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1. Introduction

1.1. Nodal directions. One of the more intriguing characteristics of a Laplace

eigenfunction on a planar domain is its nodal set. Much progress has been

achieved in understanding its length, notably the work of Donnelly and Feffer-

man [6], and the recent breakthrough by Logunov and Mallinikova [11, 10, 9],

and several researchers have tried to understand the number of nodal domains

(the connected components of the complement of the nodal set), starting with

Courant’s upper bound on that number, see [4] for the latest result. In this note,

we propose to study a different quantity, the directional distribution, measuring

an aspect of the curvature of nodal lines.

Let � be a planar domain, with piecewise smooth boundary, and let f be

an eigenfunction of the Dirichlet Laplacian, with eigenvalue E: ��f D Ef .

Given a direction � 2 S1, let N� .f / be the number of points x on the nodal line

¹x 2 � W f .x/ D 0º with normal pointing in the direction ˙�:

N� .f / D #
°
x 2 �W f .x/ D 0;

rf .x/

krf .x/k D ˙�
±
: (1.1)

In particular (1.1) requires that rf .x/ ¤ 0, i.e. x is a non-singular point of the

nodal line.
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In a few separable cases, such as an irrational rectangle, or the disk, one can

explicitly compute N� .f /: For the irrational rectangle, the nodal line is a grid and

N� .f / D 0; 1, while for the disk the nodal line is a union of diameters and circles,

and we find N� .f / �
p

E except for O.
p

E/ choices of �, when N� .f / D 1,

see Appendix A. However, in most cases one cannot explicitly compute N� .f /.

The following heuristic suggests that generically the order of magnitude of N� .f /

is about E: We expect a “typical” eigenfunction to have an order of magnitude

of E nodal domains [15], and looking at several plots of nodal portraits such as

Figure 1 would lead us to believe that many of the nodal domains are ovals, or at

least have a controlled geometry, with O.1/ points per nodal domain with normal

parallel to any given direction. Therefore we are led to expect that the total number

of points on the nodal line with normal parallel to ˙� should be about E (if it is

finite).
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Figure 1. The nodal line of the toral eigenfunction sin.2�.8x � y// C sin.2�.4x C 7y// C
cos.2�.4x � 7y//: A significant proportion of its components are ovals.

To try and validate this heuristic, we study N� .f / on the standard flat torus

T D R
2=Z2 (equivalently taking � to be the square, and imposing periodic,

rather than Dirichlet, boundary conditions), for both random and deterministic

eigenfunctions. We prove deterministic upper bounds, and compute the expected

value of N� for “arithmetic random waves” described below.
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1.2. A deterministic upper bound. We want to establish individual upper

bounds on N� .f /. Strictly speaking, this is not possible, since there are cases

where N� .f / D 1. For instance, the nodal set of the eigenfunctions f .x; y/ D
sin.2�mx/ sin.2�ny/ (m; n � 1) is a union of straight lines with N� .f / D 0

unless � D ˙.1; 0/; ˙.0; 1/ in which case N�.f / D 1. More generally, one can

construct toral eigenfunctions f so that their nodal lines contain a closed geodesic,

but also curved components, see Figure 2 where we display the eigenfunction

f .x; y/ D 2.sin 8x sin y C sin 7x sin 4y C sin x sin 8y C sin 4x sin 7y/

D 4 sin.x/ sin.y/.cos x C cos y/h.x; y/

where

h.x; y/ D 2 cos.3x � 5y/ � 2 cos.2x � 4y/ � 2 cos.4x � 4y/

C 4 cos.x � 3y/ C 4 cos.3x � 3y/ C 2 cos.5x � 3y/

� 4 cos.2x � 2y/ � 2 cos.4x � 2y/ C 6 cos.x � y/

C 4 cos.3x � y/ C 6 cos.x C y/ C 4 cos.3x C y/

� 4 cos.2x C 2y/ � 2 cos.4x C 2y/ C 4 cos.x C 3y/

C 4 cos.3x C 3y/ C 2 cos.5x C 3y/ � 2 cos.2x C 4y/

� 2 cos.4x C 4y/ C 2 cos.3x C 5y/ � 4 cos.2x/ C 2 cos.6x/

� 4 cos.2y/ C 2 cos.6y/ � 2:

(1.2)

Theorem 1.2 below asserts an upper bound for N� .f / with the only exceptions

being when the nodal line contains a closed geodesic. It will follow as a particular

case of a structure result on the set

A�.f / D ¹x 2 �W f .x/ D 0; hrf .x/; �?i D 0º (1.3)

of “nodal directional points,” i.e. the set of nodal points where rf is orthogonal

to �? (thus co-linear to �). Note that, by the definition, in addition to the set on the

right hand side of (1.1), A�.f / contains all the singular nodal points of f �1.0/,

and could also contain certain closed geodesics in direction orthogonal to �, as

we shall see below. To state Theorem 1.2 we introduce the (standard) notion of

“height” for a rational vector.

Notation 1.1 (height of a rational vector). (1) A rational direction � 2 S
1 is one

which is a multiple of an integer vector. Note that � is rational if and only if the

orthogonal direction �? is rational.
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Figure 2. Left: nodal set of the eigenfunction f .x; y/ D 2.sin 8x sin y C sin 7x sin 4y C
sin x sin 8y C sin 4x sin 7y/ D 4 sin.x/ sin.y/.cosx C cos y/h.x; y/ for the trigonometric

polynomial h.x; y/ in (1.2), on the full square Œ0; 2�� � Œ0; 2��. Note the lines x; y 2 �Z,

x ˙ y 2 �.1 C 2Z/. The scaled function f .x=2�; y=2�/ is a toral eigenfunction. Right:

Contours of h.x; y/ on the square Œ0; �� � Œ0; ��.

(2) For a rational vector � 2 S
1 we denote its height by h.�/ D max.jk1j; jk2j/

where .k1; k2/ is a primitive integer vector (unique up to sign) in the direction

of �:

� D ˙ .k1; k2/q
k2

1 C k2
2

:

Note that h.�/ D h.�?/.

Theorem 1.2. Let � 2 S
1 be a direction, and f be a toral eigenfunction: ��f D

Ef for some E > 0.

(1) If � is rational, then the set A� .f / consists of at most

p
E

�h.�/

closed geodesics orthogonal to �, at most 2
�2 �E nonsingular points not lying

on the geodesics, and possibly, singular points of the nodal set.

(2) If � is not rational, then the set A�.f / consists of at most 2
�2 � E nonsingular

points, and possibly, singular points of the nodal set.

(3) In particular, if A�.f / does not contain a closed geodesic, then

N� .f / � 2

�2
� E:
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The proof of Theorem 1.2, given in section 2 below, is sufficiently robust to

apply verbatim to the more general family of trigonometric polynomials on T
2 of

degree �
p

E. We note that it is possible to construct Laplace eigenfunctions f

of arbitrarily high eigenvalues and � 2 S
1 such that N� .f / D 0 vanishes, so that

a general lower bound for N� .f / cannot exist. For example,

f .x; y/ D 2 cos.2� � mx/ C cos.2� � my/

has eigenvalue E D 4�2m2 and satisfies N� .f / D 0 for � D ei� with � near �=2,

see Figure 3.
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Figure 3. The nodal line of f .x; y/ D 2 cos.2� � 10x/ C cos.2� � 10y/. For the choice

� D ei�=2 we have N�.f / D 0.

1.3. Expected number for arithmetic random waves. A better understanding

of several properties of nodal lines is obtained if one studies random eigenfunc-

tions. In 1962, Swerling [20] studied statistical properties of contour lines of a

general class of planar Gaussian processes, and gave a non-rigorous computation

of the expected value of N� for general contour lines, using the result to bound the

number of closed connected components of contour lines. We will compute the

expected value of N� for “arithmetic random waves” [17, 19]. These are random



932 Z. Rudnick and I. Wigman

eigenfunctions on the torus,

f .x/ D fn.x/ D
X

�2En

c�e.h�; xi/; (1.4)

where e.z/ D e2�iz and

En D ¹� D .�1; �2/ 2 Z
2W k�k2 D nº (1.5)

is the set of all representations of the integer n D �2
1 C �2

2 as a sum of two integer

squares, and c� are standard Gaussian random variables1, identically distributed

and independent save for the constraint

c�� D c� ; (1.6)

making fn real valued eigenfunctions of the Laplacian with eigenvalue

E D 4�2n (1.7)

for every choice of the coefficients ¹c�º�2E�
(i.e. for every sample point).

Equivalently fn W T2 ! R is a centred Gaussian random field with covariance

r.x; y/ D rn.y � x/ D 1

Nn

X

�2En

e.h�; y � xi/: (1.8)

Since r.x; y/ depends only on y � x, the random field fn is stationary, meaning

that for every translation

�z W fn.�/ 7�! fn.� C z/

with z 2 T
2, the law of �zfn equals the law of fn:

�zfn
dD fn: (1.9)

This, in turn, is equivalent to the law of the Gaussian multivariate vector .fn.x1/;

: : : ; fn.xk// being equal to the law of the vector .fn.x1 C z/; : : : ; fn.xk C z// for

every x1; : : : ; xk 2 T
2, z 2 T

2.

In [19] we studied the statistics of the length of the nodal line of fn. Since

then, very refined data has been obtained on the nodal structure of such random

eigenfunctions (see e.g. [8, 12, 14, 18, 7]). It is opportune to mention that in

a different, complex geometric, context, Gayet and Welschinger [2, 3] studied a

quantity related to N� , namely, the number of critical points of a deterministic

1 After understanding the Gaussian case, one may try non-Gaussian ensembles, see e.g. [5].
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function restricted to the nodal set of a random field, also yielding an upper bound

for the expected number of nodal components for that random field.

We will compute the expected value of N� for arithmetic random waves. The

answer depends on the distribution of lattice points on the circle of radius
p

n. Let

�n be the atomic measure on the unit circle given by

�n D 1

r2.n/

X

�2En

ı�=
p

n;

where r2.n/ WD #En, and let

c�n.k/ D 1

r2.n/

X

�D.�1;�2/2En

��1 C i�2p
n

�k

2 R

be its Fourier coefficients.

Theorem 1.3. For � D ei� 2 S1, the expected value of N� .f / for the arithmetic

random wave (1.4) is

EŒN� � D 1p
2

n � .1 C c�n.4/ � cos.4�//1=2: (1.10)

The statement (1.10) of Theorem 1.3 is valid even if the right hand side of

(1.10) vanishes, i.e. if

c�n.4/ � cos.4�/ D �1

either

�n D 1

4
.ı˙1 C ı˙i /

(“Cilleruelo measure”) and � D ˙�
4

; ˙3�
4

, or �n is the rotation by �
4

of the latter

measure (“tilted Cilleruelo”) and � is parallel to one of the axes. These cases are

exceptional in the following sense: It is known [16, 7] that for every probability

measure � on the unit circle S
1 there exists a constant cNS.�/ � 0 (the “Nazarov–

Sodin constant”) such that if the measures �n converge weak-� to �, then the

expectation of the number C.fn/ of nodal domains of fn is

EŒC.fn/� D .cNS.�/ C o.1// � n:

Moreover, the Nazarov–Sodin constant cNS.�/ D 0 vanishes, if and only if � is

one of these exceptional measures [7]. In that case it was shown [7] that most

of the nodal components are long and mainly parallel to one of the axes (perhaps,

after rotation by �
4

); with accordance to the above, our computation (1.10) implies
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in particular that cNS.�/ D 0 for � (tilted) Cilleruelo measure, i.e. the “if” part of

the aforementioned statement from [7].

One can study an analogous quantity N� .f / for eigenfunctions on the d -di-

mensional torus Td D R
d =Zd , d � 3 with eigenvalue 4�2n. We can establish a

result analogous to Theorem 1.3 in the higher dimensional case, showing that for

d � 3,

EŒN� � � Cd nd=2; n ! 1;

for some positive constant Cd > 0 independent of �, assuming that n ¤ 0; 4;

7 mod 8 if d D 3, and n ¤ 0 mod 8 if d D 4.

Acknowledgements. We thank Jerry Buckley, Suresh Eswarathasan, Manju-

nath Krishnapur, Mark Shusterman and Mikhail Sodin for their comments. The

work was supported by the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement

no 320755 and 786758 (Z.R.), and no 335141 (I.W.).

2. Deterministic upper bound: proof of Theorem 1.2

Before giving a proof for Theorem 1.2 we will need some preparatory results, all

related to the identification of the trigonometric polynomials on T
2 with Laurent

polynomials in CŒz1; z2�, via the natural embeddingT
2 D S

1�S
1 ,! C

2 (see (2.2)

below).

2.1. From trigonometric polynomials to (Laurent) polynomials

Definition 2.1. (1) Let P be the space of all complex valued trigonometric poly-

nomials on T
2. We define an operator ˆWP ! CŒz1; z2; z�1

1 ; z�1
2 � between P and

the complex Laurent polynomials in the following way. For gWT2 ! R a trigono-

metric polynomial

g.x/ D
X

�2Z2

finite sum

c�e2�ih�;xi; (2.1)

we associate the Laurent polynomial zG D ˆ.g/ 2 CŒz1; z�1
1 ; z2; z�1

2 � via the

embedding T
2 D S

1 � S
1 ,! C

2

.x1; x2/ 7�! .z1; z2/ D .e2�ix1 ; e2�ix2/; (2.2)
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or, explicitly,
zG.z/ D g.x/ D

X

�2Z2

c�z�;

where for z D .z1; z2/ 2 C
2 and � 2 En we denote z� WD z

�1

1 � z
�2

2 .

(2) For k D 1; 2 let Dk W CŒz1; z2� ! CŒz1; z2� be the operator

Dk W p.z/ 7�! zk

@p.z/

@zk

:

(3) For � 2 S
1 denote the operator

D� D h.D1; D2/; �i D �1D1 C �2D2:

The following properties are immediate from the definitions:

Lemma 2.2. (1) For every � 2 S
1 the operator D� (in particular, D1 and D2) is

a derivation, i.e. it is a linear operator satisfying the Leibnitz law

D�.p.z/q.z// D D�p.z/ � q.z/ C p.z/ � D�q.x/:

(2) For every g, a trigonometric polynomial as in (2.1), and x D .x1; x2/2T
2,

we have

g.x/ D .ˆg/.z/ D zG.z/; (2.3)

where z D z.x/ is given by (2.2) and zG D ˆg.

(3) For � 2 S
1, if zG D ˆg, then

1

2�i
ˆ.@�g/ D D�

zG; (2.4)

i.e. if under ˆ, g maps to g 7! zG, then its (normalised) directional derivative
1

2�i
@�g maps to D�

zG.

2.2. Auxiliary lemmas

Lemma 2.3. Let g W T2 ! R be a trigonometric polynomial (2.1), x0 2 g�1.0/

a nonsingular zero, zG D ˆ.g/ 2 CŒz1; z�1
1 ; z2; z�1

2 �, and G.z/ D zı zG.z/ 2
CŒz1; z2�, so that

G.z0/ D g.x0/ D 0;

where z0 D z.x0/ 2 C
2 is the point corresponding to x0 via (2.2). Suppose also

that P j G is an irreducible factor of G such that P.z0/ D 0. Then P 2 − G.
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Proof. Assume by contradiction that, under the assumptions of Lemma 2.3, we

have that

P 2 j G (2.5)

we then claim that in this case necessarily rg.x0/ D 0, contradicting the non-

singularity of x0 as a zero of g. We show that @g
@xk

.x0/ D 0, k D 1; 2.

Since Dk is a derivation in CŒz1; z2�, and by (2.4) we have that

ˆ
� 1

2�i

@g

@xk

�
D Dk

zG D Dk.z�ıG/ D z�ı � DkG C G � Dkz�ı : (2.6)

Since both G and DkG are divisible by P by our assumption (2.5), we have

G.z0/ D DkG.z0/ D 0. Substituting this into (2.6), and bearing in mind (2.3),

this yields that @g
@xk

.x0/ D 0. Thus x0 is a singular zero of g, contradicting our

assumption. �

Lemma 2.4. Let zG 2 CŒz1; z�1
1 ; z2; z�1

2 � be a Laurent polynomial, ı 2 Z
2
�0 so

that

G.z/ D zı zG.z/ 2 CŒz1; z2� (2.7)

is a polynomial, with ı minimal in the sense that zj − G. Let zQ�.z/ D D�. zG/.z/

and

Q�.z/ WD zı � zQ�.z/ 2 CŒz1; z2�: (2.8)

Suppose that

P j gcd.G; Q�/ (2.9)

is an irreducible polynomial, such that P 2 − G. Then necessarily D�P is a scalar

multiple of P , i.e. there exists t 2 C so that

D�P D t � P: (2.10)

Proof. First, since by Lemma 2.2, D� is a derivation, we have that

D�G D D�.zı � z�ıG/ D D�.xı � zG/ D D�.xı/ � zG C xı � D�. zG/

D hı; �ixı � zG C xı zQ� D hı; �iG C Q� ;
(2.11)

by (2.7) and (2.8). Hence, since, by assumption (2.9), both summands on the right

hand side of (2.11) are divisible by P , so is D�G, i.e.

P j D�G: (2.12)

Now let us write

G D P � A (2.13)
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for some A 2 CŒz1; z2�; since by assumption P is irreducible, and P 2 − G by

Lemma 2.3, this necessarily implies

gcd.P; A/ D 1: (2.14)

Applying the derivation D� on (2.13) we obtain:

D�G D D�.P / � A C P � D�A;

which, together with (2.13) yields that

P j D�.P / � A;

which, by (2.14), forces

P j D�.P /: (2.15)

Note that if

P.z/ D
X

˛2Z2
�0

p˛z˛

is a finite sum, then

D�.P /.z/ D
X

˛2Z2
�0

h�; ˛ip˛z˛

is of degree at most the degree of P . Hence (2.15) implies that D�P is a scalar

multiple of P . �

Lemma 2.5. Let � 2 S
1, t 2 C, and P 2 CŒz1; z2� nonconstant irreducible

polynomial such that z1; z2 − P , and

D�P D t � P: (2.16)

Then the following hold:

(1) the direction � is rational (i.e. the vector � is a multiple of a rational vector);

(2) the polynomial P is necessarily of the form

P.z/ D p1z
k1

1 C p2z
k2

2 (2.17)

for some p1; p2 2 Cn¹0º, and .k2; k1/ 2 Z
2
�0 is a primitive vector (unique

up to sign) satisfying
.k2; k1/

k.k2; k1/k D ˙�:
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Proof. Writing P as a finite sum

P.z/ D
X

˛

h�; ˛ip˛z˛;

(the finite sum over ˛ 2 Z
2
�0), the equality (2.16) is equivalent to

h�; ˛i � p˛ D t � p˛

for every ˛ 2 Z
2
�0, i.e.

h�; ˛i D t (2.18)

for every ˛ 2 Z
2
�0 with p˛ ¤ 0. Note that P is not a monomial (as otherwise P

would be divisible by either z1 or z2), hence (2.18) is valid for at least two distinct

˛. Therefore, for these ˛, one has

h�; ˛ � ˛0i D 0;

which forces � to be rational, i.e. yields the first statement of Lemma 2.5.

Now assume that the rational vector � D u
kuk is a multiple of a primitive integer

vector u 2 Z
2. We may then rewrite (2.18) as

hu; ˛i D s; (2.19)

with s D kuk�t , uniquely determined by � and t , and to have any solution to (2.19),

necessarily s 2 Z. The integer solutions to (2.19), considered as an equation in ˛,

are

˛ D ˛0 C k � v; (2.20)

where ˛0 is a particular solution to (2.19), and v 2 Z
2 is the primitive integer

vector orthogonal to u, unique up to sign, some of whose coordinates might be

negative. Note that

� D v

kvk
is a unit vector orthogonal to �.

Since the collection

¹˛ 2 Z
2W p˛ ¤ 0º

is finite (corresponding to a finite collection of k in (2.20)), we can choose ˛0 a

particular solution of (2.19) so that

p˛0 ¤ 0; (2.21)
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and the numbers k in (2.20) satisfy 0 � k � K for some K > 0; by (2.21) we

necessarily have ˛0 2 Z
2
�0. We may then write:

P.z/ D
KX

kD0

pkz˛0Ck�v D z˛0 �
KX

kD0

pk.zv/k D z˛0 � Q.zv/; (2.22)

where Q.w/ 2 CŒw� is a (one variable) complex polynomial, which, by above, is

not a monomial.

We claim that the irreducibility of P implies the irreducibility of Q, which, in

turn, implies that Q is linear. For if Q were reducible, we could write

Q.w/ D A.w/ � B.w/ (2.23)

for some nonconstant polynomials A; B 2 CŒw�. Substituting (2.23) into (2.22),

we obtain

P.z/ D z˛0 � A.zv/B.zv/: (2.24)

As one or both components of v might be negative, (2.24) does not immediately

imply that P is reducible. Write

A.zv/ D z�˛1 zA.z/;

B.zv/ D z�˛2 zB.z/;

where ˛1; ˛2 2 Z
2
�0 are minimal so that zA.z/; zB.z/ 2 CŒz� are polynomial, so that

zA; zB are not divisible by z1; z2. We then have

P.z/ D z˛0�˛1�˛2 � zA.z/ zB.z/: (2.25)

Since P is not divisible by z1; z2 and neither are A and B , the equality (2.25)

implies that ˛0 � ˛1 � ˛2 D 0, so that

P.z/ D zA.z/ � zB.z/

is a factorization of P into nonconstant polynomials, contradicting the assumption

that P is irreducible, and hence Q as in (2.22) is itself irreducible in CŒw�, so

Q.w/ D q0 C q1w (2.26)

with q0; q1 2 C
�, is linear.

Substituting (2.26) into (2.22) gives

P.z/ D q0z˛0 C q1z˛0Cv; (2.27)

and ˛0; ˛0 C v 2 Z
2
�0. Since ˛0 ¤ ˛0 C v and z1; z2 − P , the form (2.27) of P

reduces to (2.17), and it also forces

v D .�k1; k2/;

hence .k2; k1/ is a primitive lattice point of Z2, co-linear with �. �
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2.3. Proof of Theorem 1.2

Proof. Let f D fn be a toral eigenfunction (1.4) (it is a monochromatic trigono-

metric polynomial whose frequency set En is given by (1.5)), and

zG D ˆ.f / 2 CŒz1; z�1
1 ; z2; z�1

2 �

be the Laurent polynomial associated to f as in Lemma 2.2, so that

zG.z/ D f .x/ D
X

�2En

c�z�: (2.28)

Note that for � 2 En, we have j�1j C j�2j �
p

2n. To make zG into a polynomial

in CŒz1; z2� we multiply zG by a monomial zı with ı 2 Z
2
�0 satisfying

ı1 C ı2 �
p

2n; (2.29)

to write

G.z/ D zı zG.z/; (2.30)

with ı minimal, so that, in particular, G.z/ is not divisible by z1 or z2. By (1.4)

and (2.29), we have

deg.G/ � 2
p

2 �
p

n: (2.31)

Now let zQ� D 1
2�i

ˆ.@�f / be the Laurent polynomial corresponding to the direc-

tional derivative @�f .x/ of f where � D �? is orthogonal to �. By Lemma 2.2

we have

zQ�.z/ D D�. zG.z// D 1

2�i
ˆ.@�f /.z/ D

X

�2En

h�; �ic�z�; (2.32)

and

Q�.z/ WD zı � zQ�.z/ 2 CŒz1; z2� (2.33)

with ı same as in (2.30), is a polynomial of degree

deg.Q�/ � 2
p

2 �
p

n; (2.34)

though might be divisible by z1 or z2. By (2.28), (2.30), (2.32), and (2.33), for

some x0 2 T
2 we have

f .x0/ D @�f .x0/ D 0;

(without imposing rf .x0/ ¤ 0), if and only if z0 D z.x0/ is a joint zero of both

G and Q� , i.e.

G.z0/ D Q�.z0/ D 0:
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Now let

D D gcd.G; Q�/

be the greatest common divisor of G and Q�

G.z/ D A.z/ � D.z/

and

Q�.z/ D B.z/ � D.z/;

where

gcd.A; B/ D 1 (2.35)

and

deg.D/; deg.A/ � deg.G/ � 2
p

2 �
p

n; deg.B/ � deg.Q�/ � 2
p

2 �
p

n

(2.36)

by (2.31) and (2.34), and, by the above, we are interested in z D .z1; z2/ 2 C
2, so

that jz1j D jz2j D 1 and G.z/ D Q�.z/ D 0.

Given z0 2 C
2 we have that G.z0/ D Q�.z0/ D 0, if and only if either

A.z0/ D B.z0/ D 0;

or D.z0/ D 0 (both cannot occur simultaneously). Denote

Z
1.G; Q�/ WD ¹z 2 C

2W A.z/ D B.z/ D 0º (2.37)

and

Z
2.G; Q�/ WD ¹z 2 C

2W D.z/ D 0º; (2.38)

the nodal directional points of the first and second type respectively. The meaning

of the above is that, under the embedding (2.2) of S1 � S
1 � C

2,

¹x 2 T
2I f .x/ D hrf; �i D 0º 7�! .Z1.G; Q�/ [ Z

2.G; Q�// \ S
1 � S

1: (2.39)

Hence understanding of

Z
1.G; Q�/ [ Z

2.G; Q�/

will also allow for bounding the size of the left hand side of (2.39); note that,

unlike the definition (1.1) of N� , the left hand side of (2.39) includes singular

points of f �1.0/, having no bearing on giving an upper bound for N� via one for

the right hand side of (1.1). Since A and B are co-prime by (2.35), and bearing in
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mind (2.36) and the definition (2.37), it follows that Z1.G; Q�/ consists of finitely

many isolated points, and its cardinality is bounded, by Bézout’s Theorem2

jZ1.G; Q�/j � deg.A/ � deg.B/ � 8n D 2E

�2
; (2.40)

on using (2.36) and (1.7).

Now we turn to understanding Z
2.G; Q�/ as in (2.38). Let P jD be an irre-

ducible divisor of D D gcd.G; Q�/, and let x0 2 A�.f / 2 T
2 be a nonsingular

nodal directional point so that P.z0/ D 0, where z0 D z.x0/, the map in (2.2).

Then, thanks to Lemma 2.3, P 2 − G, so that we may apply Lemma 2.4 to deduce

that

D�P D t � P; (2.41)

for some scalar t 2 C. By invoking Lemma 2.5, the equality (2.41) in turn implies

that � is a rational direction, and

P.z/ D p1z
k1

1 C p2z
k2

2 ;

where the primitive vector

.k2; k1/ 2 Z
2
�0 is co-linear to � D �?; i.e. orthogonal to �: (2.42)

Thus

D D
� KY

iD1

Pj .z/
�

� E.z/; (2.43)

where for every j D 1; 2; : : :K the polynomial Pj is of the form

Pj .z/ D p1Ij z
k1

1 C p2Ij z
k2

2 ;

for some p1Ij ; p2Ij 2 C, and E.z/ is the product of irreducible factors P j D

of D so that P 2 j D (corresponding to the singular points x0 2 T
2), and those

irreducible P j D that don’t vanish on S
1 � S

1 � C
2. It then follows that

K � deg.D/

max.k1; k2/
� 2

p
n

h.�/
D 2

p
n

h.�/

by (2.36).

Now using (2.3) on (2.43), (2.38), we have that, under the embedding (2.39),

the zeros of D.z/ correspond to the zeros of

d.x/ WD D.z.x// D
� KY

j D1

.p1Ij e2�ik1x1 C p2Ij e2�ik2x2/
�

� zE.x/; (2.44)

2 which states that if A; B 2 CŒz1; z2� are co-prime polynomials, then the number of

common zeros of A and B is bounded by deg A � deg B.
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where zE.x/WT2 ! R is the trigonometric polynomial corresponding to E.z/ D
zE.x/, that only has singular zeros. Let

hj .x/ WD p1Ij e2�ix1k1 C p2Ij e2�ix2k2

be a factor of (2.44); by construction (2.43) we know a priori that the zero locus of

hj on T
2 is non-empty. In this case, necessarily jp1Ij j D jp2Ij j, and upon writing

�p2Ij
p1Ij

DW e2�i'

for ' 2 Œ0; 1/, the zero locus of hj is given by

h�1
j .0/ D

°
.x1; x2/ 2 T

2W e.x1k1 � x2k2/ D �p2Ij
p1Ij

±

D ¹.x1; x2/ 2 T
2W x1k1 � x2k2 D ' mod 1º;

hence is a closed geodesic in T
2 (it has a single connected component, since,

by assumption, gcd.k1; k2/ D 1), orthogonal to .k1; �k2/, of length

q
k2

1 C k2
2 ,

and, recalling (2.42), the geodesic h�1
j .0/ is orthogonal to �. In summary, under

the embedding (2.2), the nonsingular points on f �1.0/ corresponding to the set

Z
2.G; Q�/ \ .S1 � S

1/ consist of

� 2

p
n

h.�/
D

p
E

h.�/

closed geodesics orthogonal to �, concluding the statement of Theorem 1.2. �

3. Expected nodal direction number for arithmetic random waves.

Proof of Theorem 1.3

In this section, we compute the expected value of N� for arithmetic random

waves. The formal computation is along the lines of Swerling’s paper [20], but

his argument relied on several assumptions, some implicit, on the nature of the

relevant Gaussian field, which are difficult to isolate and check separately. Thus

we carry out the computation ab initio.

3.1. Proof of Theorem 1.3

Proof. Let � D �? be the orthogonal vector to �, and define,

fN� .f / D #¹x 2 T
2W f .x/ D hrf .x/; �i D 0º
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to be the size of the set A�.f / in (1.3), finite or infinite. Equivalently,

fN� .f / D N� .f / C # Sing.f /;

where

Sing.f / D ¹x 2 T
2W f .x/ D 0; rf .x/ D 0º

is the set of singular nodal points of f .

Since by Bulinskaya’s Lemma [1, Proposition 6.12], the singular set Sing.f /

is empty almost surely (that the statement of Bulinskaya’s Lemma is valid in our

concrete case was established in [17, Lemma 2.3]), we have that

N� .f / D fN� .f / D #¹x 2 T
2W f .x/ D hrf .x/; �i D 0º: (3.1)

That is, upon defining the Gaussian random field GWT2 ! R
2

G.x/ D G�.x/ D .f .x/; hrf .x/; �i/; (3.2)

then N� equals almost surely the number of zeros of G. Let JG.x/ be the Jacobian

of G given by

JG.x/ D det

�
f1 f2

f11�1 C f12�2 f12�1 C f22�2

�

D f1.f12�1 C f22�2/ � f2.f11�1 C f12�2/;

where we denote fi D @f =@xi , fij D @2f =@xi@xj , and all the derivatives of f

are evaluated at x.

The zero density function is

K1.x/ D K1I�.x/ D �G.x/.0; 0/ � EŒjJG.x/j j G.x/ D 0�; (3.3)

where �G.x/ is the probability density function of the random vector G.x/ 2 R
2;

by the aforementioned stationarity (1.9) of fn, we have

K1.x/ � K1.0/:

By Kac-Rice [1, Theorem 6.3] and (3.1), we have that

EŒN� � D
Z

T2

K1.x/dx; (3.4)

provided that the distribution of G.x/ is non-degenerate for every x 2 T
2.
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By stationarity, it is sufficient to check non-degeneracy of G.0/, which is valid

since .f .0/; rf .0// 2 R
3 is non-degenerate by the computation below. The

statement of Theorem 1.3 follows upon substituting the statements of Lemma 3.1

and Proposition 3.2 below into (3.3) so that

K1.x/ D 1p
2

n � .1 C c�n.4/ � cos.4�//
1=2

;

and then finally into (3.4). �

In course of the proof of Theorem 1.3 we used the following results established

in §3.2 below:

Lemma 3.1. Let G W T2 ! R
2 be the Gaussian field defined by (3.2), and �G.x/

the probability density function of G.x/. Then for every x 2 T
2 we have

�G.x/.0; 0/ D 1

2�
p

det CG.x/
D 1

23=2�2
p

n
: (3.5)

Proposition 3.2. Let G W T2 ! R
2 be the Gaussian field defined by (3.2), and

JG.x/ its Jacobian. Then the conditional expectation of jJG.x/j conditioned on

G D 0 is

EŒjJG.x/j j G.x/ D 0� D 2�2 .1 C c�n.4/ � cos.4�//
1=2 � n3=2

3.2. Proofs of Lemma 3.1 and Proposition 3.2: evaluating the zero density

Proof of Lemma 3.1. The covariance matrix of .f .x/; rf .x// was computed in

[19, Proposition 4.1] to be

C.f;rf / D
�

1

2�2nI2

�
;

in particular f .x/ is independent of rf .x/; hence the covariance matrix of G is

CG.x/ D
�

1

2�2n

�
;

where we used

Var.hrf .x/; �i/ D �2
1 Var.f1/ C �2

2 Var.f2/ D 2�2n;

since

�1
1 C �2

2 D 1:

Thus

�G.x/.0; 0/ D 1

2�
p

det CG.x/
D 1

23=2�2
p

n
: �
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Proof of Proposition 3.2. We are going to work under the assumption �2 ¤ 0;

one can easily see that the same result holds true for �2 D 0, e.g. by switching

between �1 and �2; by stationarity we may assume x D 0. Since f is a Laplace

eigenfunction of eigenvalue 4�2n, we have that3

f .x/ D � 1

4�2n
.f11 C f22/;

and therefore

EŒjJG.x/j j G.x/ D 0� D EŒjJG.x/j j f11 C f22 D 0; f1�1 C f2�2 D 0�:

Then (recall that we assumed �2 ¤ 0)

EŒjJG.x/jjG.x/ D 0�

D EŒjJG.x/j j f11 C f22 D 0; f1�1 C f2�2 D 0�

D EŒjf1.f12�1 C f22�2/ � f2.f11�1 C f12�2/j j
f11 C f22 D 0; f1�1 C f2�2 D 0�

D EŒjf1.f12�1 � f11�2/ � f2.f11�1 C f12�2/j j
f11 C f22 D 0; f1�1 C f2�2 D 0�

D E

hˇ̌
ˇf1 �

�
f12�1 � f11�2 C f11

�2
1

�2

C f12�1

�ˇ̌
ˇ
ˇ̌
ˇ

f11 C f22 D 0; f1�1 C f2�2 D 0
i

D E

hˇ̌
ˇf1 �

�
2f12�1 � f11

�2
1 � �2

2

�2

�ˇ̌
ˇ
ˇ̌
ˇ f11 C f22 D 0; f1�1 C f2�2 D 0

i
:

Hence we are interested in the distribution of .f1; f11; f12/.x/ conditioned on

f11 C f22 D 0; f1�1 C f2�2 D 0:

The covariance matrix of .f1; f2; f11; f12; f22/ is given by Lemma 3.4, we will

then compute the covariance matrix of .f1; f11; f12; f1�1 C f2�2; f11 C f22/, and

then condition on the last two variables. To avoid carrying on the constants we

transform the variables

..X1; X2/; .X3; X4; X5// D
� 1

.2�2/1=2
p

n
.f1; f2/;

1

.2�4/1=2n
.f11; f12; f22/

�

3 This fact helps in simplifying the computation of the first intensity by allowing us to reduce

the size of the covariance matrix, as seen in another few steps.



Points on nodal lines with given direction 947

with covariance matrix

CX1;:::;X5
D
�

I2�2

0 A3�3

�
;

with

A D

0
@

3 C c�n.4/ 0 1 � c�n.4/

0 1 � c�n.4/ 0

1 � c�n.4/ 0 3 C c�n.4/

1
A

and we are to compute

EŒjJG.x/j j G.x/ D 0� D 2�3n3=2 � E
hˇ̌
ˇX1 �

�
2X4�1 � X3

�2
1 � �2

2

�2

�ˇ̌
ˇ
ˇ̌
ˇ

X3 C X5 D 0; X1�1 C X2�2 D 0
i
:

(3.6)

Next we compute the covariance matrix of .X1; X3; X4; X3CX5; X1�1CX2�2/

to be

C.X1;X3;X4;X3CX5;X1�1CX2�2/ D
 

B3�3 D3�2

Dt
2�3 E2�2

!
;

where

B D CX1;X3;X4

is the covariance matrix of .X1; X3; X4/,

E D CX3CX5;X1�1CX2�2

is the covariance matrix of

.X3 C X5; X1�1 C X2�2/;

and

D D EŒ.X1; X3; X4/t .X3 C X5; X1�1 C X2�2/�:

From the above it follows directly that

B D

0
@

1

3 C c�n.4/

1 � c�n.4/

1
A ; D D

0
@

0 �1

4 0

0 0

1
A ; E D

�
8 0

0 1

�
:

Let Y D .Y1; Y2; Y3/ be the vector .X1; X3; X4/ conditioned on

X3 C X5 D X1�1 C X2�2 D 0;
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so that under the new notation (3.6) is

EŒjJG.x/j j G.x/ D 0� D 2�3n3=2
E

hˇ̌
ˇY1 �

�
2Y3�1 � Y2

�2
1 � �2

2

�2

�ˇ̌
ˇ
i
: (3.7)

The covariance matrix of Y is

CY D B � DE�1Dt D

0
@

1 � �2
1

1 C c�n.4/

1 � c�n.4/

1
A

D

0
@

�2
2

1 C c�n.4/

1 � c�n.4/

1
A ;

where for the above we computed

DE�1Dt D

0
@

0 �1

4 0

0 0

1
A �

�
1
8

1

�
�
�

0 4 0

�1 0 0

�

D

0
@

0 �1
1
2

0

0 0

1
A �

�
0 4 0

�1 0 0

�

D

0
@

�2
1

2

0

1
A :

We may simplify the expression (3.7) using the fact that the Yj are independent:

EŒjJG.x/j j G.x/ D 0� D 2�3n3=2
EŒjY1j� � E

hˇ̌
ˇ2Y3�1 � Y2

�2
1 � �2

2

�2

ˇ̌
ˇ
i

D 21=2�5=2n3=2 � EŒj.2Y3�1�2 � Y2.�2
1 � �2

2 //j�

D 21=2�5=2n3=2 � EŒjZ1 sin.2�/ C Z2 cos.2�/j�;

(3.8)

where .Z1 D Y3; Z2 D �Y2/ is a centered Gaussian with covariance

�
1 � c�n.4/

1 C c�n.4/

�
;

also valid for �2 D 0 (� is the direction of �, or of � by the sign invariance of the

distribution of Z1, Z2).
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The random variable

A WD Z1 sin.2�/ C Z2 cos.2�/

is centered Gaussian, whose variance is

Var.A/ D .1 � c�n.4// sin.2�/2 C .1 C c�n.4// cos.2�/2

D 1 C c�n.4/ cos.4�/;

and (3.8) is

EŒjJG.x/j j G.x/ D 0� D 21=2�5=2n3=2 � EŒjAj�

D 21=2�5=2n3=2 �
r

2

�

p
Var.A/

D 2�2n3=2 � .1 C c�n.4/ cos.4�//1=2;

which is the statement of Proposition 3.2. �

3.3. Auxiliary lemmas

Lemma 3.3 (cf. [8], Lemma 8.1). We have

1

N

X

�2En

�4
1 D n2

�3

8
C 1

8
c�n.4/

�
;

and

1

N

X

�2En

�2
1�2

2 D n2

8
.1 � c�n.4// :

Lemma 3.4. Let f D fn be the arithmetic random waves (the random field (1.4)

where c� are assumed to be i.i.d. standard Gaussian save to (1.6)), and X D
.f1; f2; f11; f12; f22/ vector of various derivatives evaluated at x D 0. Then X is

centered multivariate Gaussian with covariance matrix

Cf1;f2;f11;f12;f22
D

0
B@

2�2n 0 0 0 0
0 2�2n 0 0 0

0 0 2�4n2.3Cb�n.4// 0 2�4n2.1�b�n.4//

0 0 0 2�4n2.1�b�n.4// 0

0 0 2�4n2.1�b�n.4// 0 2�4n2.3Cb�n.4//

1
CA:

Proof. Recall that the covariance function of fn is given by (1.8). We have, using

the symmetries,

EŒf1.x/2� D �r11.0/ D EŒf2.x/2� D 2�2n;
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EŒf1.x/f2.x/� D �r12.0/ D 0;

EŒf1.x/f11.x/� D �r111.0/ D 0;

EŒf1.x/f12.x/� D �r112.0/ D 0;

EŒf11.x/2� D EŒf22.x/2� D r1111.0/ D 16�4

N

X

�2En

�4
1

D 16�4n2
�3

8
C 1

8
c�n.4/

�
D 2�4n2.3 C c�n.4//;

by Lemma 3.3, and

EŒf12.x/2� D EŒf11.x/f22.x/� D 16�4

N

X

�2En

�2
1�2

2

D 2�4n2.1 � c�n.4//: �

Appendix A. Separable domains

We describe some cases when the nodal sets, hence N�.f /, can be explicitly

computed.

A.1. Irrational rectangles. Take a rectangle with width �=
p

˛ and height � ,

with aspect ratio
p

˛, and assume that ˛ is irrational. Then the eigenvalues of the

Dirichlet Laplacian consist of the numbers ˛m2 C n2 with integers m; n � 1, and

the corresponding eigenfunctions are

fm;n.x; y/ D sin.
p

˛mx/ sin.ny/:

The nodal lines consist of a rectangular grid, and one has N�.fm;n/ D 0 or 1.

A.2. The unit disk. Let � D ¹jxj � 1º be the unit disk, and .r; �/ be polar

coordinates. The eigenfunctions of the Dirichlet Laplacian are

fm;k.r; �/ D Jm.jm;kr/ cos.m� C �/

where Jm.z/ is the Bessel function, with zeros ¹jm;k W k � 1º, and � 2 Œ0; 2�/ is

arbitrary. The corresponding eigenvalue is

E D j 2
m;k: (A.1)

In particular, for m � 1 the eigenspaces have dimension two.
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We will need McCann’s inequality [13]

j 2
m;k � �2

�
k � 1

4

�2

C m2: (A.2)

For m D 0 (the radial case), the eigenfunctions are f0;k.r; �/ D J0.j0;kr/,

0 � r � 1, and have k � 1 interior nodal lines, which are the concentric circles

r D j0;`=j0;k , ` D 1; : : : ; k � 1. Thus for any direction � 2 S1, we have

N�.f0;k/ D 2.k � 1/:

For m � 1, the nodal line of the eigenfunction fm;k is a union of the m

diameters cos.m� C �/ D 0 and k � 1 concentric circles r D jm;`=jm;k ,

` D 1; : : : ; k � 1 (for k D 1 there are only diameters), see Figure 4. Thus there are

2m values of � where N� .fm;k/ D 1, and for all other directions we have

N� .fm;k/ D 2.k � 1/:

Using McCann’s inequality (A.2), and (A.1), the above yields that for m � 0,

k � 1, except for 2m � 2
p

E directions where N� .fm;k/ D 1, we have

N� .fm;k/ � 2

�

p
E :

Figure 4. The nodal line of the disk eigenfunction f3;5.x/ D J3.j3;5r/ cos.3�/, which

consists of 3 diameters and 4 circles.
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