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Abstract Let ¹a.x/º1xD1 be a positive, real-valued, lacunary sequence. This note shows
that the pair correlation function of the fractional parts of the dilations ˛a.x/ is Poissonian
for Lebesgue almost every ˛ 2 R. By using harmonic analysis, our result—irrespective of
the choice of the real-valued sequence ¹a.x/º1xD1—can essentially be reduced to showing
that the number of solutions to the Diophantine inequalityˇ̌

n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�ˇ̌
<1

in integer six-tuples .n1;n2;x1;x2;y1;y2/ located in the box Œ�N;N�6 with the
“excluded diagonals”; that is,

x1¤ y1; x2¤ y2; .n1;n2/¤ .0;0/;

is at mostN 4�ı for some fixed ı > 0, for all sufficiently largeN .

1. Introduction

A sequence of points ¹�nº1nD1 is uniformly distributed modulo one if given any fixed
interval I in the unit circle R=Z, the proportion of fractional parts �n mod 1 which lie
in I tends to the length of the interval I ; that is,

#¹n�N W �n mod 1 2 I º � length.I / �N; N !1:

We study the pair correlation function R2, defined for every fixed interval I � R

by the property that

lim
N!1

1

N
#
°
1�m¤ n�N W j�n � �mj 2

1

N
I
±
D

Z
I

R2.x/dx;

assuming that the limit exists. For a random sequence of N elements—that is, N uni-
form independent random variables in Œ0; 1/ (the Poisson model)—the limiting pair
correlation function is almost surely R2.x/� 1.

There are very few positive results on the pair correlation function available for
specific sequences, a notable exception being the fractional parts of

p
n [6]; a more
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tractable problem is to randomize (a “metric” theory, in the terminology of uniform
distribution theory) by looking at random multiples1 �n D ˛a.n/ mod 1, for almost
all ˛. There is a well-developed metric theory of the pair correlation function for integer
valued sequences ¹a.n/º1nD1, initiated in [11], where polynomial sequences such as
a.n/ D nd , d � 2, are studied, with several developments in the last few years; see,
e.g., [2, 3, 5, 8–10, 12, 13]. In this note, we study the case of real-valued lacunary
sequences: Let a.x/ > 0 be a lacunary sequence of positive reals—that is, there is
some C > 1 so that for all integers x � 1,

a.xC 1/� Ca.x/:

For instance, we can take a.x/ D ex . It is known that for almost all ˛, the sequence
˛a.x/ mod 1 is uniformly distributed mod one [7, Chapter 1, Corollary 4.3]. Here and
throughout this note, “almost all” is meant with respect to the Lebesgue measure on R.

THEOREM 1.1
Assume that ¹a.x/º1xD1 is a lacunary sequence of positive reals. Then the pair correla-
tion function of the sequence ¹˛a.x/º1xD1 is Poissonian for almost all ˛.

When a.x/ takes integer values, it was shown in [12] that for almost all ˛, the pair
correlation function is Poissonian. The case of pair correlation of sequences of rationals
xn D an=bn with an integer-valued and lacunary and bn integer-valued and (roughly
speaking) sufficiently small (e.g., an=bn D 2014n=Œlog logn�) was treated in [5]. Here
we treat any real-valued sequences.

We will reduce the problem to giving a bound for the number of lattice points
satisfying a Diophantine inequality: For M DN 1C" and K DN ", let S.N / be the set
of integer six-tuples with

1� yi ¤ xi �N; 1� jni j �M .i D 1; 2/;

satisfying ˇ̌
n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�ˇ̌
<K:

Assume that

(A) #S.N /	N 4�ı :

THEOREM 1.2
Let ¹a.x/º1xD1 be a sequence of distinct positive reals. Assume that (A) holds for some
ı > 0. Then the pair correlation function of ˛a.x/ is Poissonian for Lebesgue almost
all ˛ 2R.

1. A different notion of randomizing has recently been investigated in [1], which studies the pair correlation
of the sequence ˛n mod 1 with ˛ random.
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In the case of integer-valued sequences, the almost sure convergence of the pair corre-
lation function to the Poisson limit (metric Poisson pair correlation) follows [11, 12]
from a similar bound for the equation

n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�
D 0:

See [2, 4] for a streamlined criterion for metric Poisson pair correlation in terms of the
additive energy of the sequence.

In Section 4, we verify that (A) holds for lacunary sequences; hence, we obtain
Theorem 1.1.

2. The pair correlation function

To study the pair correlation function, we use a smooth count (cf. [11]): For f 2
C1c .R/ or f being an indicator function of a compact interval, set

FN .x/D
X
j2Z

f
�
N.xC j /

�
;

which is periodic and localized on scale 1=N . For a sequence ¹�nº1nD1 � R=Z, we
define its pair correlation function by

(2.1) R2.f;N /
�
¹�nº

1
nD1

�
D
1

N

X
1�m¤n�N

FN .�n � �m/:

In particular, for a fixed sequence ¹anº1nD1, we take �n D ˛an mod 1, and
abbreviate the pair correlation function R2.f;N /.¹�nº

1
nD1/, having fixed f , by

R2.f;N /.˛/DR2.˛/.
It suffices to restrict ˛ to lie in a fixed finite interval and to consider a smooth aver-

age: Let � 2 C1c .R/, � � 0, be a smooth, compactly supported, non-negative weight
function, normalized to give a probability density:

R
R
�.˛/d˛D 1. We define a smooth

average

(2.2) hXi D

Z
R

X.˛/�.˛/d˛:

2.1. The expected value
We verify later (see Lemma 2.2) that (A) implies that there exists ı > 0 such that for
M DN 1C" and K	N " we have that

(B) #
®
1� n�M;1� x ¤ y �N W n

ˇ̌
a.x/� a.y/

ˇ̌
<K

¯
	N 2�ı :

Assuming for now this statement is true, we know hR2.f;N /i asymptotically, as fol-
lows.

LEMMA 2.1
If (B) holds, then the expected value of R2.f;N /.˛/ is˝

R2.f;N /
˛
D

Z 1
�1

f .x/dxCO.N�ı/:
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Proof
Let f 2 C1c .R/. By using Poisson summation, we have the expansion

FN .x/D
X
j2Z

f
�
N.xC j /

�
D
1

N

X
n2Z

bf � n
N

�
e.nx/

with e.z/ WD e2�iz , which gives

(2.3) R2.˛/D
1

N 2

X
n2Z

bf � n
N

�
Sn;N .˛/;

where

Sn;N .˛/D
X

1�x¤y�N

e
�
˛n
�
a.x/� a.y/

��
:

Therefore, the expected value is

hR2i D

Z 1
�1

R2.˛/�.˛/d˛ D
1

N 2

X
n2Z

bf � n
N

� X
1�x¤y�N

b��n�a.x/� a.y/��:
The zero mode nD 0 gives a contribution of

1

N 2
bf .0/N.N � 1/D Z 1

�1

f .x/dx
�
1CO.1=N/

�
:

We split the sum over non-zero modes into two terms: Those with 1� jnj �M D
N 1C", and those with jnj > M . To treat the contribution of modes with jnj > M D
N 1C", we use jbf .x/j 	 x�A and jb�j 	 1 to bound that term by

1

N 2

X
jnj>M

� n
N

��A X
1�x¤y�N

1D
NA

MA�1
	

1

N 1�"

on choosing AD 2=".
To bound the contribution of modes with 1 � jnj �M , we separate into a contri-

bution of terms with jn.a.x/� a.y//j<K and the rest.
We use jb�j; jbf j 	 1 to obtain that the contribution of terms with jn.a.x/ �

a.y//j<K is

	
1

N 2
#
®
1� n <N 1C"; 1� y ¤ x �N W n

�
a.x/� a.y/

�
<N "

¯
:

By (B), this is	N�ı .
The contribution of terms with jn.a.x/� a.y//j>K is bounded usingˇ̌b��n�a.x/� a.y/��ˇ̌	 ˇ̌

n
�
a.x/� a.y/

�ˇ̌�A
�K�A DN�2

and jbf j 	 1 by

1

N 2

X
1�jnj�M
1�x¤y�N

jn.a.x/�a.y//j>K

ˇ̌̌bf � n
N

�ˇ̌̌b�.n�a.x/� a.y/�j 	 1

N 2

X
1�jnj�M
1�x¤y�N

1

N 2
�
M

N 2
;

which is	N�1C". �
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2.2. The condition (B)

LEMMA 2.2
If (A) holds for ı > 0 and K DN ", then (B) is satisfied with ı0 D ı=2 in place of ı and
K 0 D 2N " in place of K .

Proof
Let 1Œ0;K0� be the indicator function of Œ0;K 0�, and let N � 1 be large. With n;x;y and
ni ; xi ; yi constrained as in (B), we note that�X

n;x;y

1Œ0;K0�
�
n
ˇ̌
a.x/� a.y/

ˇ̌��2
equals X

ni ;xi ;yi

1Œ0;K0�
�ˇ̌
n1
�
a.x1/� a.y1/

�ˇ̌�
1Œ0;K0�

�ˇ̌
n2
�
a.x2/� a.y2/

�ˇ̌�
�

X
ni ;xi ;yi

1Œ0;K�
�ˇ̌
n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�ˇ̌�
D #S.N/:

Since #S.N /	N 4�ı , combining these considerations and taking a square root com-
pletes the proof. �

2.3. The variance

PROPOSITION 2.3
Assume that a.x/ is a sequence of real numbers such that (A) holds. ThenDˇ̌̌

R2.f;N /�

Z 1
�1

f .x/dx
ˇ̌̌2E
	N�ı :

Proof
By Cauchy–Schwarz,Dˇ̌̌

R2.f;N /�

Z 1
�1

f .x/dx
ˇ̌̌2E
� 2

˝ˇ̌
R2.f;N /� hR2i

ˇ̌2˛
C 2

Dˇ̌̌
hR2i �

Z 1
�1

f .x/dx
ˇ̌̌2E
:

By Lemma 2.1, Dˇ̌̌
hR2i �

Z 1
�1

f .x/dx
ˇ̌̌2E
	N�2ı :

We now show that

(2.4) VarR2 D
˝ˇ̌
R2.f;N /� hR2i

ˇ̌2˛
	N�ı

which will prove Proposition 2.3.
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To prove (2.4), it suffices to show by (A) that

(2.5) VarR2	f

#S.N /

N 4
:

By using the expansion (2.3), the variance can be written as

(2.6) Var.R2/D
1

N 4

X
.n1;n2/2Z2n¹0º

bf �n1
N

�bf �n2
N

�
w.n1; n2;N /;

where for integers n1; n2, we let

w.n1; n2;N /D
X

1�x1¤x3�N;
1�x2¤x4�N

b��n1�a.x3/� a.x1/�� n2�a.x4/� a.x2/��
and � as in (2.2).

Due to the rapid decay of bf , the contribution from the range in which jn1j or
jn2j exceeds M D N 1C" is negligible, as we will argue now. We detail only the case
max¹jn1j; jn2jº D n1 �M since the other case can be done similarly. We observe the
trivial bound jw.n1; n2;N /j 	N 4. Moreover,

n1 D n
"=2
1 n

1�"=2
1 � n

"=2
1 N 1C"=2�"2=2;

which, since " is small, yields n1 > n
"=2
1 N 1C"=3. Hence, the contribution to the right-

hand side of (2.6) arising from the terms with max¹jn1j; jn2jº D n1 �M DN 1C" and
n2 ¤ 0 is

	
1

N 4

X
n1;n22Zn¹0º

jn1j>N
1C"

�n1
N

��18=" X
n2¤0

bf �n2
N

�
N 4	

1

N 4
:

Moreover, the terms satisfying max¹jn1j; jn2jº D n1 � N 1C", and n2 D 0 are in
absolute value

	
1

N 4

X
jn1j�N1C"

bf �n1
N

�
N 4	

1

N 4
:

So, the upshot is that on the right-hand side of (2.6), the sum over all .n1; n2/ with
max.jn1j; jn2j/ > N 1C" contributes	N�4. By the rapid decay ofb�, we can dispose
of the regime where jn1.a.x3/� a.x1//� n2.a.x4/� a.x2//j �N ".

By bounding O� trivially, we find that

VarR2	
#S.N /

N 4
CO

� 1

N 4

�
:

Since #S.N /�N 3, we obtain (2.5). �

3. Almost everywhere convergence: Proof of Theorem 1.2

We now deduce almost everywhere convergence from a polynomial variance bound.
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3.1. Preparations
We need a general property of the pair correlation function. Recall that for any sequence
of points ¹�nº1nD1 �R=Z, we defined

R2.f;N /D
1

N

X
1�j¤k�N

FN .�j � �k/

with FN .x/D
P
j2Z f .N.x � j //.

LEMMA 3.1
Suppose there is a strictly increasing sequence ¹Nmº1mD1 
 Z�1, with

lim
m!1

NmC1

Nm
D 1

so that for all f 2 C1c .R/,

(3.1) lim
m!1

R2.f;Nm/D

Z 1
�1

f .x/dx:

Then we can pass from the sub-sequence to the set of all integers:

(3.2) lim
N!1

R2.f;N /D

Z 1
�1

f .x/dx

for all f 2 C1c .R/.

Proof
We will first deduce that (3.1) holds for the indicator functions

Is.x/D

´
1; jxj< s=2;

0; otherwise;

by approximating with smooth functions, and show that (3.2) holds for the functions Is ,
and then deduce by approximating a general even smooth f 2 C1c .R/ by linear combi-
nations of Is that (3.2) holds for all such f . Note that for odd smooth f 2 C1c .R/, we
have FN .�x/D�FN .x/ which entails R2.f;N /D 0, so the pair correlation function
R2.f;N / converges trivially to the right limit.

From the definition of R2.Is;N /, we have a monotonicity property: Let 0 < " < 1.
If .1� "/N 0 <N <N 0 and N 00 <N < .1C "/N 00, then

(3.3) .1� "/R2.I.1�"/s;N
00/�R2.Is;N /�

1

1� "
R2.Is=.1�"/;N

0/:

Indeed, using positivity of Is (hence, of FN ),

N �R2.Is;N /D
X

1�j¤k�N

FN .�j � �k/�
X

1�j¤k�N 0

FN .�j � �k/:

Now if 1 >N=N 0 � 1� " > 0, then since Is is even and decreasing on Œ0;1/, we have

Is.Ny/D Is

�
N 0y �

N

N 0

�
� Is

�
N 0y.1� "/

�
D Is=.1�"/.N

0y/:
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So

FN .x/D
X
j2Z

Is
�
N � .x � j /

�
�
X
j2Z

Is=.1�"/
�
N 0 � .x � j /

�
D QFN 0.x/;

where QFN 0.y/D
P
j2Z Is=.1�"/.N

0.y � j //. Hence,

R2.Is;N /�
N 0

N
R2.Is=.1�"/;N

0/�
1

1� "
R2.Is=.1�"/;N

0/;

which proves the upper bound in (3.3). The lower bound of (3.3) follows from switching
the roles of N and N 00 and inserting in the upper bound.

Next, fix " 2 .0; 1/ small, let N � 1, and take m� 1 so that

Nm <NmC1 < .1C "/Nm;

and so if Nm �N <NmC1, then

.1� "/NmC1 <N <NmC1; Nm �N < .1C "/Nm:

Then for all s > 0, we have

.1� "/R2.I.1�"/s;Nm/�R2.Is;N /�
1

1� "
R2.Is=.1�"/;NmC1/:

Taking m!1, we find by (3.1)

lim sup
N!1

R2.Is;N /�
1

1� "

Z 1
�1

Is=.1�"/ dx D
s

.1� "/2

and

lim inf
N!1

R2.Is;N /� .1� "/

Z 1
�1

I.1�"/s dx D .1� "/
2s:

Since " > 0 is arbitrary, we finally obtain

lim
N!1

R2.Is;N /D s D

Z 1
�1

Is.x/dx

so that (3.2) holds for all indicator functions Is . Therefore, (3.2) holds for all test func-
tions f 2 C1c .R/. �

3.2. Proof of Theorem 1.2

Proof
It suffices to show that for almost every ˛ in a fixed compact interval I , we have

(3.4) lim
N!1

R2.f;N /.˛/D

Z 1
�1

f .x/dx

for all f 2 C1c .R/.
Let � 2 C1c .R/ be a non-negative function majorizing the indicator function of the

interval I : 1I � �. Then from the variance bound of Proposition 2.3, we find that for
some ı > 0, for all f 2 C1c .R/,Z

I

ˇ̌̌
R2.f;Nm/.˛/�

Z 1
�1

f .x/dx
ˇ̌̌2
�.˛/d˛	f N

�ı :
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Hence, for the sequence

Nm D bm
2=ıc;

we have that for almost all ˛ 2 I ,

(3.5) lim
m!1

R2.f;Nm/.˛/D

Z 1
�1

f .x/dx

for all f . Indeed, for each fixed f set,

Xm.˛/D
ˇ̌̌
R2.f;Nm/.˛/�

Z 1
�1

f .x/dx
ˇ̌̌2
:

Then Z
I

Xm.˛/d˛ �

Z 1
�1

Xm.˛/�.˛/d˛	
1

N ı
m

	
1

m2
:

Therefore, Z
I

�X
m�1

Xm.˛/
�
d˛ �

X
m�1

Z 1
�1

Xm.˛/d˛	f

X
m�1

1

m2
<1;

so that
P
m�1Xm.˛/ converges for almost all ˛ 2 I . Thus,

lim
m!1

Xm.˛/D 0

for almost all ˛—i.e., (3.5) holds for our specific f for almost all ˛ 2 I .
By a diagonalization argument (see [11]) that involves selecting a countable and

dense collection of functions f , there is a set of ˛ whose complement has measure zero
so that (3.5) holds for all f . Since NmC1=Nm! 1, we can use Lemma 3.1 to deduce
(3.4) holds, proving Theorem 1.2. �

4. Lacunary sequences

From now on, we assume that ¹a.x/º1xD1 is a lacunary sequence of (strictly) positive
reals—that is, there is some C > 1 so that

a.xC 1/� Ca.x/

for all integers x � 1. Consequently, we have for all x � y � 1 that

a.x/� C x�ya.y/:

We will show that (A) holds, hence proving that the pair correlation function of
¹˛a.x/mod1º1xD1 is Poissonian for almost all ˛ (that is, Theorem 1.1).

4.1. The condition (A)

PROPOSITION 4.1
Denote by S.N / the set of integer six-tuples with 1 � yi ¤ xi � N;1 � jni j �M for
i D 1; 2 that satisfyˇ̌

n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�ˇ̌
<K:
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Assume that ¹a.x/º1xD1 is a lacunary sequence of positive real numbers. Further, sup-
pose K D o.M/ and N � 	M 	N � for some 0 < � < � < 2. Then

#S.N /	MN 2.logM/2:

Note that Theorem 1.2 and the Proposition 4.1 together imply Theorem 1.1.

Proof
The proof is a modification of [12, Proposition 2]: We are given the inequality

(4.1)
ˇ̌
n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�ˇ̌
<K:

We may assume that ni > 0, and 1 � yi < xi � N , i D 1; 2, and that x1 � x2. In
particular, we may then assume that x1 � 4 logC M � logN because the number of
such tuples with x1	 logN is at most O.M 2.logN/4/, which is admissible (that is,
o.MN 2.logN/2/) if M DO.N �/ for � < 2.

We fix n1; x1; y1, and first show that (recall x1 � x2)

(4.2) x1 � x2 � 2 logC M:

Indeed, we have a lower bound,

n1
�
a.x1/� a.y1/

�
� 1 �

�
a.x1/� a.x1 � 1/

�
�
�
1�

1

C

�
a.x1/

(since y � x1 � 1), and an upper bound,

n2
�
a.x2/� a.y2/

�
�Ma.x2/D a.x1/M

a.x2/

a.x2C .x1 � x2//
�

M

C x1�x2
a.x1/

since a.xC h/� C ha.x/ for h� 1. Hence,

n1
�
a.x1/� a.y1/

�
� n2

�
a.x2/� a.y2/

�
�
�
1�

1

C

�
a.x1/�

M

C x1�x2
a.x1/:

Assuming that x1 � x2 > 2 logC M gives in particular

1�
1

C
�

M

C x1�x2
> 1�

1

C
�
1

M
>
1

2

�
1�

1

C

�
> 0

for sufficiently large N . The condition (4.1) now forces

1

2

�
1�

1

C

�
<
�
1�

1

C

�
�

M

C x1�x2
�

K

a.x1/
	

K

C x1

which forces x1 	 logC K � " logM , which we assumed was not the case. Thus.
we may assume that x1 � x2 � 2 logC M , which forces x2 � 2 logC M since x1 >
4 logC M .

Now fix x2 as well; then n2 will be determined by y2 because

n2 D
n1.a.x1/� a.y1//

a.x2/� a.y2/
CO

� K

a.x2/� a.y2/

�
and since a.y/ is lacunary, K=.a.x2/� a.y2//D o.1/ if y2 � logC N because

a.x2/� a.y2/� a.x2/� a.x2 � 1/� a.x2/
�
1�

1

C

�
� C x2 �M 2

since x2 > 2 logC M .
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So we will be done if we show that there are	 logN many choices of y2 such that
x2�y2 > 2 logC M . Indeed, if there are two pairs .y2; n2/ and .y02; n

0
2/ for which (4.1)

holds (recall all other variables are now fixed), with x2 � y2 > 2 logC M , x2 � y02 >
2 logC M , then since

a.y2/�
a.x2/

C x2�y2
�
a.x2/

M 2
;

we find that (4.1) implies

n1
�
a.x1/� a.y1/

�
D n2

�
a.x2/� a.y2/

�
CO.K/

D n2a.x2/
�
1C

a.y2/

a.x2/
CO

� K

n2a.x2/

��
D n2a.x2/

�
1CO

� K
M 2

��
since n2a.x2/ � a.x2/ � C x2 � M 2 if x2 � 2 logC M , and a.x2/=a.y2/ �

C x2�y2�M 2. If n02; y
0
2 is another such pair, then we also find

n1
�
a.x1/� a.y1/

�
D n02a.x2/

�
1CO

� K
M 2

��
so that

n2a.x2/
�
1CO

� K
M 2

��
D n02a.x2/

�
1CO

� K
M 2

��
which gives

n02 D n2

�
1CO

� K
M 2

��
D n2CO

�K
M

�
since n2 � M . Thus, for M � N � , while K 	 N " D o.M/, we obtain n02 D n2.
Substituting this information in (4.1), and recalling that n1; x1; y1 are fixed and n2; x2
are determined now (up to 	 logN many choices), we infer that there are 	 logN
many choices for y2. This completes the proof. �
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