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HECKE THEORY AND EQUIDISTRIBUTION FOR THE
QUANTIZATION OF LINEAR MAPS OF THE TORUS

PÄR KURLBERGand ZEÉV RUDNICK

1. Introduction

1.1. Background.One of the key issues of “Quantum Chaos” is the nature of the
semiclassical limit of eigenstates of classically chaotic systems. When the classical
system is given by the geodesic flow on a compact Riemannian manifoldM (or rather,
on its cotangent bundle), one can formulate the problem as follows: The quantum
Hamiltonian is, in suitable units, represented by the positive Laplacian−� onM.
To measure the distribution of its eigenstates, we start with a (smooth) classical
observable, that is, a (smooth) function on the unit cotangent bundleS∗M; via some
choice of quantization from symbols to pseudodifferential operators, we form its
quantization Op(f ). This is a zero-order pseudodifferential operator with principal
symbolf . The expectation value of Op(f ) in the eigenstateψ is 〈Op(f )ψ,ψ〉.
Letψj be a sequence of normalized eigenfunctions:�ψj+λjψj = 0,

∫
M
|ψj |2= 1.

The problem then is to understand the possible limits asλj →∞ of the distributions

f ∈ C∞(S∗M) �−→ 〈
Op(f )ψj ,ψj

〉
.(1.1)

In the case where the geodesic flow is chaotic, it is assumed that the eigenfunctions
are random, for instance, in the sense that the expectation values converge asλj →∞
to the average off with respect to Liouville measure onS∗M. The validity of this
for almost all eigenmodes if the classical flow is ergodic (so a very weak notion of
chaos!) is asserted by Schnirelman’s theorem [21],1 a fact sometimes referred to as
quantum ergodicity. The case where there are no exceptional subsequences is called
“quantum unique ergodicity” (QUE). Its validity seems to be a very difficult problem,
which is to date unsolved in any case where the dynamics are truly chaotic (see,
however, Marklof and Rudnick [16], where QUE is proved for an ergodic, though
nonmixing, model case).

1.2. Cat maps. In order to shed some light on the validity of QUE, we look at a
“toy model” of the situation—the quantization of linear hyperbolic automorphisms
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of the 2-dimensional torusT2. Here the phase spaceT2 is compact, and instead of a
Hamiltonian flow, we consider the discrete time dynamics generated by the iterations
of a single mapA ∈ SL(2,Z). If A is hyperbolic, that is,| trA| > 2, then this map
is a paradigm of chaotic dynamics. Such maps are sometimes calledcat mapsin the
physics literature. A quantization of these cat maps was proposed by Hannay and
Berry [9] and elaborated in [6], [7], [12], [13], and [25]. We review this in some
detail in Sections 2 and 3. In particular, the admissible values of Planck’s constant
are inverse integersh = 1/N , and the Hilbert space of states�N � L2(Z/NZ) of
the quantum system is finite-dimensional, of dimensionN = h−1. To every classical
observablef ∈ C∞(T2), we associate an operator OpN(f ) on�N , the corresponding
quantum observable. The quantization of the cat map is a unitary operatorUN(A) on
�N , the quantum propagator, unique up to a phase factor, characterized by an exact
version of Egorov’s theorem2

UN(A)
−1OpN(f )UN(A)=OpN(f ◦A), ∀f ∈ C∞(T2).(1.2)

The eigenvectorsφ of the quantum propagatorUN(A) are the analogues of the
eigenmodes of the Laplacian, and to study their concentration properties, one forms
the distributions

f �−→ 〈
OpN(f )φ,φ

〉
.

In particular, we want to understand the quantum limits asN →∞. An analogue of
Schnirelman’s theorem in this setting was proven in [3] and [25]. We would like to
know if QUE holds, that is, if the only quantum limit is the uniform measure onT2.
The spectrum of the quantum propagatorUN(A) has degeneracies, which renders

the study of possible quantum limits difficult. The degeneracies are systematic and
are inversely related to the order ofAmod2N . Degli Esposti, Graffi, and Isola [7]
showed that if, instead of looking at all integer values ofN , one restricts to the sparse
subsequence consisting of primes for which the degeneracies are bounded,3 and,
moreover, split in the quadratic extension of the rationals containing the eigenvalues
of A, then the only limit is indeed the uniform measure.
Our first goal in this paper is to show that the degeneracies are coupled to the

existence of quantum symmetries. There is a commutative group of unitary operators
on�N that commute withUN(A) and therefore act on each eigenspace ofUN(A).
We call theseHecke operatorsin analogy with the setting of the modular surface4

(see [10], [15], [20]). We may thus consider eigenfunctions of the desymmetrized

2This exact version of Egorov’s theorem is very special and is a consequence of the map being
linear.

3It is an open problem to show that there are infinitely many primes where the degeneracy is bounded.
This is known, assuming the generalized Riemann hypothesis, which, in fact, guarantees that a positive
proportion of the primes satisfy the assumption.

4A notable difference between our setting and the modular surface is that in the latter one expects
few, if any, degeneracies.
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quantum map, that is, eigenstates of bothUN(A) and of all the Hecke operators.
We call these Hecke eigenfunctions. Our second goal is to show that these become
equidistributed with respect to Liouville measure, that is, the expectation values of
quantum observables in Hecke eigenstates converge to the classical phase-space av-
erage of the observable.

1.3. Results.We turn to a detailed description of our results. We first carry out
a systematic study of the quantum propagator. We defineUN(A) so that it only
depends on the remainder ofAmod2N and satisfies (1.2). One gets a projective
representationA �→ UN(A) of the subgroup of quantizable elements in the finite
modular group SL(2,Z/2NZ). In Section 4, we explain that it can be made into
an ordinary representation if we further restrict to the subgroup�(4,2N) given by
g = Imod4 forN even,g = Imod2 forN odd. Thus, forA,B ∈ �(4,2N), we have
UN(AB) = UN(A)UN(B). Consequently, ifAB = BAmod2N , then their propaga-
tors commute. This is the basic principle that we use to form the Hecke operators.
Fix a hyperbolicmatrixA, whichwe further assume lies in the congruence subgroup

�(4)= {
g ∈ SL(2,Z) : g = Imod4

}
so that its reduction modulo 2N lies in �(4,2N) for all N . To find matrices com-
muting withA modulo 2N , we use the connection with the theory of real quadratic
fields (see Section 5). Ifα is an eigenvalue ofA, formO = Z[α], which is an order
in the real quadratic fieldK = Q(α). There is anO-ideal I so that the action ofα
on I by multiplication hasA as its matrix in a suitable basis. Thus the action ofO

on I by multiplication gives us an embeddingι : O ↪→ Mat2(Z) and induces a map
ι : O/2NO →Mat2(Z/2NZ). Under this map, the images of elementsβ ∈ O/2NO

whose Galois norm is 1mod2N lie in SL(2,Z/2NZ) and commute withA modulo
2N . If we further require thatβ = 1mod4O, then we get a group of commuting ma-
tricesι(β) ∈ �(4,2N), whose quantum propagatorsUN(ι(β)) commute withUN(A)

and with each other. These are our Hecke operators.
Since the Hecke operators commute withUN(A), they act on its eigenspaces,

and since they commute with each other, there is a basis of�N consisting of joint
eigenfunctions ofUN(A) and the Hecke operators, whose elements we call Hecke
eigenfunctions. Our main theorem is the following:

Theorem 1. Let A ∈ �(4) be a hyperbolic matrix, and letf ∈ C∞(T2) be a
smooth observable. Then for all normalized Hecke eigenfunctionsφ ∈ �N ofUN(A),
the expectation values〈OpN(f )φ,φ〉 converge to the phase-space average off as
N →∞. Moreover, for allε > 0, we have〈

OpN(f )φ,φ
〉= ∫

T2
f (x)dx+Of,ε

(
N−1/4+ε

)
, asN −→∞.

Remark 1.1. It is easy to extend Theorem 1 to give similar results for matrix
elements of OpN(f ). WhenN is such that the degeneracies in the spectrum ofUN(A)
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are sufficiently small, this implies, as in [7], that the expectation values of OpN(f )

in all eigenstates converge to
∫
T2 f (x)dx.

Remark 1.2. The exponent of 1/4 in our theorem is certainly not optimal, and
more likely the correct exponent is 1/2. That is the exponent given in [7], where the
problem is reduced to one-variable exponential sums, which can be estimated using
Weil’s theorem—the Riemann hypothesis for a curve over a finite field.
What we in fact show (see Theorem 9) is that ifφi , i = 1, . . . ,N is an orthonormal

basis of�N consisting of Hecke eigenfunctions, then

N∑
i=1

∣∣∣∣〈OpN(f )φi,φi 〉−∫
T2

f (x)dx

∣∣∣∣4�N−1+ε,

from which we deduce Theorem 1 by taking an orthonormal basis withφ1 = φ and
omitting all but one term on the left-hand side. If all terms on the left-hand side are
of roughly the same size, then we would expect this to give the exponent 1/2.

The proof of Theorem 1 is reduced to a counting problem in Section 6. This in turn
comes down to counting solutions of the congruence

β1−β2+β3−β4= 0modNO

in norm-one elementsβi ∈ O/NO. The number of such norm-one elements is
O(N1+ε) (see Lemma 8), and since this equation has three degrees of freedom,
the trivial bound of the number of solutions isO(N3+ε), ∀ε > 0. To get any result in
Theorem 1, we need to show that the number of solutions isO(N3−δ) for someδ > 0,
that is, any saving over the trivial bound would do. This is accomplished in Section
7, where we show that the number of solutions isO(N2+ε), the optimal bound.

Acknowledgments.We thank J. Bernstein, D. Kazhdan, J. Keating, J. Marklof, F.
Mezzadri, P. Sarnak, and S. Zelditch for helpful discussions concerning various points
in the paper.

2. Background on quantization of maps. In this paper, we consider the quan-
tization of linear (orientation-preserving) automorphisms of the torusT2 = R2/Z2,
that is, elements of the modular group SL(2,Z), which for the most part are assumed
to be hyperbolic (known as cat maps in some of the literature). For this, we first
review a procedure (one of several) for quantization of maps.
The first to quantize the cat map were Hannay and Berry [9]. We follow in part

an approach by means of representation theory that was developed by Knabe [13]
and Degli Esposti, Graffi, and Isola [6] and [7]. See also [3], [12], and [25] for other
approaches.

2.1. The quantization procedure.We start by describing some desiderata for a
quantization procedure for a symplectic mapA of a phase space. In the literature it is
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customary to distinguish two components of the quantization procedure—a kinematic
component and a dynamical one.
In the kinematic component, one constructs a Hilbert space�h of states of the

quantum system and an algebra of operators on the space—the algebra of quantum
observables.5 Smooth functionsf on the classical phase space of the system (that
is, classical observables) are mapped to members Oph(f ) of this algebra. To make
the connection with the classical system, it is required that in the limith → 0, the
commutator of the quantization of two observablesf,g reproduce the quantization
of their Poisson bracket{f,g} =∑

j (∂f/∂pj )(∂g/∂qj )−(∂f/∂qj )(∂g/∂pj ):

i

h̄

[
Oph(f ),Oph(g)

]−Oph({f,g})−−→
h→0

0.(2.1)

(We do not specify the sense of convergence.)
The dynamical part of quantization amounts to prescribing a discrete time evolution

of the algebra of quantum observables, that is, a unitary mapUh(A) of �h, that
reproduces the classical mapA in the limit h→ 0 in the sense that

Uh(A)
−1Oph(f )Uh(A)−Oph(f ◦A)−−→

h→0
0.(2.2)

(This is the analogue of Egorov’s theorem.)
In our case, the classical phase space is the torusT2. The classical observables

are smooth functions onT2. We find that Planck’s constanth is restricted to be
an inverse integer:h = 1/N , N ≥ 1. The state-space�h is �N = L2(Z/NZ). To
each observablef ∈ C∞(T2), we assign, by an analogue of Weyl quantization, an
operator OpN(f ) on �N so that (2.1) holds where convergence is in the space of
N×N matrices. The dynamics are given by a linear mapA ∈ SL(2,Z) so thatx =(p
q

) ∈ T2 �→ Ax is a symplectic map of the torus. Given an observablef ∈ C∞(T2),
the classical evolution defined byA is f �→ f ◦A, wheref ◦A(x) = f (Ax). It
turns out that for a certain subset of matricesA, there is a unitary mapUN(A) on
L2(Z/NZ) so that an exact form of (2.2) holds:

UN(A)
−1OpN(f )UN(A)=OpN(f ◦A), ∀f ∈ C∞(T2).

This is our discrete time evolution.
We describe these procedures in detail below.

2.2. Kinematics: The space of states.As the Hilbert space of states, we take dis-
tributionsψ(q) on the lineR that are periodic in both the position and the momentum
representation. As is well known, this restricts Planck’s constant to take only inverse
integer values. We review the argument: recall that the momentum representation of
a wave-functionψ is

�hψ(p)= 1√
h

∫ ∞

−∞
ψ(q)e−2πiqp/h dq.

5h stands for Planck’s constant.



52 KURLBERG AND RUDNICK

We then require

ψ(q+1)= ψ(q), �hψ(p+1)= �hψ(p)

(one may just require that this hold up to a phase). From periodicity in the position
representation, we get

ψ(q)=
∑
n∈Z

cne(nq),

where
e(z) := e2πiz.

In the momentum representation, that is, applying�h, we get

�hψ(p)=√
h
∑
n∈Z

cnδ(p−nh).

Now, in order that�hψ(p+1)= �hψ(p), we clearly need 1/h ∈ Z, that is, for some
integerN ≥ 1, that

h= 1

N
.

In that case, we also need
cn+N = cn.

Thus, we find thath= 1/N and the space of states is finite dimensional, of dimen-
sionN = 1/h, and consists of periodic point-masses at the coordinatesq = Q/N ,
Q ∈ Z. We may then identify�N with theN -dimensional vector spaceL2(Z/NZ),
with the inner product〈·, ·〉 defined by

〈φ,ψ〉 = 1

N

∑
Q modN

φ(Q)ψ(Q).

2.3. Quantizing observables.Next we construct quantum observables: for a free
particle on the line, we would take as the basic observables the position and momen-
tum operators

q̂ψ(q) := qψ(q), p̂ψ(q) := h̄

i

dψ

dq
(q)

(h̄= h/2π ). For our periodic phase space, we take the basic observables to bee(q̂)=
e2πiq̂ ande(p̂), which correspond to the phase space translations

e(q̂)ψ(q)= e(q)ψ(q), e(p̂)ψ(q)= ψ(q+h).

Corresponding to the commutation relation

[q̂, p̂] = ih̄=− h

2πi
,
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we find that
e(q̂)e(p̂)= e−2πihe(p̂)e(q̂).

Writing
t1 := e(p̂), t2 := e(q̂)

(so thatt2t1= e−2πiht1t2), we put, forn= (n1,n2) ∈ Z2,

TN(n) := eiπn1n2/N t
n2
2 t

n1
1 .(2.3)

Their action on a wave functionψ ∈ L2(Z/NZ) is

TN(n)ψ(Q)= eiπn1n2/Ne

(
n2Q

N

)
ψ(Q+n1).(2.4)

These are clearly of period 2N in n:

TN(n+2Nm)= TN(n), n,m ∈ Z2.

The adjoint ofTN(n) is given by

TN(n)
∗ = TN(−n).(2.5)

They also satisfy

TN(m)TN(n)= eiπω(m,n)/NTN(m+n),(2.6)

where
ω(m,n)=m1n2−m2n1.

Now we can finally construct quantum observables. For any smooth classical ob-
servablef ∈ C∞(T2) with Fourier expansion

f (x)=
∑
n∈Z2

fne(n ·x), x =
(
p

q

)
∈ T2,

we define its quantization OpN(f ) as

OpN(f ) :=
∑
n∈Z2

fnTN(n).

The verification of (2.1) is an easy calculation using (2.6).

2.4. The Heisenberg group.We now digress to connect this construction to the
representation theory of a certain Heisenberg groupH2N .
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For vectorsx = (x1,x2), y = (y1,y2), defineω(x,y) := x1y2− x2y1. This is a
nondegenerate symplectic form. The Heisenberg groupH2N is defined to be the set
(Z/2NZ)2×Z/2NZ with multiplication

(x,z) ·(x′,z′) := (
x+x′,z+z′ +ω(x,x′)

)
.

This is at odds with the standard convention where one multipliesω by 1/2, but is
essential for us because 2 is not invertible inZ/2NZ.
It is useful to record various facts about the multiplication inH2N : the inverse of

(x,z) is

(x,z)−1= (−x,−z).(2.7)

The commutator of two elements is given by

(x,z)(x′,z′)(x,z)−1(x′,z′)−1= (
0,2ω(x,x′)

)
.(2.8)

From this commutator identity and the fact thatω is nondegenerate, we immediately
find the following lemma.

Lemma 2. The center ofH2N is (NZ/2NZ)2×Z/2NZ, that is,

Cent(H2N)=
{
(Nε,Nη,z) : ε,η = 0,1, z ∈ Z/2NZ

}
.

We define a representation ofH2N onL2(Z/NZ) by setting

π(n,z)= e

(
z

2N

)
TN(n).

From the relation (2.6), it follows thatπ(h)π(h′)= π(hh′), that is, we do indeed get
a representation.
The center ofH2N then acts via the characterχ given by

χ(x0,y0,z)= e

(
z+x0y0

2N

)
(that is,π(x0,y0,z)= χ(x0,y0,z)I ).
The basic facts aboutπ and the representation theory ofH2N are covered in the

following proposition.

Proposition 3. (i) All irreducible representations ofH2N have dimension at
mostN .
(ii) The representationπ is irreducible and is the unique, irreducibleN -dimen-

sional representation with central characterχ .

We omit the details of the proof; the main point (which is easy to verify from the
definitions) is the following lemma.
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Lemma 4. The trace ofTN(n) is given by

∣∣ trTN(n)∣∣= {
N, if n≡ (0,0)modN ,

0, otherwise.

Proof. Let φi =
√
Nδi whereδi is the Dirac delta function supported ati, so that

{φi}Ni=1 is an orthonormal basis ofL2(Z/NZ). Then

trTN(n)=
N∑
i=1

〈
TN(n)φi,φi

〉
,

and by equation (2.4),

TN(n)φi(Q)= e

(
n1n2+2n2Q

2N

)
φi(Q+n1)

= e

(
n1n2+2n2Q

2N

)
φi−n1(Q)

= e

(−n1n2+2n2i
2N

)
φi−n1(Q).

Therefore, trTN(n)= 0 unlessn1≡ 0modN , in which case,

N∑
i=1

〈
TN(n)φi,φi

〉= e

(−n1n2

2N

) N∑
i=1

e

(
n2i

N

)
.

The result now follows since
∑N

i=1e(n2i/N) equalsN if n2 ≡ 0modN , and is zero
otherwise.

2.5. Description ofπ as an induced representation.Let Y be the subgroup of
elements

Y = {
(x0,y,z) : y,z ∈ Z/2NZ, x0 ∈NZ/2NZ

}
.

It is easily seen to be a normal, maximal abelian subgroup, of indexN , containing
the center. For(x0,y,z) ∈ Y , set

τ(x0,y,z) := e

(
z+x0y

2N

)
.

This is a character ofY (we need to use 2x0≡ 0mod2N in verifying this), restricting
to the characterχ(x0,y0,z)= e(z+x0y0/2N) of the center.
We consider the induced representation IndH2N

Y τ of the Heisenberg group. The
basic model for it is the space of functions7 : H2N → C satisfying7(ah) =
τ(a)7(h) for a ∈ Y , h ∈ H2N . The action of the group is by right multiplication
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h7(h′) :=7(h′h). By restricting to the subgroupX = {(x,0,0)}, we can realize this
induced representation as functions onZ/2NZ that areN -periodic (since the element
(N,0,0) lies inX∩Y ). We can identify this space of functions withL2(Z/NZ).
Let us compute the action of a group elementh = (x,y,z) ∈ H2N in this model.

For this we need to write(x′,0,0) ·h asa ·(x′′,0,0), a ∈ Y . The relevant identity is

(x′,0,0)(x,y,z)= (
0,y,z+xy+2x′y)(x′ +x,0,0).

Thus, the elementh= (x,y,z) acts as

hφ(x′)= e

(
z+xy+2x′y

2N

)
φ(x′ +x).

In particular,(x,0,0) acts as translation byx and(0,y,0) as a multiplication oper-
ator φ(x′) �→ e(x′y/N)φ(x′). The center acts by the character(x0,y0,z) �→ e(z+
x0y0/2N). These show thatπ coincides with the induced representation IndH2N

Y τ .

3. Dynamics: Quantized cat maps.We now show how to assign to (certain)
linear automorphismsA of the torusT2, a unitary operatorUN(A) on L2(Z/NZ)
that satisfies the following statement: for all observablesf ∈ C∞(T2),

UN(A)
−1OpN(f )UN(A)=OpN(f ◦A).

The finite modular group SL(2,Z/2NZ) acts by automorphisms on the Heisenberg
groupsH2N via (x,z)A := (xA,z), A ∈ SL(2,Z/2NZ). That this is indeed an au-
tomorphism (i.e.,(h1h2)A = hA1 h

A
2 ) follows fromA preserving the symplectic form

ω. Moreover, we have(hA)B = hAB . Composing the representationπ of H2N with
A gives a new representationπA(h) := π(hA), which is clearly still an irreducible
N -dimensional representation. Its central characterχA can be easily computed as
follows: if x0,y0 ∈NZ/2NZ and(x1,y1)= (x0,y0)A, thenχA is given by

χA(x0,y0,z)= χ
(
(x0,y0)A,z

)= e

(
z+x1y1

2N

)
.

This is the same character asχ if and only if x1y1 ≡ x0y0mod2N for all x0,y0 ∈
NZ/2NZ. WritingA= (

a b
c d

)
andx0=Nε, y0=Nη, ε,η ∈ Z/2Z, this is equivalent

to requiring
N
(
abε2+cdη2

)≡ 0mod2, ∀ε,η ∈ Z/2Z,

or
Nab ≡Ncd ≡ 0mod2.

This is only a restriction ifN is odd and is satisfied by the elements of the theta group

�θ(2N)=
{(

a b

c d

)
∈ SL(2,Z/2NZ) : ab ≡ cd ≡ 0mod2

}
.
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Therefore, ifA ∈ �θ(2N), we get a unitarily equivalent representationπA of H2N .
Thus, there is a unitary mapUN(A), the quantum propagator associated toA, so that

π
(
hA
)= UN(A)

−1π(h)UN(A), ∀h ∈H2N.

In particular, we find

UN(A)
−1TN(n)UN(A)= TN(nA),(3.1)

and consequently, for all observablesf ∈ C∞(T2),

OpN(f ◦A)= UN(A)
−1OpN(f )UN(A).(3.2)

Now for any quantizable elementA ∈ SL(2,Z) (that is,A= (
a b
c d

)
with ab ≡ cd ≡

0mod2), we define the quantumpropagator (or quantized catmap) to beUN(Ā)where
Ā ∈ SL(2,Z/2NZ) is the reduction ofA modulo 2N . Thus, by its construction,
UN(A) only depends on the reductionAmod2N . (This is a difference from the
construction in Hannay and Berry [9].)

4. Multiplicativity. The quantum propagatorsUN(A) are uniquely defined up to
a phase factor, because of the irreducibility ofπ (Schur’s lemma). Thus, they define
a projective representation of�θ(2N); that is,

UN(AB)= eiφN (A,B)UN(A)UN(B) A,B ∈ �θ(2N).

Define the subgroup

�(4,2N)=
{
g ∈ SL(2,Z/2NZ) :

{
g = Imod4, (N even)

g = Imod2, (N odd)

}
.

The goal of this section is to show that there is a choice of phases for the propagators
UN(A) so that on the subgroup�(4,2N), the mapA �→ UN(A) is a homomorphism.

Theorem 5. There is a choice of quantum propagators so that

UN(AB)= UN(A)UN(B), A,B ∈ �(4,2N).

As a consequence, we find the following corollary.

Corollary 6. If A,B ∈ �(4,2N) commutemod2N , then their propagators also
commute:UN(A)UN(B)= UN(B)UN(A).

Theorem 5 is essentially known in various guises and arose out of the study of theta
functions and the Weil representation. One form is due to Kubota [14] (see also [8]).
There are also treatments purely at the finite level [1] and [18]. Since Corollary 6 is
absolutely crucial to our work, and we did not find a good reference for the exact form
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that we need, we sketch a proof (or more precisely, a verification) of Theorem 5. We
wish to note that Theorem 5 is a priori more subtle than Corollary 6, since once we
know that there is some choice of phases for which Corollary 6 holds, then it holds
for all choices; this is not the case with Theorem 5.6

4.1. Reduction to prime powers.Factor 2N = ∏
p p

kp = 2k
∏

p>2p
kp = 2kM,

with M odd. The Chinese remainder theorem gives an isomorphism

Z/2NZ �
∏
p

Z/pkpZ,

given by
x �−→ (

xmodpkp
)
p

with inverse (
xpmodp

kp
)
p
�−→

∑ 2N

pkp
rpxpmod2N,

whererp is the inverse of 2N/pkp modulopkp . Correspondingly, we have a bijection

L2(Z/2NZ)�
⊗
p

L2
(
Z/pkpZ

)
.

We define the phase space translationsT (p) onL2(Z/pkpZ) as in (2.4) by

T (p)(n)ψ(Q)= e

(
rp(n1n2+2n2Q)

pkp

)
ψ(Q+n1).

It is then a simple matter to see thatTN(n) = ⊗pT
(p)(n), that is, ifψ = ⊗pψp ∈⊗

p L
2(Z/pkpZ) is decomposable, then

TN(n)ψ(Q)=
∏
p

T (p)(n)ψ
(
Qmodpkp

)
.

This allows us to express the quantum propagatorsUN(A) as tensor products. Indeed,
if we already have propagatorsU(p)(A) that satisfy

U(p)(A)−1T (p)(n)U(p)(A)= T (p)(nA),(4.1)

we then set

UN(A) := ⊗U(p)(A),(4.2)

which still satisfies
UN(A)

−1TN(n)UN(A)= TN(nA)

6We thank Jon Keating for emphasizing this point to us.
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for all n ∈ Z2, and thereforeUN(A) coincides up to a phase with any other map
satisfying this.
We use this procedure to defineUN(A) (that is, choose a phase) so thatUN is

an honest representation of a subgroup�(4,2N) of SL(2,Z/2NZ), not merely a
projective representation. From the factorization property (4.2), it follows that it is
enough to show thatU(p) is a representation of SL(2,Z/pkpZ) whenp > 2 is odd,
and of�(4,2k) if N = 2k−1M is even.

4.2. Gauss sums.We need some preliminary information on Gauss sums. We
define normalized Gauss sums

Sr
(
a,pk

)= 1√
pk

∑
x modpk

e

(−rax2

pk

)
.(4.3)

Forp odd, these are fourth roots of unity. To describe them, define fort ∈ (Z/pkZ)∗,

>r,pk (t)= Sr
(
t,pk

)
Sr
(
1,pk

) .
Note that if t = t21 ∈ (Z/pkZ)∗ is a square, then>r,pk (t) = 1, since from (4.3) we
find after the change of variablesx1= t1x thatSr(t,pk)= Sr(1,pk).
Forp odd,>r,pk is given in terms of the Legendre symbol as

>r,pk (t)=
(
t

p

)k

and is a character of(Z/pkZ)∗:

>r,pk (t t
′)=>r,pk (t)>r,pk (t

′).

Whenp = 2, we have

>r,2k (t)=
(−2k

t

)
i−r(t̄ 2−1)/8,

where t̄ is the smallest positive residue oftmod4. In that case, it is not quite a
character of the whole multiplicative group ofZ/2kZ, but instead satisfies

>r,2k (t t
′)= (t, t ′)2>r,2k (t)>r,2k (t

′),(4.4)

where(t, t ′)2 is the Hilbert symbol. In particular, ift, t ′ = 1mod4, then the Hilbert
symbol is trivial, and so we get a character of the subgroup{t = 1mod4} ⊂ (Z/2kZ)∗
(this is relevant fork ≥ 2) given simply by

>r,2k (t)=
{
1, t = 1mod8,

(−1)k, t = 5mod8.
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For p odd, we also need to know the normalized Gauss sum (4.3) whent = −1,
in which case, we have

Sr
(−1,pk

)=
1, k even,

ε(p)

(
r

p

)
, k odd,

where

ε(p)=
{
1, p = 1mod4,

i, p = 3mod4.

4.3. p odd. We describe how to defineU(p) on SL(2,Z/pkZ) so that it gives a
representation (see Nobs [18] for details). This group is generated by the matrices(

1 b

1

)
,

(
t

t−1
)
,

(
1

−1
)
,(4.5)

and so it suffices to specifyU(p) on such matrices, provided we preserve all relations
between them. This is done by the formulas

U(p)

(
1 b

1

)
ψ(x)= e

(
rbx2

pk

)
ψ(x),(4.6)

U(p)

(
t

t−1
)
ψ(x)=>r,pk (t)ψ(tx),(4.7)

U(p)

(
1

−1
)
ψ(x)= Sr

(−1,pk
) 1√

pk

∑
y modpk

ψ(y)e

(
2rxy

pk

)
.(4.8)

It is easy to check that these satisfy (4.1). To see a verification that this prescription
does indeed give a consistent definition (that is, that all relations between the gen-
erators (4.5) are satisfied), see, for example, [18]. Once we have this, then we get
U(p)(AB)= U(p)(A)U(p)(B) automatically.

Remark 4.1. It is in fact the case that any projective representation of SL(2,Z/
pkZ), p odd, can be modified to give a representation (and more generally, SL(2,Z/
mZ) if m  = 0mod4)—this is due to Schur [22] whenk = 1. See [17] and [2] for the
general case.

4.4. p = 2. Here we restrict to the subgroup�(4,2k), k ≥ 2. The literature in
this case is harder to come by, so we include complete proofs. We start by describing
generators and relations for this group. More generally, letp be any prime and let
k ≥ 2. Let

�
(
p2,pk

) := {
g ∈ SL(2,Z/pkZ

) : g = Imodp2
}
.
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Lemma 7. �(p2,pk) has a presentation with generatorsu+(x),u−(y), s(t), where
x,y, t ∈ Z/pkZ, x,y ≡ 0modp2, t ≡ 1modp2, and relations

u+(x)u+(x′)= u+(x+x′),(4.9)

u−(y)u−(y′)= u−(y+y′),(4.10)

s(t)s(t ′)= s(tt ′),(4.11)

s(t)u+(x)s(t)−1= u+
(
t2x
)
,(4.12)

s(t)u−(y)s(t)−1= u−
(
t−2y

)
,(4.13)

s(d)u+(a)u−(b)= u−
(
d−1b

)
u+(da), d := (1+ab)−1.(4.14)

Proof. LetG be the abstract group with the above presentation. We get a mapB

fromG into �(p2,pk) by taking

B : u+(x) �−→
(
1 x

1

)
, u−(y) �−→

(
1
y 1

)
, s(t) �−→

(
t

t−1
)
.

We verify that the relations hold in SL(2,Z/pkZ) so thatB is a homomorphism.
Next, note that we have a Bruhat decomposition for�(p2,pk): every element can be
uniquely written in the form

γ =
(
t

t−1
)(

1 x

1

)(
1
y 1

)
,

which follows from the formula(
a b

c d

)
= γ =

(
d−1

d

)(
1 bd

1

)(
1

c/d 1

)
(note that sinced = 1modp2, it is particularly invertible). This implies that the map
B is surjective. To see thatB is an isomorphism, it suffices to show that every element
of the abstract groupG can also be written in the formg = s(t)u+(x)u−(y), since
then by the uniqueness of the decomposition in�(p2,pk), B is also one-to-one.
With the aid of the first five relations, every wordW ∈G can bewritten as a product:

W = s(t1)u+(x1)u−(y1) · . . . ·s(tn)u+(xn)u−(yn),
for somen≥ 1. We prove by induction onn that we can writeW = s(t)u+(x)u−(y)
for x,y = 0modp2, t = 1modp2. Whenn = 1, this holds trivially, and forn > 1,
we use the relations (4.13) and (4.14) to write

u−(yn−1)s(tn)u+(xn)= s(tn)u−
(
t2nyn−1

)
u+(xn)= s(tn)s(t

′)u+(x′)u−(y′),
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and so

W = s(t1)u+(x1)u−(y1) · · ·s(tn−1)u+(xn−1)s(tn)s(t ′)u+(x′)u−(y′)u−(yn)
= s(t1)u+(x1)u−(y1) · · ·s(t ′n−1)u+(x′′n−1)u−(y′′n−1)

after a further application of the first five relations. The result now follows by
induction.

We now specify the propagatorsU(2)(A) for the generators: for(
1 a

1

)
and

(
t

t−1
)
,

they are given by the same formulas (4.6) and (4.7). For the matrices(
1
b 1

)
=
(

1
−1

)−1(
1 −b

1

)(
1

−1
)
,

we conjugate (4.6) by an analogue of the Fourier transform (4.8) and define

U(2)
(
1
b 1

)
ψ(x)=

∑
y mod2k

ψ(y)
1

2k
∑

z mod2k

e

(
r
(−bz2+2z(y−x)

)
2k

)
.(4.15)

To show that this defines a representation, we have to check that all the relations
of Lemma 7 are satisfied. The first five are fairly straightforward, bearing in mind
that> is a character of the multiplicative group of residuest = 1mod4 (see (4.4)).
The last relation (4.14) requires verifying an identity of Gauss sums: unwinding the
action of the right and left-hand sides in (4.14), we must show that

>(d)
∑

z mod2k

∑
y mod2k

ψ(y)e
( r

2k
(
2yz−bz2−2dxz+ad2x2

))
=

∑
z mod2k

∑
y mod2k

ψ(y)e
( r

2k
(
2yz−d−1bz2−2xz+ady2

))
.

Now d ≡ 1mod16 implies that>(d)= 1 sinced is then a square modulo 2k, and
if the identity is to hold for allψ and all values ofx, we obtain that for allx,y,∑

z mod2k

e
( r

2k
(−bz2+2z(y−dx)+ad2x2

))
=

∑
z mod2k

e
( r

2k
(−d−1bz2+2z(y−x)+ady2

))
.(4.16)

We verify this in Appendix A.
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5. Hecke operators. We now introduce a commutative group of unitary operators
onL2(Z/NZ) that commute withUN(A). For this, we have to bring in the theory of
quadratic fields (see [19] for a survey in connection to cat maps).

5.1. Integral matrices and quadratic fields.Let A ∈ SL2(Z) be a hyperbolic ma-
trix: | trA| > 2. The eigenvaluesα,α−1 of A generate a field extensionK = Q(α),
which is a real quadratic field since tr(A)2> 4. We denote byOK the ring of integers
of K. The eigenvaluesα,α−1 of A are units inOK . Adjoining α to Z gives an order
O = Z[α] ⊆ OK in K. We claim that there is anO-idealI ⊂ O so that the action of
α by multiplication onI is equivalent to the action ofA onZ2, in the sense that there
is a basis ofI with respect to which the matrix ofα is preciselyA.
The construction is as follows (refer to [23]): sinceα is an eigenvalue ofA, there is

a vectorv = (v1,v2) such thatvA= αv andv ∈ O2. Let I := Z[v1,v2] ⊂ O. ThenI
is in anO-ideal, and the matrix ofα acting onI by multiplication in the basisv1,v2
is preciselyA.

Remark 5.1. It is easy to check that the above construction sets up a bijection
between GL2(Z)-conjugacy classes of elements in SL2(Z) with eigenvaluesα, α−1
and ideal classes in the orderO. (Recall that two ideals,I1,I2; are said to be in the
same ideal class if there exist nonzeroa,b ∈ O so thataI1= bI2.)

In the same way, the action ofO by multiplication onI gives us an embedding

ι : O ↪→Mat2(Z)

so thatγ = x + yα ∈ O corresponds toxI + yA. Moreover, the determinant of
xI +yA equals�(γ ) = γ γ̄ , where� : K → Q is the Galois norm. In particular, if
γ ∈ O has norm 1, thenγ corresponds to an element in SL2(Z), and if in addition
γ ≡ 1mod4O, thenγ corresponds to an element in�(4).

5.2. Hecke operators.Given an integerM ≥ 1, the embeddingι : O ↪→Mat2(Z)
induces a mapιM : O/MO → Mat2(Z/MZ), and the norm� : K → Q gives a
well-defined map

� : O/MO −→ Z/MZ.

We let�A(M) be the group of norm-one elements inO/MO:

�A(M)= ker
[
� : (O/MO)∗ −→ (Z/MZ)∗

]
.

Similarly, replacing the orderO by the maximal orderOK , we set

�K(M)= ker
[
� : (OK/MOK)

∗ −→ (Z/MZ)∗
]

to be the norm-one elements inOK/MOK .
If M = 2N is even, we set�θ

A(M) to be the elements of�A(2N) that are con-
gruent to 1 modulo 4O (resp., 2O) if N is even (resp., odd). ForM odd, we set
�θ
A(M)= �A(M).
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By construction, the image of�θ
A(2N) in Mat2(Z/2NZ) lies in�(4,2N). Sinceα

commutes with all elements in�θ
A(2N), we see thatA commutes, modulo 2N , with

the elements inι(�θ
A(2N)). Thus, by Corollary 6, the quantizationsUN(ι(β)) of β ∈

�θ
A(2N) commute withUN(A) and with each other. We call these Hecke operators.
We need to know the number of Hecke operators.

Lemma 8. The number of elements of�θ
A(2N) satisfies

N1−ε � ∣∣�θ
A(2N)

∣∣�N1+ε, ∀ε > 0.

Proof. Since the reduction mapO → O/4O has image of size 42, �θ
A(2N)

has bounded index in�A(2N). The inclusionO ⊂ OK induces a mapO/MO →
OK/MOK , which has kernel and cokernel of size at most[OK : O], independent of
M. Therefore, the induced map�A(M) → �K(M) on norm-one elements also has
bounded kernel and cokernel. Thus, it suffices to prove the lemma in the case of the
maximal orderOK . By the Chinese remainder theorem, it suffices to prove it in the
case of prime powers, which is given in Appendix B by Lemma 19.

5.3. Hecke eigenfunctions.The Hecke operatorsUN(ι(β)), β ∈ �θ
A(2N), com-

mute with each other and withUN(A). Therefore, the eigenspaces of the unitary map
UN(A) break up into joint eigenspaces of the Hecke operators. Such a joint eigen-
function we call a Hecke eigenfunction. In other words, there exist an orthonormal
basis{φi} of L2(Z/NZ) and charactersλi of �θ

A(2N) such thatφi are eigenfunctions
of UN(A) and

UN

(
ι(β)

)
φi = λi(β)φi, ∀β ∈ �θ

A(2N).

We call such a basis ofL2(Z/NZ) a Hecke basis.

6. Ergodicity of Hecke eigenfunctions. In the next two sections, we show that
if φ ∈ L2(Z/NZ) is a normalized Hecke eigenfunction, then the expectation values
〈OpN(f )φ,φ〉 converge to the classical phase-space average

∫
T2 f for all smooth

observables (see Theorem 1). In fact, we show something stronger.

Theorem 9. Letφi ∈ L2(Z/NZ), i = 1, . . . ,N be any orthonormal basis of Hecke
eigenfunctions ofUN(A). Then

N∑
i=1

∣∣∣∣〈OpN(f )φi,φi 〉−∫
T2

f (x)dx

∣∣∣∣4�f,ε N
−1+ε.

6.1. Proof of Theorem 9.To prove this theorem, it suffices to prove it for the
basic observablesf (x) = e(nx), 0  = n ∈ Z2, that is, to show that the following
theorem holds.
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Theorem 10. Let 0  = n ∈ Z2, and letφi ∈ L2(Z/NZ), i = 1, . . . ,N be any
orthonormal basis of Hecke eigenfunctions ofUN(A). Then

N∑
i=1

∣∣〈TN(n)φi,φi 〉∣∣4�ε |n|16N−1+ε, N −→∞.

The proof of Theorem 9 from Theorem 10 is easy using the rapid decay of the
Fourier coefficients off . Indeed, writef (x)=∑

n∈Z2 f̂ (n)e(nx), so that OpN(f )=∑
n∈Z2 f̂ (n)TN(n). Therefore,
N∑
i=1

∣∣∣∣〈OpN(f )φN
i ,φN

i

〉−∫
T2

f (x)dx

∣∣∣∣4

=
N∑
i=1

∣∣∣∣∣∣
∑

0 =n∈Z2
f̂ (n)

〈
TN(n)φi,φi

〉∣∣∣∣∣∣
4

≤
N∑
i=1

∑
n1,...,n4  =0

4∏
k=1

∣∣f̂ (nk)〈TN(nk)φi,φi 〉∣∣.
For notational convenience, we write

ti (n) :=
∣∣〈TN(n)φi,φi 〉∣∣.

Now interchange the order of summation and apply Cauchy-Schwartz twice. For fixed
n1,n2,n3,n4,

N∑
i=1

ti (n1)ti(n2)ti(n3)ti(n4)

≤
(

N∑
i=1

(
ti (n1)ti(n2)

)2)1/2( N∑
i=1

(
ti (n3)ti(n4)

)2)1/2 ≤ 4∏
k=1

(
N∑
i=1

ti (nk)
4

)1/4
.

Now use Theorem 10. Fornk  = 0,(
N∑
i=1

ti (nk)
4

)1/4
� |nk|4N−1/4+ε,

and so we get

N∑
i=1

ti (n1)ti(n2)ti(n3)ti(n4)�N−1+ε′
4∏

k=1
|nk|4.

Now sum over all possiblenk  = 0 to find

N∑
i=1

∣∣∣∣〈OpN(f )φi,φi 〉−∫
T2

f (x)dx

∣∣∣∣4�N−1+ε

∑
n =0

f̂ (n)|n|4
4 ,

which proves Theorem 9.
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6.2. Reduction to a counting problem.We first reduce Theorem 10 to a counting
problem.

Proposition 11. Fix 0  = n = ι(ν) ∈ Z2, ν ∈ I . Then for any Hecke basis of
eigenfunctionsφi ,

N∑
i=1

∣∣〈TN(n)φi,φi 〉∣∣4
≤ N∣∣�θ

A(2N)
∣∣4#{βi ∈ �θ

A(2N) : ν(β1−β2+β3−β4
)= 0modNI

}
.

In order to prove Proposition 11, we define forn= ι(ν), 0  = ν ∈ I ,

D =D(n)= 1∣∣�θ
A(2N)

∣∣ ∑
β∈�θ

A(2N)

UN

(
ι(β)

)−1
TN(n)UN

(
ι(β)

)
.

If (tij ) is the matrix coefficients ofTN(n) expressed in the eigenvector basis{φk} so
that tij = 〈TN(n)φi, φj 〉, then we see that

Dij = 1∣∣�θ
A(2N)

∣∣ ∑
β∈�θ

A(2n)

λi(β)λj (β)tij .

Since the sum of a nontrivial character over all elements in a group vanishes, we have

Dij =
{
tij , if λi = λj ,

0, otherwise.
(6.1)

Lemma 12. WithD defined as above, we have∑
λi=λj

|tij |4 ≤ tr
(
(D∗D)2

)
.

Proof. Let D = (dij ) = (vi) where thevi ’s are the column vectors ofD. Exam-
ining the(k,k)-entry of(D∗D)2, we get(

(D∗D)2
)
kk

=
∑
i

〈vi,vk〉〈vk,vi〉 =
∑
i

∣∣〈vi,vk〉∣∣2,
and hence,

tr
(
(D∗D)2

)≥∑
k

∣∣〈vk,vk〉∣∣2 ≥∑
i,j

|dij |4.

The result now follows from (6.1).
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Lemma 13. We have

tr
(
(D∗D)2

)≤ N∣∣�θ
A(2N)

∣∣4 ∣∣{βi ∈ �θ
A(2N) : ν(β1−β2+β3−β4)≡ 0modNI

}∣∣.
Proof. Recall that by (3.1), sincen · ι(β)= ι(νβ) for β ∈ O, n= ι(ν),

UN

(
ι(β)

)−1
TN(n)UN

(
ι(β)

)= TN
(
ι(νβ)

)
.

Also note thatTN(w)∗ = TN(−w) for all w by (2.5). Substituting the definition ofD
and expanding, we see that(D∗D)2 is given by 1/|�θ

A(2N)|4 times a sum, ranging
over allβ1,β2,β3,β4 ∈ �θ

A(2N), of terms

TN
(
ι(νβ1)

)
TN
(− ι(νβ2)

)
TN
(
ι(νβ3)

)
TN
(− ι(νβ4)

)
= γ (β1,β2,β3,β4)TN

(
ι
(
ν(β1−β2+β3−β4)

))
,

whereγ (β1,β2,β3,β4) has absolute value 1 (see (2.6)). Now take the trace; by Lemma
4, the absolute value of the trace ofTN(n) equalsN if n≡ (0,0)modN , and equals
zero otherwise. The result now follows by taking absolute values and summing over
all β1,β2,β3,β4 ∈ �θ

A(2N).

It remains to estimate the number of solutions of

ν(β1−β2+β3−β4)≡ 0modNI, βi ∈ �θ
A(2N).(6.2)

Proposition 14. The number of solutions to (6.2) is bounded byO(|�(ν)|8N2+ε).

6.3. Proof of Theorem 10: Conclusion.By Proposition 11, we need a suitable up-
per bound for the number of solutions of (6.2) and a lower bound for the number of ele-
ments of�θ

A(2N). By Proposition 14, the number of solutions is at most|�(ν)|8N2+ε .
Note that|�(ν)| � |n|2. From Lemma 8, we obtain that|�θ

A(2N)| # N1−ε and the
result follows.

7. Counting solutions. In this section, we prove Proposition 14.

7.1. A reduction. SinceNI ⊆ NO ⊆ NOK , the number of solutions to (6.2) is
bounded by the number of solutions to

ν
(
β1−β2+β3−β4

) ∈NOK, βi ∈ �θ
A(2N).

Moreover, at the cost of increasing slightly the number of solutions, we may omit the
parity condition onβi , replacing�θ

A(2N) by �A(2N).
The inclusionO ⊂ OK induces a mapO/MO → OK/MOK , which has kernel

and cokernel of size at most[OK : O], independent ofM. Therefore, the induced map

�A(M)= ker
[
(O/MO)∗ −→ (Z/MZ)∗

]−→ �K(M)

= ker
[
(OK/MOK)

∗ −→ (Z/MZ)∗
]
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on norm-one elements also has bounded kernel and cokernel. Thus, up to a bounded
factor (depending onA but not onN or ν), the number of solutions to (6.2) is bounded
by the number of solutions of

ν
(
β1−β2+β3−β4

)= 0modNOK, βi ∈ �K(2N).(7.1)

At the cost of increasing the number of solutions, we multiply (7.1) by the Galois
conjugateν̄ to get

�(ν)
(
β1−β2+β3−β4

)= 0modNOK, βi ∈ �K(2N).

Setting

N ′ = N

gcd(N,�(ν))
,

this equation is equivalent to

β1−β2+β3−β4= 0modN ′OK, βi ∈ �K(2N).(7.2)

Next, note that the reduction mapOK/rsOK → OK/rOK has kernelrOK/rsOK

� OK/sOK of sizes2, and so the induced map on norm-one elements�K(rs) →
�K(r) has kernel of order at mosts2. (This is crude, but sufficient for our pur-
poses.) Thus, the reduction map�K(2N) → �K(N

′) has kernel of size at most
4gcd(N,�(ν))2 ≤ 4|�(ν)|2. Therefore, the number of solutions of (7.2) is bounded
by (4|�(ν)|2)4 times the number of solutions of the equation

β1−β2+β3−β4= 0modN ′OK, βi ∈ �K(N
′).(7.3)

Equation (7.3) is invariant under Galois conjugation, and we obtain a second equa-
tion (note thatβ̄ = β−1 since�(β)= 1modN ′):

β−1
1 −β−1

2 +β−1
3 −β−1

4 ≡ 0modN ′OK.(7.4)

7.2. A transformation.We thus have a system of equations (7.3) and (7.4), which
we transform using the following lemma.

Lemma 15. If x,y,z,w are invertible, then the system of equations{
x+y = z+w

x−1+y−1= z−1+w−1

is equivalent to the system{
(z−x)(z−y)(x+y)= 0

w = x+y−z.
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Proof. From the second equation, we get

x+y

xy
= z+w

zw
,

or
(x+y)zw = (z+w)xy.

The first equation gives us thatw = x+y−z; inserting it in(x+y)zw = (z+w)xy,
we get

(x+y)z(x+y−z)= (x+y)xy

or
0= (x+y)

(
zx+zy−z2−xy

)=−(z−x)(z−y)(x+y).

Thus, by Lemma 15, the system of equations (7.3) and (7.4) is equivalent to the
system

(β3−β1)(β3−β2)(β1+β2)≡ 0modN ′OK,(7.5)

β4≡ β1−β2+β3modN
′OK,(7.6)

with βi ∈ �K(N
′).

Sinceβ4 is determined byβ1,β2,β3, we may ignore (7.6) (at the cost of increasing
the number of solutions, since being in�K(N

′) is a nonempty condition). Multiplying
equation (7.5) byβ−3

3 and lettingβ ′
i = βi/β3, we obtain(

1−β ′
1

)(
1−β ′

2

)(
β ′
1+β ′

2

)≡ 0modN ′OK.(7.7)

Sinceβ3 is arbitrary, the number of solutions of (7.5) is bounded by|�K(N
′)| times

the number of solutions inβ ′
1,β

′
2 ∈ �K(N

′) to (7.7).

7.3. Prime powers.By the Chinese remainder theorem, the number of solutions
to (7.7) is multiplicative, and we may concentrate on the prime power case. Thus, we
need to count the solutions to the equation(

1−β ′
1

)(
1−β ′

2

)(
β ′
1+β ′

2

)≡ 0modpkOK(7.8)

with β ′
i ∈ OK/p

kOK , �(β ′
i )= 1modpk.

We first recall some properties of primes in quadratic extensions: letP |p be a
prime inOK lying abovep, and lete denote the ramification index, that is, the largest
integere such thatP e|pOK . SinceK is quadratic,e ∈ {1,2} ande = 1 for all but
finitely many primesp. If e = 2, thenp is said to be ramified. Ife = 1, thenp is
called unramified, and one of two things can happen: eitherpOK = P is still a prime
ideal, in which casep is said to be inert, orpOK = PP , in which casep is said
to split.
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Now, fix a primep with ramification indexe, be it 1 or 2. The normmap� : OK →
Z gives a well-defined homomorphism:(

OK/P
ek
)× −→ (

Z/pk
)×

.

We let (
OK/P

ek
)1

be the kernel of this map, that is, the group of norm-one elements. Forl ≤ ek, we let((
1+P l

)/(
1+P ek

))1
be the norm-one elements in the subgroup(1+P l)/(1+P ek); these are precisely the
norm-one elements that reduce to 1 moduloP l .

Lemma 16. There is a constantc > 1 so that the number of solutions of (7.8) is
at mostckpk.

Proof. Equation (7.8) is invariant under Galois conjugation; therefore, its solutions
in OK/p

kOK correspond bijectively to solutionsβ ′
i ∈ OK/P

ek, �(β ′
i ) = 1modpk

(this is, of course, only an issue in the split case whereOK/p
kOK � OK/P

k ×
OK/P

k
). Thus, we need to count solutions of(

1−β ′
1

)(
1−β ′

2

)(
β ′
1+β ′

2

)≡ 0modP ek(7.9)

with β ′
i ∈ OK/P

ek, �(β ′
i )= 1modpk.

We first assume thatp is odd. Sinceβ ′
1 ≡ β ′

2 ≡ 1modP implies thatβ ′
1+β ′

2 ≡
2  ≡ 0modP , we see that at most two of the factors in (7.9) can be congruent to zero
moduloP . Moreover, we may assume that the third factor is nonzero by multiplying
by a suitableβ and permuting the variables. (Of course, we must then compensate by
multiplying the number of solutions by

(3
2

)
.) Now if the product is zero moduloP ek,

then there is some 0≤ n ≤ ek such that one factor is zero moduloPn and the other
is zero moduloP ek−n. Thus, the number of solutions to (7.9) equals(
3

2

) ek−1∑
n=1

∣∣∣((1+Pn
)/(

1+P ek
))1∣∣∣× ∣∣∣((1+P ek−n

)/(
1+P ek

))1∣∣∣+2∣∣∣(OK

/
P ek

)1∣∣∣.
Using Lemma 20, we obtain∣∣∣((1+Pn

)/(
1+P ek

))1∣∣∣× ∣∣∣((1+P ek−n
)/(

1+P ek
))1∣∣∣≤ pk+e−1,

and by Lemma 19, we obtain∣∣∣(OK

/
P ek

)1∣∣∣≤ 2(p+1)pk−1.
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Hence, forp odd, the total number of solutions to (7.9) is bounded by

4(p+1)pk−1+3(ek−1)pe−1pk � kpk

(sincee = 1 for all but finitely many primes).
If p = 2, it is no longer true that only two factors can be zero moduloP . However,

β1≡ β2≡ 1modP e+1 implies thatβ1+β2≡ 2modP e+1. Since 2OK = P e, we see
that if two factors are zero moduloP e+1, then the third factor can be congruent to
0 at most moduloP e. We may thus bound the number of solutions by counting the
number of ways the product of two factors can be equal to zero moduloP ek−e. This
we can do as we did for odd primes, and we obtain the same bound as before, except
that we lose an additional factor of at most∣∣∣((1+P ek−e

)/(
1+P ek

))1∣∣∣4� 2O(e) =O(1).

This proves Lemma 16.

7.4. Proof of Proposition 14.By multiplying over all primes, we see from Lemma
16 that the number of solutions of equation (7.7) isO((N ′)1+ε). Therefore, we see
that the number of solutions of (7.5) isO((N ′)2+ε) since|�K(N

′)| � (N ′)1+ε by
Lemma 19. This gives a bound for the solutions of (7.3), and multiplying by|�(ν)|8
gives a bound for the number of solutions of (7.2). In turn, by the reasoning in Section
7.1, we get a bound ofO(|�(ν)|8N2+ε) on the solutions of (6.2).

Appendices

Appendix A. An identity of Gauss sums. For Section 4, we need to prove (4.16).
To prove it we need a lemma about Gauss sums. Given an integerx, we define its
dyadic valuation, v(x), by x = 2v(x)x0, wherex0 is an odd integer. Let

G(b,c)=
∑

z mod2k

e
( r

2k
(−bz2+2cz)).

Lemma 17. If v(c) < v(b) < k, then

G(b,c)=
{
2k, if v(b)= k−1 andv(c)= k−2,
0, otherwise.

Proof. We may write

G(b,c)=
∑

z mod2k

e

(
2cr

2k
(−βz2+z

))
,

whereβ is an integer satisfying 2cβ ≡ bmod2k. Letn= k−1−v(c); it is the smallest
integern such thate((2cr/2k)x)= 1 for all x ≡ 0mod2n.
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First, assume thatn > 1. Let ε = ε02n−1 be such thate((2cr/2k)ε)  = 1. Making
the change of variablesz→ z+ε, we see that

G(b,c)=
∑

z mod2k

e

(
2cr

2k
(−β

(
z2+2εz+ε2

)+z+ε
))=G(b,c)e

(
2cr

2k
ε

)

since 2εz+ε2≡ 0mod2n. But e((2cr/2k)ε)  = 1, and therefore,G(b,c)= 0.
If n≤ 1, then asn= k−1−v(c) andv(c) < v(b) < k, we must haven= 1,v(c)=

k− 2, andv(b) = k− 1. Hence,β ≡ 1mod2. Moreover, ifn = 1, we must have
e(2crx/2k)= e(x/2). Thus

G(b,c)=
∑

z mod2k

e

(
z2+z

2

)
= 2k

sincez2+z≡ 0mod2 for allz.

Proposition 18. The following equality holds for allx,y:∑
z mod2k

e
( r

2k
(−bz2+2z(y−dx)+ad2x2

))
=

∑
z mod2k

e
( r

2k
(−d−1bz2+2z(y−x)+ady2

))
.

Proof. The casev(b)≥ k, that is,b ≡ 0mod2k, implies thatd ≡ 1mod2k and the
equality holds trivially. We may thus assume thatv(b) < k.
We begin by noting that sincey−dx = d(d−1y−x)= d(y−x+aby), we see that

v(y−x) < v(b) implies thatv(y−dx) < v(b); putting x′ = d−1x, we see that the
converse holds, and hence,v(y−x) < v(b) if and only if v(y−dx) < v(b).

First case:v(y − x) < v(b). Putting c = y − x, c = y − dx, respectively, and
applying Lemma 17, we see that both sides are zero except whenv(c) = k − 2
andv(b) = k−1. For the exceptional case, we note thatv(b) = k−1 implies that
d−1 = 1+ab ≡ 1mod2k, and the same holds ford. Moreover,v(c) = k−2 means
thatx ≡ ymod2k−2, and since 4| a, we see that

LHS= 2ke
( r

2k
ad2x2

)
= 2ke

( r

2k
ady2

)
= RHS.

Second case:v(y−x) ≥ v(b). As remarked above, this means thatv(y−dx) ≥
v(b). We may thus complete the squares inside the exponentials, and we get

LHS=
∑

z mod2k

e

(
r

2k

(
−b

(
z− y−dx

b

)2+ (y−dx)2

b
+ad2x2

))
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and

RHS=
∑

z mod2k

e

(
r

2k

(
−d−1b

(
z− d(y−x)

b

)2
+ d(y−x)2

b
+ady2

))
.

After changing variables and taking constants outside, we get

LHS= e

(
r

2k

(
(y−dx)2

b
+ad2x2

)) ∑
z mod2k

e

(
r

2k
(−bz2

))
and

RHS= e

(
r

2k

(
d(y−x)2

b
+ady2

)) ∑
z mod2k

e

(
r

2k
(−d−1bz2

))
.

Now, d ≡ 1mod16 means thatd is a square modulo 2k. Changing variables by
z→√

dz in the second sum, we see that the sums are equal, and we are left to prove
that

e

(
r

2k

(
(y−dx)2

b
+ad2x2

))
= e

(
r

2k

(
d(y−x)2

b
+ady2

))
.

This follows from the equality

(y−dx)2

b
+ad2x2= d(y−x)2

b
+ady2.

Collecting terms, it is equivalent to

0= ad
(
y2−dx2

)+b−1
(
dy2+dx2−2dxy−y2−d2x2+2dxy)

= ad
(
y2−dx2

)+b−1
(
y2(d−1)+x2

(
d−d2

))
= ad

(
y2−dx2

)+(d−1)b−1(y2−dx2
)
,

which follows from the identity

ad+ (d−1)
b

= d

(
a+ 1−1/d

b

)
= d

(
a+ 1−(1+ab)

b

)
= d

(
a− ab

b

)
= 0.

Appendix B. Counting norm-one elements. Let e be the ramification index of a
primep in OK , that is, the largest integer such thatP e | pOK , whereP ⊂ OK is any
prime ideal dividingpOK . SinceK is quadratic,e ∈ {1,2}. If e = 2, thenp is said to
be ramified. Ife = 1, thenp is called unramified, and one of two things can happen:
eitherpOK = P , in which casep is said to be inert, orpOK = PP , in which case
p is said to be split.
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Now fix a primep with ramification indexe, be it 1 or 2. The norm map

� : OK −→ Z

descends modulopk and gives a homomorphism(
OK

/
P ek

)× −→ (
Z
/
pk
)×

.

We let(OK/P
ek)1 be the kernel of this map, that is, the group of norm-one elements.

For l ≤ ek, we let ((
1+P l)

/(
1+P ek

))1
be the norm-one elements in the subgroup(1+P l)/(1+P ek); these are precisely the
norm-one elements that reduce to 1 moduloP l .

Lemma 19. We have

∣∣∣(OK/P
ek
)1∣∣∣=


(p−1)pk−1, if p is split,

(p+1)pk−1, if p is inert,

2pk, if p is ramified.

Proof. Recall first from class field theory [4] that the index (inZ×
p ) of the image of

the units in thep-adic completion ofOK under the norm map equals the ramification
indexe. We split the proof into three parts.

The split case. If p splits inK, thenpOK = P1P2 whereP1,P2 are prime ideals
in OK , and whereP2= P1. The mapx → x gives an isomorphism betweenOK/P

k
1

andOK/P
k
2 . This, together with the Chinese remainder theorem, gives

OK

/
pkOK � OK

/
P k
1 ×OK

/
P k
2 � OK

/
P k
1 ×OK

/
P k
1 ,

wherex ∈ OK/p
kOK is mapped to(x,x) ∈ OK/P

k
1×OK/P

k
1 . Furthermore,OK/P

k
1

� Z/pkZ, and therefore,

OK

/
pkOK � Z

/
pkZ×Z

/
pkZ.(B.1)

Under this isomorphism, Galois conjugation maps(x,y) ∈ Z/pkZ×Z/pkZ to (y,x).
Thus the natural embedding ofZ/pkZ in OK/p

kOK � Z/pkZ×Z/pkZ consists of
elements of the form(x,x) and the image of(x,y) under the norm map is(xy,xy).
Hence, the norm-one elements inOK/p

kOK correspond to elements of the form
(x,y) ∈ Z/pkZ × Z/pkZ such thatxy = 1, and the number of such elements is
(p−1)pk−1.

The inert case.Heree = 1 and the local norm map is ontoZ×
p . Reducing modulo

p, we get an exact sequence
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1−→ (
OK

/
P k
)1−→ (

OK

/
P k
)× −→ (

Z
/
pk
)× −→ 1.

Hence, ∣∣∣(OK

/
P k
)1∣∣∣= ∣∣(OK

/
P k
)×∣∣∣∣(Z/pk
)×∣∣ = (p+1)pk−1.

The ramified case.Here the image of the norm map inZ×
p is of index 2, and thus

the image of the norm in(Z/pk)× has cardinality(p−1)pk−1/2. Consequently,

∣∣∣(OK

/
P ek

)1∣∣∣= 2

∣∣(OK

/
P ek

)×∣∣
(p−1)pk−1 .

Now ∣∣(OK

/
P ek

)×∣∣= ∣∣(OK

/
P
)×∣∣× ∣∣(1+P)

/(
1+P ek

)∣∣= (p−1)pek−1,

and sincee = 2, we get∣∣∣(OK

/
P ek

)1∣∣∣= 2
(p−1)p2k−1
(p−1)pk−1 = 2pk.

Wealso need to know the number of norm-one elements that reduce to 1moduloP l .

Lemma 20. We have∣∣∣((1+P l
)/(

1+P ek
))1∣∣∣= {

pk−l , if p is split or inert,

Kp×pk+$l/2%−l , if p is ramified,

whereKp = 1 if p is odd, andK2= 1 or 2.

Proof. The split case.From the previous discussion of the isomorphism in (B.1),
we see that norm-one elements congruent to 1 moduloP l

1 correspond to elements
(x,x−1) ∈ Z/pkZ×Z/pkZ, such thatx ≡ 1modpl . The number of such elements is
|(1+pl)/(1+pk)| = pk−l .

The inert case. If p is odd, thenx → x2 is an automorphism of(1+P l)/(1+P k)

since the order of the group is odd. Thus, the norm is locally onto in the sense that
the map

� : (1+P l
)/(

1+P k
)−→ (

1+pl
)/(

1+pk
)

is onto.
If p is even (and inert), then squaring is not an automorphism as(1+ x)2 =

1+2x+ x2. However, 1+pl ⊂ 1+P l and squaring maps(1+pl)/(1+pk) onto
(1+pl+1)/(1+pk). Thus,(

1+pl+1)/(1+pk
)⊂ �

((
1+P l

)/(
1+P k

))
,
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which shows that the image of the norms must be either(1+ pl+1)/(1+ pk) or
(1+pl)/(1+pk). (There are no subgroups in between!) We show that the former
holds; since 2 is unramified, the discriminant ofK is odd andOK = Z[1+√

dk/2].
Hence, tr(OK)= Z, and there existsx ∈ OK with odd trace. Now

�
(
1+pkx

)= 1+pk tr(x)+p2k�(x)

shows that the image must be(1+pl)/(1+pk).
Thus, whetherp is even or odd, the norm map is locally onto, and hence,∣∣∣((1+P l

)/(
1+P k

))1∣∣∣= ∣∣((1+P l
)/(

1+P k
))×∣∣∣∣((1+pl

)/(
1+pk

))×∣∣ = pk−l .

The ramified case.First, we note that

�
((
1+P l

)/(
1+P ek

))⊂ (
1+p$l/2%)/(1+pk

)
.(B.2)

Arguing as before that squares are in the image of the norm, we see that equality
holds forp odd, and we obtain∣∣∣((1+P l

)/(
1+P ek

))1∣∣∣
=

∣∣((1+P l
)/(

1+P ek
))×∣∣∣∣((1+p$l/2%)/(1+pk
))×∣∣ =

∣∣OK

/
P
∣∣2k−l

pk−$l/2% = p2k−l

pk−$l/2% = pk+$l/2%−l .

Forp even, the squaring argument shows that(
1+p$l/2%+1)/(1+pk

)⊂ �
((
1+P l

)/(
1+P ek

))
,

which gives a lower bound on the image. This gives the same result as for the odd
case, except for a factor of 2.
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