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Abstract: We prove a strong version of quantum ergodicity for linear hyperbolic maps
of the torus (“cat maps”). We show that there is a density one sequence of integers so that
asN tends to infinity along this sequence, all eigenfunctions of the quantum propagator
at inverse Planck constant are uniformly distributed.

A key step in the argument is to show that for a hyperbolic matrix in the modular
group, there is a density one sequence of integeifer which its order (or period)
moduloN is somewhat larger thag/N.

1. Introduction

1.1. Quantum ergodicity. An important model for understanding the quantization of
classically chaotic systems ageantum maps, and in particular the quantizations of
linear automorphisms of the tord& (“cat maps”). Recall that a linear automorphism

of T2 is given by a matrix4 in the modular grous L(2, Z). lterating such a map, we

get a discrete dynamical system, well-known to be chaotic if the map is hyperbolic, that
is if it has two real eigenvalues> 1 > ¢~ (equivalently| tr(A)| > 2). A quantization

of these “cat maps” was proposed by Hannay and Berry [9], see also [13,4,5]. In brief,
this procedure restricts Planck’s constant to be an inverse integerl/N, and the
Hilbert space of state y is N-dimensional, in keeping with the intuition that each state
occupies a Planck cell of volumie= 1/N and the constraint that the total phase-space
T2 has volume one. Classical observables (i.e. functibns C>°(T?)) give rise to
operators OR(f) onHy. Given a linear automorphise of the torus, its quantization

is a unitary operatot/x (A) on Hy, called the quantum propagator, or “quantized cat
map”. The eigenfunctions df y (A) play the réle of energy eigenstates.
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In this paper we will use the quantized cat map to illuminate one of the few rigorous
results available on the semi-classical limit of eigenstates of classically chaotic systems,
namelyQuantum Ergodicity [18, 3,21]. To formulate this notion, recall that if the classi-
cal dynamics arergodic, then almost all trajectories of a particle cover the energy shell
uniformly. The intuition afforded by the “Correspondence Principle” leads one to look
for an analogous statement about the semi-classical limit of expectation values of ob-
servables in an energy eigenstate. As formulated by Schnirelman [18], the corresponding
assertion is that when the classical dynamiesgedic, for almost all eigenstates the ex-
pectation values of observables converge to the phase-space average. For quantum maps,
the form that this takes is the following ([2,22,23]): Fix an observagble C>(T?).

Then for any orthonormal basis; of H v consisting of eigenfunctions éfy (A), there

is a subse (N) € {1,2,..., N}, with ZX) 1 s that forj € J(N) we have:

Opy(HVj, ¥j) — frZ f, asN — oo. (1.1)

This is a consequence, using positivity and a standard diagonalization argument, of
the following estimate for the variance due to Zelditch [22]: Giyea C*(T?), for any
orthonormal basig;, j = 1,..., N of of Hy consisting of eigenfunctions @fy (A),
we have

2
-0 (1.2)

N
1
N.Zl (Opy (MY ¥j) = /T !
]=
Note that the result (1.2) does not guarantee dHatigenfunctions iy are equidis-
tributed, even for one single value &f.

1.2. Beyond quantum ergodicity. In recent work [14], we have found that there is a
commutative group of unitary operators on the state-space which commute with the
quantized map and therefore act onits eigenspaces. We called these “Hecke operators”, in
analogy with the setting of the modular surface. We showed that the joint eigenfunctions
of these and of/y (A) (which we called “Hecke eigenfunctions”) are all equidistributed,
that is (1.1) holds for any choice of Hecke eigenfunction&in.

Not all eigenfunctions of/y (A) are Hecke eigenfunctions. In fact, the Hecke eigen-
spaces have small dimension (at mostog logN)), while the eigenspaces 6fy (A)
may have large dimension. In fact, timeean degeneracy isV/ord(A, N), where
ord(A, N) the order (or period) ofA modulo N, that is the least integdr > 1 for
which A¥ = I mod N. It can be shown (see Sect. 3.2) that the mean degeneracy can
be as large a&// log N for arbitrarily largeN. However, it is reasonable to expect that
all eigenfunctions become equidistributed — that is we have quaimtigue ergodicity.

In this paper, we show ergodicity @l eigenfunctions ofUy (A) for almost all
integersn:

Theorem 1. Let A be a fixed cat map. There is a set of integers A* of density one so
that all eigenfunctions of Uy (A) are equi-distributed, as N — oo, N € N'*.

Previously, the only result giving an infinite set 8f for which all eigenfunctions of
Uy (A) become equi-distributed is by Degli-Esposti, Graffi and Isola [5], which condi-
tional on GRH give an infinite set qirimes.
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1.3. Outline of the argument. Our main tool in relating this result to more traditional
themes of Number Theory is the following estimate for the fourth power moment of the
expectation values, giving a condition in terms of the ordet ofioduloN:

Theorem 2. There is a sequence of integers of density one so that for all observables
f € C*(T?) and any orthonormal basis {W,}?’:l of H consisting of eigenfunctions
of Uy (A) we have:

N(logN)*

o 4
> {OPN (Vs ) /T2f| < ord(A, N)2~

j=1
Thus for any subsequence of integétsuch that

ord(A, N)
N1Z2(og N)7 — 00 (1.3)
(and satisfying an additional “genericity” assumption explained in Sect. 4) we find that
for all eigenfunctions oty (A), (Opy (f)¥, ¥) = [;2 f @SN — oo.

Theorem 2 reduces the problem of quantum ergodicity to that of finding sequences of
integers satisfying (1.3), a problem closely related to the classical Gauss—Artin problem
of showing that any integer, other thati or a perfect square, is a primitive root modulo
infinitely many primes; see [17] for a nice survey article. We show (Theorem 17) that
there is somé > 0 for which there is a set of integers of density 1 so that

ord(A, N) > N2 exp((logN)?).

This, combined with Theorem 2 gives Theorem 1.

To prove Theorem 17, we first show in Sect. 5 that on a set of density or&,,a¥J
is not much smaller than the product of the ordera afodulo prime divisors oiV. Next,
we deal with prime values @¥. In Sect. 6 we show (Theorem 14) that givel2k n <
3/5, there is a set of primes of positive density)) > 0 so that ordA, p) > p". We
note that this is far short of the truth; by invoking the Generalized Riemann Hypothesis,
one can show that for a set of primes of density one, we havelong) > p/log p (cf.

[6]). In Sect. 7 we prove Theorem 17 by using Theorem 14 together with the elementary
observation that for almost all primes ord(A, p) > p¥/2/log p.

As is apparent from this discussion, our result hinges on the condition (1.3) being
satisfied; we can say nothing for for which this condition fails, of which there are
infinitely many examples. We consider it a fundamental problem to get results when
ord(A, N) is smaller thanv1/2.

1.4. Notation. We will use the standard convention of analytic number theory: Thus
e(z) stands fore?™?, f(x) <« g(x) asx — oo means that there is son@ > 0 so
that forx sufficiently large,f (x) < Cg(x). Similarly, f(x) < g(x) asx — oo means
limsupf(x)/g(x) < 1. We will write p||n if p’ dividesn but p’t1 does not. We will
denote byw (N) the number of prime divisors a¥.
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2. Quantum Mechanics on the Torus

2.1. The Hilbert space of states. We review the basics of quantum mechanics on the
torusT?, viewed as a phase space [9, 13,4, 5], beginning with a description of the Hilbert
space of states of such a system: We take state vectors to be distributions on the line
which are periodic in both momentum and position representatip@s+ 1) = v (¢),
[Fu¥1(p+1) = [Fil(p), wherel Fi,r1(p) = h=Y2 [ 4 (q) e(—pq/h) dq. The space

of such distributions is finite dimensional, of dimension precidéht 1/ k, and consists

of periodic point-masses at the coordinates Q/N, Q € Z.We may then identif${ y

with the N-dimensional vector spade?(Z/NZ), with the inner product. , -) defined

by

@, v) =~ Z $(Q) ¥ (0Q). (2.1)

QmodN

2.2. Observables. Next we construct quantum observables: A central role is played by
the translation operators

[y 1(Q) =¥ (Q+ 1)
and, lettingey (Q) = ezﬂTiQ.
(129 1(Q) = en (Q) ¥ (Q),

which may be viewed as the analogues of (respectively) multiplication and differentiation
operators. In fact in terms of the usual translation operators on théliiie) = gv (¢)
andpy(q) = 2m dqw(q) they are given by, = e(p), t2 = e(g). In this context,
Heisenberg’s commutation relations read

t1h = btfeyn(ab) Va,beZ. (2.2)

More generally, mixed translation operators are definea fer(ny, ny) € Z2 by

Ty(n) = en( 1’”)

These are unitary operators ®f)y, whose action on a wave-functian € L?(Z/NZ)
is given by:

Tn () = o “F ("2 2.3)
This implies that the absolute value of the tracd'pfn) is given by
itr Ty ()] = N n=(0,00 modN (2.4)

0 otherwise

(see [14, Lemma 4]).
The adjoint/inverse of’y (n) is given by

Ty(n)* = Tn(—n). (2.5)
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As follows from the commutation relation (2.2), we have

w(m,n)

Tn(m)Ty(n) = ey ( ) Tn(m + n), (2.6)

wherew (m, n) is the symplectic form
w(m,n) = miny — mony.

For any smooth functioff € C*°(T?), define aquantum observable Opy, (f), called
theWeyl quantization of f [7]

Opy(f) = Y Fm)Tn(m),

nez?

wheref(n) are the Fourier coefficients gf.
Given a state) € Hy, the expectation value of the observablgf in the statey is
defined to b&Opy ()Y, ¥).

2.3. Cat maps. To introduce dynamics, we consider a linear automorphism of the torus
A € SL(2,Z). The iteration ofA gives a (discrete) dynamical system, well-known to
be chaotic ifA is hyperbolic, thatigtr A| > 2 (such a map is called a “cat map” in the
physics literature).

If we further assumed is “quantizable” (that isA = zZ with ab = ¢d = 0
mod 2, for more details see [14, Sect. 3] or [9, p. 273]) then one can assigmuoitary
operatoiUy (A) onH y, thequantum propagator, whose iterates give the evolution of the
guantum system, and characterized by the property (an analogue of “Egorov’s theorem”):

Un(A)* Opy (f)UN(A) = Opy(f o A). (2.7)

This can be thought of as saying that the evolution of the quantum observablef©p
follows the evolutionf — f o A of the classical observable That (2.7) holdexactly

is a special feature of the linearity of the mapfor general maps, (2.7) is only expected
to hold asymptotically a& — oo (cf. [15]).

The stationary states of the quantum system are given by the eigenfungtiohs
Un (A). Itis our goal to study the limiting expectation valu&€p,, (f)v, ) of observ-
ables in (normalized) eigenstates and show that outside a zero density\sst thfey
all converge to the classical average f of the observable a8 — ~c.

3. The Order of aMatrix Modulo N

31 LetA € SL(2,2) be a hyperbolic matrix, that istr(A)| > 2. Theorder (or
period) ordA, N) of the mapA moduloN is the least integet > 0 so thatA* = I
mod N. We begin to study the order &f modulo an arbitrary intege¥, starting with
some well-known generalities.
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3.1.1. Firstly, if M andN are co-prime then
ord(A, MN) = lcm(ord(A, M), ord(A, N)),
and so ifN has a prime factorizatioN = [] pfi then

ord(A, N) = lem{ord(4, p})}.

3.1.2. The eigenvalues, ¢ of A generate a field extensidti = Q(e), which is a
real quadratic field since4)? > 4. We label them so tha¢| > 1. Let

D = A(tr(A)? — 4)

so thatk = Q(+/Dy4). We denote byDx the ring of integers oK. The eigenvalues
e, e~ of A will be units inOk. Adjoining € to Z gives anorder © = Z[¢] € Ok in
K. Then there is aD-ideal I ¢ O so that the action of by multiplication on/ is
equivalent to the action of onZ?, in the sense that there is a basid afith respect to
which the matrix ok is preciselyA (see [19] or [14]). The action ad by multiplication
on I gives us an embedding

19 < Matx(2)

sothaty = x + ye € O correspondst®/ + yA. Moreover, the determinant of + yA
equalsV'(y) = yy, whereN : K — Q is the Galois norm. In particular, if € O has
norm one thery corresponds to an elementSi.»(2)

Given an integetN > 1, the embedding : © < Matx(Z) induces a mapy :
D/NO — Maty(Z/NZ) and the normV : K — Q gives a well-defined map

N:O/NO — Z/NZ.
Denote byC4 (N) the group of norm one elementssity NO:
Ca(N) =ker[N : (O/NO)" — (Z/NZ)*] .

This is a subgroup of L(2, Z/NZ), containing the residues classAfmoduloN.
The cardinality of” 4 (N) can be computed via the Chinese Remainder Theorem from
the cardinality at prime power arguments. To do so, define

+1, psplitsink

x(p) = {—1, pinertink.

(Recall that a prime is inert if (p), the ideal generated by in the ring of integers of
K,isaprimeideal. If p) is a product of two distinct prime ideals, thersplits, whereas

p ramifiesif (p) is a square of a prime ideal.) By quadratic reciprogitys a Dirichlet
character modul@ 4 (not necessarily primitive). It can then be shown (see e.g. [14],
Appendix B) that ifp does not divideD 4, then

#CA(P") = P = x (), (3.1)
while for primes dividingD 4, there is some4 > 0 so that
H#CA(PY) < cap” . (3.2)

As a consequence, we find thatifdoes not divideD 4, then the order oA modulo p
dividesp — x (p), and more generally, for any prime powe¥, if p does not divideD 4,
then ord A, p*) dividesp*~1(p — x(p)).
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3.1.3. An upper bound for ord(A, N). Another consequence of (3.1), (3.2) is that for
any integeN = [] pk»,

1
HCA(N) = [ [#Ca(p*) <a N1+ =) <a NloglogN.
14 pIN P
Thus, for any integeN, we have as an upper bound for the order

ord(A, N) < NloglogN. (3.3)

3.2. Making ord(A, N) small. As for lower bounds on the order, it is easily seen that
ord(A, N) > log N for all N. In fact, this bound is sharp, as we claim

Proposition 3. Thereisaninfinitesequenceof integers{Ny}72 ; for whichord(A, Ny) <«
log Ny.

Proof. To explain the idea, recall first how to find integerdor which 2 has small
order modulaz: The trick is to takey; = 28 — 1, since then?= 1 modn;, and so
ord(2, ny) < k ~ logny/log 2. To modify this idea to our context, assume for simplicity
that the matrixA is “principal”, that is the action ot onZ?2 is equivalent to the action of
the unite on the maximal orded g (in general we need an ideal in the ordee= Z[¢],
see Sect. 3.1.2). Thetl =1 mod N isequivalenttoe =1 mod NOk (in general,
only the implication= is valid).

Factor| det(A* — I)| as a product of prime powers:

dewa’ — DI =[Tp [Tr" [Tr”
N I R

where[[¢ means the product over primgs= pp which split in K = Q(e), [], the

product over inert primes ar[d , the product over the ramified primgs= p2.
On the other hand, we have

det(A* — 1) = N(eh — 1) = —e F(F — 1)2.
Write the ideal factorization ofy := (K — 1)Ok as
a=[erp7 []P7 [T0-
S I R
Sincea,f = det(AF — Ok, we get on comparing the prime exponents that
2s;)=2s;=ap, Ly =2ip, pp=rp.

Sinceo, is even, we can set
Nk = Hpap/zl_[pip Hp[rp/z] .
N I R

Then
Ni < |detA* — I)| < N3,

wheres = [[ p is the product of all ramified primes &f.
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We haveg; € NyOg and soek = 1 mod N Ok, equivalentlyA* = I mod Ny.
Thus we find

log| det(A% — I)| - logN7s

A N =
ord(A, Ni) <k loge ~ loge  loge

log Ni + O(1),

and so ordA, N;) < log Ny as required. O

4. LargeOrder of A Implies Equidistribution

4.1. In this section we give a relation between the order of the mapoduloN and
the distribution of the eigenfunctions of the quantizatign(A). We start by relating
the fourth power-moment of the expectation valyEs(n)v;, ¥;), for ¢; ranging over
an orthonormal basis df y (A)-eigenfunctions, to the number of solutions of a certain
equation modulav.

Recall our notationz = (n1, n2) will denote a row vector, and the matrikacts on
by multiplication on the rightz — nA.

Proposition 4. Let {v;} fV: 1 bean orthonormal basis of eigenfunctions of Uy (A). Then

N
D UTn )y, i) l* AV, (4.2)
i=1

N
ord(A N
where v(N, n) isthe number of solutions of the congruence

n(A' — A/ + Ax—Aly=0 modN, 1<i,j, kI <ordA,N).

Proof. Let
1 ord(A,N)

D) = m ; Ty(nA'),

and lett; be the matrix coefficients dfy (n) expressed in terms of the basig } ;
From (2.7) we have that

Ty nAF) = Uy (A5 Ty (n) Uy (AF), (4.2)

and by assumptioy (A)y; = A;y; for A; a root of unity. Thus, |1{D,] _q are the
matrix coefficients oD in terms of the basigy;}_;, then

tij if A; = Ajy
D;; = . 4.3
Y {O otherwise. (4.3)
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Indeed, from (4.2) we have

1 ord(A,N)
e — k . .
Dii = ordca, v ; (Tn (AT, )
1 ord(A,N)
~ ord(A, N) ; (Un (A Ty (m)Un (A, )
1 ord(A,N)
= — kYo ky.p .
= oA V) 1;1 (Tn (M)Un (A, Un (A ;)
1 ord(A,N)

= ik )i,
ord(A, N) 1; (hidj)"tis

which gives (4.3).
If we denote by(v;}¥ ; the column vectors ab, then the(k, k)-entry of (D*D)? is

(D*DY)ike = (v vi) (v, i) = Y i, v,

i
and since (v, ve)| = Y, | Dri|? we get

> 161 < r((D*D)?).

Ai=hj

Substituting the definition ob and using (2.5) and (2.6), we see thax* D)? is given
by ord(A, N)~*times a sum, ranging overd i, j, k,l < ord(A, N), of terms

Tn (nA) Ty (—n AN TN (nA Ty (—nA') = yi j i Tv (n(A" — AT + AF + AT)),
wherey; ; r.; has absolute value one. Now take the trace and use [Z2x4)1)| equalsV

if n = (0,0) mod N, and is zero otherwise. The result now follows by taking absolute
values and summing over allj, &, . (For more details, see Sect. 6.2 in [14]01

4.2. A counting problem. In order to make use of Proposition 4 we must bound the
number of solutions to

n(A' — A7 + AK— AY=0 modN, 1<i,j kI <ordA,N).
We will show that there are essentially onfjial solutions of this equation, i.e.
(A, A = (a7, 4D, (AT, A = (Al AN, oral, A)) = (—AF, A,

where the third possibility only happens if there exisssich thatd’ = —1. In terms of
the exponents j, k, [ this means that

i, k=D, G k)=Uk), or(,jl=¢—-kt-1), (4.4)

where equality is to be interpreted as equality modulo the ordar. of
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4.2.1. The prime case. Here we assum& = p is prime.

Lemma5. Assume that nA and n are linearly independent modulo p, and that the
eigenvalues of A are distinct modulo p. Then there are at most 3ord(A, p)? solutions
of

n(A' — A7 + AK—AY=0 modp, 1<i,j kI <ordA, p). (4.5)

Proof. Let K be the real quadratic field containing the eigenvalued cand letk,

be the residue class field at the primpei.e., K, = Og/P, whereP is a prime of

K lying abovep. K, has cardinalityp if p splits in K, or p2 if p is inert. We may
diagonalize the reduction of modulop over the fieldK ,. In the eigenvector basis we
haveA’ = (g 691> andn’ = (n, n}), where the assumption of linear independence

modulop implies that both, n’, # 0 (in K ,.) Thus (4.5) is equivalent to the following
two equations ovek ,:

ei—ej+ek—el=0,

!

. . 4.6
el eyt =0, (4.6)

which in turn (see Lemma 15 in [14]) is equivalent to

elzei—ej—i—ek,

. o . 4.7

(F — ey (eh — el + €)= 0. 47
Hencel is determined by the tripl€, j, k). Dividing by €* and lettingi’ = i — k and
j' = j — k we rewrite the second equation as

A—eNA—e) e +e/y=0, 1<i,j <ordA,p). (4.8)

If the first (or second) factor equals zero then(erdp) | i’ (or j’) since the order of

in K equals ordA, p). If the third factor is zero then otd, p) | i" — j" —t, where
e’ = —1. In each case this leaves 0Ad p) possibilities for the paifi’, j'), and since
k is unconstrained the total number of solutions is at most arg)2. 0

Remark. The condition of linear independence mpdn Lemma 5 is satisfied for all
but finitely many primes. In fact, if we let

nin
M:( 1 2>’
mi my

wheren = (n1,n2) andnA = (my, m2), then the condition of linear dependence

is equivalent top | detM. Now detM is anonzero integer, becausd has no rational
eigenvectors. We also note that if the independence condition is not satisfied then trivially
there are at most otd, p)* solutions to (4.5).

Lemma6. Let N be square free and coprimeto D4 = 4(tr(A)? — 4). Assume further
that nA and n are linearly independent modulo p for all p | N. Then there are at most
32 ord(A, N)? solutions of

n(Al — A/ + A¥—AlY=0 modN, 1<i,j kI <ordA,N). (4.9)
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Proof. Let (i, j, k, 1) be asolutionto (4.9). Ib | N then (4.9) holds withv replaced by
p.Arguing asin Lemma5 one of the three factors in (4.8) must be zero, and the vanishing
factor determines which one of the three equations in (4.4)(thatk, /) must satisfy
modulo ord A, p). For example, if the first factor in (4.8) is zero, thénj) = (k, 1)
mod ordA, p).

Now, the group generated yymoduloX is cyclic and isomorphic t,cpZ /g% Z,
where theg's aredistinct primes. We will denote th& /¢“Z component of by i,
and similarly for j, k, 1. Since ordA, N) is equal to the least common multiple of
{ord(A, p)},~. there exists for each € Q at least one prime | N such thag% ||
ord(A, p).

Claim. If (i, j, k, 1) isasolutionto (4.9) the€,, j;. k4, [;) satisfies one of the equations
in (4.4). The reason is as follows: there is a prigmé N such thaig? | ord(A, p),
thus one of the equations in (4.4) is satisfied moduldArg). Sinceg? || ord(A, p)
this implies thati,, j,, k4, I,) satisfies one of the equations in (4.4). (Note in particular
that this leaveg?“ possibilities for(iy, jg. kg, 1y) if we specify one of the equations in
(4.4) to be satisfied.) Now, to eagh| N there are 3 different types of trivial solutions,
and since(iy, jg, k4, I4) must satisfy one of the possibilities in (4.4) for ale 0, we
obtain that there are at most

3*M TT g% = 3™ ord(A, N)?

qeQ

solutions to (4.9). O

In our applications the hypothesis of linear independence might not hold forf a¥l.
However, we have the following

Lemma 7. Let N be square free. Then there are at most
0 (1n1573°™ ord(4, NY?)
solutions to
n(A' — A/ + AK—AY=0 modN, 1<i,j k[ <ordA,N). (4.10)

Proof. By the remark after Lemma 5, linear dependence moguolds if and only if
pldetM, where| detM| <4 |n|3. Let

. N
N = gcd(D4 detM, N)

Then the hypothesis in Lemma 6 is satisfied&6r leaving 3" ord(A, N’)2 possible
valuesfor(, j, k, 1) moduloord A, N’). Now, an elementi/ ord(A, N')Z has exactly

grrg((ﬁ’l’\}’,)) preimages ifZ N [1, ord(A, N)]. Hence there are at most
, ord(A, N) \*
3D ord(A, N')? ord(4, N)
ord(A, N’)

solutions to (4.10). Since
| det(M)| <a Inf3
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we get that

N
- = gcd(D, detM, N) < Dy detM <4 |n|3.

Finally noting that sinceV is square-free,
ord(A, N) = lcm (ord(A, N), ord(A, N/N")) < ord(A, N') - ord(A, N/N"),
we find (by (3.3)) that

ord(A, N)

1+e
oA N = < ord(A, N/N') « (N/)

for all e > 0, and we are done.O

4.3. Conclusion.

Proposition 8. There exists a density-one sequence S of integers such that if n # 0 and
N € S then

N
N(logN)*
8+€
l§=1| Ty ()i, ¥i) | < |n |2 ord(A, N)2

Proof. Let S be the set of integers of the fort = ds?, whered is square free,
s <logN, andw(N) < 3/2loglogN. By Lemmas 21 and 22, proved in the appendix,
S has density one.

For N = ds? € S, we wish to bound the number of solutions to

n(Al — AV 4+ AK — Ay =0modN, 1<i,j k[ <ordA,N). (4.11)

SinceN is not square free we cannot apply Lemma 7 directly. Foe ds?, d square-
free, we further decomposé = d1 gcd(d, s), so thatd, and N /d1 = gcd(d, s)s? are
coprime.

Given: € Z there are exactl rrd((g‘ o
[1, ord(A, N)]. Thus, a solution of

) solutions toA’ = A" moddyifi € ZN

n(Al — A/ + Ak — Ay =0modd1, 1<i,j kI <ord(A,dy) (4.12)

lifts to at most(ord(A, N)/ ord(A, d1))* solutions for which 1< i, j, k, [ < ord(A, N).
This, together with Lemma 7 applied to (4.12) gives there are at most

(ord(A, N)

m) | |8+€3w(d1) Ord(A,d1)2

solutions to (4.11).

Clearlyw(dy) < w(N), ord(A, d1) < ord(A, N), and sincel;, N/dy1 are coprime,
with N/d; < s, we have

1+e
ord(A, N) < ord N < N < 3o
ord(A, dp) d1 d1
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forall ¢ > 0 (by (3.3)). Hence the numbetN, n) of solutions of (4.11) is bounded by
V(N, n) < |n|3T¢s12T€30°M) ord(A, N)2. (4.13)
Thus we find that fotv € S the number of solutions of (4.11) is bounded by
In[8€ (log V) 12+€ 33/2108100N ori( A N)2 « [n[8F€ (log N)Hord(A, N)?

and consequently we see from Proposition 4 that

=z

gre N(logN)

2 Ty yi)l* < Inlg™ Samms

i=1
as required. O
By a routine argument (see [14], Sect. 6) we get:

Corollary 9. There is a density one sequence of integers N so that for all observables
f e C®(T?), we have

N
N(log N)14
o] L) — fp ———.
; (Opy (N> V) /T I <r da w2
This reduces the proof of Theorem 1 to showing that for a sequence of density one
of integers, ordA, N) grows faster thaw/?(log N)” asN — oo. We will do this in
Sect. 7 (Theorem 17).

5. Relating the Order of A Modulo Integersto the Order Modulo Primes

Our goalin this section is to show (Proposition 11) that for a set of density one of integers
N, ord(A, N) is not much smaller than the product of 64d p) over prime divisorg
of N.

5.1. For a set of positive integerst = {m1, ..., my}, define
Hk'—l m;
L = J== 7
(M) |Cm{m1, ce, M)

ThenL(M) is a positive integetZ({m}) = 1 andL({m1, m2}) = gcd(m1, m2).
From the definition, a primé divides L(m3, ..., my) if and only if there are two
distinct indices # j so that¢ divides bothm; andm ;.

Lemmal0. Let M = {my,...,mi}, N = {n1,...,ni} and suppose that m; | n;j,
1 < j < k. Then L(M) divides L(N). In particular,
lcm{m1, ..., my} > H d

- LN)
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Proof. Factorm; = [T, p;". n; = [1; o """ with ai;. gy = 0. ThenL(M) =
[T p/" LWN) =T1; pi", where

k
=Y a;j — maxa;,
i 2; ij 1<)k ij
j:

k
vi =Y (aij + Bij) — l@}%{(aij + Bij) -
j=1 ==

Thus the lemma reduces to the following easily verified inequality: For any non-negative
realsa;j,b; > 0,1< j <k, we have

(;aj) — mjaXaj < (Z(aj +bj)) —m]ax{aj +b;}. O

J

5.2. We need to apply these considerations to bounding4rd/). Given an integen,
we will write N = ds? with d square-free, and further decompase: dp gcd(d, D »),
so thatdg = do(N) is square-free and co-prime 1o, .

Now define

L(N)=L{p—x(p): pldo(N)}. (5.1)
Sincedp | N, we have
ord(A, N) > ord(A, dp) = lcm({ord(A, p) : p | do}).
Moreover, forp | dp we have ordA, p) | p — x(p) and so by Lemma 10 we find

ledo ord(A, P)

lcm({ord(A, p) : p | do}) = L)
and thus

]_[md0 ord(A, P)

ord(A, N) >
L(N)

(5.2)

We will show (Proposition 11) that for almost ¥ < x, we have
L(N) < exp3(log logx)*)

and consequently we get as the main result of this section:

Proposition 11. For almost all N < x,

l_[p|d0 Ord(A9 P)

Ord(4. N) = S 3(iogloga)®)’

where dg is given by writing N = ds?, with d = do gcd(d, D4) square-free.
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5.3. Forx > 1, we set = z(x) = (loglogx)3. We say that an integer issmooth if
it has no prime divisors larger than

Lemma12. L(N) isz-smooth with at most O (x/loglogx) exceptionsfor 1 < N < x.

Proof. Suppose thak (N) is divisible by a primel > z. From the definition of. (N),
this implies that there are two distinct prime divisqis g2 of do(N) so thate divides
gi — x(gi),i =1, 2. In particular¢ < x/2. Thus we find two distinct primes such that

g2 | N and ¢g; =41 mod¢, i=12 (5.3)

For fixedg1, g2 the number ofV < x divisible byg1g> is [x/q1g2]. Thus for fixede,
the number ofV < x satisfying (5.3) is at most

2
X 1
I A R
q1,q92=+1 mod¢ 9192 g=%1 modéq

By Brun—Titchmarsh (Lemma 23 — recdll< x/2), this is bounded (up to constant
factor) byx(log logx /£). Summing over all primeé > z, we find that the number of
integersN < x such thatL(N) is divisible by some primé > z is at most

x(loglogx)? x
Z loglogx’

1
x(log Iogx)2 Z 7 <

>z
Proposition 13. For almost all integers N < x we have
L(N) < exp3(log logx)*) .

Proof. By Lemma 12 we may assume tHatN) is z-smooth, withz = (log logx)3. For
p | do(N), write thez-smooth part ofp — x (p) as f,,sf,, with f,, square-free. Set

Sy = maxs,, .
pldo

Note that sincef), is square-free angsmooth, it divides the product of all primgs< z.
Thus forz > 1 we have:
fp =< nq < €3Z/2 .

q=z
SinceL(N) is z-smooth and divideﬂp‘do(p — x(p)), it also divides the product
[,14 fpsg. Thus

L(N) < l—[ fpS,Z, < l—[e&/zsz < (e3252)0M)

pldo pldo
or
logL(N) 3 5
_— I . 5.4
o) 57 = 0g Sy (5.4)

Now for almost allN < x we have (Lemma 22)

3
w(N) < > loglogx, (5.5)
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and so by (5.4) ifL(N) is large, so isSy. Specifically, if logL(N) > 3zloglogx =
3(loglogx)* then by (5.4), (5.5), we find

log$% > z/2 = (loglogx)3/2.

We will show that this fails for almost alV < x and thus prove the proposition.

To estimate the number @&f < x for which IogSIZV > z/2 = (loglogx)3/2, recall
that by the definition oSy there is some prime dividing dp (and hence dividingv)
so that thez-smooth part off — x(q) is qug andSy = s, (in particular if N < x then
Sy < x%?). Thus there is a primg | N for whichg = +1 mod 52.

Giveng there are at mostc/q] integersN < x divisible by g, and hence the total
number ofN < x with log szV > z/2 is at most

> ox <
exp(z/#<S<x¥2 g=+1 mod §2
q=x

By Lemma 23 we have for fixel < x1/2,

loglo
> T F09700%

52 ’
g=%1 modSZq
q=x
and summing ove§ > ¢%/4 gives at most
1 x loglogx
loglo —- K —.
xloglogx Z 52 < expz/4)

S>exp(z/4)
Thus the number o < x for which log$?, > z/2 = (loglogx)3/2 is at most

x loglogx 1 3
————— < xloglogx exp(—=(loglogx)®) = o(x),
ez/4 4

and we are done.O

6. Large Order for Primes

In this section we show that ofd, p) is large for a positive proportion of primes. Our
main result here is:

Theorem 14. Let 1/2 < n < 3/5. Then the number of primes p < x for which the order
of the cat map modulo p satisfiesord(A, p) > x" isat least c(n)m (x) +o( (x)), where

3—5p

c(n) = 20—

1/2 <n < 3/5. (6.1)

We first observe (following Hooley [12]):
L emma 15. The number of primes for which ord(A, p) < y is< y2.
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Proof. If ord(A, p) = k < y thenA* = I mod p and sop | det(A* — I). Thus the
number of such primes is bounded by the total number of prime divisors of the integers
det(A* — I), k < y, thatis by

Zw(det(Ak - 1),

k<y

wherew (n) is the number of prime factors af. Now trivially w(n) < log|n|, and
| det(Ak — I)| ~ ¥, wheree > 1 is the largest eigenvalue df. Thus we get a bound
for the number of primes as above of

Y wdetat — D) < Y k<« y?

k<y k<y
as required. O

Forn > 1/2, let P, (x) be the set of primep < x for which there is a primg > x7,
with g | p — x(p). The main tool for proving Theorem 14 is:

Proposition 16. For 1/2 < n < 3/5 we have
#Py(x) = c(m7m(x) (14 o(1))
with ¢() > 0 given by (6.1).

Theorem 14 follows from Proposition 16 and the following observation: For all but
o(m(x)) of the primes ofP, (x) we have ordA, p) > x". Indeed, forp t D, ord(A, p)
divides p — x(p). For p € P,(x), if ord(A, p) is not divisible by the large factor
g > x" of p— x(p) then it divides%(p) < x177 and so ordA, p) is smaller than

y = x17; the number of such primes is by Lemma 15 at mo§t>1-7) = o(7(x))
sincen > 1/2. Thus for all bub( (x)) of the primes inP, (x), we haveg | ord(A, p)
and so for these primes atdl, p) > g > x".

6.1. Proof of Proposition 16. The proof of Proposition 16 is a modification of a theorem
due to Goldfeld [8] from the case of primgsfor which p + a has a large prime factor
for fixeda, to the case whemis allowed to vary withp in a bounded fashion, depending
on a fixed set of congruence conditions.

The idea is as follows: By quadratic reciprocitp) only depends on the residue
of p moduloD4 = 4(tr(A)? — 4). Thus the number of primes iR, (x) is the sum over
all invertible residues mod D4 of the number of primes in

Py(x;Da,a) ={p e Py(x): p=a modDu}.

We wiill show

c(m)
¢ (Dy)

wherec(n) is given by (6.1). Summing (6.2) over all invertible residuesnod D 4 will
give Proposition 16.

#P,(x; Da,a) 2 7 (x), (6.2)
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6.1.1. Asin [8], we consider the sum

Sat) = Y Z A(m),

m<x p<
(m DA) 1p amodDA
m|p—y(a)

and more generally foy; < y2 < x, we set

Sayr.y2zix)= Y Z A(m).

yi<m=y2 pP=
(m,Dp)=1p= amodDA
m|p—yx(a)

This is the weighted sum over prime powers (y1, y2], coprime toD 4, of the number
of primesp < x,p=a modm withm | p — x(p).

If (m, D4) = 1 then by the Chinese Remainder Theorem, there is a unigue
mod m D4 so that

am = x(a@) modm,
am =a modDy.

Then we have
Sa(y1.y2x) = > Am)w(ximDy, ap).

yi<m=y2
(m,Da)=1

6.1.2. Prime powers. Let us first see that the contribution of proper prime powets
g*, k > 1,10 S,(y1, y2; x) is at mostO (x/ logx), which will allow us to ignore their
contribution: Indeed, this contribution is bounded by

Z|0961~7T(x;quA,aqk)§ Z + Z IOQQ'T[(X;quA,aqk).

gk <x GF<x¥t x3Acgk oy
k>1 k>1 k>1

By Brun—Titchmarsh (A.1), if* < x¥*thenm (x; ¢*Da, a1) < x/(¢"logx), so that
the sum oveg* < x%4is bounded by

Z logg———— <« ——,
g*¥logx " logx

gk <x3/4

since

>

g primek>1 q
As for the sum over®* < ¢* < x, we use the trivial bound

.k i 1/4
w(x;q"Dp,a) K —— < x
a4 qkDy
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(which comes from countinigntegersin an arithmetic progression) plus the fact that the
number of prime powergt < x is O(logx/logq). Since the primes contributing are
no larger than'/2, we bound this sum by

Z |qu 1/4 < x3/4

g<x1/2

which is negligible.

6.1.3. Areduction. We reduce the study @, (x; D4, a) to that of S (x7, x; x):

Py(x;Da,a)= Y m(x; Da,ag)
xT<g<x
qtD 4 prime
1
Z ogx WZ logq - 7(x; Da, ag)
x"T<g<x
qtD prime
L, (o0 )+0( - )
= —S8,(x", x;x ,
logx log® x

since the prime powers are negligible. (Also note that x1/2 so that eachp is counted
exactly once in the first sum.) Thus in order to prove (6.2), we need to show that for
n < 3/5,

3—5p by
Sa(x, x;x) 2 ———— 6.3
3 ) 2(1—-n) ¢(DA) ©3)
6.1.4. Adivision. We write
Y12 12
Sa(x)—Sa(l g ;x) + a( xn;x)+sa(xn,x§x)
x
with ¢ > 1 to be determined later. We will show
X
Sa(x) ~ , 6.4
a SO0 (6.4)
x1/2 X
S,(1, ——:;x)~ = , 6.5
a( log” x x) 26(Dy) (6.5)
x1/2 2n—1 «x
Sa . hS 6.6
(Iog‘ ) 1—n ¢(Dy)’ (6:6)

which will give (6.3) and hence our proposition.
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6.1.5. ToshowsS,(x) ~ x/¢(Dy), we first writeS, (x) as

Z A(m) Z 1= Z— Z A(m) Z 1

m<x p=<x m<x m<x p=x
(m,Dy)=1 p=amodD 4 (m,Dy)#1 p=amodD 4
m|p—x(a) m|p—x(a)

To evaluate the sum over all < x, we switch the order of summation and use the
identity de A(d) = logn to get

dAm Y 1

2. 2 Am

m<x p=x P=x  m|p—yx(a)
p=amodD 4 p=amodD 4
m|p—x(a)
= > log(p— x(a)) ~ 2-
= d(Da)
p=amodD 4

To estimate the sum over prime powers< x, with gcdim, D4) # 1, note that since
the sum is only over the powers of the primgslividing D4, it suffices to treat each
such prime separately. We will show that each contributes at éypst/ logx) and thus
prove (6.4).

Indeed, the contribution of such a prime is

logg >~ > 1=<logg ) > 1

k>1 p=x qka p=x
q*<x p=amodDy q*1p—x(@
¢ lp—x(@

<logg Y m(x:iq* £1).

gk<x

The contributing exponenisconsist of those (“smallk’s) with g¥ < x/e and at most
two “large” values ofk for which x/e < g¥ < x. The contribution of the “large”
exponents can be shown to be at mosil) by noting thatr (x; ¢, 1) is at most the
number ointegersn < x congruenttat1 modulag*, whichis at most /¢ +1 = 0 (1).

For the “small” exponentsc(> 1 such thag* < x/e), we use the Brun—Titchmarsh
theorem (A.1) to bound

x/q*

.k
T S T g /gt

and so the sum over all> 1 with g¥ < x /e is at most

2 x/q"
| .
qul—q*1 Z logx/q*

gk<x/e

N S .
In the rangey < ¢* < x/e, the functiork — |0)£]/)c‘]/qk is decreasing and so the sum over

1 <k <log(x/e)/logq is bounded by the integral

log(x/e)/logq sk 1 *odt 1 «x
/ dk = / < .
o log(x/q%) logq J. logt logg logx
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Thus the total contribution of these “small’s is at mosic,x/ logx. Summing over all
prime divisorsg of D4 gives (6.4).

6.1.6. To evaluatesS, (1, & o x,x) we replacer (x; mDy4, ay) by Li(x)/¢(mD4) and
use the Bomb|er|—\/nogradov theorem to bound the error by

Li(x)
¢(mDy)

X X
logm max <K logxy —— K« ——
2 J g log?x  logx

w(x;mDa, b) —
(b,m)=
m<xY/2/log" x

(c was chosen to give the exponent 2 on the RHS of (A.2)). The main term is evaluated
by (note thatp(mD4) = ¢p(m)p(D,) if m andD 4 are coprime)

A(m) . Li(x) A(m)
VY i) = /22 2
2 e ®=mn X e

m<xY2/logf x m<xY2/log¢ x
(m.Dp)=1 (m,Dy)=1

Li(x) (m)

= E + 01

d(Da) ¢ (m) @
m<x1/2/log¢ x

Li(x) x1/2

~ og———
¢ (Da) log® x
1 x

T 26Dy

as required to prove (6.5).

6.1.7. Finally we estimates, (x/?/log® x, x"; x), We will use the Brun—Titchmarsh
inequality (A.1) which form < x, n < 3/5 gives

2 X
w(x;mDy, ap) < 1= 7 6 (Dam)iogx" (6.7)

We now find using (6.7) that

x1/2 2 X A(m)
Se\logrx "% ) = T=7 Togx $(nDy)
g 108 xY2/log¢ x<m=<x" A
(m,Dp)=1
1 2 al logx™ —lo X +0@Q)
= X' —
¢(Dy) 1—nlogx g g|0 ° x

20-1/2) x
1-n ¢(Da)’

which gives the required estimate (6.6).
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7. Large Order for Almost All Integers

In this section we will show that for a density one subsequence of the positive integers,
the order ofA is large enough to give uniform distribution of all eigenfunctions of
Un(A). We will show:

Theorem 17. There exist § > 0 and a density one subset S of the integers such that for
all N € S wehave
ord(A, N) > NY2exp((logN)®) .

Fix 1/2 < n < 3/5. We say that a primeg is good if p t D4 and ordA, p) > p".
Let P; be the set of good primes, and 4 (x) be the set of primes iR that does not
exceedr. As shown in Theorem 14, there exists= y (n) > 0 such that

Pg(x) Z ym(x).

If p| Dyorord(A, p) < p"we callpbad,andifp | D4 orord(A, p) < p¥?/log p
we callp terrible. As for good primes we le®g and Py denote the set of bad, respectively
terrible, primes (note tha®;y C Pg), and byPg(x) resp.Pr(x) the number of primes
less thanx in these sets. SincRp is the complement oPg which has lower density,
we have

Pp(x) S (1—y)m(x). (7.1)
As for the size ofPr, it is immediate from Lemma 15 that
X
log? x
Given an integelN we write N = NgNpg, where

Ng = l_[ pi's Np= H P

a; a;
p,'l”N 17,'IHN
ri€Pg pi€Pp

Pr(x) = 0(

). (7.2)

We also letN7 | Np be given byN; = ]—[pz_z,- IN pit.

pi€EP
Define a set of integelg by n € Ng ifTand only if all prime divisors ofn are
good, and similarly foNz andNy. As for primes we lelNg (x) (respectivelyNp (x)
andNr (x)) be the elements M (respectivelyNg andN7) not exceeding.

Proposition 18. The number Ng(x) of integers N < x having all their primefactorsin
Pp satisfies

X
N _—
p(x) K Togx)”
Proof. Letb, = 1if p € Pg and leth, = 0 if p € Pg, and for composite integets
putby = led bp. ThenNp(x) = Y, by. SincePp(x) < (1 — y)m(x) the sieve of
Eratosthenes gives thiiz (x) = o(x). Indeed,

Np(x)=#n<x:pePs=piny=x [] A—1/p)+ Oexpz)).
PEPG(2)
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Putting z = loglogx and noting that lim., o ]_[pepa(z)(l —1/p) = 0, since
ZPEPG 1/p = oo, we obtainNg(x) = o(x).

Now following Wirsing [20], we consider the smoothed sy”{hNB(t)%. By partial
summation we have

* dt
/1 Ny ()~ =N (x)logx — Z;bn logn . (7.3)

Using the identity log: = de A(d) we obtain:

> bylogn =Y b, (Z A(d)) = baA(d) Y by

n<x n<x dln d<x n<x/d (7_4)
:an Z baA(d).
n<x d<x/n
Now,

Y bar@ =Y logp+O(C) 2 loger/m) < =
d<x/n pePp(x/n)

by Chebyshev’s bound om(x). Moreover,Ng (1) = o(r) implies that/; N© 4 =
o(x). Hence

Np (@) logx + o(x) < 3 by (7.5)
n<x n
However,
by
Y= Il aryp+yp®+.H=exp 3 Wp+0w/p?)
n<x pEPR(x) pePp(x)
< exp((1— y)loglogx) = (logx)*7,
and thus
X X X
N ——(logx)+™ . 7.6
B(x) € |ng(09x) +0(|ng) < (logx)? (7.6)
mi
Coroallary 19. We have
) 2 X
#{N < x : Ng < exp((logx)?/?)} <« T (7.7)
Proof. We may write #N < x : Ng < z} as
> Va0,
Ng=z G

and by Proposition 18 we may bound this sum by

X X X
E < — K logz.
X X X
No=z Ng(log —NG)V (log 2 No=z Ng (log 2

Puttingz = exp((logx)?/?) we obtain the desired conclusiono
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We will also need to estimate the number of integg€raith Ny large:

Lemma 20. Let B(z) = Y _nyeNy 1/N. Then:
N>z

(i) The number of integers N < x for which Ny > z isat most x8(z).
(i) lim , .0 B(z) = 0.

Proof. (i) We have

#N <x:Nr>z} < Z Nizxxg(z)-

Nr>z
(i) By (7.2),
Z 1/p < oo,
PEPT
and hence
Y YUN=]J]@+1p+1/p*+..)<o00. O
NeNr pePr

Proof of Theorem 17. As in Sect. 5, writeN = ds?, whered is square freed =
doged(d, Dy), D4 = 4(tr(A)? — 4). By Proposition 11, for almost al < x we have

np\do Ord(A, P)
exp3(log logx)4)

Fix 1/2 < n < 3/5. Write dg = dgdp, wheredg is “good” anddp is “bad”. By
definition, if p is good then orA, p) > p", hence

ord(A, N) >

[]ordA. p) = ..
pldg

Furthermore,

1/2 1
H ord(A. p) = H Iogp (dr> (logdg)»@s)’

pl pIdT

But trivially ord(A, p) > 1 for p € Pr, hence

dp 1/2 1
n
[Jordca, p) = dg (7) " Uogdy) @

pldo
dg*]-/zdl/Z

dy/*(logd)®ds)

B dg; 1/2N1/2
 (drs®Y?(logdp)@@s)
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Now consideV < x. By the previous results we may, without affecting the density (i.e.
for all buto(x)), assume that the following holds:

dr <logx (Lemma 20) (7.8)

s <logx (Lemma 21) (7.9)
w(dp) < w(N) < 2loglogx (Lemma 22) (7.10)
dg > exp((logx)”/?) (Corollary 19) (7.11)

We also use logp < logN < logx. Hence

NY2exp((n — 1/2)(logx)?/?)
(logx)3/2+3/2loglogx

[]ordca. p) >

pldo

Hence by Proposition 11,

l_[pldo ord(A, p)
exp3(log logx)4)
N NYZexp((n — 1/2)(logx)"/?)

~ exp(3(log logx)* + (3/2 + 3/2log logx) log logx)
> NY2exp((log N)/3).

ord(A, N) >

This concludes the proof of Theorem 17a

A. Background from Prime Number Theory

A.l. Inthis Appendix, we collect some facts which we will need in the rest of the paper.
The first asserts that most integers have only small square factors:

Lemma 21. The number of integers N < x which have a square factor s% | N with
s > logN iso(x).

Proof. If N e [x¥/?, x], then logN > 1/2logx, and the number a¥ e [x1/2, x] such
thats? | N for somes > log N is bounded by

ST
s2 T logx

s>1/2logx

Hence the number 0¥ < x for whichs? | N for somes > log N is <« Bgr T 12 =
o(x). O

A.2. We will need to know that most integers have few prime factorsul@f) be the
number of prime factors a¥. As a consequence of the Hardy-Ramanujan theorem [10]
(see [11], Theorem 431), we have:

Lemma 22. The set of N such that w(N) > 3/2loglogN has zero density.
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A.3. We recall two important theorems: The first is the Brun—Titchmarsh inequality,
which we will use in the following convenient form [16]: For alld k& < x, (a, k) = 1,

w(x; k,a) < (A1)

2x
¢(k)log¥
One consequence we will need is:
Lemma 23. Let ¢ < x%/2. Then

Z 1 ¢ log logx
—=oor o @

p=+1 modgq

The second is the Bombieri—Vinogradov theorem [1] in the form: For exery O
there is some8 > 0 so that

Li (x) x
max s k,a) — . A.2
2, MRk = 50 | < oga A2
= logn
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