importance in studying the moments of the Riemann ζ-function
on the critical line, see [19, 7].

For r = 2 (the ordinary divisor function), Ingham [18] and Estermann [10]
showed that ∑

n≤X

d2(n)d2(n+ h) ∼ XP2(logX;h), X →∞ (4.10)

where P2(u;h) is a quadratic polynomial in u.
For r ≥ 3 it is conjectured that

Dr(X;h) ∼ XP2(r−1)(logX;h), X →∞ (4.11)

where P2(r−1)(u;h) is a polynomial in u of degree 2(r − 1), whose coefficients
depend on h (and r). However to date one is very far from being able to even get
good upper bounds on Dr(X;h). Moreover, even a conjectural description of the
polynomials P2(r−1)(u;h) is difficult to obtain, see [19, 7].

In joint work with Andrade and Bary-Soroker [1], we study a version of the
additive divisor problem for Fq[x]. We show:

Theorem 4.2. Let 0 6= h ∈ Fq[x], and n > deg h. Then for q odd,

1

qn

∑
f∈Mn

dr(f)dr(f + h) =

(
n+ r − 1

r − 1

)2

+On(q−1/2) , (4.12)

the implied constant depending only on n.

Note that
(
n+r−1
r−1

)2
is a polynomial in n of degree 2(r−1) with leading coefficient

1/[(r − 1)!]2.

4.4. About proofs. The results of this section can all be deduced from one
principle (though this was not the original proof of most), namely that for a random
monic polynomial f ∈Mn of degree n, the cycle structure of f and its shift f +α
are independent as q →∞. Precisely, in [1] we show that for for fixed n > 1, and
two partitions λ′, λ′′ ` n, given any sequence of finite fields Fq of odd cardinality
q, and nonzero α ∈ Fq[x] of degree less than n, then

lim
q→∞

1

qn
#{f ∈Mn : λ(f) = λ′, λ(f + α) = λ′′} = p(λ′)× p(λ′′) (4.13)

where p(λ), as in (2.4), (2.5), is the probability that a random permutation on
n letters has cycle structure λ. This result is an elaboration of earlier work by
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Bary-Soroker [3] which dealt with the case of n-cycles, where λ = λ̃ = (0, . . . , 0, n).
There is also a version allowing several distinct shifts.

To prove (4.13) we need to compute a certain Galois group: Let F be an
algebraic closure of Fq, A = (A0, . . . , An−1) be indeterminates, and

F(A, x) = xn +An−1x
n−1 + · · ·+A0 (4.14)

the generic polynomial of degree n, whose Galois group over F(A) is well-known
to be the full symmetric group Sn. For nonzero α ∈ Fq[x] of degree less than n, let

G(A, x) = F(A, x)
(
F(A, x) + α(x)

)
. (4.15)

Bary-Soroker [3] shows that for odd q, the Galois group of G over F(A) is the
product Sn × Sn, the maximal possible group. The proof requires an ingredient
from the proof of Chowla’s conjecture [6] discussed above.

Once we know the Galois group of G(A, x), we apply an explicit version of
Chebotarev’s theorem for function fields to prove (4.13), see [1] for the details.

5. The variance of sums of arithmetic functions and
matrix integrals

I now describe some results concerning the variance of sums of several arithmetic
functions. A common feature is that the variance is expressed as a matrix integral.

5.1. Variance of primes in short intervals. The von Mangoldt func-
tion is defined as Λ(n) = log p if n = pk is a prime power, and 0 otherwise. A form
of the Prime Number Theorem (PNT) is the assertion that

ψ(x) :=
∑
n≤x

Λ(n) ∼ x as x→∞ . (5.1)

To study the distribution of primes in short intervals, we define for 1 ≤ H ≤ x,

ψ(x;H) :=
∑

n∈[x−H
2 ,x+

H
2 ]

Λ(n) . (5.2)

The Riemann Hypothesis guarantees an asymptotic formula ψ(X;H) ∼ H as

long as H > X
1
2+o(1). Goldston and Montgomery [13] studied the variance of

ψ(x;H), relating it to the pair correlation function of the zeros of the Riemann zeta
function. The conjecture of Goldston and Montgomery, as refined by Montgomery
and Soundararajan1 [32] is that in the range Xε < H < X1−ε, as X →∞:

1

X

∫ X

1

|ψ(x;H)−H|2 dx ∼ H
(

logX − logH − (γ + log 2π)
)

(5.3)

1based on Hardy-Littlewood type heuristics
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with γ being Euler’s constant.
With J. Keating, we prove a function field analogue of Conjecture 5.3:

Theorem 5.1 ([26]). For h ≤ n− 5, as q →∞,

1

qn

∑
A∈Mn

∣∣∣ ∑
|f−A|≤qh

Λ(f)−H
∣∣∣2 ∼ H ∫

U(n−h−2)

∣∣∣ trUn∣∣∣2dU = H(n− h− 2) .

Recall H := #{f : |f − A| ≤ qh} = qh+1. Here the matrix integral is over the
unitary group U(n− h− 2), equipped with its Haar probability measure.

5.2. Variance of primes in arithmetic progressions. A form of
the Prime Number Theorem for arithmetic progression states that for a modulus
Q and A coprime to Q,

ψ(X;Q,A) :=
∑
n≤X

n=A mod Q

Λ(n) ∼ X

φ(Q)
, as X →∞ . (5.4)

In most arithmetic applications it is crucial to allow the modulus to grow with
X. For very large moduli Q > X, there can be at most one prime in the arithmetic
progression P = A mod Q so that the interesting range is Q < X. To study the
fluctuations of ψ(X;Q,A), define

G(X,Q) =
∑

A mod Q
gcd(A,Q)=1

∣∣∣∣ψ(X;Q,A)− X

φ(Q)

∣∣∣∣2 . (5.5)

Hooley, in his ICM article [17], conjectured that under some (unspecified) condi-
tions,

G(X,Q) ∼ X logQ . (5.6)

Friedlander and Goldston [12] conjecture that (5.6) holds if X1/2+ε < Q < X, and
further conjecture that if X1/2+ε < Q < X1−ε then

G(X,Q) = X

logQ−
(
γ + log 2π +

∑
p|Q

log p

p− 1

)+ o(X) . (5.7)

They show that both (5.6) (in the range X1/2+ε < Q < X) and (5.7) (in the range
X1/2+ε < Q < X1−ε) hold assuming GRH and a strong version of the Hardy-
Littlewood conjecture (4.5) on prime pairs. For Q < X1/2 little is known. In any
case, Hooley’s conjecture (5.6) has not been proved in any range.

With J. Keating [26] we resolve the function-field version of Conjecture (5.6):

Theorem 5.2. Fix n ≥ 2. Given a sequence of finite fields Fq and square-free
polynomials Q(x) ∈ Fq[x] with 2 ≤ degQ ≤ n− 1, then as q →∞,

G(n;Q) ∼ qn
∫
U(degQ−1)

| trU |ndU = qn(degQ− 1) . (5.8)
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We can compare our result (5.8) to the conjectures (5.6) and (5.7): The range
X1/2 < Q < X corresponds to degQ < n < 2 degQ, so that we recover the
function field version of conjecture (5.6); note that (5.8) holds for all n, not just
in that range. Thus we believe that Hooley’s conjecture (5.6) should hold for all
Q > Xε. We refer to Fiorilli’s recent work [11] for a more refined conjecture in
this direction.

5.3. Almost-primes. A variation on this theme was proposed by B. Rodgers
[34]. Instead of primes, he considered ”almost primes”, that is products of two
prime powers. A useful weight function for these is the generalized von Mangoldt
function

Λ2 = Λ ∗ Λ + deg ·Λ = µ ∗ deg2 (5.9)

which is supported on products of two prime powers (∗ means Dirichlet convolu-
tion). The mean value of Λ2 over the set Mn of monic polynomials of degree n
is

1

qn

∑
f∈Mn

Λ2(f) = n2 − (n− 1)2 = 2n− 1 . (5.10)

To count almost primes in the short intervals, set for A ∈Mn, and 1 ≤ h < n

Ψ2(A;h) =
∑

f∈I(A;h)

Λ2(f) . (5.11)

Rodgers showed [34] that the variance of Ψ2(A;h) is given as q → ∞, for fixed n
and h ≤ n− 5, by the matrix integral

Var Ψ2(•;h) ∼ H
∫
U(n−h−2)

∣∣∣ n−1∑
j=1

trU j trUn−j − n trUn
∣∣∣2dU, q →∞ . (5.12)

He shows the matrix integral to be equal to (4(n−h− 2)3− (n−h− 2))/3, in fact
that∫

U(N)

∣∣∣ n−1∑
j=1

trU j trUn−j − n trUn
∣∣∣2dU =

min(n,N)∑
d=1

(d2 − (d− 1)2))2 . (5.13)

5.4. Sums of the Möbius function and the Good-Churchhouse
conjecture. It is a standard heuristic to assume that the Möbius function be-
haves like a random variable taking values±1 with equal probability, and supported
on the square-free integers (which have density 1/ζ(2) = 6/π2). In particular if we
consider the sums of µ(n) in blocks of length H,

M(x;H) :=
∑

|n−x|<H/2

µ(n) (5.14)

then when averaged over x, M(x,H)/
√
H has mean zero, and it was conjectured

by Good and Churchhouse [14] in 1968 that M(x;H)/
√
H has variance 1/ζ(2):

1

X

∫ 2X

X

|M(x;H)|2 ∼ H

ζ(2)
(5.15)
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for Xε < H = H(X) < X1−ε. Moreover they conjectured that the normalized
sums M(x;H)/

√
H/ζ(2) have asymptotically a normal distribution.

We can apply our method to evaluate the variance of sums of the Möbius
function in short intervals for Fq[x]. Set

Nµ(A;h) :=
∑

f∈I(A;h)

µ(f) . (5.16)

The mean value of Nµ(A;h) is 0, and the variance is

Theorem 5.3 (Keating-Rudnick [27]). If h ≤ n− 5 then as q →∞,

VarNµ(•;h) ∼ H
∫
U(n−h−2)

| tr Symn U |2dU = H

where Symn is the representation of the unitary group U(N) on polynomials of
degree n in N variables.

Theorem 5.3 is consistent with Conjecture (5.15) if we replace H by H/ζq(2)
where ζq(2) =

∑
f 1/|f |2 (the sum over all monic f), which tends to 1 as q →∞.

5.5. The divisor function in short intervals. Dirichlet’s divisor prob-
lem addresses the size of the remainder term ∆2(x) in partial sums of the divisor
function:

∆2(x) :=
∑
n≤x

d2(n)− x
(

log x+ (2γ − 1)
)

(5.17)

where γ is the Euler-Mascheroni constant. For the higher divisor functions one
defines a remainder term ∆k(x) similarly as the difference between the partial
sums

∑
n≤x dk(n) and a smooth term xPk−1(log x) where Pk−1(u) is a certain

polynomial of degree k − 1.

Let

∆k(x;H) = ∆k(x+H)−∆k(x) (5.18)

be the remainder term for sums of dk over short intervals [x, x + H]. Jutila [22],
Coppola and Salerno [8], and Ivić [20, 21] show that, for Xε < H < X1/2−ε, the
mean square of ∆2(x,H) is asymptotically equal to

1

X

∫ 2X

X

(
∆2(x,H)

)2
dx ∼ HP3(logX − 2 logH) (5.19)

for a certain cubic polynomial P3.

Lester and Yesha [28] showed that ∆2(x,H), normalized to have unit mean-
square using (5.19), has a Gaussian value distribution at least for a narrow range
of H below X1/2: H =

√
X/L, where L = L(X) → ∞ with X, but L � Xo(1),

(see [28] for the precise statement), the conjecture being that this should hold for
Xε < H < X1/2−ε for any ε > 0.
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In joint work with J. Keating and E. Roditty-Gershon [25], we study the cor-
responding problem of the sum of dk(f) over short intervals for Fq[x]. Set

Ndk(A;h) :=
∑

f∈I(A;h)

dk(f) . (5.20)

The mean value is

1

qn

∑
A∈Mn

Ndk(A;h) = qh+1

(
n+ k − 1

k − 1

)
. (5.21)

In analogy with (5.17), (5.18) we set

∆k(A;h) := Ndk(A;h)− qh+1

(
n+ k − 1

k − 1

)
. (5.22)

It can be shown that ∆k(A;h) ≡ 0 vanishes identically for h > (1− 1
k )n−1. Using

Theorem 3.2 [4], we can show that for all 3 ≤ h < n

∆k(A;h)�n,k q
h+ 1

2 (5.23)

is smaller than the main term.
We express the mean square of ∆k(A, h) (which is the variance of Ndk(A;h))

in terms of a matrix integral. Let Λj : U(N) → GL(ΛjCN ) be the exterior j-th
power representation (0 ≤ j ≤ N). Define the matrix integrals over the group
U(N) of N ×N unitary matrices

Ik(m;N) :=

∫
U(N)

∣∣∣ ∑
j1+···+jk=m
0≤j1,...,jk≤N

tr Λj1(U) . . . tr Λjk(U)
∣∣∣2dU , (5.24)

the integral with respect to the Haar probability measure.
By definition, Ik(m;N) = 0 for m > kN . We have a functional equation

Ik(m;N) = Ik(kN −m;N) and

Ik(m;N) =

(
m+ k2 − 1

k2 − 1

)
, m ≤ N . (5.25)

The identity (5.25) can be proved by various means, for instance using the work
of Diaconis and Gamburd [9] relating matrix integrals to counting magic squares.

Theorem 5.4 ([25]). Let n ≥ 5, and h ≤ min(n − 5, (1 − 1
k )n − 2). Then as

q →∞,
1

qn

∑
A∈Mn

|∆k(A;h)|2 ∼ H · Ik(n;n− h− 2) .

In particular for the standard divisor function (k = 2), if h ≤ n/2−2 and n ≥ 8
then

1

qn

∑
A∈Mn

|∆2(A;h)|2 ∼ H (n− 2h+ 5)(n− 2h+ 6)(n− 2h+ 7)

6
. (5.26)

This is consistent with (5.19), which leads us to expect a cubic polynomial in
(n− 2h).
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6. How to compute the variance

Our results on variance described in § 5 depend on expressing the variance in terms
of zeros of Dirichlet L-functions for Fq[x], and using recent equidistribution results
of Katz [23], [24], tailor-made for this purpose. To describe how this is done, we
give some background on L-functions.

6.1. Dirichlet L-functions. Let Q(x) ∈ Fq[x] be a polynomial of positive

degree. A Dirichlet character modulo Q is a homomorphism χ : (Fq[x]/(Q))
× →

C×. A Dirichlet character χ is “even” if χ(cF ) = χ(F ) for all 0 6= c ∈ Fq, and χ
is primitive if there is no proper divisor Q′ | Q so that χ(F ) = 1 whenever F is
coprime to Q and F = 1 mod Q′. The number of Dirichlet characters modulo Q
is Φ(Q), and the number of even characters modulo Q is Φev(Q) = Φ(Q)/(q − 1).

The L-function L(u, χ) attached to χ is defined as

L(u, χ) =
∑

f monic
(f,Q)=1

χ(f)udeg f =
∏
P -Q

(1− χ(P )udegP )−1 (6.1)

where the product, over all monic irreducible polynomials in Fq[x], is absolutely
convergent for |u| < 1/q.

If Q ∈ Fq[x] is a polynomial of degree degQ ≥ 2, and χ 6= χ0 is a nontrivial
character mod Q, then the L-function L(u, χ) is a polynomial in u of degree at
most degQ − 1. Moreover, if χ is an even character there is a ”trivial” zero at
u = 1.

For a primitive even character modulo Q, we can write

L(u, χ) = (1− u) det(I − uq1/2Θχ) (6.2)

where the matrix Θχ ∈ U(degQ − 2) is unitary (as follows from the Riemann
Hypothesis for curves), uniquely defined up to conjugacy. It is called the unitarized
Frobenius matrix of χ. Likewise, if χ is odd and primitive then L(u, χ) = det(I −
uq1/2Θχ) where Θχ ∈ U(degQ− 1) is unitary.

Katz [24] showed that as χ varies over all primitive even characters modulo
xN+2, the unitarized Frobenii Θχ become uniformly distributed in the projectivized
unitary group PU(N) for N ≥ 3 as q →∞ (and also for N = 2 if q is coprime to
2 and 5). Thus for any nice class function F on U(N), which is invariant under
the center (F (zU) = F (u), z on the unit circle), we have

lim
q→∞

1

Φev(xN+2)

∑
χ mod xN+2

even primitive

F (Θχ) =

∫
PU(N)

F (U)dU . (6.3)

6.2. Short intervals as arithmetic progressions. Our method to
handle sums over short intervals I(A;h) = {f : |f − A| ≤ qh} is to relate them to
arithmetic progressions modulo xn−h.
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Denote by P≤n the set of all polynomials of degree at most n. We define a map
θn : P≤n → P≤n by

θn(f) = xnf(
1

x
) (6.4)

which takes f(x) = f0 + f1x+ · · ·+ fnx
n, n = deg f to the “reversed” polynomial

θn(f)(x) = f0x
n + f1x

n−1 + · · ·+ fn . (6.5)

Then for B ∈ Mn−h−1, the map θn takes the ”interval” I(Th+1B;h) bijectively
onto the arithmetic progression {g ∈ P≤n : g ≡ θn−h−1(B) mod xn−h}.

6.3. A formula for the variance. The identification of short intervals
with arithmetic progressions allows us to express sums of several arithmetic func-
tions in terms of even Dirichlet characters. For the case of the von Mangoldt func-
tion, this is done in [26]. I illustrate this identification in the case of the Möbius
function (Theorem 5.3): We denoted by Nµ(A;h) =

∑
f∈I(A;h) µ(f). Then for

B ∈Mm−h−1,

Nµ(Th+1B;h) =
1

Φev(xn−h)

∑
χ mod xn−h

χ6=χ0 even

χ̄(θn−h−1(B))(M(n;µχ)−M(n− 1;µχ))

(6.6)
where

M(n;µχ) =
∑
f∈Mn

µ(f)χ(f) . (6.7)

We next express the sumsM(n;µχ) in terms of zeros of the L-function L(u, χ);
for χ primitive this means in terms of the unitarized Frobenius matrix Θχ. The
connection is made by writing the generating function identity

∞∑
n=0

M(n;µχ)un =
1

L(u, χ)
. (6.8)

Therefore we find that for χ primitive and even,

M(n;µχ) =

n∑
k=0

qk/2 tr Symk Θχ (6.9)

where for N > 1, Symn : GL(N,C) → Symn CN is the symmetric n-th power
representation. Consequently we obtain

VarNµ(•;h) =
qh+1

Φev(xn−h)

∑
χ mod xn−h

χ even and primitive

| tr Symn Θχ|2 +O(qh) . (6.10)

Using Katz’s equidistribution theorem (6.3) we get

lim
q→∞

Var(Nµ(•;h))

qh+1
=

∫
PU(n−h−2)

|tr Symn U |2 dU . (6.11)
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The matrix integrals equals 1, hence we conclude that Var(Nµ(;h)) ∼ qh+1 = H,
which is Theorem 5.3.
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