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HECKE THEORY AND EQUIDISTRIBUTION FOR THE
QUANTIZATION OF LINEAR MAPS OF THE TORUS

PAR KURLBERGAND ZEEV RUDNICK

1. Introduction

1.1. Background. One of the key issues of “Quantum Chaos” is the nature of the
semiclassical limit of eigenstates of classically chaotic systems. When the classical
system is given by the geodesic flow on a compact Riemannian mamf¢da rather,
on its cotangent bundle), one can formulate the problem as follows: The quantum
Hamiltonian is, in suitable units, represented by the positive Laplacianon M.

To measure the distribution of its eigenstates, we start with a (smooth) classical
observable, that is, a (smooth) function on the unit cotangent buidie via some
choice of quantization from symbols to pseudodifferential operators, we form its
guantization Opf). This is a zero-order pseudodifferential operator with principal
symbol f. The expectation value of @p) in the eigenstate is (Op(f)v, ¥).

Lety; be a sequence of normalized eigenfunctiang; +4 v, =0, [,, [¥;]1?= 1.

The problem then is to understand the possible limitsas- oo of the distributions

(1.2) feC®(S* M) — (Op(NHVj. ¥j).

In the case where the geodesic flow is chaotic, it is assumed that the eigenfunctions
are random, for instance, in the sense that the expectation values conveyge as

to the average of with respect to Liouville measure o M. The validity of this

for almost all eigenmodes if the classical flow is ergodic (so a very weak notion of
chaos!) is asserted by Schnirelman’s theorem {24 fact sometimes referred to as
guantum ergodicity. The case where there are no exceptional subsequences is called
“quantum unique ergodicity” (QUE). Its validity seems to be a very difficult problem,
which is to date unsolved in any case where the dynamics are truly chaotic (see,
however, Marklof and Rudnick [16], where QUE is proved for an ergodic, though
nonmixing, model case).

1.2. Cat maps.In order to shed some light on the validity of QUE, we look at a
“toy model” of the situation—the quantization of linear hyperbolic automorphisms
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of the 2-dimensional toru¥2. Here the phase spa@@ is compact, and instead of a
Hamiltonian flow, we consider the discrete time dynamics generated by the iterations
of a single mapA € SL(2,2). If A is hyperbolic, that is|tr A| > 2, then this map

is a paradigm of chaotic dynamics. Such maps are sometimes calietapsn the
physics literature. A quantization of these cat maps was proposed by Hannay and
Berry [9] and elaborated in [6], [7], [12], [13], and [25]. We review this in some
detail in Sections 2 and 3. In particular, the admissible values of Planck’s constant
are inverse integers = 1/N, and the Hilbert space of staté&y ~ L%(Z/NZ) of

the quantum system is finite-dimensional, of dimensiba: 2 ~1. To every classical
observablef € C*°(T?), we associate an operator Q) on%, the corresponding
guantum observable. The quantization of the cat map is a unitary opé&katar) on

¥, the quantum propagator, unique up to a phase factor, characterized by an exact
version of Egorov’s theorefn

(1.2) Un(A)~t0py (f)Un(A) = Opy(foA), VfeC®(T?).

The eigenvectorg of the quantum propagatdyy(A) are the analogues of the
eigenmodes of the Laplacian, and to study their concentration properties, one forms
the distributions

[+ (Opy (e, 9).

In particular, we want to understand the quantum limit¢vas> co. An analogue of
Schnirelman’s theorem in this setting was proven in [3] and [25]. We would like to
know if QUE holds, that is, if the only quantum limit is the uniform measurdén

The spectrum of the quantum propagathy(A) has degeneracies, which renders
the study of possible quantum limits difficult. The degeneracies are systematic and
are inversely related to the order afmod 2V. Degli Esposti, Graffi, and Isola [7]
showed that if, instead of looking at all integer valuevgfone restricts to the sparse
subsequence consisting of primes for which the degeneracies are bduaded,
moreover, split in the quadratic extension of the rationals containing the eigenvalues
of A, then the only limit is indeed the uniform measure.

Our first goal in this paper is to show that the degeneracies are coupled to the
existence of quantum symmetries. There is a commutative group of unitary operators
on ¥y that commute with/y (A) and therefore act on each eigenspac& i A).

We call theseHecke operatorsn analogy with the setting of the modular surface
(see [10], [15], [20]). We may thus consider eigenfunctions of the desymmetrized

2This exact version of Egorov’s theorem is very special and is a consequence of the map being
linear.

3|tis an open problem to show that there are infinitely many primes where the degeneracy is bounded.
This is known, assuming the generalized Riemann hypothesis, which, in fact, guarantees that a positive
proportion of the primes satisfy the assumption.

4A notable difference between our setting and the modular surface is that in the latter one expects
few, if any, degeneracies.
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guantum map, that is, eigenstates of béth(A) and of all the Hecke operators.

We call these Hecke eigenfunctions. Our second goal is to show that these become
equidistributed with respect to Liouville measure, that is, the expectation values of
guantum observables in Hecke eigenstates converge to the classical phase-space av-
erage of the observable.

1.3. Results.We turn to a detailed description of our results. We first carry out
a systematic study of the quantum propagator. We ddfigéA) so that it only
depends on the remainder dfmod2N and satisfies (1.2). One gets a projective
representatio — Uy (A) of the subgroup of quantizable elements in the finite
modular group SI2,Z/2NZ). In Section 4, we explain that it can be made into
an ordinary representation if we further restrict to the subgm(h 2N) given by
g =1Imod4 forN even,g = Imod2 forN odd. Thus, forA, B € ' (4, 2N), we have
Un(AB) = Un(A)Uy(B). Consequently, iA B = BAmod2N, then their propaga-
tors commute. This is the basic principle that we use to form the Hecke operators.

Fix a hyperbolic matrip4, which we further assume lies in the congruence subgroup

I'(4) ={geSL22):g=1Imod4

so that its reduction moduloA2 lies in I"(4, 2N) for all N. To find matrices com-
muting with A modulo 2V, we use the connection with the theory of real quadratic
fields (see Section 5). t is an eigenvalue ofi, form O = Z[«], which is an order
in the real quadratic fiel&k = Q(«). There is anD-ideal I so that the action ok
on I by multiplication hasA as its matrix in a suitable basis. Thus the actiorDof
on I by multiplication gives us an embedding© — Maty(Z) and induces a map
t:9/2NO — Matz(Z/2N Z). Under this map, the images of elemefits O/2NO
whose Galois norm is 1modRlie in SL(2,Z/2NZ) and commute wittA modulo
2N. If we further require thaB = 1 mod 4D, then we get a group of commuting ma-
tricest(B) € I'(4, 2N ), whose quantum propagatdig (1(8)) commute withUy (A)
and with each other. These are our Hecke operators.

Since the Hecke operators commute wiily (A), they act on its eigenspaces,
and since they commute with each other, there is a basi§yotonsisting of joint
eigenfunctions olUy (A) and the Hecke operators, whose elements we call Hecke
eigenfunctions. Our main theorem is the following:

THEOREM 1. Let A € I'(4) be a hyperbolic matrix, and lef € C®(T?) be a
smooth observable. Then for all normalized Hecke eigenfuncfien®y of Uy (A),
the expectation value®Opy (f)¢, ¢) converge to the phase-space averagef ais
N — oo. Moreover, for alle > 0, we have

(OPy (). ¢) = /T F)dr 0 (NVH), asN — oo,

Remark 1.1.1t is easy to extend Theorem 1 to give similar results for matrix
elements of OR(f). WhenN\ is such that the degeneracies in the spectrutiafA)
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are sufficiently small, this implies, as in [7], that the expectation values gf(@p
in all eigenstates converge fc,;z f(x)dx.

Remark 1.2. The exponent of 24 in our theorem is certainly not optimal, and
more likely the correct exponent ig4. That is the exponent given in [7], where the
problem is reduced to one-variable exponential sums, which can be estimated using
Weil's theorem—the Riemann hypothesis for a curve over a finite field.

What we in fact show (see Theorem 9) is thap;ifi = 1,..., N is an orthonormal
basis of#y consisting of Hecke eigenfunctions, then

N
2.
i=1

from which we deduce Theorem 1 by taking an orthonormal basisayits ¢ and
omitting all but one term on the left-hand side. If all terms on the left-hand side are
of roughly the same size, then we would expect this to give the exporignt 1

4
<< N—l-’ré

(OpN<f)¢i,¢,->—/T2f<x)dx

The proof of Theorem 1 is reduced to a counting problem in Section 6. This in turn
comes down to counting solutions of the congruence

B1— B2+ B3— Pa=0modNO

in norm-one elementg; € O/NO. The number of such norm-one elements is
O(Nt¢) (see Lemma 8), and since this equation has three degrees of freedom,
the trivial bound of the number of solutions@(N3+¢), Ve > 0. To get any result in
Theorem 1, we need to show that the number of solutions i¢3—?%) for somes > 0,

that is, any saving over the trivial bound would do. This is accomplished in Section
7, where we show that the number of solution®igV2*¢), the optimal bound.

AcknowledgmentsWe thank J. Bernstein, D. Kazhdan, J. Keating, J. Marklof, F.
Mezzadri, P. Sarnak, and S. Zelditch for helpful discussions concerning various points
in the paper.

2. Background on quantization of maps. In this paper, we consider the quan-
tization of linear (orientation-preserving) automorphisms of the tdrtis= R?/Z2,
that is, elements of the modular group@LZ), which for the most part are assumed
to be hyperbolic (known as cat maps in some of the literature). For this, we first
review a procedure (one of several) for quantization of maps.

The first to quantize the cat map were Hannay and Berry [9]. We follow in part
an approach by means of representation theory that was developed by Knabe [13]
and Degli Esposti, Graffi, and Isola [6] and [7]. See also [3], [12], and [25] for other
approaches.

2.1. The quantization proceduréiVe start by describing some desiderata for a
guantization procedure for a symplectic mapf a phase space. In the literature it is
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customary to distinguish two components of the quantization procedure—a kinematic
component and a dynamical one.

In the kinematic component, one constructs a Hilbert sgécef states of the
guantum system and an algebra of operators on the space—the algebra of quantum
observable$. Smooth functionsf on the classical phase space of the system (that
is, classical observables) are mapped to membejg Oof this algebra. To make
the connection with the classical system, it is required that in the kmit O, the
commutator of the quantization of two observabjeg reproduce the quantization

of their Poisson bracketf, g} = >_;(0f/9p;)(3g/dq;) — (3f/34,)(3g/dp;):

@2.1) = [OP,(). 0P (6)] —Opy (1 f.8H) —= 0.

(We do not specify the sense of convergence.)

The dynamical part of quantization amounts to prescribing a discrete time evolution
of the algebra of quantum observables, that is, a unitary thgpt) of ¥, that
reproduces the classical mapin the limit 4 — 0 in the sense that

2.2) Un(A)™ 0P, ()Un(A) = Opy(f o A) — 0.

(This is the analogue of Egorov’s theorem.)

In our case, the classical phase space is the fbfusThe classical observables
are smooth functions ofi2. We find that Planck’s constarit is restricted to be
an inverse integeth = 1/N, N > 1. The state-spac¥, is #y = L%(Z/NZ). To
each observablg € C®(T?), we assign, by an analogue of Weyl quantization, an
operator OR (f) on ¥y so that (2.1) holds where convergence is in the space of
N x N matrices. The dynamics are given by a linear midap SL(2,Z) so thatx =
(7) € T2~ Ax is a symplectic map of the torus. Given an observabeC > (T?),
the classical evolution defined by is f — fo A, where fo A(x) = f(Ax). It
turns out that for a certain subset of matricesthere is a unitary map/y(A) on
L%(Z/NZ) so that an exact form of (2.2) holds:

Un(A)"20py (f)Un(A) = Opy(foA), VfeC™(T?).

This is our discrete time evolution.
We describe these procedures in detail below.

2.2. Kinematics: The space of stateAs the Hilbert space of states, we take dis-
tributionsy (g) on the lineR that are periodic in both the position and the momentum
representation. As is well known, this restricts Planck’s constant to take only inverse
integer values. We review the argument: recall that the momentum representation of
a wave-functiony is

1 o0 .
i) = - / v(@e il gq.

5h stands for Planck’s constant.
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We then require

Yvig+D=v(@)), Fpy(p+1) =Fpf(p)

(one may just require that this hold up to a phase). From periodicity in the position
representation, we get
V(g) =) cae(ng),
neZ
where

e(z) = e2riz,

In the momentum representation, that is, applying we get

Fnp(p) =~h)_cad(p—nh).

neZ

Now, in order thatr, ¥ (p+1) = Fn ¥ (p), we clearly need Ah € Z, that is, for some
integerN > 1, that
he <.
N
In that case, we also need
Cn+N = Cp.

Thus, we find that = 1/N and the space of states is finite dimensional, of dimen-
sion N = 1/h, and consists of periodic point-masses at the coordinatesQ/N,
Q € Z. We may then identify#,y with the N-dimensional vector spade’(Z/NZ),
with the inner product-, -) defined by

1 _
B9 =5 D, HQVQ.

Q modN

2.3. Quantizing observablesNext we construct quantum observables: for a free
particle on the line, we would take as the basic observables the position and momen-
tum operators

. R hdy
q¥(q) =q¥(q), pv(q) =~——(q)
i dg

(A =Ah/2”)' For our periodic phase space, we take the basic observableg(®)be
¢?™'4 ande(p), which correspond to the phase space translations

e@V(q) =e(@)V(q), e(P)Y(q) =¥ (g +h).
Corresponding to the commutation relation

(g, pl=ih i
9 =in=—-—_—-7
Tp 2mi
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we find that
e@e(p)=e"e(ple(q).
Writing
11 :=e(p), t2:=e(q)
(so thatror, = e~ 2" 1115), we put, forn = (n1, n2) € Z2,
(2.3) T (n) i= '™/ N2y

Their action on a wave functiofr € L%(Z/NZ) is

n2Q

(2.4) Tn(m)y(Q) = e"”"l”z/Ne(T>w<Q +n1).

These are clearly of period\2in n:
In(n+2Nm) =Tn(n), n,me z2.
The adjoint ofTy (n) is given by
(2.5) Ty (n)* =Ty (—n).
They also satisfy
(2.6) Tn(m) Ty (n) = ™"/ N Ty (m+n),

where

w(m,n) =mino —moni.

Now we can finally construct quantum observables. For any smooth classical ob-
servablef e C°°(T?) with Fourier expansion

fO) =Y faeln-x), x= (") eT?,
we define its quantization Q f) as
Opy(f) =Y fulTn(m).
nez?

The verification of (2.1) is an easy calculation using (2.6).

2.4. The Heisenberg groupWe now digress to connect this construction to the
representation theory of a certain Heisenberg gragp.
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For vectorsx = (x1,x2), y = (y1, y2), definew(x, y) := x1y2 — x2y1. This is a
nondegenerate symplectic form. The Heisenberg gy is defined to be the set
(Z/2NZ)% x Z /2N Z with multiplication

(x,2)-(x',2) == (x+x", 2+ + o, x)).

This is at odds with the standard convention where one multipliéy 1/2, but is
essential for us because 2 is not invertiblZifeNZ.

It is useful to record various facts about the multiplicationHg : the inverse of
(x,2)is

2.7) (x,2) "t = (—x,—2).
The commutator of two elements is given by
(2.8) (x, 2, 2)(x, 27, ) = (0, 20 (x, X)),
From this commutator identity and the fact tlhats nondegenerate, we immediately
find the following lemma.
LEMMA 2. The center offoy is (NZ/2NZ)2x Z/2NZ, that is,

Ceni(Hoy) = {(NE, Nn,z):e,n=0,1,z¢ Z/ZNZ}.
We define a representation By on L2(Z/NZ) by setting

Z

,2)=e|l — | T, .
7 (n,z) e<2N> N (n)
From the relation (2.6), it follows that(h)z (k') = 7 (hh’), that is, we do indeed get
a representation.
The center ofHoy then acts via the charactgrgiven by

Z+XOy0)

X(XO,yo,Z)=e( 5N

(that is, (xo, yo, 2) = X (x0, Y0, 2)1).
The basic facts about and the representation theory BHpy are covered in the
following proposition.

ProrosiTioN 3. (i) All irreducible representations oH,y have dimension at
MOStN .

(ii) The representatiotr is irreducible and is the unique, irreducibl¥-dimen-
sional representation with central charactgr

We omit the details of the proof; the main point (which is easy to verify from the
definitions) is the following lemma.
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LeMMA 4. The trace ofly (n) is given by

N, if n=(0,0)modN,

tr7, =
|r N(n)| 0, otherwise.

Proof. Let¢; = v/N§; wheres; is the Dirac delta function supportediaso that
{¢;}Y_; is an orthonormal basis df?(Z/NZ). Then

N

tr7n(n) = Z(TN ()i, i),

i=1

and by equation (2.4),

In(n)¢i(Q) = $i(Q+n1)

2
(”1”2+ "ZQ)@M(Q)

— 2
( nan2+ ”2’)4),-_"1(@.

Therefore, tfy (n) = 0 unlessi11 = 0modN, in which case,

(n1n2+2n2Q)

N

N .
[ —ninz noi
Z<TN<n>¢i,¢i>_e( o >Zl<_N>

i=1

The result now follows sinc{jf’zle(nzi/N) equalsh if np = 0modN, and is zero
otherwise. O

2.5. Description ofr as an induced representatiorLet Y be the subgroup of
elements

={(x0.y,2):y,2€Z/2NZ, xo€ NZ/2NZ}.

It is easily seen to be a normal, maximal abelian subgroup, of indesontaining
the center. Fotxg, y,z) € Y, set

Z+xoy
T(-XO’va) =e .

2N

This is a character df (we need to usexd = 0mod 2V in verifying this), restricting
to the charactey (xo, yo0,z) = e(z+x0y0/2N) of the center.

We consider the induced representationﬁﬁ’dr of the Heisenberg group. The
basic model for it is the space of functiods : Hyy — C satisfying ®(ah) =
7(a)®(h) for a € Y, h € Hpy. The action of the group is by right multiplication
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h® (k') := ®(h’h). By restricting to the subgrouf = {(x, 0, 0)}, we can realize this
induced representation as functionstt2N Z that areN -periodic (since the element
(N,0,0) lies in X NY). We can identify this space of functions wittf(Z/NZ).

Let us compute the action of a group elemént (x, y, z) € Hoy in this model.
For this we need to writéx’,0,0)-h asa- (x”,0,0), a € Y. The relevant identity is

(x',0,0)(x,y,2) = (0, y, z+xy+2x"y)(x"+x,0,0).
Thus, the elemenit = (x, y, z) acts as

z+xy+2x'y

hd)(x):e( oN

)q’)(x’—l—x).

In particular,(x, 0, 0) acts as translation hy and (0, y, 0) as a multiplication oper-
ator ¢ (x') = e(x’'y/N)¢(x"). The center acts by the charactep, yo,z) — e(z +
x0yo/2N). These show that coincides with the induced representationﬁﬁﬁr.

3. Dynamics: Quantized cat maps. We now show how to assign to (certain)
linear automorphisms of the torusT2, a unitary operatot/y (A) on L2(Z/NZ)
that satisfies the following statement: for all observalflasC>°(T?2),

Un(A)10py (f)Un(A) = Opy(foA).

The finite modular group SI2, Z/2N Z) acts by automorphisms on the Heisenberg
groupsHoy Via (x,2)4 := (xA,z), A € SL(2,Z/2NZ). That this is indeed an au-
tomorphism (i.e.(h1h2)* = h{ h%) follows from A preserving the symplectic form
w. Moreover, we havgr?)8 = h48. Composing the representatianof Hpy with
A gives a new representation® (1) := 7 (h*), which is clearly still an irreducible
N-dimensional representation. Its central charagtércan be easily computed as
follows: if xq, yo € NZ/2NZ and(x1, y1) = (xo, Yo)A, thenx4 is given by

Z+x1y1
2N '

XA(XO, Y0,2) = x((xo, YO)A, z) = e(

This is the same character gsif and only if x1y1 = xgyomod 2N for all xg, yo €
NZ/2NZ.Writing A = (¢ %) andxo = Ne, yo = Nn, €,n € Z/2Z, this is equivalent
to requiring

N(abe?+cdn?) =0mod2 Ve, neZ/2Z,

or
Nab= Ncd =0mod2

This is only a restriction iV is odd and is satisfied by the elements of the theta group

Ty(2N) = { <i Z) € SL(2,Z/2NZ) : ab = cd = 0mod 2} .
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Therefore, ifA € T4 (2N), we get a unitarily equivalent representatiof of Hoy .
Thus, there is a unitary mdjpy (A), the quantum propagator associatedi{so that

7w (h*) = Un(A) () Un(A), Vh e Hay.
In particular, we find
(3.1) Un(A) Ty (n)Un (A) = Ty (nA),
and consequently, for all observablgs C>®(T?),
(32) Opy (f 0 A) = Un(A) ™ Opy (f)Un(A).

Now for any quantizable elemente SL(2,2) (thatis,A = (¢ 5) withab = cd =
0mod 2), we define the quantum propagator (or quantized cat mapjte & where
A € SL(2,Z/2NZ) is the reduction ofA modulo 2V. Thus, by its construction,
Un(A) only depends on the reductiohimod2V. (This is a difference from the
construction in Hannay and Berry [9].)

4. Multiplicativity. The quantum propagatotgy (A) are uniquely defined up to
a phase factor, because of the irreducibilityrofSchur’'s lemma). Thus, they define
a projective representation of (2N); that is,

UN(AB) =PV AByy (A)\UN(B) A, B €Ty(2N).

Define the subgroup

F(4,2N)={geSL(2,Z/2NZ):{g:Im0d4 (N even .
g=1Imod2 (N odd

The goal of this section is to show that there is a choice of phases for the propagators
Uy (A) so that on the subgroup(4, 2N), the mapA — Uy (A) is a homomorphism.

THEOREM 5. There is a choice of quantum propagators so that
Uy(AB) =Uy(A)Uy(B), A,BeTl(4,2N).

As a consequence, we find the following corollary.

CoroLLARY 6. If A, B € I'(4,2N) commutanod 2V, then their propagators also
commuteUyn (A)Un(B) =Un(B)Un(A).

Theorem 5 is essentially known in various guises and arose out of the study of theta
functions and the Weil representation. One form is due to Kubota [14] (see also [8]).
There are also treatments purely at the finite level [1] and [18]. Since Corollary 6 is
absolutely crucial to our work, and we did not find a good reference for the exact form
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that we need, we sketch a proof (or more precisely, a verification) of Theorem 5. We
wish to note that Theorem 5 is a priori more subtle than Corollary 6, since once we
know that there is some choice of phases for which Corollary 6 holds, then it holds
for all choices; this is not the case with Theoreth 5.

4.1. Reduction to prime powersFactor V =[], p*» = 2t ., p*r = 2*m,
with M odd. The Chinese remainder theorem gives an isomorphism
Z/2NZ ~][z/p"z.
p

given by
X —> (x modpkp)p

with inverse oN
kp
(x, modp": )p — Z Erpxp mod 2V,

wherer, is the inverse of & / p*» modulo p*». Correspondingly, we have a bijection

L%(Z/2NZ) ~ Q) L*(Z/p**2).
P

We define the phase space translatid® on L2(Z/p*»Z) as in (2.4) by

TP () = e LD )y (-t

It is then a simple matter to see tHB (n) = ®,T ") (n), that is, ify = ®,¥, €
®, L*(Z/p*rZ) is decomposable, then

Tnmy(Q) = [ [ TP ()w (@ modp?).
p

This allows us to express the quantum propagdtiaréA) as tensor products. Indeed,
if we already have propagatots?) (A) that satisfy

(4.1) U(P)(A)—J-T(P) (n)U(p)(A) —7® (nA),
we then set
(4.2) Un(A) :=0U P (4),

which still satisfies
Un(A) YTy () Uy (A) = Ty (nA)

6We thank Jon Keating for emphasizing this point to us.
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for all n € Z2, and thereford/y(A) coincides up to a phase with any other map
satisfying this.

We use this procedure to defiiéy(A) (that is, choose a phase) so thiay is
an honest representation of a subgrdu@, 2N) of SL(2,Z/2NZ), not merely a
projective representation. From the factorization property (4.2), it follows that it is
enough to show that’(?) is a representation of S2,Z/p*rZ) whenp > 2 is odd,
and of '(4, 2¢) if N =2k—1p is even.

4.2. Gauss sumsWe need some preliminary information on Gauss sums. We
define normalized Gauss sums

—rax
(4.3) Sy (a p \/» Z ( )
x modpk
For p odd, these are fourth roots of unity. To describe them, definedaZ / p*Z)*,
S, (t, p*)
S, (1, pk) ’

Note that ifr = t12 € (Z/p*2)* is a square, then, «(z) = 1, since from (4.3) we
find after the change of variables = r1x that S, (r, p*) = S, (1, pb).
For p odd, A, ,« is given in terms of the Legendre symbol as

t k
rp0=(5)
and is a character @/ p*Z)*:

A, (et = A, k(DA k().

A, (1) =

Whenp =2, we have

_k ,
Ar,zk (t) — (T) l-—r(zz_l)/B,

where? is the smallest positive residue omod4. In that case, it is not quite a
character of the whole multiplicative group 8f2¢Z, but instead satisfies

(4.4) A, (tt) = (1) 28, (DA, (1),

where(z,1)2 is the Hilbert symbol. In particular, if, 7’ = 1mod 4, then the Hilbert
symbol is trivial, and so we get a character of the subgfoupl mod4 c (Z/2KZ)*
(this is relevant fok > 2) given simply by

) = 1, t=1mod8§
Arat (—1k, 1=5mod8
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For p odd, we also need to know the normalized Gauss sum (4.3) wher1,
in which case, we have

1, k even

—1. K =

where

1, p=1mod4
€(p)=
i, p=3mod4

4.3. p odd. We describe how to defing ”’ on SL(2,Z/p*Z) so that it gives a
representation (see Nobs [18] for details). This group is generated by the matrices

o Y () LY

and so it suffices to specify (? on such matrices, provided we preserve all relations
between them. This is done by the formulas

2
(4.6) v (1 [i) w(x)=e<r]:,: )w(x),
4.7) U@ <f [_1> Y(x) = A, k(DY (1x),
(4.8) U(p)< 1) Y(x) =S (-1, pk)i Z 1//(y)e<2rxy>.
-1 N pt

It is easy to check that these satisfy (4.1). To see a verification that this prescription
does indeed give a consistent definition (that is, that all relations between the gen-
erators (4.5) are satisfied), see, for example, [18]. Once we have this, then we get
UP)(AB) = UP) (A)U P (B) automatically.

Remark 4.1. It is in fact the case that any projective representation of2s2/
p¥Z), p odd, can be modified to give a representation (and more generallg, BL
mZ) if m £ 0mod4)—this is due to Schur [22] whén= 1. See [17] and [2] for the
general case.

4.4. p = 2. Here we restrict to the subgroup(4, 2¢), k > 2. The literature in
this case is harder to come by, so we include complete proofs. We start by describing
generators and relations for this group. More generallyplée any prime and let
k> 2. Let

r(p? p*):={g eSL(2.2/p*Z) : g = Imodp?}.
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LEmma 7. T'(p2, p¥) has a presentation with generators (x), u_(y), s(r), where
x,y,t €Z/p*Z, x,y =0modp?, r = 1 modp?, and relations

(4.9) g (g (x') = uy (x +x7),
(4.10) u_u_(y)=u_(y+y"),
(4.11) s()s(t") = s,
(412)  sOus s =uy(Px),
(4.13) sOu_(s) L =u_(172y),

(4.14) s(dyuy(@u_(b) =u_(d *b)us(da), d:=1+ab)™.

Proof. Let G be the abstract group with the above presentation. We get almap
from G into I'(p2, p*) by taking

Wu(x) —> (l ;), u_(y) — <$ 1), s(t) —> (t t_l).

We verify that the relations hold in $,Z/p¥Z) so that¥ is a homomorphism.
Next, note that we have a Bruhat decompositionIfop2, p¥): every element can be
uniguely written in the form

=6 )

which follows from the formula

(£ == ) Dy

(note that sincé = 1modp?, it is particularly invertible). This implies that the map
W is surjective. To see that is an isomorphism, it suffices to show that every element
of the abstract groug can also be written in the form = s(t)us (x)u—_(y), since
then by the uniqueness of the decompositioit ip?, p¥), ¥ is also one-to-one.

With the aid of the first five relations, every wold € G can be written as a product:

W =s(t)u(xDu—(y1) ... s)ut (xp)u—(yn),

for somen > 1. We prove by induction on that we can writéV = s(t)u (x)u—(y)
for x, y = 0modp?, t = 1modp?. Whenn = 1, this holds trivially, and fon > 1,
we use the relations (4.13) and (4.14) to write

U—(Yn—1)s(tn)u+(xn) = s(tn)u—(tnzyn—l)u—i-(xn) = s(tn)s(t/)u+(x/)u_(y/),
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and so
W = s(t)uy(xD)u—(y1) -+ tp—1) 4+ (Xn—1)s(6)s ¢y (" u— (Y )u—(yn)
= s(t)uyxDu—(y1) st _Dus(x,_Du_(y,_1)

after a further application of the first five relations. The result now follows by
induction. O

We now specify the propagatots? (A) for the generators: for
() ()
they are given by the same formulas (4.6) and (4.7). For the matrices
(o) (G
b 1 -1 1 -1 ’

we conjugate (4.6) by an analogue of the Fourier transform (4.8) and define

1 —bz?+2z2(y—

y mod Z z mod &

To show that this defines a representation, we have to check that all the relations
of Lemma 7 are satisfied. The first five are fairly straightforward, bearing in mind
that A is a character of the multiplicative group of residues 1mod4 (see (4.4)).

The last relation (4.14) requires verifying an identity of Gauss sums: unwinding the
action of the right and left-hand sides in (4.14), we must show that

A(d) Z Z Y(y)e (%(Zyz—bzz—dez—Fadzxz))

zmodZ y modZ

= Z Z ¢()’)€(%(Zyz—d_lbzz—sz—}-adyz)).

zmodZ y modZ

Now d = 1mod 16 implies thah (d) = 1 sinced is then a square moduld 2and
if the identity is to hold for alky and all values of, we obtain that for alk, y,

> e(gr(—b+2zy—dx) +aax?))
z mod Z

(4.16) = Y e(g(-a P20 -0 +ady?)).
z mod &

We verify this in Appendix A.
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5. Hecke operators. We now introduce a commutative group of unitary operators
on L2(Z/NZ) that commute withUx (A). For this, we have to bring in the theory of
guadratic fields (see [19] for a survey in connection to cat maps).

5.1. Integral matrices and quadratic fieldd.et A € SL»(Z) be a hyperbolic ma-
trix: [tr A| > 2. The eigenvalues, o~ of A generate a field extensidki = Q(«),
which is a real quadratic field since #)? > 4. We denote by ¢ the ring of integers
of K. The eigenvalues, ! of A are units inD x. Adjoining « to Z gives an order
O =Z[a] €Ok in K. We claim that there is af-ideal I C O so that the action of
o by multiplication on/ is equivalent to the action of onZ2, in the sense that there
is a basis off with respect to which the matrix @f is preciselyA.

The construction is as follows (refer to [23]): sineés an eigenvalue o\, there is
a vectorv = (v1, v2) such thaw A = av andv € O2. Let I := Z[v1, v2] C O. Then!
is in anO-ideal, and the matrix o acting on/ by multiplication in the basis;, v2
is preciselyA.

Remark 5.1. 1t is easy to check that the above construction sets up a bijection
between Gk(Z)-conjugacy classes of elements in %) with eigenvaluesy, o1
and ideal classes in the ord@r (Recall that two idealsl, I2; are said to be in the
same ideal class if there exist nonzer® € O so thatuly =b15.)

In the same way, the action &f by multiplication on/ gives us an embedding
t: 9 — Maty(2)

so thaty = x + ya € O corresponds tocl + yA. Moreover, the determinant of
xI+yA equalsN(y) = yy, whereN : K — Q is the Galois norm. In patrticular, if
y € O has norm 1, thery corresponds to an element in §£), and if in addition
y = 1mod 4D, theny corresponds to an elementlit{4).

5.2. Hecke operators.Given an integeM > 1, the embedding: O < Matx(Z)
induces a mapy, : O/ MO — Mata(Z/MZ), and the normN : K — Q gives a
well-defined map

N:O/MO — Z/MZ.

We let€ 4 (M) be the group of norm-one elementsiin M O:
GA(M) =Kker[N: (O/MDO)* — (Z/MZ)*].
Similarly, replacing the orded by the maximal ordeD g, we set
Gk (M) =ker[N: (O /MOg)* — (Z/MZ)*]

to be the norm-one elementssitg /MO .

If M =2N is even, we se%g(M) to be the elements o€ 4 (2N) that are con-
gruent to 1 modulo @ (resp., D) if N is even (resp., odd). Fa¥ odd, we set
© (M) =64(M).
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By construction, the image 669 (2N) in Maty(Z/2NZ) lies inT'(4, 2N). Sincew
commutes with all elements FQZ(ZN), we see that commutes, modulo/2, with
the elements im(%%f{,(ZN)). Thus, by Corollary 6, the quantizatiobsy (:(8)) of B €
%Z(ZN) commute withUy (A) and with each other. We call these Hecke operators.
We need to know the number of Hecke operators.

LeEmma 8. The number of eIements@ﬁ(ZN) satisfies
N <« € 2N)| <« N, ¥e > 0.

Proof. Since the reduction map — 9/49 has image of size % €4 (2N)
has bounded index i€ 4(2N). The inclusion® c Ok induces a map/ MO —
Og /MO, which has kernel and cokernel of size at ma3k : O], independent of
M. Therefore, the induced mé&ps (M) — €x (M) on norm-one elements also has
bounded kernel and cokernel. Thus, it suffices to prove the lemma in the case of the
maximal orderD g . By the Chinese remainder theorem, it suffices to prove it in the
case of prime powers, which is given in Appendix B by Lemma 19. O

5.3. Hecke eigenfunctionsThe Hecke operator&y (¢(8)), B € %Z(ZN), com-
mute with each other and wiitiy (A). Therefore, the eigenspaces of the unitary map
Uy (A) break up into joint eigenspaces of the Hecke operators. Such a joint eigen-
function we call a Hecke eigenfunction. In other words, there exist an orthonormal
basis{¢;} of L?(Z/NZ) and characters; of 6% (2N) such that; are eigenfunctions
of Uy(A) and

Un(c(B)) i = 1i(B)pi, VB €€ (2N).

We call such a basis df2(Z/NZ) a Hecke basis.

6. Ergodicity of Hecke eigenfunctions. In the next two sections, we show that
if ¢ € L2(Z/NZ) is a normalized Hecke eigenfunction, then the expectation values
(Opy (f)¢, ¢) converge to the classical phase-space avefggg‘ for all smooth
observables (see Theorem 1). In fact, we show something stronger.

THEOREM 9. Let¢; € L2(Z/NZ),i =1,..., N be any orthonormal basis of Hecke
eigenfunctions of/x (A). Then

N
i=1

6.1. Proof of Theorem 9.To prove this theorem, it suffices to prove it for the
basic observableg (x) = e(nx), 0 # n € Z2, that is, to show that the following
theorem holds.

4
<<f,e N_l+€-

(ODN(f)cbi»tbz')—/Tzf(X)dx
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THEOREM 10. LetO # n € Z2, and let¢; € L%(Z/NZ),i = 1,...,N be any
orthonormal basis of Hecke eigenfunctiondf(A). Then

N
S (Tw i, di)|* < In['ONTHE N — o0,
i=1
The proof of Theorem 9 from Theorem 10 is easy using the rapid decay of the
Fourier coefficients of . Indeed, writef (x) =), .72 f (n)e(nx), so that OR, (f) =
> ez f(n) Ty (n). Therefore,

N

2

i=1

4

<0pN(f>¢fV,¢{V)—/T2f<x)dx

N 4
SZ Z l_[|A(nk)<TN(nk)¢i’¢i>|-

Y Fo)(Tvm)ei. i)

0s£nez?

N
i=1
For notational convenience, we write

i) 2= (T )i, 1))

Now interchange the order of summation and apply Cauchy-Schwartz twice. For fixed
ni, n2,n3, na,

N

>t (n2)ti (n3)t; (na)

i=1

1/4

N 2 N 2. 4 4N
< (Z (ti ()1 (nz))z) (Z (ti (n3)1; (n4))2) <1 (Zt,- (nk)4>
k=1

i=1 i=1 i=1
Now use Theorem 10. Far, # 0,

N 1/4
(Zri(nk)“) & | AN T
i=1
and so we get

N 4
> i)t ()t ()t (na) < N7 Il
i=1 k=1

Now sum over all possible; # 0 to find
4
4 —~
< N7HFe (Z f(n)lnl“) :

N
2.
i=1 n#0

which proves Theorem 9. O

(Ony (e )= [ e
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6.2. Reduction to a counting problemiVe first reduce Theorem 10 to a counting
problem.

PROPOSITION 11 Fix 0 # n = «(v) € Z2, v € I. Then for any Hecke basis of
eigenfunctions;,

N

ST g i)l

i=1

N
S o4 #{Bi € 64(2N) : v(B1— B2+ B3 —Pa) =0mOdNT}.
es2ml*

In order to prove Proposition 11, we define fo=t(v), 0£v e,

D=D(n)= > UNB) T TN UN (B)).

Teb (o |
|(6 (2 )‘ /36(68 (2N)

If (#;;) is the matrix coefficients ofy (n) expressed in the eigenvector baigs} so
thatt;; = (Tw (n)¢i, ¢;), then we see that

1

D;j = }% @n)| Z ri(B)A; (Bt

Be€ (2n)
Since the sum of a nontrivial character over all elements in a group vanishes, we have

tij, if A.i:)\,j,

6.1 Dii = /
6.1) 77 lo, otherwise.

LemMma 12, With D defined as above, we have

Y |t <t ((D*D)?).

Ai=Aj

Proof. Let D = (d;;) = (v;) where they;’s are the column vectors db. Exam-
ining the (k, k)-entry of (D*D)?, we get

((D*DY?) e = D {vi v (g, vi) Z!v,,vk :

i

tr((D*D)?) = ) |(vk, )| Z|d,,|
k

The result now follows from (6.1). O

and hence,
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Lemma 13. We have

N
tr((D*D)?) < W}{ﬁ[ € €% (2N) : v(BL— B2+ B3 —Pa) =0modN 1 }|.
A

Proof. Recall that by (3.1), since-«(8) =t(vB) for B € O, n = 1(v),

Un(c(B)) Ty (mUn (1(B)) = T (t(vB)).

Also note thatTy (w)* = Ty (—w) for all w by (2.5). Substituting the definition dd
and expanding, we see th@*D)? is given by ¥|€ (2N)|* times a sum, ranging
over all 1, B2, B3, Ba € 6% (2N), of terms

Ty (:(vBD)) T (— 1 (vB2)) T (t(vB3)) T (— L (vBa))
=y (B1. B2. B3, Ba) T (L(v(BL— B2+ B3 — B4))).

wherey (81, B2, B3, Ba) has absolute value 1 (see (2.6)). Now take the trace; by Lemma
4, the absolute value of the trace ®§ (n) equalsN if n = (0,0)modN, and equals
zero otherwise. The result now follows by taking absolute values and summing over

all B1. B2. B3. Ba € €5 (2N). O
It remains to estimate the number of solutions of
(6.2) v(B1—Pa+P3—Pa) =0ModNI, B; € €} (2N).

PROPOSITION 14.  The number of solutions to (6.2) is boundedhy (v)|BN?1¢),

6.3. Proof of Theorem 10: ConclusiorBy Proposition 11, we need a suitable up-
per bound for the number of solutions of (6.2) and a lower bound for the number of ele-
ments of6’ (2N). By Proposition 14, the number of solutions is at mo&) BN 2+
Note that|N'(v)| < |#|2. From Lemma 8, we obtain thi€®, (2N)| > N1~¢ and the
result follows.

7. Counting solutions. In this section, we prove Proposition 14.

7.1. A reduction. SinceNI € N9 C N9, the number of solutions to (6.2) is
bounded by the number of solutions to

v(B1—B2+P3—Pa) € NOk, Bi E%Z(ZN).

Moreover, at the cost of increasing slightly the number of solutions, we may omit the
parity condition ons;, replacing@j(ZN) by €4(2N).

The inclusionO c Ok induces a map /MO — Ox/ MOk, which has kernel
and cokernel of size at mogD ¢ : O], independent o# . Therefore, the induced map

Ga(M) =ker[(D/MOY* — (Z/MZ)*] — k(M)

=ker[(Dk/MOk)* — (Z2/MZ)"]
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on norm-one elements also has bounded kernel and cokernel. Thus, up to a bounded
factor (depending oA but not onN or v), the number of solutions to (6.2) is bounded
by the number of solutions of

(7.1) v(BL—B2+B3—pPa) =0mOdNDOk, i € €k (2N).

At the cost of increasing the number of solutions, we multiply (7.1) by the Galois
conjugateb to get

N@)(B1—B2+B3—Ba) =0modNOk, fi € €x(2N).

Setting
, N

N=— —/—17—,
gecd(N, N'(v))
this equation is equivalent to

(7.2) B1— B2+ B3—Pa=0modN'Ok, B; € 6x(2N).

Next, note that the reduction mal /rsOx — Ok /rOk has kerneltOg /rsOg
~ O /sOk of sizes?, and so the induced map on norm-one elemé&nisrs) —
@k (r) has kernel of order at mos€. (This is crude, but sufficient for our pur-
poses.) Thus, the reduction méx (2N) — 6k (N’) has kernel of size at most
4gcd N, N(v))? < 4|N(v)|2. Therefore, the number of solutions of (7.2) is bounded
by (4/N(v)|?)* times the number of solutions of the equation

(73) ﬂl—ﬂ2+,33—,34=0m0dN/DK, ,Bie%K(N’).

Equation (7.3) is invariant under Galois conjugation, and we obtain a second equa-
tion (note that = g1 sinceN'(8) = 1modN’):

(7.4) Brt— By Bt — B =0modN'Ok.

7.2. Atransformation. We thus have a system of equations (7.3) and (7.4), which
we transform using the following lemma.

LemMma 15. If x, y, z, w are invertible, then the system of equations

xt+y=z+w
x71+y71 =z 14yt

is equivalent to the system

(z=x)z—y)(x+y)=0
w=x-+y—z.



HECKE THEORY AND EQUIDISTRIBUTION FOR LINEAR MAPS 69

Proof. From the second equation, we get

x+y ztw

Xy w

or
(x+y)zw = (z+w)xy.

The first equation gives us that= x +y —z; inserting it in(x + y)zw = (z+w)xy,
we get
x+y)zx+y—2)=Gx+y)xy

or
0= (x+y)(zx+zy—22—xy) = =@ -0 — Y +y). O

Thus, by Lemma 15, the system of equations (7.3) and (7.4) is equivalent to the
system

(7.5) (B3— B1)(B3— B2)(B1+ B2) = 0modN'Ok,
(7.6) Ba = B1— B2+ pzmodN'O,

with Bi € (6[((]\/'/).

Sincepy is determined by, B2, B3, we may ignore (7.6) (at the cost of increasing
the number of solutions, since beindgéi (N') is a nonempty condition). Multiplying
equation (7.5) byﬂs‘3 and lettingB! = B; /B3, we obtain

7.7) (1—B1) (1—B5) (B;+BL) = OmodN'O.

Sinceps is arbitrary, the number of solutions of (7.5) is bounded®y (N')| times
the number of solutions ifi;, B, € €k (N') to (7.7).

7.3. Prime powers.By the Chinese remainder theorem, the number of solutions
to (7.7) is multiplicative, and we may concentrate on the prime power case. Thus, we
need to count the solutions to the equation

(7.8) (1-B1)(1—B5)(B1+ B5) = 0modp* D

with B/ € O /p* Ok, N(B!) = 1modp*.

We first recall some properties of primes in quadratic extensionsP getbe a
prime inO g lying abovep, and lete denote the ramification index, that is, the largest
integere such thatP¢|pOg. SinceK is quadratice € {1,2} ande = 1 for all but
finitely many primesp. If e = 2, thenp is said to be ramified. I& = 1, thenp is
called unramified, and one of two things can happen: ejplieg = P is still a prime
ideal, in which case is said to be inert, opOx = PP, in which casep is said
to split.
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Now, fix a primep with ramification index, be it 1 or 2. The normmap : Ox —
Z gives a well-defined homomorphism:

(D[(/P‘?k)>< — (Z/pk)x.
We let
(O /P!

be the kernel of this map, that is, the group of norm-one elements. ek, we let

(1P /(14 P4)’

be the norm-one elements in the subgroiip P!)/(1+ P¢¥); these are precisely the
norm-one elements that reduce to 1 modalo

LemMMA 16. There is a constant > 1 so that the number of solutions of (7.8) is
at mostckp*.

Proof. Equation (7.8) is invariant under Galois conjugation; therefore, its solutions
in Ok /pkOk correspond bijectively to solutiond € Dk /P, N(B]) = 1modp*
(this is, of course, only an issue in the split case whege/p*Og ~ Ok /P* x
DK/?k). Thus, we need to count solutions of

(7.9) (1-B1)(1-B5)(B1+ B5) = OmodPe*

with B/ € O /P, N(B!) = 1modp*.

We first assume that is odd. Sinceg] = g, = 1modP implies thatg] + g, =
2 £ 0modP, we see that at most two of the factors in (7.9) can be congruent to zero
modulo P. Moreover, we may assume that the third factor is nonzero by multiplying
by a suitableg8 and permuting the variables. (Of course, we must then compensate by
multiplying the number of solutions b@)) Now if the product is zero modulB<*,
then there is some € n < ek such that one factor is zero modul¥ and the other
is zero moduloP¢*—". Thus, the number of solutions to (7.9) equals

ek—1

(3) 3 (e /s ot (s 4o s ) 2] 0 )

n=1

Using Lemma 20, we obtain
(24 P7) /(@4 P x| (24 PE7) /(14 PE)) < e,
and by Lemma 19, we obtain

0k /P =20+ Dp* 2,
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Hence, forp odd, the total number of solutions to (7.9) is bounded by
4p+Dp 43k —1)ptpt < kpt

(sincee = 1 for all but finitely many primes).
If p=2,itis no longer true that only two factors can be zero modulélowever,
B1 = B2 = 1modP*! implies thatgi + B2 = 2modP¢*+1. Since D = P¢, we see
that if two factors are zero modulB®*?, then the third factor can be congruent to
0 at most modulaP¢. We may thus bound the number of solutions by counting the
number of ways the product of two factors can be equal to zero maeitilcr. This
we can do as we did for odd primes, and we obtain the same bound as before, except
that we lose an additional factor of at most

(((1+ P /(14 Pf"))lj4 <29 =0().

This proves Lemma 16. O

7.4. Proof of Proposition 14.By multiplying over all primes, we see from Lemma
16 that the number of solutions of equation (7.7I&N’)1*¢). Therefore, we see
that the number of solutions of (7.5) B((N")2t€) since|6x (N')| < (N1t by
Lemma 19. This gives a bound for the solutions of (7.3), and multiplyinghty)|8
gives a bound for the number of solutions of (7.2). In turn, by the reasoning in Section
7.1, we get a bound a® (| (v)[BNZ+€) on the solutions of (6.2).

APPENDICES

Appendix A. An identity of Gauss sums. For Section 4, we need to prove (4.16).
To prove it we need a lemma about Gauss sums. Given an integes define its
dyadic valuationv(x), by x = 2" xq, wherexg is an odd integer. Let

r
G, c)= Z e<§(—bz2+2cz)>.
z mod %
LeEmma 17. If v(c) < v(b) <k, then
2¢ ifv(b) =k—1andv(c) =k—2,
0, otherwise.

G(b,c) = {
Proof. We may write

2
Gh.o= Y e(%(—ﬁzz—kZ)),

z mod %

whereg is an integer satisfyingd® = bmod Z. Letn = k—1—wv(c); itis the smallest
integern such that((2cr/2%)x) =1 for all x = 0mod 2.
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First, assume that > 1. Lete = €92"~* be such that((2cr/2")e) # 1. Making
the change of variables— z +¢, we see that

2 2
G(b,c) = Z e<%(—ﬂ(z2+261+62)+z+6)>=G(b,c)e(%e)

z mod

since 2z+€2=0modZ. Bute((2cr/2%)e) # 1, and thereforeG (b, ¢) = 0.

If n <1,thenas =k—1—v(c) andv(c) < v(b) < k, we musthave =1, v(c) =
k—2, andv(b) = k— 1. Hence, = 1mod2. Moreover, ifn = 1, we must have
e(2crx /2K = e(x/2). Thus

2
Gh.oo= Y e(z ;LZ):z"

z mod &

sincez2+z = 0mod 2 for allz. O

ProrosiTION 18 The following equality holds for ait, y:

Z e(%(—bzz—i-Zz(y—dx)—i-adzxz))
z modZ

= Z e(zr—k(—d_lbzz—l—Zz(y—x)+ady2)).
z mod &

Proof. The case(b) > k, thatis,b = 0mod Z, implies thatd = 1mod # and the
equality holds trivially. We may thus assume tha&b) < k.

We begin by noting that since—dx = d(d~1y —x) = d(y —x +aby), we see that
v(y —x) < v(b) implies thatv(y —dx) < v(b); puttingx’ = d~1x, we see that the
converse holds, and henady —x) < v(b) if and only if v(y —dx) < v(b).

First case:v(y — x) < v(b). Puttingc = y —x, ¢ = y —dx, respectively, and
applying Lemma 17, we see that both sides are zero except wfgn= k — 2
andv(b) = k — 1. For the exceptional case, we note thét) = k — 1 implies that
d 1 =1+ab=1modZ, and the same holds fat. Moreover,v(c) = k — 2 means
thatx = ymod Z—2, and since 44, we see that

LHS = 2ke<2r—kad2x2) - 2ke<%ady2> — RHS.

Second casen(y —x) > v(b). As remarked above, this means théy —dx) >
v(b). We may thus complete the squares inside the exponentials, and we get

_ _ 2
LHs= ° e(zr—k<—b(z—y bdx)2+(y bdx) +ad2x2))

z mod %
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and

dy—x)\?  d(y—x)?
RHS= )~ e<2r—k<—dlb<z— (yb x)> + (ybx) +ady2>>.

z mod

After changing variables and taking constants outside, we get

r (y—dx)2 2 9 r 5
LHS:e(Z—k(T—i—ad X Z e g(—bz)
z mod %
and

ro(d(y—x)? r _
RHS=e<§(T+ady2)) nge(?(—d 1bz2)>.

Now, d = 1mod 16 means that is a square modulo*2 Changing variables by
z — +/dz in the second sum, we see that the sums are equal, and we are left to prove

that ) 5
_d d(y —
e(% (% +ad2x2>> = e(zr—k (% +ady2>>.

This follows from the equality

)2 N2
(y—dx) +ad2xz:d(y x)
b b

Collecting terms, it is equivalent to

—|—ady2.

0=ad(y*—dx?)+b Y (dy?+dx®—2dxy — y* —d*x*+2dxy)
= ad(y?—dx?) + b~ (y?(d — 1) +x*(d — d?))
= ad(y?—dx?)+(d - Db~ (y2 —dx?),
which follows from the identity

(d—l)_ 1-1/d _ 1-A+ab) _ _@ _
ad+ b —d<a+ b >—d<a+T>—d<a b>_0 O

Appendix B. Counting norm-one elements. Let e be the ramification index of a
prime p in Ok, that is, the largest integer such ttRft| pOx, whereP C Ok is any
prime ideal dividingp©O k. SincekK is quadratice € {1, 2}. If e = 2, thenp is said to
be ramified. Ife = 1, thenp is called unramified, and one of two things can happen:
either pOx = P, in which casep is said to be inert, opOx = PP, in which case
p is said to be split.
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Now fix a primep with ramification indexe, be it 1 or 2. The norm map
N: Oy —Z
descends modulp® and gives a homomorphism
Ok /P4 — 2/

We let(Ox / P%)1 be the kernel of this map, that is, the group of norm-one elements.
Forl < ek, we let

((1+P)/ @+ %))’

be the norm-one elements in the subgroLp P')/(1+ P¢¥); these are precisely the
norm-one elements that reduce to 1 modalo

LEMmMma 19. We have

(p—Dp*t, if pis split,
‘(DK/Pek)l‘ =1 (p+Dp*t, if pisinert,
2p*, if p is ramified.

Proof. Recall first from class field theory [4] that the index Zi;j) of the image of
the units in thep-adic completion oD ¢ under the norm map equals the ramification
indexe. We split the proof into three parts.

The split case.If p sp_lits inK, thenpOg = P1 P> where Py, P> are prime ideals
in Ok, and whereP, = P;. The mapx — x gives an isomorphism betweemK/Pf
andDK/PZ". This, together with the Chinese remainder theorem, gives

Ok /p*Ok ~ Ok /P{ x Ok /Py ~ Dk [ Pf x Ok [ Pf,

wherex € O /p* Ok is mapped tax, x) € Ok /Pf x Ok / Pf. FurthermoreD g / P
~Z/p*Z, and therefore,

(B.1) Ok /p* Ok ~Z/p*Zx2Z/p*z.

Under this isomorphism, Galois conjugation ma&psy) € Z/p*Z xZ/p*Z to (v, x).
Thus the natural embedding & p*Z in O /p*Ox ~Z/p*Z x Z/ p*Z consists of
elements of the fornix, x) and the image ofx, y) under the norm map iécy, xy).
Hence, the norm-one elements 9 / p*Ox correspond to elements of the form
(x,y) € Z/p*Z x Z/p*Z such thatxy = 1, and the number of such elements is
(p—1pk1.

The inert case.Heree = 1 and the local norm map is onf; . Reducing modulo
p, We get an exact sequence
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1— (9x /P — Dk /PY — (2/p") — L
Hence,
(O /P97
(2/p¥)"]
The ramified case.Here the image of the norm map4y; is of index 2, and thus
the image of the norm iGZ /p*¥)* has cardinality p — 1) p*~1/2. Consequently,

1 Ok peky*
(on /ity =2l OLLTT]

k=1

(©x/PY)!|= — (p+Dp

Now

[(Ok /P)*| =[(Dk /P)*| x|+ P)/(1+ P¥)| = (p—Dp™,

and sincee = 2, we get

oyt _ = Dp?
‘(DK/P ) ‘zz(p—l)pk*1 =2 O

We also need to know the number of norm-one elements that reduce to 1 niddulo

Lemma 20. We have

P/ -]

k=l if p is split or inert,

p
K, x pFi21=L it pis ramified,

whereK, = 1if p is odd, andk, =1 or 2.

Proof. The split caseFrom the previous discussion of the isomorphism in (B.1),
we see that norm-one elements congruent to 1 moﬂﬂéloorrespond to elements
(x,x Y ez/p*Z xZ/p*Z, such that = 1modp’. The number of such elements is
|+ ph/ @+ phy| = p*~.

The inert case.If p is odd, thenr — x?2 is an automorphism afL+ P*)/(1+ P¥)
since the order of the group is odd. Thus, the norm is locally onto in the sense that
the map

N:(1+P)/(1+ P — (14 p) /(14 p)

is onto.

If p is even (and inert), then squaring is not an automorphisnilasx)? =
1+ 2x + x2. However, 4 p! c 1+ P! and squaring mapélL+ p')/(1+ p¥) onto
(14 p™*1) /A + p*). Thus,

(1+p") /(14 pY) c N((2+P") /(14 PY)),
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which shows that the image of the norms must be eitler p't1)/(1+ p*) or

1+ pH/(1+ p*). (There are no subgroups in between!) We show that the former
holds; since 2 is unramified, the discriminantfofis odd andD x = Z[1+ /d;/2].
Hence, tfO k) = Z, and there exists € Ok with odd trace. Now

N1+ pFx) = 14 pFtr) + p* N (x)

shows that the image must b+ p')/(1+ pb).
Thus, whethep is even or odd, the norm map is locally onto, and hence,

(e /(s | < EEPV/ @R

(@+p)/(@+p)) |
The ramified case.First, we note that
(B.2) N((2+P") /(1+ P%)) c (14 p"2) [ (1+ pY).

Arguing as before that squares are in the image of the norm, we see that equality
holds for p odd, and we obtain

‘((1_,_ Pl)/(1+Pek))l|
_ [((A+P)/(1+P)"| _ ok /P> _ _ phHTl21-
(@ o) [ )|~ T .

For p even, the squaring argument shows that
(1+ "2 /(14 p*) C N ((14 P') /(14 P)),

which gives a lower bound on the image. This gives the same result as for the odd
case, except for a factor of 2. O
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