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We resolve a function field version of two conjectures concerning the variance of the

number of primes in short intervals (Goldston and Montgomery) and in arithmetic pro-

gressions (Hooley). A crucial ingredient in our work is the recent equidistribution results

of N. Katz.

1 Introduction

In this note, we study a function field version of two outstanding problems in classi-

cal Prime Number Theory, concerning the variance of the number of primes in short

intervals and in arithmetic progressions.

1.1 Problem 1: Primes in short intervals

The prime number theorem (PNT) asserts that the number π(x) of primes up to x

is asymptotically Li(x)= ∫x
2

dt
log t . Equivalently, defining the von Mangoldt function as

Λ(n)= log p if n= pk is a prime power, and 0 otherwise, then PNT is equivalent to the

assertion that

ψ(x) :=
∑
n≤x

Λ(n)∼ x as x → ∞. (1.1)
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2 J. P. Keating and Z. Rudnick

To study the distribution of primes in short intervals, we define, for 1 ≤ H ≤ x,

ψ(x; H) :=
∑

n∈[x− H
2 ,x+ H

2 ]

Λ(n). (1.2)

The Riemann Hypothesis (RH) guarantees an asymptotic formula ψ(X; H)∼ H as long as

H > X
1
2 +o(1). To understand the behavior in shorter intervals, Goldston and Montgomery

[5] studied the variance of ψ(x; H) and showed conditionally that for Xδ < H < X1−δ,

1

X

∫ X

2
|ψ(x; H)− H |2 dx ∼ H(log X − log H), (1.3)

assuming the RH and the (“strong”) pair correlation conjecture. Furthermore, they

showed that under RH (1.3) and the strong pair correlation conjecture are in fact equiv-

alent. At this time (1.3) is still open.

1.2 Problem 2: Primes in arithmetic progressions

The PNT for arithmetic progression states that for a modulus Q and A coprime to Q, the

number of primes p≤ X with p= A mod Q is asymptotically π(x)/φ(Q), where π(X) is

the number of primes up to X and φ(Q) is the Euler totient function, giving the number

of reduced residues modulo Q. Equivalently, if

ψ(X; Q, A) :=
∑
n≤X

n=A mod Q

Λ(n), (1.4)

then PNT for arithmetic progressions states that for a fixed modulus Q,

ψ(X; Q, A)∼ X

φ(Q)
as X → ∞. (1.5)

In most arithmetic applications, it is crucial to allow the modulus to grow with

X. Thus, the remainder term in (1.5) is of the essence. For very large moduli Q> X,

there can be at most one prime in the arithmetic progression P = A mod Q so that the

interesting range is Q< X. Assuming the Generalized Riemann Hypothesis (GRH) gives

(1.5) for Q< X1/2−o(1).
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Variance of the Number of Prime Polynomials 3

The fluctuations of ψ(X; Q, A) have been studied over several decades, notably

allowing also averaging over the modulus Q. Thus, define

G(X, Q)=
∑

A mod Q
gcd(A,Q)=1

∣∣∣∣ψ(X; Q, A)− X

φ(Q)

∣∣∣∣
2

(1.6)

and

H(X, Q)=
∑
Q′≤Q

G(X, Q′). (1.7)

The study of the sum H(X, Q) has a long history, going under the name of theorems of

Barban–Davenport–Halberstam-type. Among other results is the one due to Montgomery

[13] and Hooley [7] asserting that for X/(log X)A< Q< X one has

H(X, Q)= QX log Q − cQX + O
(

Q5/4 X3/4 + X2

(log X)A

)
, (1.8)

for all A> 0, where

c = γ + log(2π)+ 1 +
∑

p

log p

p(p− 1)
. (1.9)

Hooley [8] showed that assuming GRH, (1.8) holds for X1/2+ε < Q< X with remainder

O(X2/(log X)A).

The individual variance G(X, Q) is much less understood. Hooley [6] conjectured

that under some (unspecified) conditions,

G(X, Q)∼ X log Q. (1.10)

Friedlander and Goldston [4] show that in the range Q> X,

G(X, Q)= X log X − X − X2

φ(Q)
+ O

(
X

(log X)A

)
+ O((log Q)3). (1.11)

Note that in this range, there is at most one integer n= A mod Q with n< X. They con-

jecture that (1.10) holds if

X1/2+ε < Q< X (1.12)
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4 J. P. Keating and Z. Rudnick

and further conjecture that if X1/2+ε < Q< X1−ε , then

G(X, Q)= X log Q − X

⎛
⎝γ + log 2π +

∑
p|Q

log p

p− 1

⎞
⎠+ o(X). (1.13)

They show that both (1.10) (in the range X1/2+ε < Q< X) and (1.13) (in the range X1/2+ε <

Q< X1−ε ) hold assuming a Hardy–Littlewood conjecture with small remainders.

For Q< X1/2 very little seems to be known. Hooley addresses this in paper V of

his series of papers on the subject [9], which he opens by stating

An interesting anomaly in the theory of primes is presented by the situation

in which known forms of the PNT for arithmetic progressions are only valid

for (relatively) small values of the common difference k, whereas the the-

orems of Barban–Davenport–Halberstam type discussed in I, II, IV are only

fully significant for the (relatively) larger values of k. The most striking illus-

tration of this contrast is perhaps provided by the conditional theorems at

present available on the extended Riemann hypothesis, the ranges of signif-

icance of the PNT and of the Barban-Montgomery theorem given in II being

then, respectively, k< x1/2−ε and k> x1/2+ε .

. . . it is therefore certainly desirable to elicit further forms of the Barban–

Davenport–Halberstam theorem that should be valid for the smaller values

of k.

In the above Hooley’s k corresponds to our Q and x to X, and the roman numerals

refer to previous papers in the series written by him.

Concerning Conjectures (1.10) and (1.13) for G(X, Q), Friedlander and Goldston

say [4, p. 315]

It may well be that these also hold for smaller Q, but below X = Q1/2 we are

somewhat skeptical.

In this paper, we resolve the function field versions of Conjectures (1.3) and (1.10),

indicating that (1.10) should hold all the way down to Q> Xε . A crucial ingredient in our

work are recent equidistribution results of Katz [11, 12] described in Sections 4 and 5.

2 Results for Function Fields

Let Fq be a finite field of q elements and Fq[T ] the ring of polynomials with coefficients

in Fq. Let Pn = { f ∈ Fq[T ] : deg f = n} be the set of polynomials of degree n and Mn ⊂Pn

the subset of monic polynomials.
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Variance of the Number of Prime Polynomials 5

The von Mangoldt function in this case is defined as Λ(N)= deg P , if N = cP k

with P an irreducible monic polynomial, and c ∈ F×
q , and Λ(N)= 0 otherwise. The Prime

Polynomial Theorem in this context is the identity

∑
f∈Mn

Λ( f)= qn. (2.1)

2.1 Short intervals

For A∈Pn of degree n, and h<n, we define “short intervals”

I (A; h) := { f : ‖ f − A‖ ≤ qh} = A+ P≤h, (2.2)

where the norm of a polynomial 0 �= f ∈ Fq[T ] is

‖ f‖ := qdeg f (2.3)

and

P≤h = {0} ∪
⋃

0≤m≤h

Pm (2.4)

is the space of polynomials of degree at most h (including 0). We have

#I (A; h)= qh+1. (2.5)

Note: For h<n, if ‖ f − A‖ ≤ qh, then A monic if and only if f is monic. Hence for

A monic, I (A; h) consists of only monic polynomials and all monic f ’s of degree n are

contained in one of the intervals I (A; h) with A monic.

We define, for 1 ≤ h<n and A∈Pn,

ν(A; h)=
∑

f∈I (A;h)
f(0)�=0

Λ( f) (2.6)

to be the number of prime powers co-prime to T in the interval I (A; h), weighted by the

degree of the corresponding prime.
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6 J. P. Keating and Z. Rudnick

We will show in Lemma 4.3 that the mean value of ν(A; h) when we average over

monic A∈Mn is

〈ν(•; h)〉 := 1

qn

∑
A∈Mn

ν(A; h)= qh+1

(
1 − 1

qn

)
. (2.7)

Our goal is to compute the variance

Varν(•; h)= 1

qn

∑
A∈Mn

|ν(A; h)− 〈ν(•; h)〉|2

in the limit q → ∞.

Theorem 2.1. Let h<n− 3. Then

lim
q→∞

1

qh+1
Var(ν(•; h))= n− h − 2. (2.8)

�

We may compare (2.8) with (1.3), if we make the dictionary

X ↔ qn, H ↔ qh+1, log X ↔ n, log H ↔ h + 1, (2.9)

the conclusion being that Theorem 2.1 is precisely the analog of the conditional result

(1.3) of Goldston and Montgomery.

2.2 Arithmetic progressions

Our second result concerns the analog of the conjectures of Hooley (1.10) and

Friedlander–Goldston (1.13) and allows us to make a definite conjecture in that case.

For a polynomial Q ∈ Fq[T ] of positive degree, and A∈ Fq[T ] coprime to Q and any

n> 0, set

Ψ (n; Q, A)=
∑

N∈Mn N=A mod Q

Λ(N) (2.10)

(the sum over monic polynomials). The Prime Polynomial Theorem in arithmetic pro-

gressions states that as n→ ∞,

Ψ (n; Q, A)∼ qn

Φ(Q)
, (2.11)
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Variance of the Number of Prime Polynomials 7

where Φ(Q) is the Euler totient function for this context, namely the number of reduced

residue classes modulo Q. Now set

G(n; Q)=
∑

A mod Q
gcd(A,Q)=1

∣∣∣∣Ψ (n; Q, A)− qn

Φ(Q)

∣∣∣∣
2

. (2.12)

We wish to show an analog of Conjecture (1.10) in the limit of large finite field

size, that is, q → ∞.

Theorem 2.2. (i) Given a finite field Fq, let Q ∈ Fq[T ] be a polynomial of positive degree,

and 1 ≤ n< deg Q. Then

G(n; Q)= nqn − q2n

Φ(Q)
+ O(n2qn/2)+ O((deg Q)2), (2.13)

where the implied constant is absolute.

(ii) Fix n≥ 2. Given a sequence of finite fields Fq and square-free polynomials

Q(T) ∈ Fq[T ] of positive degree with n≥ deg Q − 1, then as q → ∞,

G(n; Q)∼ qn(deg Q − 1). (2.14)

�

We can compare (2.14) with (1.10) in the range (1.12), if we make the dictionary

Q ↔ ‖Q‖ = qdeg Q, log Q ↔ deg Q, X ↔ qn, log X ↔ n. (2.15)

The result (1.11) in the range Q> X corresponds to n< deg Q, and the range X1/2 < Q< X

of (1.12) corresponds to deg Q<n< 2 deg Q, so that we recover the function field version

of conjecture (1.10). Note that (2.14) holds for all n, not just that range. Thus, Conjecture

(1.10) may well be valid for all Q> Xε .

3 Background on Characters and L-functions

We review some standard background concerning Dirichlet L-functions for the rational

function field; see, for example, [15, 16].
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8 J. P. Keating and Z. Rudnick

3.1 The prime polynomial theorem

Let Fq be a finite field of q elements and Fq[T ] the polynomials over F. The zeta function

Z(u) of Fq[T ] is

Z(u) :=
∏

P

(1 − udeg P )−1 (3.1)

where the product is over all monic irreducible polynomials in Fq[T ]. The product is

absolutely convergent for |u|< 1/q.

By unique factorization into irreducibles in Fq[T ], we have for |u|< 1/q,

Z(u)= 1

1 − qu
. (3.2)

Taking the logarithmic derivative of (3.1) and (3.2) leads to the “Explicit formula”

Ψ (n) :=
∑

N∈Mn

Λ(N)= qn (3.3)

from which we immediately deduce the Prime Polynomial Theorem, for the number π(n)

of monic irreducible polynomials of degree n:

π(n)= qn

n
+ O(qn/2). (3.4)

Lemma 3.1. ∑
N∈Mn

Λ(N)2 = nqn + O(n2qn/2), (3.5)

where the implied constant is absolute (independent of q and n). �

Proof. We start with the Explicit Formula (3.3)

∑
d|m

dπ(d)= qm (3.6)

and hence

mπ(m)≤ qm. (3.7)
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Variance of the Number of Prime Polynomials 9

Now

qn =
∑
d|n

dπ(d)= nqn +
∑
d|n
d<n

dπ(d) (3.8)

and hence

π(n)= qn

n
+ O(qn/2). (3.9)

Likewise ∑
N∈Mn

Λ(N)2 =
∑
d|n

d2π(d)= n2π(n)+
∑
d|n
d<n

d2π(d) (3.10)

with remainder term bounded by

∑
d|n
d<n

d2π(d)≤
∑

d≤n/2

d2π(d)≤
∑

1≤d≤n/2

nqd/2 ≤ nq
qn/2 − 1

q − 1
< 2nqn/2. (3.11)

Inserting (3.9) into (3.10) gives the claim. �

3.2 Dirichlet characters

For a polynomial Q(x) ∈ Fq[T ] of positive degree, we denote by Φ(Q) the order of the

group (Fq[T ]/(Q))× of invertible residues modulo Q. A Dirichlet character modulo Q is a

homomorphism

χ : (Fq[T ]/(Q))× → C×,

that is, after extending χ to vanish on polynomials which are not coprime to Q, we

require χ( fg)= χ( f)χ(g) for all f, g ∈ Fq[T ], χ(1)= 1 and χ( f + hQ)= χ( f) for all f,h∈
Fq[T ]. The number of Dirichlet characters modulo Q is Φ(Q).

The orthogonality relations for Dirichlet characters are

1

Φ(Q)

∑
χ mod Q

χ̄ (A)χ(N)=
⎧⎨
⎩1 N = A mod Q,

0 otherwise,
(3.12)

where the sum is over all Dirichlet characters mod Q and A is coprime to Q, and

1

Φ(Q)

∑
A mod Q

χ1(A)χ̄2(A)=
⎧⎨
⎩1 χ1 = χ2,

0 otherwise.
(3.13)

 at T
E

L
 A

V
IV

 U
N

IV
E

R
SIT

Y
 on O

ctober 17, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


10 J. P. Keating and Z. Rudnick

A Dirichlet character χ is “even” if χ(cF )= χ(F ) for 0 �= c ∈ Fq. This is in analogy

to the number field case, where a Dirichlet character is called “even” if χ(−1)= +1, and

“odd” if χ(−1)= −1. The number Φev(Q) of even characters modulo Q is

Φev(Q)= 1

q − 1
Φ(Q). (3.14)

We require the following orthogonality relations for even Dirichlet characters.

Lemma 3.2. Let χ1 and χ2 be Dirichlet characters modulo Tm, m> 1. Suppose χ̄1χ2 is

even. Then

1

qm−1

∑
B mod Tm

B(0)=1

χ̄1(B)χ2(B)= δχ1,χ2 . (3.15)

�

Proof. We start with the standard orthogonality relation

1

Φ(Tm)

∑
B mod Tm

χ̄1(B)χ2(B)= δχ1,χ2 . (3.16)

The only nonzero contributions in the sum are those B with B(0) �= 0 (equivalently

coprime to Tm). We can write each such B uniquely as B = cB1, with B1(0)= 1. Since

χ̄1χ2 is even, we have

χ̄1χ2(cB1)= χ̄1χ2(B1) (3.17)

and hence ∑
B mod Tm

χ̄1(B)χ2(B)= (q − 1)
∑

B mod Tm

B(0)=1

χ̄1(B)χ2(B). (3.18)

Comparing with (3.16) and using Φ(Tm)= (q − 1)qm−1 gives the required result. �

3.3 Primitive characters

A character is primitive if there is no proper divisor Q′ | Q so that χ(F )= 1 whenever F is

coprime to Q and F = 1 mod Q′. Denoting byΦprim(Q) the number of primitive characters
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Variance of the Number of Prime Polynomials 11

modulo Q, we clearly have Φ(Q)=∑
D|QΦprim(D) and hence by Möbius inversion,

Φprim(Q)=
∑
D|Q

μ(D)Φ
(

Q

D

)
(3.19)

the sum over all monic polynomials dividing Q. Therefore,

∣∣∣∣Φprim(Q)

Φ(Q)
− 1

∣∣∣∣≤ 2deg Q

q
. (3.20)

Hence as q → ∞, almost all characters are primitive in the sense that

Φprim(Q)

Φ(Q)
= 1 + O

(
1

q

)
, (3.21)

the implied constant depending only on deg Q.

Likewise, the number Φev
prim(Q) of primitive even characters is given by

Φev
prim(Q)=

∑
D|Q

μ(D)Φev

(
Q

D

)
= 1

q − 1

∑
D|Q

μ(D)Φ
(

Q

D

)
. (3.22)

For instance, for Q(T)= Tm, m ≥ 2, we find

Φev
prim(T

m)= qm−2(q − 1). (3.23)

The number Φprim
odd (Q) of odd primitive characters is then

Φodd
prim(Q)=Φprim(Q)−Φev

prim(Q)=
(

1 − 1

q − 1

)
Φprim(Q) (3.24)

and hence we find that as q → ∞ with deg Q fixed, almost all characters are primitive

and odd:

Φodd
prim(Q)

Φ(Q)
= 1 + O

(
1

q

)
, (3.25)

the implied constant depending only on deg Q.
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12 J. P. Keating and Z. Rudnick

3.4 L-functions

The L-function L(u, χ) attached to χ is defined as

L(u, χ)=
∏
P �Q

(1 − χ(P )udeg P )−1, (3.26)

where the product is over all monic irreducible polynomials in Fq[T ]. The product is

absolutely convergent for |u|< 1/q. If χ = χ0 is the trivial character modulo q, then

L(u, χ0)= Z(u)
∏
P |Q
(1 − udeg P ). (3.27)

The basic fact about L(u, χ) is that if Q ∈ Fq[T ] is a polynomial of degree deg Q ≥
2, and χ �= χ0 a nontrivial character mod Q, then the L-function L(u, χ) is a polynomial

in u of degree deg Q − 1.

Moreover, if χ is an “even” character, that is, χ(cF )= χ(F ) for 0 �= c ∈ Fq, then

there is a “trivial” zero at u= 1: L(1, χ)= 0 and hence

L(u, χ)= (1 − u)P (u, χ), (3.28)

where P (u, χ) is a polynomial of degree deg Q − 2.

We may factor L(u, χ) in terms of the inverse roots

L(u, χ)=
deg Q−1∏

j=1

(1 − α j(χ)u). (3.29)

The Riemann Hypothesis, proved by Andre Weil in general, is that for each (nonzero)

inverse root, either α j(χ)= 1 or

|α j(χ)| = q1/2. (3.30)

We define

Ψ (n, χ) :=
∑

deg f=n

Λ( f)χ( f), (3.31)
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Variance of the Number of Prime Polynomials 13

the sum over monic polynomials of degree n. Taking logarithmic derivative of the L-

function gives a formula for Ψ (n, χ) in terms of the inverse roots α j(χ): If χ �= χ0 is non-

trivial, then

Ψ (n, χ)= −
deg Q−1∑

j=1

α j(χ)
n. (3.32)

Weil’s theorem (3.30) gives for n> 0

|Ψ (n, χ)| ≤ (deg Q − 1)qn/2, χ �= χ0. (3.33)

3.5 The unitarized Frobenius matrix

We may state the results in cleaner form if we assume that χ is a primitive character

modulo Q.

We also define

λχ :=
⎧⎨
⎩1 χ “even”,

0 otherwise.
(3.34)

Then for Q ∈ Fq[T ] a polynomial of degree ≥ 2, and χ a primitive Dirichlet character

modulo Q,

L∗(u, χ) := (1 − λχu)−1L(u, χ)

is a polynomial of degree

N = deg Q − 1 − λχ (3.35)

so that L∗(u, χ)=∏N
j=1(1 − α j(χ)u) and

|α j| = √
q ∀ j = 1, . . . , N. (3.36)

For a primitive character modulo Q, we write the inverse roots as α j = q1/2 eiθ j

and the completed L-function L∗(u, χ) as

L∗(u, χ)= det(I − uq1/2Θχ), Θχ = diag(eiθ1 , . . . , eiθN ). (3.37)

The unitary matrix Θχ (or rather, the conjugacy class of unitary matrices) is called the

unitarized Frobenius matrix of χ .
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14 J. P. Keating and Z. Rudnick

Taking the logarithmic derivative of (3.37) we obtain an explicit formula for prim-

itive characters:

Ψ (n, χ)= −qn/2trΘn
χ − λχ . (3.38)

4 Prime Polynomials in Short Intervals

In this section, we prove Theorem 2.1, the analog of the Goldston–Montgomery

result (1.3).

4.1 An involution

For 0 �= f ∈ Fq[T ], we define

f∗(T) := Tdeg f f
(

1

T

)
(4.1)

or if f(T)= f0 + f1T + · · · + fnTn, n= deg f (so that fn �= 0), then f∗ is the “reversed”

polynomial

f∗(T)= f0Tn + f1Tn−1 + · · · + fn. (4.2)

We also set 0∗ = 0.

Note that f∗(0) �= 0 and f(0) �= 0 if and only if deg f∗ = deg f . Moreover restricted

to polynomials which do not vanish at 0, equivalently are co-prime to T , then ∗ is an

involution:

f∗∗ = f, f(0) �= 0. (4.3)

We also have multiplicativity:

( fg)∗ = f∗g∗. (4.4)

Lemma 4.1. For f ∈Pn with f(0) �= 0, we have Λ( f∗)=Λ( f). �

Proof. For polynomials which do not vanish at 0, that is, are co-prime to T , P is

irreducible if and only if P ∗ is irreducible. This is because if P = AB with A, B of pos-

itive degree, then P ∗ = (AB)∗ = A∗B∗ and if P (0) �= 0, then the same holds for A, B and

then deg A∗ = deg A> 0, deg B∗ = deg B > 0 so P is reducible; applying ∗ again and using

that it is an involution (since P (0) �= 0) gives the reverse implication. �
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Variance of the Number of Prime Polynomials 15

4.2 A fundamental relation

We can now express the number of primes in our short intervals in terms of the number

of primes in a suitable arithmetic progression. Define

Ψ̃ (n; Q, A)=
∑
f∈Pn

f=A mod Q

Λ( f), (4.5)

the sum over all polynomials of degree n, not necessarily monic.

Lemma 4.2. For B ∈Pn−h−1,

ν(Th+1 B; h)= Ψ̃ (n; Tn−h, B∗). (4.6)

�

Proof. Let B ∈Pn−h−1. We have f = Th+1 B + g ∈ I (Th+1 B; h), g ∈P≤h if and only if f∗ =
B∗ + Tn−hg∗, and thus we find

f ∈ I (Th+1 B; h)⇔ f∗ ≡ B∗ mod Tn−h. (4.7)

As f runs over I (Th+1 B; h) with the proviso that f(0) �= 0, f∗ runs over

all polynomials of degree exactly n satisfying f∗ ≡ B∗ mod Tn−h, and for these

Λ( f)=Λ( f∗). �

4.3 Averaging

We want to compute the mean value and variance of ν(A,h). To perform the average over

A, note that every monic polynomial f ∈Mn can be written uniquely as

f = Th+1 B + g, B ∈Mn−(h+1), g ∈P≤h. (4.8)

We therefore can decompose Mn as the disjoint union of “intervals” I (Th+1 B; h) param-

eterized by B ∈Mn−(h+1):

Mn =
∐

B∈Mn−(h+1)

I (Th+1 B; h). (4.9)

To compute averages ν on short intervals, it suffices, by the foregoing, to take

A= Th+1 B and to average over all B ∈Mn−(h+1).
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16 J. P. Keating and Z. Rudnick

The map ∗ gives a bijection

∗ :Mn−(h+1) → {B∗ ∈P≤(n−h−1) : B∗(0)= 1},

B �→ B∗
(4.10)

with polynomials of degree ≤ n− (h + 1) with constant term 1. Thus, as B ranges over

Mn−(h+1), B∗ ranges over (Fq[T ]/(Tn−h))×, all invertible residue class mod Tn−h so that

B∗(0)= 1.

Thus, the mean value is

〈ν(•; h)〉 = 1

#Mn−h−1

∑
B∈Mn−h−1

ν(Th+1 B; ,h)

= 1

qn−h−1

∑
B∗ mod Tn−h

B∗(0)=1

Ψ̃ (n; Tn−h, B∗) (4.11)

and the variance is

Var(ν(•; h))= 1

#Mn−h−1

∑
B∈Mn−h−1

|ν(Th+1 B; ,h)− 〈ν〉|2

= 1

qn−h−1

∑
B∗ mod Tn−h

B∗(0)=1

|Ψ̃ (n; Tn−h, B∗)− 〈ν〉|2. (4.12)

4.4 The mean value

The computation of the mean value 〈ν(•; h)〉 = 1
qn

∑
A∈Mn

ν(A; h) is a simple consequence

of the Prime Polynomial Theorem. The result is the following.

Lemma 4.3. Let 0< h<n. The mean value of ν(A, ; h) is

〈ν(•; h)〉 = qh+1

(
1 − 1

qn

)
. (4.13)

�

Proof. We do the computation in two different ways as a check of the all-important

relation (4.6). By using the definition of ν, we obtain

〈ν(•; h)〉 = 1

#Mn−h−1

∑
B∈Mn−h−1

∑
f∈I (Th+1 B;h)

f(0)�=0

Λ( f)
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Variance of the Number of Prime Polynomials 17

= 1

#Mn−h−1

⎛
⎝ ∑

f∈Mn

Λ( f)−Λ(Tn)

⎞
⎠ . (4.14)

Note that

#Mn−h−1 = qn−h−1 = Φ(Tn−h)

q − 1
. (4.15)

Using (4.6), the mean value of ν(•; h) is

〈ν(•; h)〉 = 1

Φ(Tn−h)

∑
B∗ mod Tn−h

B∗(0)=1

Ψ̃ (n; Tn−h, B∗)

= 1

Φ(Tn−h)

∑
deg f∗=n
f∗(0)=1

Λ( f∗)

= 1

Φ(Tn−h)

⎛
⎝ ∑

deg f∗=n

Λ( f∗)−
∑
c∈F∗

q

Λ(cTn)

⎞
⎠

= 1

qn−h−1

⎛
⎝ ∑

f∗∈Mn

Λ( f∗)−Λ(Tn)

⎞
⎠ . (4.16)

Hence

〈ν(•; h)〉 = 1

qn−h−1
(qn − 1)= qh+1

(
1 − 1

qn

)
(4.17)

on using the Prime Polynomial Theorem in the form (3.3). �

4.5 An alternate expression for ν(A; h)

Using the standard orthogonality relation (3.16) for Dirichlet characters modulo Tn−h

gives an alternate expression for Ψ̃ (n; Tn−h, B∗) and hence for ν(Th+1 B; h):

Ψ̃ (n; Tn−h, B∗)= 1

Φ(Tn−h)

∑
χ mod Tn−h

χ̄ (B∗)
∑

deg f∗=n

Λ( f∗)χ( f∗). (4.18)

Only even characters give a nonzero term, because Λ(cf)=Λ( f) for c ∈ F×
q , and

each even character contributes a term

χ̄ (B∗)
q − 1

Φ(Tn−h)

∑
deg f=n
monic

Λ( f)χ( f)= χ̄ (B∗)
1

qn−h−1
Ψ (n, χ), (4.19)
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18 J. P. Keating and Z. Rudnick

where

Ψ (n, χ)=
∑

deg f=n
monic

Λ( f)χ( f). (4.20)

Note that the number of even characters mod Tn−h is exactly 1
q−1Φ(T

n−h)= qn−h−1.

The trivial character χ0 contributes the term

(q − 1)(qn − 1)

Φ(Tn−h)
= qh+1

(
1 − 1

qn

)
= 〈ν〉. (4.21)

Thus, we find that the difference between ν(Th+1 B; h) and its mean 〈ν〉 is

ν(Th+1 B; h)− 〈ν〉 = 1

qn−h−1

∑
χ �=χ0 mod Tn−h

even

χ̄ (B∗)Ψ (n, χ). (4.22)

4.6 The variance

Our result here is the following.

Theorem 4.4. Fix n> 0 and let 0< h<n. As q → ∞, the variance of ν is given by

Var(ν)= qh+1 ·
(

1

qn−h−1

∗∑
χ

|trΘn
χ |2 + O

(
n− h

qn/2
+ n2

q

))
, (4.23)

where the sum is over primitive even characters modulo Tn−h, the implied constant

depending only on n. �

Proof. By (4.22), we have

Var(ν)= 1

qn−h−1

∑
B∗ mod Tn−h

B∗(0)=1

1

q2(n−h−1)

∣∣∣∣∣∣∣
∑
χ �=χ0
even

χ̄(B∗)Ψ (n, χ)

∣∣∣∣∣∣∣
2

. (4.24)

Expanding the sum over characters, and interchanging the order of summation to use

the orthogonality relation of Lemma 3.2 gives

Var(ν)= 1

q2(n−h−1)

∑
χ �=χ0
even

|Ψ (n, χ)|2. (4.25)
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Variance of the Number of Prime Polynomials 19

There are altogether ϕ(Tn−h)/(q − 1)= qn−h−1 even characters modulo Tn−h, of

which O(qn−h−2) are nonprimitive. We bound the contribution of the nontrivial non-

primitive characters by Ψ (n, χ)= O(nqn/2) via the RH. Thus, the nonprimitive characters

contribute a total of O(n2qh) to Var(ν).

Using the explicit formula (3.38) for primitive even characters and the RH gives

|Ψ (n, χ)|2 = qn|trΘn
χ |2 + O((n− h)qn/2). (4.26)

Therefore,

Var(ν)= qh+1 ·
(

1

qn−h−1

∗∑
χ

|trΘn
χ |2 + O

(
n− h

qn/2
+ n2

q

))
, (4.27)

where the sum is over primitive even characters modulo Tn−h, whose number is

qn−h−1(1 − 1
q ). �

4.7 Proof of Theorem 2.1

Thus, we found that for h<n− 3, the variance of ν is given by

1

qh+1
Var(ν)=

(
1 − 1

q

)
〈|trΘn

χ |2〉 + O
(

n− h

qn/2
+ n2

q

)
(4.28)

with 〈|trΘn
χ |2〉 being the mean value of |trΘn

χ |2 over the set of all primitive even Dirich-

let characters modulo Tn−h. Thus, as q → ∞, Var(ν)/qh+1 is asymptotically equal to the

“form factor” 〈|trΘn
χ |2〉.

To proceed further, we need to invoke a recent result of Katz [12]:

Theorem 4.5. [12, Theorem 1.2] Fix m ≥ 3. The unitarized Frobenii Θχ for the family of

even primitive characters mod Tm+1 become equidistributed in the projective unitary

group PU(m − 1) of size m − 1, as q → ∞. �

Applying Theorem 4.5 gives

lim
q→∞

1

qn−h−1(1 − 1
q )

∗∑
χ

|trΘn
χ |2 =

∫
PU(n−h−2)

|trUn|2 dU. (4.29)
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20 J. P. Keating and Z. Rudnick

We may pass from the projective unitary group PU(n− h − 2) to the unitary group

because the function |trUn|2 being averaged is invariant under scalar multiplication.

As is well known (see, e.g., [3]), for n> 0,

∫
U (N)

|trUn|2 dU = min(n, N). (4.30)

Therefore, we find

Var(ν)∼ qh+1(n− h − 2), q → ∞. (4.31)

This concludes the proof of Theorem 2.1.

5 Prime Polynomials in Arithmetic Progressions

In this section, we prove Theorem 2.2, giving the function field analog of the conjectures

of Hooley (1.10) and Friedlander–Goldston (1.13).

5.1 The range n< deg Q

We prove the result in the range n< deg Q by elementary arguments:

Proposition 5.1. For 0<n< deg Q, we have

G(n; Q)= nqn − q2n

Φ(Q)
+ O(n2qn/2)+ O((deg Q)2), (5.1)

where the implied constant is independent of q, n, and Q. �

Proof. Assume as we may that deg A< deg Q. If n< deg Q then the only solution to the

congruence N = A mod Q, with deg N = n< deg Q is A (if deg A= n) or else there is no

solution. Therefore, if n< deg Q, then

Ψ (n; Q, A)=
⎧⎨
⎩Λ(A) A is monic and deg A= n,

0 otherwise.
(5.2)
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Variance of the Number of Prime Polynomials 21

Thus,

G(n; Q)=
∑

gcd(A,Q)=1

∣∣∣∣∣∣
qn

Φ(Q)
−
⎧⎨
⎩Λ(A) A is monic and deg A= n

0 otherwise

∣∣∣∣∣∣
2

=
∑

deg A=n
A monic

gcd(A,Q)=1

Λ(A)2 − 2
qn

Φ(Q)

∑
deg A=n
A monic

gcd(A,Q)=1

Λ(A)+ q2n

Φ(Q)
.

By the Prime Polynomial Theorem (3.3),

∑
deg A=n
A monic

gcd(A,Q)=1

Λ(A)= qn −
∑

P |Q prime
deg P |n

deg P = qn + O(deg Q). (5.3)

According to Lemma 3.1,

∑
deg A=n
A monic

gcd(A,Q)=1

Λ(A)2 =
∑

deg A=n

Λ(A)2 −
∑
P |Q

deg P |n

(deg P )2

= nqn + O(n2qn/2)+ O((deg Q)2) (5.4)

and so we find

G(n; Q)= nqn − q2n

Φ(Q)
+ O(n2qn/2)+ O((deg Q)2)+ O

(
qn

Φ(Q)
deg Q

)
. (5.5)

Since for n< deg Q,

qn

Φ(Q)
≤ 1

q

∏
P |Q

prime

(
1 − 1

|P |
)−1

≤ 1

q

∏
deg P≤deg Q

prime

(
1 − 1

|P |
)−1

� deg Q

q
, (5.6)

we find

G(n; Q)= nqn − q2n

Φ(Q)
+ O(n2qn/2)+ O((deg Q)2) (5.7)

as claimed. �
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22 J. P. Keating and Z. Rudnick

5.2 The range n≥ deg Q

To deal with the range n≥ deg Q we relate the problem to an equidistribution state-

ment for the unitarized Frobenii of primitive odd characters. It transpires that G(n; Q)

is related to the mean value of the modulus squared of the trace of the Frobenius matri-

ces associated with the family of Dirichlet L-functions for characters modulo Q:

Theorem 5.2. Fix n and let Q ∈ Fq[T ] have degree deg Q ≥ 2. Then

G(n; Q)

qn
= 〈|trΘn

χ |2〉
(

1 + 1

q

)
+ O

(
(deg Q)2

q

)
, (5.8)

where 〈〉 denotes the average over all odd primitive characters modulo Q. �

Proof. The orthogonality relation (3.12) gives

Ψ (n; Q, A)= 1

Φ(Q)

∑
χ mod Q

χ̄(A)
∑

deg N=n

χ(N)Λ(N)

= 1

Φ(Q)

∑
χ mod Q

χ̄(A)Ψ (n, χ). (5.9)

The trivial character χ0 gives a contribution of

1

Φ(Q)

∑
deg N=n

gcd(N,Q)=1

Λ(N)= qn

Φ(Q)
− 1

Φ(Q)

∑
P |Q

deg P |n

deg P . (5.10)

Hence,

Ψ (n; Q, A)− qn

Φ(Q)
= − 1

Φ(Q)

∑
P |Q

deg P |n

deg P + 1

Φ(Q)

∑
χ �=χ0

χ(A)Ψ (n, χ). (5.11)

We square out and average over all A mod Q coprime with Q. Using the orthog-

onality relation (3.13) gives

G(n; Q)= 1

Φ(Q)

∑
χ �=χ0

|Ψ (n, χ)|2 + 1

Φ(Q)

⎛
⎜⎜⎝ ∑

P |Q
deg P |n

deg P

⎞
⎟⎟⎠

2

. (5.12)
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Variance of the Number of Prime Polynomials 23

For nontrivial characters which are either even or imprimitive, we use the RH

(3.33) to bound |Ψ (n, χ)|2 ≤ qn(deg Q − 1)2. Therefore, we find

G(n; Q)= 1

Φ(Q)

∑
χ primitive, odd

|Ψ (n, χ)|2

+ O
(

qn(deg Q)2
#{χ either even or imprimitive}

Φ(Q)

)
. (5.13)

The number of even characters is Φ(Q)/(q − 1), and the number of imprim-

itive characters is O(Φ(Q)/q). Hence the remainder term above is bounded by

O(qn−1(deg Q)2).

For each primitive odd character, the “explicit formula” (3.38) says

Ψ (n, χ)= −qn/2trΘn
χ (5.14)

and therefore

G(n; Q)= qn 1

Φ(Q)

∑
χ odd primitive

∣∣trΘn
χ

∣∣2 + O(qn−1(deg Q)2). (5.15)

Replacing Φ(Q) by the number of odd primitive characters times 1 + O( 1
q ) gives (5.8). �

We now use another recent equidistribution result of Katz [11]:

Theorem 5.3 (Katz [11]). Fix m ≥ 2. Suppose that we are given a sequence of finite fields

Fq and square-free polynomials Q(T) ∈ Fq[T ] of degree m. As q → ∞, the conjugacy

classes Θχ with χ running over all primitive odd characters modulo Q, are uniformly

distributed in the unitary group U (m − 1). �

Note that Theorem 5.3 gives a “nonstandard” form of equidistribution, in that it

deals with a family of L-functions which are not parameterized by an algebraic variety.

Its proof in [11] relies on the recent book [10] which studies such cases.

Using Theorem 5.3 we obtain for n> 0,

lim
q→∞〈|trΘn

χ |2〉 =
∫

U (deg Q−1)
|trUn|2 dU, (5.16)
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24 J. P. Keating and Z. Rudnick

where dU is the Haar probability measure on the unitary group U (N). Since [3]

∫
U (N)

|trUn|2 dU = min(n, N), (5.17)

we find

lim
q→∞

G(n; Q)

qn
= min(n,deg Q − 1), (5.18)

which is the statement of Theorem 2.2.
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Appendix 1. A Calculation Based on a Hardy–Littlewood-Type Conjecture

In the number-field setting, the problems we have considered here have previously been

explored using the Hardy–Littlewood conjecture relating to the density of generalized

twin primes [4, 14]. In this appendix, we sketch a heuristic calculation showing how the

corresponding conjecture in the function field setting may be used in the same way. As

an example, we focus on estimating G(n, Q).

The twin prime conjecture of Hardy and Littlewood for the rational function field

Fq[T ] states that, given a polynomial 0 �= K ∈ Fq[T ], and n> deg K,

∑
deg f=n

Λ( f)Λ( f + K)∼ S(K)qn (A.1)
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Variance of the Number of Prime Polynomials 25

as qn → ∞, where the “singular series” S(K) is given by

S(K)=
∏

P

(
1 − 1

|P |
)−2 (

1 − νK(P )

|P |
)
, (A.2)

with the product involving all monic irreducible P and

νK(P )= #{A mod P : A(A+ K)= 0 mod P } =
⎧⎨
⎩1, P | K,

2, P � K.
(A.3)

While for fixed q and n→ ∞ the problem is currently completely open, for fixed n and

q → ∞, (A.1) is known to hold [1, 2] for q odd, in the form

∑
deg f=n

Λ( f)Λ( f + K)= qn + On(q
n− 1

2 ). (A.4)

Note that S(K)= 1 + On(
1
q ).

We want to use (A.1) to compute G(n; Q) and to show that the result is consistent

with

G(n; Q)∼ qn(deg Q − 1), n> deg Q. (A.5)

It turns out that this can be done if we ignore the contribution from the remainder

implicit in (A.1). The remainder term in (A.4) is insufficient for our purposes.

Starting with

G(n; Q)=
∑

gcd(A,Q)=1

∣∣∣∣Ψ (n; Q,a)− qn

Φ(Q)

∣∣∣∣
2

, (A.6)

we have

G(n; Q)=
∑

gcd(A,Q)=1

Ψ (n; Q, A)2 − 2
qn

Φ(Q)

∑
gcd(A,Q)=1

Ψ (n; Q, A)+ q2n

Φ(Q)
. (A.7)
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The first moment of Ψ (n; Q, A) is

∑
gcd(A,Q)=1

Ψ (n; Q, A)=
∑

deg f=n
gcd( f,Q)=1

Λ( f)

=
∑

deg f=n

Λ( f)−
∑

deg f=n
deg gcd( f,Q)>0

Λ( f)

= qn −
∑

deg P |n
P |Q prime

deg P . (A.8)

By Lemma 3.1, we may safely replace

∑
gcd(A,Q)=1

Ψ (n; Q, A)= qn + negligible. (A.9)

For the second moment of Ψ (n; Q, A) we have

∑
gcd(A,Q)=1

Ψ (n; Q, A)2 =
∑

deg f=deg g=n
f≡g mod Q
gcd( f,Q)=1

Λ( f)Λ(g)

=
∑

deg f=n
gcd( f,Q)=1

Λ( f)2 +
∑

deg f=deg g=n
f≡g mod Q

f �=g
gcd( f,Q)=1

Λ( f)Λ(g). (A.10)

Now ∑
deg f=n

gcd( f,Q)=1

Λ( f)2 = nqn + O(n2qn/2)−
∑
P |Q

deg P |n

(deg P )2. (A.11)

For the sum over f �= g, we write the condition f = g mod Q as g = f + JQ, J �= 0, deg J <

n− deg Q (the number of such J of degree j is (q − 1)q j) and then

∑
deg f=deg g=n

f≡g mod Q
f �=g

gcd( f,Q)=1

Λ( f)Λ(g)=
∑

deg J<n−deg Q
J �=0

ψ2(n; JQ), (A.12)
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where for K �= 0, deg K <n,

ψ2(n; K) :=
∑

deg f=n
f monic

Λ( f)Λ( f + K). (A.13)

Clearly, we can split the right-hand side of (A.12 as follows:

∑
deg f=deg g=n

f≡g mod Q
f �=g

gcd( f,Q)=1

Λ( f)Λ(g)=
n−deg Q∑

j=0

∑
deg J= j

J �=0

ψ2(n; JQ). (A.14)

The J-sum here is not restricted to monic polynomials. We can restrict it to monics,

multiplying by q − 1. Then inserting (A.1), we have

∑
deg f=deg g=n

f≡g mod Q
f �=g

gcd( f,Q)=1

Λ( f)Λ(g)∼ qn(q − 1)
n−deg Q∑

j=0

∑
deg J= j

J �=0
J monic

S(JQ) (A.15)

as qn → ∞.

In order to estimate the J-sum in (A.15), consider

∑
J monic

S(JQ)

|J|s = α
∑

J monic

1

|J|s
∏

P |JQ

|P | − 1

|P | − 2
, (A.16)

where the equality follows from inserting (A.2) and

α =
∏

P

(
1 − 1

(|P | − 1)2

)
. (A.17)

Hence, ∑
J monic

S(JQ)

|J|s = α
∏
P |Q

|P | − 1

|P | − 2

∑
J monic

1

|J|s
∏
P |J
P �Q

|P | − 1

|P | − 2
. (A.18)

Since the summand on the right-hand side is multiplicative, we may write this as

∑
J monic

S(JQ)

|J|s = α
∏
P |Q

|P | − 1

|P | − 2

∏
P �Q

(
1 + 1

|P |s − 1

|P | − 1

|P | − 2

)∏
P |Q

(
1 − 1

|P |s
)−1

. (A.19)
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Therefore, ∑
J monic

S(JQ)

|J|s = αζA(s)
∏
P |Q

|P | − 1

|P | − 2

∏
P �Q

(
1 + 1

|P |s(|P | − 2)

)
(A.20)

with

ζA(s)=
∏

P

(
1 − 1

|P |s
)−1

. (A.21)

Hence,

∑
J monic

S(JQ)

|J|s = αζA(s)
∏
P |Q

|P | − 1

|P | − 2

(
1 + 1

|P |s(|P | − 2)

)−1∏
P

(
1 + 1

|P |s(|P | − 2)

)
. (A.22)

Furthermore,

∑
J monic

S(JQ)

|J|s = αζA(s)ζA(s + 1)
∏
P |Q

|P | − 1

|P | − 2

(
1 + 1

|P |s(|P | − 2)

)−1

×
∏

P

(
1 + 2

|P |s+1(|P | − 2)
− |P |

|P | − 2

1

|P |2s+2

)
. (A.23)

It is convenient to re-express these formulae in terms of the variable u= 1/qs.

Thus, |J| = u−degJ , |P | = u−degP , and

∑
J monic

S(JQ)udegJ = αZ(u)Z(u/q)
∏
P |Q

|P | − 1

|P | − 2

(
1 + udeg P

(|P | − 2)

)−1

×
∏

P

(
1 + 2udeg P

|P |(|P | − 2)
− u2degP

|P |(|P | − 2)

)
(A.24)

with

Z(u)=
∏

P

(1 − udeg P )−1 = 1

1 − qu
. (A.25)

We can now estimate the J-sum in (A.15) by denoting

F (u)=
∑

J monic

S(JQ)udeg J (A.26)
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and using ∑
deg J= j

J �=0
J monic

S(JQ)= 1

2πi

∮
F (u)

uj+1
du, (A.27)

where the contour is a small circle enclosing the origin but no other singularities of the

integrand. Expanding the contour beyond the poles of F (u) at u= 1/q and u= 1 (coming

from the factors of Z(u) and Z(u/q) in (A.24)), we find that as q → ∞

∑
deg J= j

J �=0
J monic

S(JQ)∼ q j |Q|
Φ(Q)

− 1

q − 1
, (A.28)

where we have used ∏
P |Q

|P |
|P | − 1

= |Q|
Φ(Q)

. (A.29)

Note that the first term in (A.28) coincides after the usual translation with that in the

corresponding expression in the number field calculation [4], but that interestingly the

second term has a different form.

Finally, substituting (A.28) into (A.15) and incorporating the estimates for the

other terms in (A.7), we find that

G(n; Q)∼ qn

(
deg Q − |Q|

Φ(Q)

)
. (A.30)

We now observe that as q → ∞

|Q|
Φ(Q)

→ 1 (A.31)

and so in this limit, when n is fixed with deg Q ≤ n+ 1, this calculation matches

Theorem 2.2. Furthermore, when deg Q → ∞ with q fixed we have that

G(n; Q)∼ qndeg Q, (A.32)

which is consistent with the Hooley’s conjecture (1.10) in the number field case.
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