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Value Distribution for Eigenfunctions

of Desymmetrized Quantum Maps

Pär Kurlberg and Zeév Rudnick

1 Introduction

In the past few years,much attention has been devoted to the behavior of eigenfunctions

of classically chaotic quantum systems. One aspect of this topic concerns their value

distribution and specifically their extreme values (see [Be], [AS], [S1], [IS], [HeR], [ABST]).

Our aim is to explore this topic for one of the best-studied models in quantum chaotic

dynamics—the quantized cat map (see [HB]). This is the quantization of a hyperbolic

linear map A of the torus. For a brief background about this model, see Section 2.

For each integerN ≥ 1 (the inverse Planck constant), let UN(A) denote the quan-

tization ofA as a unitary operator onHN = L2(Z/NZ). In our previous paper [KR], it was

observed that there are quantum symmetries ofUN(A)—a commutative group of unitary

operators that commute with UN(A). We called these Hecke operators, in analogy with

the classical theory ofmodular forms.The eigenspaces ofUN(A) thus admit an orthonor-

mal basis consisting of eigenfunctions of all the Hecke operators, which we called Hecke

eigenfunctions. These can be thought of as the eigenfunctions for the desymmetrized

quantum map.

In [KR] we showed that the Hecke eigenfunctions become uniformly distributed

as N → ∞. In this note we investigate suprema and value distributions of the Hecke

eigenfunctions. For general N, we obtain a nontrivial bound on the supremum norm of

these Hecke eigenfunctions. For prime values ofN for which A is diagonalizable modulo

N (the “split primes” forA),we obtain muchmore refined, optimal results via the modern
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986 Kurlberg and Rudnick

theory of exponential sums.We show that for these values ofN the Hecke eigenfunctions

are uniformly bounded and their absolute values (amplitudes) are either constant or

have a semicircle value distribution as N → ∞. Moreover, in the latter case different

eigenfunctions become statistically independent.

The following is a detailed description of our results.

1.1 Suprema for general N

The trivial bound

||ψ||∞ ≤ N1/2 (1)

is a consequence of the L2-normalization

||ψ||22 =
1

N

∑
Q∈Z/NZ

∣∣ψ(Q)∣∣2 = 1.

Equidistribution of the eigenfunctions (see [KR]) implies that one can do better:

||ψ||∞ = o(N1/2 ). Our first result gives a quantitative improvement on this.

Theorem 1. Letψ be a Hecke eigenfunction normalized by ||ψ||2 = 1. Then the supremum

of ψ satisfies

||ψ||∞ �ε N3/8+ε

for all ε > 0, the implied constant depending only on ε and not on ψ. �

1.2 The split primes

We next consider the case when N is a prime for which A is diagonalizable modulo N.

(These constitute half the primes.) In this case the group of Hecke operators is isomor-

phic to the multiplicative group (Z/NZ)∗ and the Hecke eigenfunctions correspond to

eigencharacters of the group of Hecke operators, namely, to Dirichlet characters χmodN.

For nontrivial χ, the corresponding eigenspace is 1-dimensional, while for the trivial

character χ0 the eigenspace is 2-dimensional. For nontrivial χ, denote by ψχ,N a Hecke

eigenfunction of norm 1. For simplicity, we also assume that A is not triangular modulo

N (which holds for all but finitely many N). The suprema of the Hecke eigenfunctions in

this case are given by the following theorem.
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Value Distribution for Quantum Maps 987

Theorem 2. If N is a split prime for A such that A is not triangular modulo N, then we

have the following.

(1)The Hecke eigenspace corresponding to the trivial character has an orthonor-

mal basis ψ0,N , ψ∞ ,N for which the amplitude is constant: |ψ∞ ,N| = 1 and |ψ0,N | =

1/
√

1− 1/N.

(2) For nontrivial χmodN, ||ψχ,N||∞ ≤ 2/
√

1− 1/N. �

We finally turn to the question of value distribution. The issue here is only for

nontrivial characters χ. We show that the value distribution of (1/2)|ψχ,N| tends to the

semicircle measure,which is the measure µsc on [0, 1] such that

µsc(I) =

∫
I

4

π

√
1− u2 du

for any interval I ⊂ [0, 1]. This measure is the image of Haar measure on SU(2) under the
map g �→ | tr(g)|/2.

The precise result is the following theorem.

Theorem 3. If N is restricted to vary only over split primes for A, then we have the

following.

(1) For any nontrivial character χmodN, the amplitude |ψχ,N(t)| has a semicircle

limit distribution as N → ∞; that is, for any subinterval I ⊂ [0, 1], we have

1

N
#

{
tmodN :

∣∣ψχ,N(t)∣∣
2

∈ I

}
−→ µsc(I)

as N → ∞ through split primes for A.

(2) For r ≥ 2 and any choice of distinct nontrivial characters χ1 , . . . , χr, the am-

plitudes |ψχ1,N|, . . . , |ψχr,N| are statistically independent; that is, for any choice of subin-

tervals I1, . . . , Ir ⊂ [0, 1], we have

1

N
#

{
tmodN :

∣∣ψχi,N(t)∣∣
2

∈ Ii,∀i = 1, . . . , r

}
−→ r∏

i=1

µsc(II)

as N → ∞ through split primes for A. �

Theorem 3 is a consequence of a corresponding theorem by N. Katz [Ka] on the

value distribution of certain exponential sums (see Section 5).
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988 Kurlberg and Rudnick

1.3 Comparison with Maass forms

To put our results in perspective, we briefly survey the situation in another well-studied

example in quantum chaology—the eigenfunctions of the hyperbolic Laplacian ∆ on

modular surfaces. These are the quotient H/Γ of the hyperbolic plane H by a congru-

ence subgroup Γ of the units of a quaternion algebra (in the compact case) or of the

modular group SL(2,Z) (see P. Sarnak’s survey [S1]). In these cases there is a commuting

family of self-adjoint operators that commute with the Laplacian, and thus there is an

orthonormal basis ψj, j = 0, 1, . . . , of L2(H/Γ) consisting of (real-valued) eigenfunctions

of the Laplacian (∆ψj+λjψj = 0) and of all the Hecke operators. These are calledMaass-

Hecke forms. To compare with our result, note that the Laplace eigenvalue λ scales with

Planck’s constant h like 1/h2 . In the case of the cat map, the inverse Planck constant N

equals 1/h.

A general bound for the eigenfunctions of the Laplacian on any compact

Riemannian surface gives (see [Hö])

||ψj||∞ � λ
1/4
j ∼

(
1

h

)1/2
,

which is analogous to trivial bound (1). H. Iwaniec and Sarnak [IS] studied the supremum

of the Maass-Hecke forms and showed that for L2-normalized forms one has

||ψj||∞ �ε

√
λj

5/12+ε
∼

(
1

h

)5/12+ε
for all ε > 0. This is analogous to our result in Theorem 1.

Unlike in the cat map case, for modular surfaces equidistribution of eigenfunc-

tions is still open, though recent work of Sarnak [S2] establishes this for a subsequence

of eigenfunctions of “CM-type” for congruence subgroups of SL(2,Z), and a recent for-

mula ofT.Watson [W] confirms that it is implied by the generalized Riemann hypothesis

for certain automorphic L-functions.

Concerning the question of value distribution for modular surfaces, numerical

experiments indicate that the Hecke eigenfunctions have a locally Gaussian value dis-

tribution (see [HeR], [AS]). In the compact case, this means that if ψ is an L2-normalized

cusp form with eigenvalue λ > 0, which is an eigenfunction of all Hecke operators, then

the measure of the set of z ∈ H/Γ, where the amplitude |ψ(z)| < r, is asymptotic to√
2/π

∫r
0
e−t

2 /2 dt as λ → ∞. Here measure means the hyperbolic measure dxdy/y2 on

H/Γ normalized to have total area unity.Moreover, these experiments indicate that eigen-

functions corresponding todifferent eigenvalues are statistically independent (see [HeR],

[AS]).
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Value Distribution for Quantum Maps 989

At present, we are far from being able to prove such statements for modular

surfaces (not tomention doing so for a generic system). Recently, some progress has been

made toward Gaussian value distribution. Watson [W] showed that the third moment∫
H/Γ

ψ3 of the eigenfunctions vanishes as λ → ∞. (All odd moments vanish for the

Gaussian distribution.) Sarnak showed that for “CM-forms” the fourth moment agrees

with the Gaussian moment; that is,
∫
H/Γ

|ψ|4 → 3 as λ → ∞. (Recall that we normalized

the total area of H/Γ to be unity.)

2 Background

The full details on the cat map and its quantization can be found in [KR]. For the reader’s

convenience we briefly recall the setup.

2.1 Classical dynamics

The classical dynamics are given by a hyperbolic linear map A ∈ SL(2,Z) so that x =

( pq ) ∈ T 2 �→ Ax is a symplectic map of the torus. Given an observable f ∈ C∞ (T 2), the
classical evolution defined by A is f �→ f ◦A, where (f ◦A)(x) = f(Ax).

2.2 Kinematics: The space of states

As the Hilbert space of states,we take distributionsψ(q) on the lineRwhich are periodic

in both the position and the momentum representation. This restricts h, Planck’s con-

stant, to taking only inverse integer values. With h = 1/N, the space of states, denoted

HN, is of dimensionN and consists of periodic point masses at the coordinates q = Q/N,

Q ∈ Z. We identify HN with L2(Z/NZ), where the inner product 〈·, ·〉 is given by

〈φ,ψ〉 = 1

N

∑
QmodN

φ(Q)ψ(Q).

2.3 Observables

The basic observables are given by the operators TN(n1 , n2) acting on ψ ∈ L2(Z/NZ) via

(
TN(n1, n2)ψ

)
(Q) = e(iπn1n2 )/N e

(
n2Q

N

)
ψ(Q+ n1). (2)

For any smooth classical observable f ∈ C∞ (T 2) with Fourier expansion
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990 Kurlberg and Rudnick

f(x) =
∑

n1,n2 ∈Z
f̂(n1 , n2)e

(
n1p+ n2q

)
, x =

(
p

q

)
∈ T 2 ,

its quantization, OpN(f), is given by

OpN(f) :=
∑

n1 ,n2 ∈Z
f̂(n1 , n2)TN(n1 , n2).

2.4 Dynamics

We let Γ(4, 2N) ⊂ SL(2,Z) be the subgroup of matrices that are congruent to the identity

matrixmodulo 4 (resp.,2) ifN is even (resp., odd). ForA ∈ Γ(4, 2N),we can assign unitary

operators UN(A), acting on L2(Z/NZ), having the following important properties.

• For all observables f ∈ C∞ (T 2),

UN(A)
−1 OpN(f)UN(A) = OpN(f ◦A).

•The quantization depends only onAmod2N. IfA,B∈Γ(4, 2N) andA≡Bmod2N,

then

UN(A) = UN(B).

• The quantization is multiplicative. If A,B ∈ Γ(4, 2N), then

UN(AB) = UN(A)UN(B). (3)

2.5 Hecke eigenfunctions

If α is an eigenvalue of A, form O = Z[α], which is an order in the real quadratic field

K = Q(α). (Note that O is not necessarily equal to OK, the full ring of integers in K.)

Let v = (v1 , v2) ∈ O2 be a vector such that vA = αv. Let I := Z[v1 , v2 ] ⊂ O. Then I is an

O-ideal, and thematrix of α acting on I bymultiplication in the basis v1 , v2 is preciselyA.

Choosing the basis of I gives an identification

ι : I −→ Z2 . (4)

The action of O on the ideal I by multiplication gives a ring homomorphism ι : O →
Mat2(Z) with the property that the determinant of ι(β), β ∈ O, is given by N(β), where

N : Q(α)→ Q is the norm map.
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Value Distribution for Quantum Maps 991

Reducing the norm map modulo 2N gives a well-defined map

N2N : O/2NO −→ Z/2NZ,
and we let CA

θ(2N) be the elements in the kernel of this map which are congruent to

1mod4O (resp., 2O) if N is even (resp., odd).

Now, reducing ιmod2N gives a map

ι2N : CA
θ(2N) −→ SL2

(
Z/2NZ

)
.

Since CA
θ(2N) is commutative, the properties in Section 2.4 imply that

{
UN(ι2N(β)

)
: β ∈ CA

θ
}

forms a family of commuting operators. Analogously with modular forms, we call these

Hecke operators, and functions ψ ∈ HN which are simultaneous eigenfunctions of all

the Hecke operators are denoted Hecke eigenfunctions. Note that a Hecke eigenfunction

is an eigenfunction of UN(ι2N(α)) = UN(A).

3 Proof of Theorem 1

3.1 Spectral expansions

We first display the intensity |ψ(Q)|2 for ψ ∈ HN as an expectation value of an N-

dependent observable. Choose f ∈ C∞
c (R) so that f(0) = 1,

∫∞
−∞ f(x)dx = 0, and f is

supported in (−1/2, 1/2). The function

GN(x) = N
∑
k∈Z

f
(
N(x− k)

)
is periodic, and its Fourier coefficients are given by

ĜN(m) = f̂

(
m

N

)
,

where f̂(y) =
∫∞
−∞ f(x)e−2πixy dx is the Fourier transform of f on the line. For Q ∈ Z/NZ,

set

gN,Q(p, q) = GN

(
q−

Q

N

)
, (p, q) ∈ T 2 .

We obtain a function on the torus which is independent of the momentum variable p and

is strongly localized in the position variable q around Q/N.
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992 Kurlberg and Rudnick

Lemma 4. Let Q ∈ Z/NZ. Then, for all ψ ∈ HN,

∣∣ψ(Q)∣∣2 = 〈OpN(gN,Q)ψ,ψ
〉
. �

Proof. Recall that

OpN
(
gN,Q

)
=

∑
m,n∈Z

ĝN,Q(m,n)TN(m,n).

Since gN,Q is independent of p, we have ĝN,Q(m,n) = 0 unless m = 0, in which case we

have

ĝN,Q(0, n) = e

(
−

nQ

N

)
ĜN(n) = e

(
−

nQ

N

)
f̂

(
n

N

)
. (5)

Since TN(0, n)ψ(Q
′) = e(nQ ′/N)ψ(Q ′), we get

OpN
(
gN,Q

)
ψ(Q ′) =

∑
m,n∈Z

ĝN,Q(m,n)TN(m,n)ψ(Q ′)

=
∑
n∈Z

ĝN,Q(0, n)TN(0, n)ψ(Q
′)

=
∑
n∈Z

ĝN,Q(0, n)e

(
nQ ′

N

)
ψ(Q ′)

= gN,Q(0,Q
′)ψ(Q ′) = GN

(
Q ′ −Q

N

)
ψ(Q ′).

Since the support of GN(x) is contained in (−1/2N, 1/2N)mod1, and GN(0) = N, we get

OpN
(
gN,Q

)
ψ(Q ′) =



Nψ(Q) if Q ′ = QmodN,

0 otherwise.

Hence

〈
OpN

(
gN,Q

)
ψ,ψ

〉
=

1

N

∑
Q ′ modN

GN

(
Q ′ −Q

N

)∣∣ψ(Q ′)
∣∣2 = ∣∣ψ(Q)∣∣2 . �

Lemma 5. Let ψ1 , . . . , ψN ∈ HN. Then, for all Q ∈ Z/NZ,

N∑
j=1

∣∣ψj(Q)∣∣8 ≤
∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣
(

N∑
j=1

∣∣〈TN(0, n)ψj, ψj〉∣∣4)1/4
4

. �
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Value Distribution for Quantum Maps 993

Proof. For ease of notation we put

tj(n) =
∣∣〈TN(0, n)ψj, ψj〉∣∣.

By Lemma 4 and identity (5),

∣∣ψj(Q)∣∣2 = 〈OpN (gN,Q)ψj, ψj〉
≤

∑
n∈Z

∣∣ĝN,Q(0, n)∣∣tj(n)
=

∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣tj(n).
Thus

N∑
j=1

∣∣ψj(Q)∣∣8 ≤
N∑
j=1

(∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣tj(n)
)4

=

N∑
j=1

∑
n1,n2,n3,n4 ∈Z

4∏
k=1

∣∣∣∣f̂(nk

N

)∣∣∣∣tj(nk).
Applying the Cauchy-Schwartz inequality twice, we get that

N∑
j=1

tj(n1)tj(n2)tj(n3)tj(n4) ≤
√√√√ N∑

j=1

tj(n1)2tj(n2)2

√√√√ N∑
j=1

tj(n3)tj(n4)

≤
4∏

k=1

 N∑
j=1

tj(nk)
4

1/4

,

and hence

N∑
j=1

∣∣ψj(Q)∣∣8 ≤
∑

n1,n2,n3,n4 ∈Z

4∏
k=1

∣∣∣∣f̂(nk

N

)∣∣∣∣
 N∑
j=1

tj(nk)
4

1/4


=

∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣
 N∑
j=1

tj(n)
4

1/4

4

. �

3.2 A counting problem

Recall that we identified the action of the matrix A on Z2 with multiplication by its

eigenvalue α on the ideal I ⊆ Z[α]. Let ι : I → Z2 be the identification given in (4). We

need the following proposition (see [KR, Proposition 11]).

 at T
el A

viv U
nversity on N

ovem
ber 19, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


994 Kurlberg and Rudnick

Proposition 6. Fix ν ∈ I. Then, for any orthonormal basis of Hecke eigenfunctions ψj,

N∑
j=1

∣∣〈TN(ι(ν))ψj, ψj〉∣∣4 ≤ N∣∣CAθ(2N)∣∣4 Sol(N,ν),

where Sol(N,ν) is the number of solutions of

ν
(
β1 − β2 + β3 − β4

) ≡ 0 modN (6)

with β1 , . . . , β4 in CA
θ(N). �

It was also shown that (6) has fewer than N2+ε solutions for ν fixed as N tends

to infinity. However, in the current setup, we need to make the dependence on ν more

explicit.1 Recall that α is an eigenvalue of A and that N : Q(α)→ Q is the norm map.

Lemma 7. We have

N∑
j=1

∣∣〈TN(0, n)ψj, ψj〉∣∣4 ≤ gcd(n,N)2N−1+ε . �

Proof. It is sufficient to show that (6) has fewer than

gcd(n,N)2N2+ε

solutions. We argue as in [KR, Section 7] except for a small twist. If (0, 1) ∈ Z2 cor-
responds to ω ∈ I, then (0, n) corresponds to ν = nω since the action is Z-linear. We

may thus make ν Galois stable by multiplying by ω. Since ω is in Z[α], the number of

solutions to

ν
(
β1 − β2 + β3 − β4

) ≡ 0 modN, βi ∈ CA
θ(N)

is bounded by the number of solutions of

nN(ω)
(
β1 − β2 + β3 − β4

) ≡ 0 modN, βi ∈ CA
θ(N),

which in turn is given by the number of solutions to

β1 − β2 + β3 − β4 ≡ 0 mod

(
N

gcd
(
N,nN(ω)

)), βi ∈ CA
θ(N). (7)

Let N ′ = N/gcd(N,nN(ω)). The number of solutions of (7) then equals the product of

1Ifn≡ 0modN, then there are aboutN4 solutions; it is essential to control the contribution from such terms.
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Value Distribution for Quantum Maps 995

• the number of solutions to

β ′
1 − β ′

2 + β ′
3 − β ′

4 ≡ 0 modN ′, β ′
i ∈ CA

θ(N ′),

where β ′
1 , . . . , β

′
4 ranges over all elements in CA

θ(N ′), and

• the number of elements (β1 , β2 , β3 , β4) ∈ CA
θ(N)4 which reduce to the same

element (β ′
1 , β

′
2 , β

′
3 , β

′
4) ∈ CA

θ(N ′)4 .

From [KR, Proposition 14], applied with ν = 1, it follows that the first term is less than

(N ′)2+ε . For the second term, [KR, Lemma 20] gives that the cardinality of the cokernel

of the reduction map CA
θ(N)→ CA

θ(N ′) is uniformly bounded inN. Hence there are less

than (CA
θ(N)/CA

θ(N ′))4 elements (β1 , β2 , β3 , β4) that reduce to (β ′
1 , β

′
2 , β

′
3 , β

′
4) modN ′.

Finally, from [KR, Lemma 8] we have

N1−ε � ∣∣CAθ(N)∣∣� N1+ε ,

and thus

CA
θ(N)

CA
θ(N ′)

�
(

N

N ′

)1+ε
.

The number of solutions is therefore bounded by

(N ′)2+ε
(

N

N ′

)4+ε
� N2+ε gcd

(
nN(ω), N

)2+ε � N2+2ε gcd(n,N)2 . �

Lemma 8. For all ε > 0,

∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣ gcd(n,N)1/2 �ε N1+ε . �

Proof. Let R = 1/ε. Since f is smooth and compactly supported, |f̂(n/N)| � 1 for |n| ≤
N1+1/R , and |f̂(n/N)| � 1/(n/N)R for |n| ≥ N1+1/R .

Trivially, gcd(n,N)1/2 ≤ N, so

∑
|n|≥N1+1/R

∣∣∣∣f̂( n

N

)∣∣∣∣ gcd(n,N)1/2 �
∑

|n|≥N1+1/R

N(
n

N

)R
= NR+1

∑
|n|≥N1+1/R

n−R

� NR+1

(N1+1/R )R−1

= N1+1/R .

 at T
el A

viv U
nversity on N

ovem
ber 19, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


996 Kurlberg and Rudnick

For the sum over small n, we have

∑
|n|≤N1+1/R

∣∣∣∣f̂( n

N

)∣∣∣∣ gcd(n,N)1/2 �
∑

|n|≤N1+1/R
gcd(n,N)1/2

� N1/R
N−1∑
n=0

gcd(n,N)1/2 .

(8)

We note that

N−1∑
n=0

gcd(n,N)1/2 � N1+ε . (9)

Indeed,

N−1∑
n=0

gcd(n,N)1/2 =
∑
d|N

d1/2
∑

n≤N,gcd(n,N)=d
1 ≤

∑
d|N

d1/2
N

d
= N

∑
d|N

d−1/2 .

Now,
∑

d|N d−1/2 is bounded by the number of divisors of N and hence is less than Nε

for all ε > 0.

Therefore from (8) and (9) we get

∑
|n|≤N1+1/R

∣∣∣∣f̂( n

N

)∣∣∣∣ gcd(n,N)1/2 �
∑

|n|≤N1+1/R
gcd(n,N)1/2 � N1/R+1+ε . �

3.3 Conclusion of the proof

Let {ψj}
N
i=1 be an orthonormal basis of HN such that ψ1 = ψ and each ψj is a Hecke

eigenfunction. We then bound |ψ(Q)|8 trivially by the sum
∑N

j=1 |ψj(Q)|
8 .

By Lemma 5,

N∑
j=1

|ψj(Q)|
8 ≤

∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣
 N∑
j=1

∣∣〈TN(0, n)ψj, ψj〉∣∣4
1/4


4

,

and from Lemma 7 we have

N∑
j=1

∣∣〈TN(0, n)ψj, ψj〉∣∣4 ≤ gcd(n,N)2N−1+ε .
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Lemma 8 then gives that

N∑
j=1

∣∣ψj(Q)∣∣8 � N−1+ε

(∑
n∈Z

∣∣∣∣f̂( n

N

)∣∣∣∣ gcd(n,N)1/2
)4

� N−1+ε
(
N1+ε

)4 � N3+5ε ,

and thus

∣∣ψ(Q)∣∣� N3/8+ε,

as required. �

4 Uniform boundedness for split primes

4.1 Explicit construction of Hecke eigenfunctions

Let N = p be an odd “split” prime, that is, a prime p that does not divide (trA)2 − 4 such

thatA is diagonalizablemodulo p.We also assume thatA is not triangularmodulo p, that

is, p does not divide any of the off-diagonal entries of A. For such p, we give an explicit

construction of the Hecke eigenfunctions. (See [DEGI] for an alternative approach to

constructing these.) This construction enables us to prove Theorems 2 and 3.

The condition above implies that N = p is an odd prime that splits in K and

does not divide the conductor2 of O. Since p does not divide the conductor of O, we

have O/pO � OK/pOK. Moreover, since p splits in K, (OK/pOK)
× � (Z/pZ)× × (Z/pZ)×,

and from [KR, Lemma 19] we get that CA
θ(p) � (Z/pZ)×. On the other hand, since p

is odd, we have CA
θ(2p) � CA

θ(p); hence CA
θ(2p) is a cyclic group of order p − 1. Let

β be the generator of this group, and let B ∈ Γ(4, 2p) be congruent to ι(β)mod2p. The

Hecke operators are then given by UN(B
k). Since the order of Bmodp is p − 1, B can be

diagonalized modulo p. (All elements in (Z/pZ)× are (p− 1)-roots of unity.) Let (B2 , Bp)

denote the mod 2 and mod p reductions of B. Since B ∈ Γ(4, 2p), we find that B2 is

the identity matrix, and, as Bp is diagonalizable, there exist D,M ∈ Γ(4, 2p) such that

D ≡ ( t 0
0 t−1

)
mod2p is diagonal and

B ≡ MDM−1 mod2p.

Because all matrices lie in Γ(4, 2p), multiplicativity property (3) implies that UN(B) =

UN(M)UN(D)UN(M)
−1 .

2Recall thatO can be written as Z+fOK ; the integer f is called the conductor ofO.
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998 Kurlberg and Rudnick

Now, UN is constructed as a tensor product UN = ⊗pk||NUpk , and since B2 is

trivial, we find the action is determined by Bp. Recall from [KR, Section 4] that the action

of diagonal matrices on ψ ∈ L2(Z/pZ) is given by

(
Up(D)ψ

)
(x) = Λp(t)ψ(tx),

where Λp(t) is the quadratic character of (Z/pZ)×. Thus if χ is a character on (Z/pZ)×,

extended to Z/pZ by letting χ(0) = 0, we find that χ is an eigenfunction of Up(D). We

also find that δ(x), where δ(0) = 1 and δ(x) = 0 for x �= 0, is an eigenfunction.

If f is an eigenfunction of Up(D), then Up(M)f is an eigenfunction of Up(B) since

Up(B)Up(M)f = Up(M)Up(D)Up(M
−1)Up(M)f = Up(M)Up(D)f.

But Up(B) generates the group of Hecke operators; hence any Hecke eigenfunction is

either the formUp(M)χ for χ nontrivial, or a linear combination ofUp(M)χ0 andUp(M)δ

for χ0 trivial.

4.2 A reduction to exponential sums

We first note that M is not upper triangular modulo p; otherwise, the same would hold

for B. SinceA is a power of B (modp), this would imply thatA is upper triangularmodulo

p,which is contrary to our assumption on p. Thus we may use the Bruhat decomposition

of SL(2,Z/pZ) to write

M =

[
1 b1

0 1

][
0 1

−1 0

][
1 b2

0 1

]t 0

0
1

t

 (10)

for some b1 , b2 , t (depending on p). From [KR,Section 4] we obtain that, forψ ∈ L2(Z/pZ),

(Up(M)ψ)(x) = Λp(t)
ep(rpb1x

2)√
p

p∑
y=1

ep
(
rp(b2y

2 + 2xy)
)
ψ(ty), (11)

where rp is the inverse of 2modp and ep(x) := e2πix/p .

4.2.1 The case ψ = Up(M)χ. We begin with the following lemma on exponential sums.
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Lemma 9. If rp �≡ 0modp, then we have the following.

(1) If χ is nontrivial and b2 �= 0modp, then

∣∣∣∣∣∣
p∑

y=1

ep
(
rp
(
b2y

2 + 2xy
))
χ(y)

∣∣∣∣∣∣ ≤ 2
√
p.

(2) If χ = χ0 is trivial or b2 = 0modp, then

∣∣∣∣∣∣
p−1∑
y=1

ep
(
rp
(
b2y

2 + 2xy
))
χ(y)

∣∣∣∣∣∣ = √
p. �

Proof. If χ is trivial or b2 ≡ 0modp, then we can express the sum as a classical Gauss

sum, and in this case the result is well known. For χ nontrivial,we note that the degree of

rp(b2y
2+2xy) is coprime to p; hencewemay applyWeil’s bound (see [We]) on exponential

sums (see [Sch , p. 45,Theorem 2G]) to obtain

∣∣∣∣∣∣
p∑

y=1

ep
(
rp
(
b2y

2 + 2xy
))
χ(y)

∣∣∣∣∣∣ ≤ 2
√
p.

Note that the bound is independent of the order of χ. �

Corollary 10. Let ψ =
√

p/(p− 1)Up(M)χ. Then ‖ψ‖2 = 1, |ψ| ≡ √
p/(p− 1) if χ is the

trivial character, and, for nontrivial characters χ,

‖ψ‖ ≤ 2

√
p

(p− 1)
. �

4.2.2 The case f = Up(M)δ. We begin with the following lemma.

Lemma 11. Let ψ∞ ,p =
√
pUp(M)δ. Then ‖ψ∞ ,p‖2 = 1 = ‖ψ∞ ,p‖∞ . �

Proof. We have ‖ψ∞ ,p‖2 = 1 since ‖δ‖22 = 1/p and Up(M) is unitary. From (11) we get

∣∣ψ∞ ,p(x)
∣∣ = ∣∣√p(Up(M)δ)(x)

∣∣
=

∣∣∣∣∣∣√pΛp(t)
ep(rpb1x

2)√
p

p∑
y=1

ep
(
rp
(
b2y

2 + 2xy
))
δ(ty)

∣∣∣∣∣∣ = 1

since δ(ty) = 0 unless y = 0. Hence ‖ψ∞ ,p‖∞ = 1. �

Theorem 2 follows immediately from Corollary 10 and Lemma 11.
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1000 Kurlberg and Rudnick

5 Value distribution for split primes

Let p be a split prime for our map A. We assume that A is not triangular modulo p. To

prove Theorem 3, we again use (11), which says that we can write the normalized Hecke

eigenfunctions ψχ,p for nontrivial χ as

ψχ,p(x) =
Λp(tp)ep(rpb1,px

2)√
p− 1

∑
ymodp

ep
(
rp
(
b2,py

2 + 2xy
))
χ(y),

where rp is the inverse of 2modp, Λp is the unique quadratic character modp, and tp,

b1,p, and b2,p come fromBruhat decomposition (10) of the diagonalizingmatrixMp forA.

Note that b2,p �= 0modp for p as in our assumptions, since otherwise from (10)

we find that

Mp =

−b1,ptp 1

tp

−tp 0

,
and consequently the matrix B is upper triangular:

B =MDM−1 =

 1

tp
b1,p

(
tp −

1

tp

)
0 tp

 .

Since A is a power of Bmodp, this implies that A is also upper triangular, contradicting

our assumption on p.

Thus wemay express the absolute value ofψχ,p in terms of the exponential sums

Hp(χ, R)(t) =
∑

ymodp

ep
(
R(y2 + ty)

)
χ(y).

First, define (following [Ka]) a normalization Fp(χ, R)(t) of these sums as (R �= 0modp)

Fp(χ, R)(t) = −

ep

(
Rt2

8

)
√

χ

(
−1

2

)
G(R, χ)G(R,Λp)

Hp(χ, R)(t),

where G(R, χ) =
∑

xmodp χ(x)ep(Rx) are Gauss sums, and
√∗ denotes any choice of the

square root. Then we have

∣∣ψχ,p(x)∣∣ = 1√
1−

1

p

∣∣∣∣∣Fp(χ, rpb2,p)
(

2x

b2,p

)∣∣∣∣∣. (12)
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Concerning the normalized sums Fp(χ, R)(t), Katz proved the following value dis-

tribution and statistical independence theorem.

Theorem 12 [Ka]. Let p be an odd prime, let χ be a nontrivial character mod p, and let

R �= 0modp. Then we have the following.

(1)The normalized sums Fp(χ, R)(t) are real and take values in the interval [−2, 2].

(2) As p → ∞, the p numbers {Fp(χ, R)(t)/2 : tmodp} become equidistributed in

[−1, 1] with respect to the semicircle measure (2/π)
√
1− u2 du.

(3) For any r ≥ 2 and a choice of r distinct nontrivial characters χ1 , . . . , χr, the p

vectors

{(
Fp(χ1 , R)(t)

2
, . . . ,

Fp(χr, R)(t)

2

)
: t modp

}

become equidistributed in [−1, 1]rwith respect to the product of the semicirclemeasures.

�

By virtue of relation (12) between the normalized eigenfunctions fχ and the nor-

malized sums Fp(χ, R), Theorem 3 is an immediate consequence of Katz’s theorem and

the following general lemma.

Lemma 13. Let {fp(t), t = 1, . . . , p} be a sequence of p points in the interval [0, 1] which

become equidistributed as p → ∞ with respect to a probability measure ρ(x)dx having

a continuous density ρ. Suppose {gp(t) : t = 1, . . . , p} is another sequence of points so

that gp(t) = θpfp(t) with θp = 1 + o(1). Then {gp(t) : t = 1, . . . , p} is also equidistributed

in [0, 1] with respect to ρ(x)dx. �

We leave the proof of this as a simple exercise for the reader.
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