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THE VARIANCE OF ARITHMETIC MEASURES ASSOCIATED TO CLOSED

GEODESICS ON THE MODULAR SURFACE

WENZHI LUO, ZEÉV RUDNICK AND PETER SARNAK
(Communicated by Jens Marklof)

ABSTRACT. We determine the variance for the fluctuations of the arithmetic
measures obtained by collecting all closed geodesics on the modular surface
with the same discriminant and ordering them by the latter. This arithmetic
variance differs by subtle factors from the variance that one gets when consid-
ering individual closed geodesics when ordered by their length. The arithmetic
variance is the same one that appears in the fluctuations of measures associ-
ated with quantum states on the modular surface.

1. INTRODUCTION

1.1. Equidistribution theorems for closed geodesics. Let X be a compact sur-
face with a metric of constant negative curvature κ = −1, S X the unit tangent
bundle of X , and Φ

t : S X → S X the geodesic flow. We think of S X as the set of
initial conditions (z,ζ), with z ∈ X the position and ζ the direction vector.

The geodesic flow is ergodic with respect to Liouville measure dx, the smooth
invariant measure for the flow: generic geodesics become equidistributed, in the
sense that for Lebesgue-almost all initial conditions x0 ∈ S X ,

lim
T→∞

1

T

∫T

0
F (Φt x0)d t =

∫

S X
F (x)d x

for integrable observables on S X .
As is well known, there are infinitely many closed geodesics; in fact, the num-

ber π(T ) of closed geodesics of length at most T grows exponentially with T ,
π(T ) ∼ eT /T as T →∞ [38, 7]. For a closed geodesic C , let ℓ(C ) be its length and
µC the arc-length measure along C , i.e., for F ∈C (X ),

∫

C
F dµC :=

∫ℓ(C )

0
F (Φt x)d t , x ∈C .

This is a measure on S X which is invariant under the geodesic flow and of total
mass ℓ(C ). Closed geodesics become, on average, uniformly distributed with
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respect to d x:1 for any observable F ∈C (S X ), we have

lim
T→∞

1

π(T )

∑

ℓ(C )≤T

1

ℓ(C )

∫

C
F dµC =

∫

S X
F (x)d x .

Lalley [19] determined the fluctuations of the numbers µC (F )/
p
ℓ(C ) for F as

above and of zero mean as C varies over closed geodesics ordered by length. He
showed that they are Gaussian with mean zero and variance V (F,F ), where V is
the hermitian bilinear form on functions of zero mean given by

(1.1) V (F1,F2)=
∫∞

−∞

(∫

S X
F1(x)F2(Φt x)d x

)

d t .

The negative curvature guarantees that the correlations in the inner integral de-
cay exponentially as t →±∞, so V is convergent [31].

The bilinear form V is positive semidefinite and is degenerate; in fact, if F0

is smooth, then V (F0,F ) = 0 for all F if and only if F0 is a derivative in the flow
direction, i.e., F0 = d

dt |t=0 f ◦Φt for some other observable f ∈C∞(S X ).
An important involution of S X is time-reversal symmetry,

w : (z,ζ) 7→ (z,−ζ),

which reverses the direction vector of the initial condition and satisfies w◦Φt =
Φ

−t ◦w. It induces an involution on the set of geodesics, taking a geodesic C =
{Φt x0 : t ∈R} to its time-reversal C̄ =wC = {Φs wx0 : s ∈R}.

Time-reversal symmetry can also be incorporated in Lalley’s theorem. To do
so, note that for a closed geodesic C , its time-reversed partner C̄ is also closed
and both have the same length, ℓ(C ) = ℓ(C̄ ). Grouping these together yields the
measure µeven

C := µC +µC̄ of mass 2ℓ(C ). By Lalley’s theorem, the fluctuations of

µeven
C /

p
2ℓ(C ) are again Gaussian with mean zero, but with variance given by the

hermitian form

(1.2) V even(F1,F2) =V
(

F even
1 ,F even

2

)

,

where F even = (F + F ◦ w)/2 is the even part of F under w. Note that µeven
C is

invariant and V even is bi-invariant under the geodesic flow as well as under time-
reversal symmetry w. Both of the hermitian forms V and V even on

L2
0(S X ) :=

{

f ∈ L2(S X ) :
∫

S X
f (x)d x = 0

}

can be diagonalized and computed explicitly by decomposing the regular repre-
sentation of PSL2(R) on this space; see §3.

1In variable negative curvature, one needs the Bowen–Margulis measure here. To get an
equidistribution statement involving Liouville measure, one needs to weigh each geodesic by its
“monodromy”.
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1.2. The modular surface. In this paper, we investigate fluctuations of mea-
sures on the modular surface associated with grouping together geodesics of
equal discriminant. As is well known, any of our compact surfaces X may be
uniformized as a quotient of the upper half-plane H, equipped with the hyper-
bolic metric, by a Fuchsian group Γ. Furthermore, the group G = PSL2(R) of
orientation-preserving isometries of H acts transitively on the unit tangent bun-
dle S X , giving an identification S X ≃ Γ\G ; this is reviewed in §2. The modular
surface is obtained by taking Γ = PSL2(Z); the resulting surface is noncompact
(but of finite volume) and has elliptic fixed points, but these issues will not be
important for us.

Closed geodesics correspond to (hyperbolic) conjugacy classes in Γ, with the
length of a closed geodesic C given in terms of the trace t of the corresponding
conjugacy class by ℓ(C ) = 2log(t +

p
t 2 −4)/2. In the case of the modular surface,

the hyperbolic conjugacy classes correspond to (strict) equivalence classes of in-
teger binary quadratic forms ax2+bx y+c y2 (also denoted by [a,b,c]) of positive
discriminant d := b2−4ac , with the modular group acting by linear substitutions
(we need to exclude discriminants which are perfect squares). The discriminant
disc(C ) of a closed geodesic C is defined as the discriminant of the correspond-
ing binary quadratic form.

For d > 0, d ≡ 0,1 mod 4, and d not a perfect square, let f̄1, . . . f̄H(d) be the
classes of binary quadratic forms of discriminant d . We do not assume that f j =
[a j ,b j ,c j ] is primitive, and so H (d ) is the Hurwitz class number [20]. Let

(1.3) ǫd =
td +

p
dud

2
, td > 0, ud > 0

be the fundamental solution of the Pellian equation t 2−du2 = 4. Then, as in [35,
37], associate to each f̄ j the Γ-conjugacy class (it is well-defined) of the matrix

(1.4)

(

td−b j ud

2 a j ud

−c j ud
td+b j ud

2

)

.

This gives H (d ) closed geodesics for each discriminant d , all of length 2logǫd .
Let µd be the corresponding measure on S X :

(1.5) µd =
∑

disc(C )=d

µC .

These measures are the arithmetic measures in the title of the paper. They
have been studied extensively and the primary result about them is that they
become equidistributed as d →∞. That is, if F is bounded and continuous on
S X and has mean zero, then

µd (F )

H (d )2logǫd
→ 0 as d →∞ .

Linnik [23] developed an ergodic-theoretic approach to this equidistribution
problem, and recently, in [3], it was shown that this method leads to a proof of
this specific result. The first proof of equidistribution is due to Iwaniec [10] and
Duke [1]. Iwaniec established the requisite estimate for Fourier coefficients of
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holomorphic half-integral weight forms (of weight > 5/2) and Duke obtained the
estimates for weight 3/2 and weight zero Maass forms. In view of our reductions
in Sections §3 and §6, together these imply2 the full equidistribution on S X .

The measures µd enjoy some symmetries (see [37]). First, they are invariant
under time-reversal symmetry: wµd =µd . Second, let r be the involution of Γ\G
given by g 7→ δ−1gδ, where

δ=
(

1 0
0 −1

)

(it is well defined since δ−1
Γδ= Γ). In terms of the coordinates (z,ζ) on S X , r is

the orientation-reversing symmetry

r : (z,ζ) 7→ (−z,−ζ) .

The measure µd is also invariant under r. The involutions w, r commute and
their product rw is also an involution. Thus µd is invariant under the Klein four-
group H = {I ,r,w,rw}. These involutions induce linear actions on L2(Γ\G) by
f (x) 7→ f (h(x)), with h ∈ H and x ∈ Γ\G , and we denote these transformations
by the same symbols. The fluctuations of the measures µd inherit these symme-
tries, and since we are particularly interested in comparing their variance with
the classical variance V , we define the symmetrized classical variance V sym on
functions of mean zero on Γ\G by

(1.6) V sym(F1,F2) :=V (F
sym
1 ,F

sym
2 ),

where

F sym :=
1

4

∑

h∈H

hF .

1.3. Results. We can now state our main results about the fluctuations of µd . We
normalize these measures as

µ̃d :=
µd

d 1/4
.

This is essentially equivalent to normalizing by the square root of the total mass,
√

H (d )2logǫd ; see Remark 1.4.2. The space of natural observables for which one
might compute these quantities is L2

0(Γ\G), or at least a dense subspace thereof.
This space decomposes as an orthogonal direct sum of the cuspidal subspace

L2
cusp(Γ\G) :=

{

f ∈ L2(Γ\G) :
∫

N∩Γ\N
f (nx)dn, for a.e. x ∈ Γ\G

}

,

where N =
{(

1 u
0 1

)

: u ∈R

}

, and the unitary Eisenstein series [5]. The former is

the major and difficult part of the space L2
0(Γ\G), so we will concentrate exclu-

sively on it. One can easily extend our analysis of the variance to the unitary
Eisenstein series.

2Specifically, by (3.25), (6.1) and (6.3), equidistribution on S X is reduced to an estimation of
Fourier coefficients of classical holomorphic forms of half integer weight and Maass forms of
weight 1/2.
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THEOREM 1.1. Fix smooth, K -finite F1,F2 ∈ L2
cusp(Γ\G). Then

(1.7) lim
Y →∞

1

#{d : d ≤ Y }

∑

d≤Y

µd (F1)

d 1/4
= 0,

and there is a limiting variance

(1.8) B (F1,F2) = lim
Y →∞

1

#{d : d ≤ Y }

∑

d≤Y

µd (F1)

d 1/4

µd (F2)

d 1/4

We call this variance B the “arithmetic variance.” The structure of the bilinear
form B is revealed by choosing a special basis of observables, compatible with
the symmetries of the problem. Recall that the unit tangent bundle is a homo-
geneous space for G = PSL2(R), and thus it is natural to decompose the space
L2(Γ\G) into the irreducible components under the G-action. In addition, there
is an algebra of Hecke operators acting on this space, commuting with the G-
action, hence also acting on each isotypic G-component. We take observables
lying in irreducible spaces for the joint action of G and the Hecke operators –
the automorphic subrepresentations of L2

cusp(Γ\G). Denote the decomposition

of the regular representation on L2
cusp(Γ\G) into G- and Hecke-irreducible sub-

spaces by

(1.9) L2
cusp(Γ\G) =

∞
⊕

j=1
Wπ j ,

so π j is a cuspidal automorphic representation.
In order to describe the arithmetic variance explicitly, we need a more de-

tailed description of the Wπ j ’s. To each π j is associated an even integer k , its

weight (see §3), which we indicate by πk
j . For k = 0, there are infinitely many

π0
j ’s corresponding to Hecke–Maass cusp forms on X , while for k > 0 there are

dk such πk
j (where dk is either

[

k
12

]

or
[

k
12

]

+1, depending on whether k/2 = 1

mod 6 or not), corresponding to holomorphic Hecke cusp forms of weight k . For
k < 0, let

Wπk
j
=Wπ−k

j
=

{

f : f ∈Wπ−k
j

}

for j = 1,2, . . . ,d−k , and these correspond to the antiholomorphic Hecke cusp
forms. With these, we have the orthogonal decompositions

L2
cusp(Γ\G) =

∞
∑

j=1
Wπ j ⊕

∑

k≥12

dk
∑

j=1

(

Wπk
j
⊕Wπ−k

j

)

=
∞
∑

j=1
Uπ0

j
⊕

∑

k≥12

dk
∑

j=1
Uπk

j
,(1.10)

where

(1.11) Uπ0
j
=Wπ0

j
and Uπk

j
=Wπk

j
⊕Wπ−k

j
.
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One associates to each π j as above an L-function L(s,π j ) given by

(1.12) L(s,π j ) =
∞
∑

n=1

λπ j (n)

ns
, ℜ(s) > 1,

where λπ j (n) is the eigenvalue of the Hecke operator Tn acting on Wπ j . It is well
known (Hecke–Maass) that L(s,π j ) extends to an entire function and satisfies a
functional equation relating its value at s to 1− s. In particular, the arithmetical
central value L( 1

2 ,π j ) is well defined (and real).

THEOREM 1.2. Both V sym and B are diagonalized by the decomposition (1.10),
and on each subspace Uπk

j
we have that

B |U
πk

j

= c(k)L(
1

2
,πk

j )V sym|U
πk

j

,

where c(0) = 6/π and c(k)= 1/π if k > 0.

1.4. Remarks.

1.4.1. The hermitian forms V sym and B can be computed explicitly on each
Uπk

j
(see §3). Time-reversal symmetry w forces V sym to vanish on Uπk

j
for k = 2

mod 4. Also, orientation-reversal symmetry r fixes the weight zero spaces Uπ0
j
,

and hence takes the generating vector (see §3) φ0
j ∈ π0

j into ±φ0
j . Correspond-

ing to this sign, we call Uπ0
j

even or odd. According to §3, V sym is completely

determined on Uπk
j

by its value on the generating vector; hence it follows that

V sym|Uπ j
≡ 0 for the odd π0

j ’s. In the above cases where V sym|U
πk

j

vanishes, the

sign ǫπ j of the functional equation of L(s,π j ) is −1, and hence the central L-

value L( 1
2 ,π j ) = 0 for reasons of symmetry. In the other cases (k = 0 mod 4 and

π0
j even), ǫπ j = 1 and V sym|Uπ j

6= 0. One expects that in these cases, L( 1
2 ,π j ) 6= 0

as well. However, if we pass from Γ= PSL2(Z) to a congruence subgroup, where
our analysis can be carried over with similar results, then there will be π’s cor-
responding to holomorphic forms for which L( 1

2 ,π) = 0 for number-theoretic
reasons, specifically the conjecture of Birch and Swinnerton-Dyer [41]. In this
case the restriction of the arithmetic variance to such a subspace will vanish for
reasons far deeper than just symmetry.

1.4.2. The normalizationµd (F )/d 1/4 is natural from the arithmetic point of view.
To be consistent with the previous normalization, we should use the square root
of the total mass

√

H (d )2logǫd of the measure. By Dirichlet’s class number for-
mula for d fundamental, when H (d ) = h(d ) is the ordinary class number (and
similar formulae for all d ),

(1.13) h(d ) logǫd =
p

dL(1,χd ) .

The fluctuations of L(1,χd ) are mild and well-understood [4], and hence the nor-
malizations are essentially the same. In any case, one could use methods as in
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[11, Chapter 26] to remove the weights L(1,χd ) and deduce Theorem 1.1 with
this other normalization.

1.4.3. In §3, we show, in a more abstract context, that the space of linear forms
on an irreducible unitary representation of G which are invariant under both the
geodesic flow and time-reversal symmetry is at most one-dimensional, and how
to incorporate orientation-reversal symmetry. This shows that the form that the
arithmetic and “classical” variance take is universal. That is, for any family of
such invariant measures, the variance B ′, if it exists, is determined completely in
each irreducible representation of G by B ′(v0, v0), where v0 is either a spherical
vector or a lowest (or highest) weight vector in the representation.

1.4.4. The geometric problem is to order the µd by the length of any of the geo-
desic components of the measure. We do not know how to do this. What we can
do is to compute the variance of the µd ’s when ordered by the discriminant d .
From the arithmetic point of view, this ordering is anyway the most natural one.
For many considerations, these two orderings of µd yield quite different answers
(see [37]). However, for the fluctuations, we believe they are similar.

The difficulty in proving the same result of the µd ’s ordered by td (or ǫd ) is
apparent already for F1 = F2 = f , where f is a holomorphic cusp form of weight
m ≡ 0 mod 4. In this case, according to the formula of Kohnen and Zagier [16],
we have for d a fundamental discriminant

(1.14)
|µd ( f )|2

p
d

=∗L(
1

2
, f ⊗χd )

(with ∗ explicit and under control). Thus we would need to understand the av-
erages

(1.15)
∑

td≤Y

L(
1

2
, f ⊗χd ).

The first, but big, step in this direction would be to understand

(1.16)
∑

t≤Y

L(
1

2
, f ⊗χt 2−4)

(see [32] for an execution of such an analysis on a simpler problem). This ap-
pears to be beyond the well-developed techniques for averaging special values
of L-functions in families. We leave it as an interesting open problem.

1.4.5. The recent work [34] giving lower bounds for moments of special val-
ues of L-functions in families, together with (1.14), shows that the fluctuations
of µd (F )/d 1/4 are not Gaussian, at least not in the sense of convergence of mo-
ments.
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1.4.6. The arithmetic variance B in Theorem 1.1 is the same as the quantum
variance for the fluctuations of high energy eigenstates on the modular surface
that were calculated in [24] and [42]. We expect that the variance for the µd ’s,
when ordered by length, will be the same as B . This would give a semiclassical
periodic orbit explanation for the singular finding [24] that the quantum vari-
ance is B rather than V even. It points yet again, just as for the local spectral sta-
tistics (see the survey [36]), to the source of the singular behavior of the quantum
fluctuations in arithmetic surfaces being the high multiplicity of the length spec-
trum. Similar phenomena are found for the quantized cat map [17, 18].

1.5. Outline of the paper. We end with an outline of the paper and the proof
of Theorem 1.1. In §2, we give some background connecting the dynamics on
the modular surface with the group structure on SL2(R). In §3, we show that up
to a scalar multiple, there is at most one linear form on the smooth vectors of
an irreducible unitary representation of SL2(R) that is invariant under the action
of the diagonal subgroup (corresponding to the geodesic flow) and the element
(

0 −1
1 0

)

corresponding to time-reversal symmetry. We show that such a linear

form is determined by its value on a “minimal” vector—a spherical vector in the
case of a principal series representation and a lowest/highest weight vector for
holomorphic/antiholomorphic discrete series representations. We then bring
in invariance under orientation-reversal and apply the results to show that the
bilinear forms V sym and B are determined by their values on Maass forms and
holomorphic modular forms.

In §4, we present some background on half-integral weight forms, and in
§5 we discuss Rankin–Selberg theory for these, giving a mean-square result for
Fourier coefficients along positive integers by modifying work of Matthes [27] for
weight zero forms.

In §6, we review the results of Maass [25], Shintani [39], Kohnen [14, 15] and
Katok–Sarnak [13], relating periods along closed geodesics to Fourier coefficients
of theta-lifts. This allows us to express µd (F ) in terms of Fourier coefficients of
half-integral weight forms on Γ0(4); the precise normalizations in terms of the
inner products of the forms and their theta-lifts are crucial here. This is where
the factor L(1/2,π) appears. These results put us in a position to use the Rankin–
Selberg theory of §5 to determine the variance B , which we do in §7.

2. BACKGROUND ON PERIODS

2.1. The upper half-plane and its unit tangent bundle. We recall the hyperbolic
metric on the tangent bundle of the upper half-plane H= {z = x + i y : y > 0}. We
identify the tangent space at z ∈ H with the complex numbers, TzH ≃ C. The
hyperbolic metric on TzH is then given by

〈ξ,η〉z :=
ℜ(ξη̄)

y2
,
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and the unit tangent bundle SH is then identified with

{(z,ζ) ∈H×C : |ζ| = ℑ(z)}.

2.1.1. Isometries. A unimodular matrix g =
(

a b
c d

)

∈ SL2(R) acts on the upper

half-plane H via z 7→ (az +b)/(cz +d ). Set

j (g , z) = cz +d .

The differential of the map is g ′(z) = (ad −bc)/(cz+d )2 = (cz+d )−2 = 1/ j (g , z)2.
The induced map on the tangent bundle TH is then

(z,ξ) 7→ (g (z), g ′(z)ξ).

Note that this is an action: if g ,h ∈ SL2(R), then g (h(z,ζ)) = (g h)(z,ζ). A compu-
tation shows that we get an isometry of H:

〈ξ,η〉z = 〈g ′(z)ξ, g ′(z)η〉g (z).

2.1.2. Group theory. Define matrices

n(x)=
(

1 x
1

)

, a(y)=
(

y1/2

y−1/2

)

, κ(φ) =
(

cos(φ/2) sin(φ/2)
−sin(φ/2) cos(φ/2)

)

.

The rotation κ(φ) preserves the base point i =
p
−1 ∈H. Note that

κ(φ+2π) =−κ(φ),

and thus we get the same element in PSL2(R).
Setting gx,y,φ =n(x)a(y)κ(φ), we find

gx,y,φ(i , i )= (x + i y, i ye iφ),

such that using the basepoint (i , i ) ∈ SH of the upward pointing unit vector at
i =

p
−1 ∈H, we get a bijection

PSL2(R) ≃ SH, g 7→ g (i , i ).

We may then identify functions on PSL2(R) and on SH; if F (z,ζ) is a function
on SH, we may define F̃ on SL2(R) by

F̃ (g ) := F (g (i , i )),

so F̃ (gx,y,φ) = F (x + i y, i ye iφ).

2.1.3. Geodesics. The geodesic flow on SH is defined by Φ
t : (z,ζ) 7→ (z(t ),ζ(t )),

which is the endpoint of the (unit speed) geodesic starting at z in direction ζ =
i ye iφ. It turns out that on PSL2(R), the geodesic flow is multiplication on the

right by

(

e t /2

e−t /2

)

; that is,

Φ
t (z,ζ) = gx,y,φ

(

e t /2

e−t /2

)

(i , i ).
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Indeed, for an initial position (z,ζ) ∈ SH, we write (z,ζ) = g (i , i ), and the the
geodesic ~γ(t ) =Φ

t (z,ζ) starting at (z,ζ) will be the translate by gx,y,φ of the geo-
desic~γ0(t ) starting at the initial condition (i , i ):~γ(t )= gx,y,φ~γ0(t ). A computation
shows that

~γ0(t )= (e t i ,e t i )=
(

e t /2

e−t /2

)

(i , i ),

and therefore

~γ(t ) = gx,y,φ

(

e t /2

e−t /2

)

(i , i ).

2.1.4. Time-reversal symmetry. A fundamental symmetry of phase space SH is
time-reversal (z,ζ) 7→ (z,−ζ). Using it, one has a symmetry of the set of geodesics,
corresponding to reversing the orientation. In PSL2(R), it is given as g 7→ g w ,

where w =
(

0 −1
1 0

)

. Indeed, if (z,ζ) = g (i , i ) ∈ SH, then

(z,−ζ) = g (i ,−i ) = g

(

0 −1
1 0

)

(i , i )

2.1.5. Orientation-reversal. Orientation-reversal, (z,ζ) 7→ (−z ,−ζ), is another fun-
damental symmetry. On PSL2(R), it is given by the map

g 7→ δgδ, δ=
(

1 0
0 −1

)

.

2.1.6. K-types. Let k be an integer. Suppose that F : SH→C satisfies

F (z,e iαζ) = e i kαF (z,ζ).

Then the corresponding function F̃ on PSL2(R) satisfies

F̃ (gκ(α)) = e i kαF̃ (g ),

i.e., it transforms under the right action of the maximal compact K = SO(2)/{±I }
via the character κ(α) 7→ e i kα. As an example, we start with a function f on H

and define F f (z,ζ) = ζk f (z).

2.2. Quotients. Let Γ⊂PSL2(R) be a Fuchsian group , M = Γ\H, and SM the unit
tangent bundle to M . The identification SH≃ PSL2(R) descends to an identifica-
tion

SM ≃Γ\SH≃ Γ\PSL2(R).

2.2.1. Automorphy conditions. Let k ≥ 0 be an integer and f : H→ C a function
on the upper half-plane satisfying the (weak) automorphy condition

(2.1) f (γ(z)) = (cz +d )2k f (z), ∀γ=
(

a b
c d

)

∈Γ.

We define F f on SH by

F f (z,ζ) := ζk f (z).

Then
F f (γ(z,ζ)) = F f (z,ζ), ∀γ ∈ Γ,
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that is, F f is Γ-invariant, so it descends to a function on SM = Γ\SH, and via the
identification F 7→ F̃ gives a Γ-invariant function F̃ f on PSL2(R):

F̃ f (γg ) = F̃ f (g ), ∀γ ∈Γ.

Moreover, F f has K-type k , since from the definition we find

F f (z,e iαζ) = (e iαζ)k f (z) = e i kαF f (z,ζ),

and therefore the function F̃ f on the group PSL2(R) transforms under the right

action of K = SO(2)/{±I } by the character κ(α) 7→ e i kα.

2.2.2. Closed geodesics on M. We consider closed geodesics on M , that is an ini-
tial condition (z0,ζ0) ∈ SH such that there is some T > 0 and γ ∈Γ with

Φ
T (z0,ζ0) = γ(z0,ζ0).

Writing (z0,ζ0) = g0(i , i ) for a unique g0 ∈ PSL2(R) we find that

Φ
T (z0,ζ0) = g0

(

eT /2

e−T /2

)

(i , i )= γg0(i , i )

and hence that

(2.2) γ=±g0

(

eT /2

e−T /2

)

g−1
0

(the equality is in PSL2(R), that is the matrices agree up to a sign).
Changing the initial condition (z0,ζ0) to a Γ-equivalent one (z1,ζ1) = δ(z0,γ0),

δ ∈Γ (so we get the same point in SM =Γ\SH) replaces γ by its conjugate δγδ−1.
Thus we get a well-defined conjugacy class γC corresponding to the geodesic C .
The conjugacy class is hyperbolic, as its trace satisfies | trγC | = 2cosh(T /2) > 2.

2.3. A correspondence with binary quadratic forms. An binary quadratic form
f (x, y) = ax2 +bx y + c y2 (also denoted by [a,b,c]) is called integral if a,b,c are
integers, and is called primitive if gcd(a,b,c) = 1. The discriminant of f is b2 −
4ac . The modular group SL2(Z) acts on the set of integral binary quadratic forms
by substitutions, and this action preserves the discriminant.

There is a bijection between SL2(Z)-equivalence classes of primitive binary
quadratic forms of positive (nonsquare) discriminant and primitive hyperbolic
conjugacy classes in PSL2(Z) defined as follows. Given a primitive hyperbolic
element

γ=
(

a b
c d

)

,

the corresponding form is

(2.3) B (γ)=
sign(a +d )

gcd(b,d −a,−c)
[b,d −a,−c],

which is primitive by definition, and has discriminant

disc(B (γ)) =
(trγ)2 −4

gcd(b,d −a,−c)2
.
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Moreover,
B (−γ)= B (γ), B (γ−1)=−B (γ).

Given a primitive integral binary quadratic form f = [a,b,c] of positive non-
square discriminant d = b2 −4ac , let (t0,u0) be the fundamental solution of the
Pell equation t 2−du2 = 4 with t0 > 0, u0 > 0 (which exists since we assume d > 0
is not a perfect square). Define the matrix

γ( f ) :=
(

t0−bu0
2 au0

−cu0
t0+bu0

2

)

,

which is hyperbolic of trace t0 =
p

du2 +4 > 2 and is primitive. Then B (γ( f )) = f ,
and gives a bijection between primitive hyperbolic conjugacy classes in PSL2(Z)
and equivalence classes of primitive binary quadratic forms of nonsquare posi-
tive discriminant.

2.4. Periods. Consider a (primitive, oriented) closed geodesic on M ; it is deter-
mined by a primitive hyperbolic conjugacy class γ ∈ Γ. Let C be the lift of the
closed geodesic to to the unit tangent bundle SM . For any function F on SM , we
define the period of F along C by choosing a point on the lifted geodesic (z0,ζ0)
(that is an initial condition) and setting

∫

C
F :=

∫T

0
F ◦Φt (z0,ζ0)d t ,

where T > 0 is the length of the geodesic, that is, the first time that ΦT (z0,ζ0) =
γ(z0,ζ0).

2.4.1. An alternative expression for the period. To a hyperbolic matrixγ=
(

a b
c d

)

,

associate a binary quadratic form (not necessarily primitive)

Qγ(z) = cz2 + (d −a)z −b = j (γ, z)
(

z −γ(z)
)

.

Note that Q−γ =−Qγ.
The two zeros w± of Qγ are the the fixed points of γ, which are the intersec-

tion with real axis of the semicircle in the upper half-plane which determines the
closed geodesic. By (2.2), the fixed points w± of γ on the boundary are g0(0) and
g0(∞): Indeed, γ(w )= w if and only if

(

eT /2

e−T /2

)

g−1
0 (w )= g−1

0 (w ),

that is, if and only if eT g−1
0 (w ) = g−1

0 (w ), and since T 6= 0, this forces g−1
0 (w ) =

0,∞. Thus we find
Qγ(z) =C (z − g0(0))(z − g0(∞)).

Let f : H→C satisfy the automorphy condition (2.1) of weight 2k for Γ, and set
F = F f : (z,ζ) 7→ ζk f (z), which is a Γ-invariant function on SH, that is a function
on SM which transforms under SO(2) with K-type k . Let

rk( f ,γ) =
∫γz0

z0

f (z)Qγ(z)k−1 d z,
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where z0 lies on the semicircle between the fixed points of γ and the contour of
integration3 is along the geodesic arc linking z0 and γz0.

Let
Dγ := tr(γ)2 −4 = disc(Qγ)

be the discriminant of the quadratic form Qγ. Then rk ( f ,γ) is simply related to
the period of f on the geodesic defined by γ [12, Proposition 4]:

(2.4) rk( f ,γ) =
(

−sign(tr(γ))
√

Dγ

)k−1
∫

C
F.

Thus, in terms of the corresponding binary quadratic form B (x, y)=B (γ)(x, y)
(2.3), we get

(2.5)
∫

C
F =

1

(disc B )(k−1)/2

∫γz0

z0

f (z)B (1,−z)k−1 d z =: J(B ).

Note that the right-hand side above makes sense also for nonprimitive forms,
and is dilation invariant: J(t B )= J(B ).

3. SYMMETRY CONSIDERATIONS

3.1. Background on the representation theory of SL2 (R). Letπbe an irreducible
infinite-dimensional unitary representation of SL2(R) on a Hilbert space H that
factors through G = PSL2(R). Let K = SO(2), and let H (K ) be the space of K -
finite vectors in H , i.e., vectors whose translates by K span a finite-dimensional
subspace. Then H (K ) is dense in H and consists of smooth vectors, and the Lie
algebra sl2 acts on H (K ) by dπ, the differential of the action of G .

According to Bargmann’s classification of such π’s (we follow the exposition in
Lang [21]), there are orthogonal one-dimensional subspaces Hn , with n even,
which are K -invariant and together span H (K ). To be more precise, we consider
two cases:

i) There is no highest or lowest K-type; this is the spherical, or Maass case:

(3.1) H (K ) =
⊕

n even
Hn ,

with Hn one-dimensional for n even, say Hn =Cφn , and the φn satisfy

dπ(W )φn = i nφn

dπ(E−)φn = (s +1−n)φn−2(3.2)

dπ(E+)φn = (s +1+n)φn+2,

where

(3.3) H =
(

1 0
0 −1

)

, V =
(

0 1
1 0

)

, W =
(

0 1
−1 0

)

are the standard basis of the Lie algebra sl2(R),

(3.4) E± = H ± iV

3If f is holomorphic, the integral is independent of the contour.
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are in the complexified Lie algebra sl2(C), and dπ(E±) are the weight rais-
ing/lowering operators. Here s ∈ C is a parameter which, since we assume
that π is unitary, lies on the imaginary axis iR or in the interval (−1,1). Note
that since we are assuming the representation factors through G = PSL2(R),
only even weights appear.

ii) H has a lowest or highest K-type.

In the first case, there is an even positive integer m0 > 0 such that

(3.5) H (K ) =
∞
⊕

m=m0
m even

Hm ,

with Hm one-dimensional, say Hm = Cφm and the φm satisfy (3.2) with s =
m0 −1. In particular, φm0 is annihilated by the lowering operator:

(3.6) dπ(E−)φm0 = 0 .

These π’s correspond to holomorphic forms of even weight.
In the case there is a highest K-type, there is a negative even integer m0 < 0

such that

(3.7) H (K ) =
m0
⊕

m=−∞
m even

Hm .

Again, Hm =Cφm for m ≤ m0 even, so φm satisfy (3.2) with s =−m0 −1 and the
highest weight vector φm0 is annihilated by the raising operator:

(3.8) dπ(E+)φm0 = 0 .

In case (i), we denote by φπ the K -invariant (spherical) vector φ0. We normal-
ize it in such a way that 〈φ0,φ0〉 = 1, and then it is unique up to multiplication
by a complex scalar of unit modulus. In case (ii), we denote by φπ the similarly
normalized lowest/highest weight vector φm0 . We will call these φπ’s “minimal
vectors” of the representation.

3.2. Linear forms. We consider linear forms η on H (K ) that are invariant under
the “geodesic flow” and “time-reversal symmetry”, that is,

• η is annihilated by dπ(H ), where H =
(

1 0
0 −1

)

∈ sl2 is the infinitesimal gen-

erator of the group of diagonal matrices A:

(3.9) η(dπ(H )v)= 0, ∀v ∈H (K )

(we say that η is A-invariant)4.

• η is fixed by π

((

0 1
−1 0

))

:

(3.10) η

(

π

(

0 1
−1 0

)

v

)

= η(v), ∀v ∈H (K )

4This choice of terminology is imprecise since π(A) need not preserve the space of K -finite
vectors on which η is a-priori defined.
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(we say that η is invariant under time-reversal symmetry).

PROPOSITION 3.1. Let π be an irreducible infinite-dimensional unitary represen-
tation of SL2(R) on a Hilbert space H which factors through G = PSL2(R). Then
the space of linear forms η on H (K ) invariant under A and w is at most one-
dimensional, and any such form is completely determined by its action on a “min-
imal” vector φπ. In the case (ii) of discrete series, the space of A-invariant forms is
one-dimensional, when m = 2 mod 4, none of them is w-invariant, and if m = 0
mod 4, then any A-invariant form is automatically w-invariant. In the spherical
case, the space of linear forms invariant under A and w is one-dimensional.

This is shown by giving an explicit formula for η(φn) in term of η(φπ). Since
the cases (i) and (ii) have slightly different features, we deal with them separately.

In case (i), φπ =φ0 is the spherical vector. We are assuming that η is invariant
under time-reversal symmetry, that is that (3.10) holds. Since

π

(

0 1
−1 0

)

φn =−φn

if n ≡ 2 mod 4, due to (3.2) and

(

0 1
−1 0

)

= exp(π2 W ), it follows from (3.10) that

(3.11) η(φn ) = 0, if n ≡ 2 mod 4 .

Now 2H =E++E−, and from (3.2) we have

2dπ(H )φn =
(

dπ(E+)+dπ(E−)
)

φn = (s +1−n)φn−2 + (s +1+n)φn+2 .

Hence

(3.12) η(2dπ(H )φn) = (s +1−n)η(φn−2)+ (s +1+n)η(φn+2) .

But the LHS of (3.12) is zero, since we are assuming (3.9). Hence for n even, and
in particular n ≡ 2 mod 4, we have

(n − s −1)η(φn−2) = (n + s +1)η(φn+2) .

It follows for m ≥ 4, m ≡ 0 mod 4 that

(3.13) η(φm) = η(φ−m) =
(1− s)(5− s) · · · · · (m −3− s)

(3+ s)(5+ s) · · · · · (m −1+ s)
η(φ0) .

This, together with (3.11), determines η on H (K ) explicitly in terms of η(φ0).
Conversely, (3.11) and (3.13) withη(φ0) = 1 define a unique A- and w-invariant

linear form on H , which we denote by ξπ,φπ
. So, in this case, the space of such

linear forms is one-dimensional and any such form η satisfies

η= η(φ0)ξπ,φπ
.

We turn to case (ii) and show that the space of A-invariant linear forms on
H (K ) is one-dimensional. Consider the lowest weight case: take the lowest weight
vector φm0 , m0 > 0 and even. From (3.2) and (3.6), we have

2dπ(H )φm0 =
(

dπ(E+)+dπ(E−)
)

φm0 = 2m0φm0+2 .
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Hence, assuming η is A-invariant, we get that

η(φm0+2) = 0 .

Furthermore, for m > m0 even and by (3.2), we have

(m −m0)η(φm−2) = (m +m0)η(φm+2) .

Hence

(3.14) η(φm) = 0, for m ≥ m0, m ≡ m0 +2 mod 4

and

(3.15) η(φm0+k )=
1 ·3 ·5 · · · · · ( k

2 −1)

(m0 +1) · (m0 +3) · · · · · (m0 + k
2 −1)

η(φm0 )

for k ≡ 0 mod 4, k ≥ 4.
Thus the space of A-invariant linear forms on H (K ) is one-dimensional. It

is spanned by ξHπ,φπ
where ξHπ,φπ

(φm0 ) = 1 and is defined by (3.14) and (3.15).
Again, any A-invariant linear form η on H (K ) satisfies

(3.16) η= η(φπ)ξHπ,φπ
.

The case of highest weight vectors and A-invariant forms is the same.
If we now impose the further condition that η be w-invariant for the case

(ii) representations, then invariance under time-reversal symmetry gives, as in
(3.11), that

η(φm) = 0, for m ≡ 2 mod 4 .

This, coupled with (3.14), means that if m0 ≡ 2 mod 4, then η = 0. That is, if
m0 ≡ 2 mod 4, then there is no nonzero linear form invariant under A and w.

If m0 ≡ 0 mod 4, then from our discussion, every A-invariant linear form is
automatically w-invariant and in this case such linear forms satisfy (3.16).

3.3. Orientation-reversal symmetry. We now examine the role of an additional
possible symmetry, “orientation-reversal” r. It need not act on irreducible repre-
sentations of PSL2(R). What we do is, given an irreducible unitary representation
π on a Hilbert space H , we consider Hilbert spaces U , which in the spherical
case is the original representation H and in the case of the discrete series H m ,
where there is a lowest weight vector of weight m > 0, we define

U =H +m ⊕H −m

to be the direct sum of the irreducible representations with lowest weight m and
that with highest weight −m. We write U (K ) for the dense subspace of K -finite
vectors in U .

An orientation-reversing symmetry of U is a unitary map r of U which is an
involution, that is,

(3.17) r2 = I

satisfying

(3.18) rπ(W ) =−π(W )r

JOURNAL OF MODERN DYNAMICS VOLUME 3, NO. 2 (2009), 271–309



VARIANCE OF ARITHMETIC MEASURES ON THE MODULAR SURFACE 287

and

(3.19) rπ(E+) =π(E−)r .

As a consequence of (3.19) and (3.17), we have

(3.20) rπ(E−) =π(E+)r .

Moreover, r commutes with the A-action whose infinitesimal generator is H =
1
2 (E++E−) by (3.19) and (3.20), and with time-reversal symmetry, that is, with5

exp(π2 π(W )) by virtue of (3.18).
As our basic example, we consider the orientation-reversal involution on the

function space L2(Γ\G) given by

r f (x) := f (δxδ−1), δ=
(

1 0
0 −1

)

.

The relations (3.18) and (3.19) hold, since for the Lie algebra elements H , V and
W of (3.3), we have

δW =−W δ, δH = Hδ, δV =−V δ .

3.4. Action of r on weight vectors. We first note that due to the commutation
relation (3.18), r must reverse weights, that is

rφn = cnφ−n ,

with |cn | = 1 since r is unitary, and cnc−n = 1 since r2 = I . In particular, in the
spherical case when there is a vector φ0 of weight 0, we must have

(3.21) rφ0 = ǫφ0, ǫ=±1 .

We say the spherical representation U is even if if the sign is + and odd if the sign
is −.

In the case of the discrete series representations U =H +m ⊕H −m , m > 0, we
choose a lowest weight vector φm ∈H +m of unit length, which we call the mini-
mal (or generating) vector, that rφm is a unit vector of weight −m, and normalize
a choice of highest weight vector of unit length by taking

(3.22) φ−m := rφm .

We claim that the choice of minimal vector φ0 in the spherical case and φm in
the discrete series case uniquely determine r.

Indeed, starting with φm , the lowest weight vector for m > 0, we get from (3.2)
for k > 0,

φm+2k =
1

c(s;m,k)
π(E+)kφm , c(s;m,k)=

k−1
∏

j=0
(s +m +1+2 j ),

and for the highest weight vector φ−m = rφm ,

φ−m−2k =
1

c(s;m,k)
π(E−)kφ−m

5The first π is the constant 3.1415. . . !
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Therefore, using (3.19),

rφm+2k =
1

c(s;m,k)
rπ(E+)kφm

=
1

c(s;m,k)
π(E−)k rφm

=
1

c(s;m,k)
π(E−)kφ−m =φ−m−2k ,

and likewise,

rφ−m−2k =φm+2k .

That is, for the discrete series, r exactly interchanges φn and φ−n :

(3.23) rφn =φ−n , |n| ≥ m, n = m mod 2.

In the case of the spherical representations, the same analysis shows that

(3.24) rφn = ǫφ−n , n ∈ 2Z,

where ǫ=±1 is determined by (3.21).

3.5. r-invariant functionals. If η is a linear functional on U , invariant under the
action of A and time-reversal symmetry w, then the functional ηr : v 7→ η(rv) is
also invariant under A and w, since r commutes with A and with w. We wish to
determine when ηr = η.

PROPOSITION 3.2. The space of linear functionals on U (K ) which are invariant
under A, w, and r is at most one-dimensional. In the spherical case, there are
no such functionals for odd representations and the space is one-dimensional in
the even case, every functional invariant under A and w being automatically r-
invariant. For the discrete series, there are no such functionals for weight m = 2
mod 4, and for weight m = 0 mod 4, the space of A-invariant functionals is two-
dimensional, each is automatically invariant under w, and the subspace of r-
invariant functionals is one-dimensional.

Proof. We start with the spherical case. There is a one-dimensional space of
functionals invariant under A and w, and we take the unique one satisfying

η(φ0) = 1 .

Hence ηr, being itself invariant under A and w, must be a multiple of η, and
because r2 = I , we have

ηr =±η .

We claim the sign is determined by the sign in (3.21), that is, if rφ0 = ǫφ0, then

ηr = ǫη .

It suffices to check this on the spherical vector φ0, that is, to show ηr(φ0) = ǫ.
Indeed, we have

ηr(φ0) = η(rφ0) = η(ǫ(φ0) = ǫη(φ0) = ǫ,
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as required. Thus, in the odd case, ηr =−η and there are no A- and w-invariant
functionals which are r-invariant, and in the even case, ηr = η and every A- and
w-invariant functional is automatically r-invariant.

In the discrete series case, there are no functionals invariant under A and w if
m = 2 mod 4, hence we only consider the case m = 0 mod 4. In that case, there
are unique A-invariant functionals η+ on H +m and η− on H −m satisfying

η+(φm)= 1, η−(φ−m) = 1,

and these are automatically invariant under time-reversal symmetry. Hence the
space of A-invariant functionals on U =H +m ⊕H −m is two-dimensional, con-
sisting of linear combinations

η= c+η+⊕c−η−

and these are automatically invariant under time-reversal symmetry. They are
uniquely determined by their action on the lowest and highest weight vectors
φm and φ−m = rφm :

c± = η(φ±m)

Since ηr is also A-invariant, we have

ηr = c ′+η++c ′−η−.

Now ηr = η if and only if c ′+ = c+ and c ′− = c−. We claim that this happens if and
only if c+ = c−, which will show that the space of A-invariant functionals which
are r-invariant is exactly one-dimensional in this case. Indeed, we have

c ′+ = ηr(φm) = η(rφm)= η(φ−m) = c−

c ′− = ηr(φ−m) = η(rφ−m) = η(φm) = c+,

and so c ′± = c± if and only if c+ = c−, as claimed.

3.6. Bilinear forms. We apply the uniqueness of linear forms to bi-invariant
sesquilinear forms on U ×U . Let T (v, v ′) be such a form, that is, it is linear in v ,
conjugate-linear in v ′, and invariant under A, w and r in each variable separately.
For instance, we can take

T (v, v ′) =
J

∑

j=1
η j (v)η′j (v ′),

where η j , η′k are invariant linear forms. From the prior discussion,

T (v, v ′) = 0

if π is of type (ii) with m0 ≡ 2 mod 4. Otherwise, T is completely determined by
the value T (φπ,φπ) at the minimal vector φπ. In fact, T is the product of linear
forms

T (v, v ′) = T (φπ,φπ)ξU ,φπ
(v)ξU ,φπ

(v ′) ,

where ξU ,φπ
is the unique invariant linear form taking value 1 at the minimal

vector φπ.

JOURNAL OF MODERN DYNAMICS VOLUME 3, NO. 2 (2009), 271–309



290 WENZHI LUO, ZEÉV RUDNICK AND PETER SARNAK

3.7. Application to the classical and arithmetic variances. We apply these re-
marks to the measures µd and to the classical variance V . We consider the dis-
crete decomposition of the regular representation of G = PSL2(R) on L2

cusp(Γ\G).
For an irreducible subrepresentation, form the space Uπ as above.

3.7.1. The arithmetic measure µd is a linear form on Uπ invariant under A, w,
and r. Hence µd (F ) ≡ 0 if π is a discrete series with weight m0 ≡ 2 mod 4, and
otherwise

(3.25) µd =µd (φπ)ξUπ ,φπ
.

Hence, if F1 and F2 are in Uπ1 and Uπ2 , the sesquilinear µd sums take the form

∑

d≤Y

µd (F1)
p

d

µd (F2)
p

d
= ξUπ1 ,φπ1

(F1)ξUπ2 ,φπ2
(F2)

∑

d≤Y

µd (φπ1 )µd (φπ2 )

d
.

This gives a universal reduction for computation of the variance of µd to the
cases F1 =φπ1 , F2 =φπ2 .

3.7.2. The classical variance V is, by its definition, diagonalized by the irre-
ducibles in the decomposition of L2(Γ\G). We define projections onto the set
of w-invariant functions

F even :=
1

2
(F +F w)

and onto the set of functions invariant under both w and r,

F sym :=
1

4
(F +F w +F r +F wr) =

1

2
(F even + (F even)r).

Set

V ev (F1,F2) =V (F even
1 ,F even

2 ), V sym(F1,F2) =V (F
sym
1 ,F

sym
2 ).

We wish to completely determine V sym and V even.
For an irreducible π, V sym vanishes on Uπ if π is a discrete series representa-

tion of weight m0 ≡ 2 mod 4 and otherwise is given by

V sym(v, v ′) =V sym(φπ,φπ)ξUπ ,φπ
(v)ξUπ ,φπ

(v ′) .

It remains to determine V sym(φπ,φπ).

LEMMA 3.3.

i) For π spherical with parameter s = i r ,

(3.26) V sym(φ0,φ0) =
|Γ( 1

4 + i r )|4

2π|Γ( 1
2 +2i r )|2

〈φ0,φ0〉.

ii) For π a discrete series representation of weight m = 0 mod 4 (m > 0),

(3.27) V sym(φm ,φm)=
1

2
2m Beta

(m

2
,

m

2

)

where Beta is Euler’s beta function.
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Proof. In the spherical case, we need to compute V sym(φ0,φ0). For spherical
representations, we saw that A-invariance and w-invariance automatically im-
ply r-invariance; hence on such spherical U ,

V sym|U×U =V even|U×U .

Moreover, sinceφ0 is spherical, wφ0 =φ0, and soφeven
0 =φ0. Thus V sym(φ0,φ0) =

V (φ0,φ0), which was computed in [24] to give

V sym(φ0,φ0) =V (φ0,φ0) =
|Γ( 1

4 + i r )|4

2π|Γ( 1
2 +2i r )|2

〈φ0,φ0〉 .

For π a discrete series representation of weight m0 ≡ 0 mod 4 (m > 0), A-
invariance implies w-invariance, hence

V even|U×U =V |U×U ,

and so

V sym(φm ,φm) =
1

4

(

V (φm ,φm)+V (φm ,rφm)+V (rφm ,φm)+V (rφm ,rφm)
)

.

By its definition, V respects the orthogonal decomposition into irreducibles; as
φm ∈ πm and rφm = φ−m ∈ π−m lie in distinct irreducibles, we get V (φm ,rφm) =
0 =V (rφm ,φm). Moreover, we have

V (rF1,rF2) =V (F1,F2)

for any F1, F2. To see this, note first that r is induced by the measure-preserving
map x 7→ δxδ−1 of S X = Γ\G , and hence

〈rF1,rF2〉 =
∫

Γ\G
rF1(x)rF2(x) d x = 〈F1,F2〉.

Moreover, r commutes with the geodesic flow, and so

V (rF1,rF2) =
∫∞

−∞
〈π

(

e t /2 0
0 e−t /2

)

rF1,rF2〉d t

=
∫∞

−∞
〈rπ

(

e t /2 0
0 e−t /2

)

F1,rF2〉d t

=
∫∞

−∞
〈π

(

e t /2 0
0 e−t /2

)

F1,F2〉d t

=V (F1,F2) .

Thus we find

V sym(φm ,φm)=
1

2
V (φ−m ,φ−m) .

Let
f (x) = 〈π(x)φ−m ,φ−m〉, x ∈G .

Then applying the raising operator E+ via the regular representation gives an
operator LE+ satisfying

(3.28) .LE+ f (x) = 〈π(x)(dπ(E+)φ−m),φ−m〉 = 0
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Also, by the unitarity of π,

f (k(θ1)xk(θ2)) = 〈π(k(θ1)xk(θ2))φ−m ,φ−m〉

= e−i m(θ1+θ2)〈π(x)φ−m ,φ−m〉 = e−i m(θ1+θ2) f (x).
(3.29)

Using the coordinates k(θ1)

(

er /2 0
0 e−r /2

)

k(θ2) on G and the formula for L +

in these coordinates, we deduce from (3.28) and (3.29) that

f (k(θ1)

(

er /2 0
0 e−r /2

)

k(θ2)) = e−i m(θ1+θ2)g (r ),

where g satisfies the ODE

(3.30) 2
d g

dr
=−

cosh r

sinhr
mg +

m

sinhr
g ,

and since we have normalized 〈φ−m,φ−m〉 = 1, we have

g (0) = 1 .

We integrate (3.30) and find that

g (r ) = (cosh
r

2
)−m .

Hence

V (φ−m ,φ−m)=
∫∞

−∞
(cosh

r

2
)−m dr = 2m Beta(

m

2
,

m

2
).

Thus we find

V sym(φm ,φm) =
1

2
2m Beta(

m

2
,

m

2
).

4. HALF-INTEGRAL WEIGHT FORMS

4.1. Basic properties. Let Γ be a discrete subgroup of SL2(R) of finite covolume.
Given a character χ : Γ→ S1, an automorphic function of weight k and character
χ for Γ is a function f : H→C satisfying

f (γz)= χ(γ)

(

cz +d

|cz +d |

)k

f (z), ∀γ ∈Γ

with suitable growth conditions at the cusps of Γ. It is cuspidal if it vanishes at
the cusps.

The Laplacian of weight k is defined as

∆k = y2
(

∂2

∂x2
+

∂2

∂y2

)

− i k y
∂

∂x
.

The Laplacian ∆k maps forms of weight k to themselves and maps cusp forms to
themselves. A Maass cusp form of weight k is a cuspidal automorphic function
of weight k (for some character χ) which is an eigenfunction of ∆k .
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Let Wκ,µ be the standard Whittaker function, normalized in such a way that at
infinity,

(4.1) Wκ,µ(y)∼ yκe−y/2, y →∞.

The asymptotic behavior of Wκ,µ(y) near y = 0 is

(4.2) Wκ,µ(y) ∼
Γ(−2µ)

Γ( 1
2 −µ−κ)

y
1
2 +µ+

Γ(2µ)

Γ( 1
2 +µ−κ)

y
1
2 −µ, y → 0

for µ 6= 0, while

(4.3) Wκ,0 ≪ y1/2 log y, y → 0.

The functions

f ±
k (z, s) :=W± k

2 ,s− 1
2

(4πy)e(±x)

are eigenfunctions of ∆k with eigenvalue λ= s(1− s).
A Maass cusp form F of weight k and eigenvalue λ = s(1− s) has Fourier ex-

pansion

F (z) =
∑

n 6=0
ρ(n) f

sign(n)
k

(|n|z, s) =
∑

n 6=0
ρ(n)Wsign(n)k/2,s− 1

2
(4π|n|y)e(nx).

The Petersson inner product is defined for a pair of (cuspidal) functions of the
same weight k and character χ as

〈 f , g 〉 =
∫

Γ\H
f (z)g (z)

d x d y

y2
.

4.2. Maass operators. For any real k , define the raising operator

Kk =
k

2
+ y

(

i
∂

∂x
+

∂

∂y

)

=
k

2
+ (z − z̄)

∂

∂z

and the lowering operator

Λk =
k

2
+ y

(

i
∂

∂x
−

∂

∂y

)

=
k

2
+ (z − z̄)

∂

∂z̄
.

The raising operator Kk takes Maass forms of weight k to forms of weight k+2
and the lowering operator Λk takes Maass forms of weight k to forms of weight
k −2.

Then

Kk∆k =∆k+2Kk , Λk∆k =∆k−2Λk .

The effect of the Maass operators on Petersson inner products is given as fol-
lows. If f , g have weight k and character χ, then

〈Kk f ,Kk g 〉 =
(

λ(s)−λ(−
k

2
)

)

〈 f , g 〉

and

〈Λk f ,Λk g 〉 =
(

λ(s)−λ(
k

2
)

)

〈 f , g 〉.
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The action of the Maass operators on the eigenfunctions f ±
k

(z, s) is

(4.4) Kk f +
k (z, s) =− f +

k+2(z, s), Kk f −
k (z, s)= (s +

k

2
)(1− s +

k

2
) f −

k+2(z, s)

and

(4.5) Λk f +
k (z, s) =−(s −

k

2
)(1− s −

k

2
) f +

k−2(z, s), Λk f −(z, s)= f −
k−2(z, s).

4.3. Maass operators and Fourier expansions. We want to see the Fourier ex-
pansion of a “raised” Maass form in terms of its original.

So start with a Maass form F of weight 1/2 and eigenvalue λ = 1/4+ r 2 with
Fourier expansion

F (z) =
∑

n 6=0
ρ(n)Wsign(n)/4,i r (4π|n|y)e(nx),

Applying the Maass raising operator K1/2, we get a form K1/2F of weight 5/2
whose Fourier expansion is obtained by (4.4) as

(4.6) K1/2F (z) =
∞
∑

n=1
−ρ(n)W5/4,i r (4πn y)e(nx)

+
∞
∑

n=1

(

(3

4

)2 + r 2
)

ρ(−n)W−5/4,i r (4πn y)e(−nx).

Applying the lowering operator Λ1/2, we get a form Λ1/2F of weight −3/2 whose
Fourier expansion is obtained by (4.5) as

(4.7) Λ1/2F (z)=
∞
∑

n=1
−

(

(1

4

)2 + r 2
)

ρ(n)W−3/4,i r (4πn y)e(nx)

+
∞
∑

n=1
ρ(−n)W3/4,i r (4πn y)e(−nx).

5. RANKIN–SELBERG THEORY

5.1. Classical Rankin–Selberg theory. We recall classical Rankin–Selberg the-
ory as applied to a holomorphic form F of weight k +1/2 with Fourier expansion

F (z) =
∑

d≥1

cF (d )e(d z) .

Let E (z, s) be the standard Eisenstein series for Γ0(4):

E (z, s)=
∑

γ∈Γ∞\Γ0(4)
ℑ(γz)s ,

where

Γ∞ = {±
(

1 n
0 1

)

: n ∈Z}.

The series is absolutely convergent for ℜ(s) > 1, with an analytic continuation to
ℜ(s) > 1/2 except for a simple pole at s = 1, where the residue is

Ress=1E (z, s)=
1

vol(Γ0(4)\H)
=

1

2π
.
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One starts with the integral

I (s)=
∫

Γ0(4)\H
|F (z)|2E (z, s)yk+ 1

2
d x d y

y2
,

which is analytic in ℜ(s) > 1/2 except for a simple pole at s = 1 with residue

R(F )=
〈F,F 〉

2π
.

By the “unfolding trick”, we have

I (s)= (4π)−(s+k− 1
2 )
Γ(s +k −

1

2
)

∞
∑

n=1
|
cF (n)

n
k−1/2

2

|2n−s ,

and hence the Dirichlet series

D(s) =
∞
∑

n=1
|
cF (n)

n
k−1/2

2

|2n−s

has a simple pole at s = 1 with residue

(4π)k+ 1
2

Γ(k + 1
2 )

〈F,F 〉
2π

.

Consequently, we find

(5.1) lim
N→∞

1

N

∑

n≤N
|
cF (n)

n
k−1/2

2

|2 =
(4π)k+ 1

2

Γ(k + 1
2 )

〈F,F 〉
2π

.

Similar considerations show that if we take forms F of weight k +1/2 and G of
weight ℓ+1/2 (k and ℓ possibly different) which are orthogonal, then we have

(5.2) lim
N→∞

1

N

∑

n≤N

cF (n)

n
k−1/2

2

cG (n)

n
ℓ−1/2

2

= 0,

and that if F is a Maass form of weight 1/2 for Γ0(4) with Fourier expansion

F (x + i y)=
∑

n 6=0
ρ(n)Wsign(n)/4,i r (4π|n|y)e(nx)

and G is a holomorphic form of weight k +1/2, then

(5.3) lim
N→∞

1

N

∑

n≤N

p
nρ(n)

cG (n)

n
k−1/2

2

= 0.

These arguments will also give the asymptotics of the sum of squares
∑

−N≤n≤N

|4πnρ(n)|2

of Fourier coefficients with both positive and negative indices. However, for our
application we need to be able to separately sum only coefficients indexed by
positive integers; that is, we require the asymptotics of the series

N
∑

n=1
|4πnρ(n)|2.
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To do so, we make use of the arguments in the paper by Matthes [27], which we
adapt for our case; see also [26, 28].

5.2. One-sided Rankin–Selberg theory. Let F (z) and F ′(z) be Maass cusp forms
of weight 1/2 for Γ0(4) and Laplace eigenvalues λ = 1

4 + r 2, λ′ = 1
4 + (r ′)2 with

Fourier expansion

F (x + i y)=
∑

n 6=0
ρ(n)Wsign(n)/4,i r (4π|n|y)e(nx)

F ′(x + i y)=
∑

n 6=0
ρ′(n)Wsign(n)/4,i r ′ (4π|n|y)e(nx).

We define two Dirichlet series

L+(s,F ×F ′) =
∞
∑

n=1

4πnρ(n)ρ′(n)

ns

L−(s,F ×F ′) =
∞
∑

n=1

4πnρ(−n)ρ′(−n)

ns
.

PROPOSITION 5.1. Both L±(s) have analytic continuation to ℜ(s) > 1
2 , except for

a simple pole at s = 1 if F and F ′ are not orthogonal.

We next compute the residue at s = 1 when F ′ = F :

PROPOSITION 5.2. The residue at s = 1 of L+(s,F ×F ) is

(5.4) R+ := Ress=1L+(s,F ×F ) =
|Γ( 1

4 + i r )|2

|Γ( 1
2 +2i r )|2

〈F,F 〉
π

and the residue of L−(s,F ×F ) is

R− =
|Γ( 3

4 + i r )|2

|Γ( 1
2 +2i r )|2

〈F,F 〉
π

.

The arguments and ideas needed to establish this have been essentially pro-
vided in [27].

As a consequence, we deduce by a standard Tauberian argument the follow-
ing.

COROLLARY 5.3. Let F be as above. Then

(5.5)
∑

1≤n≤N
4πn|ρ(n)|2 ∼R+N , N →∞,

while if F and F ′ are orthogonal, then

(5.6)
∑

1≤n≤N
4πnρ(n)ρ′(n)= o(N ).

Proof. Applying the Wiener–Ikehara Tauberian Theorem (see [22], for example)
to the Dirichlet series

∞
∑

n=1

4πn|ρ(n)|2

ns
,

∞
∑

n=1

4πn|ρ′(n)|2

ns
, and

∞
∑

n=1

4πn|ρ(n)+ρ′(n)|2

ns
,
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respectively, we infer by Proposition 5.1 that, as N →∞,
∑

1≤n≤N

4πn|ρ(n)|2 ∼R+
F N ,

∑

1≤n≤N

4πn|ρ′(n)|2 ∼R+
F ′ N ,

and
∑

1≤n≤N

4πn|ρ(n)+ρ′(n)|2 ∼ (R+
F +R+

F ′)N .

Thus,
∑

1≤n≤N
4πn ℜ(ρ(n)ρ′(n)) = o(N ).

Similarly applying the Wiener–Ikehara Theorem to the Dirichlet series

∞
∑

n=1

4πn|ρ(n)+ iρ′(n)|2

ns
,

we obtain
∑

1≤n≤N

4πn|ρ(n)+ iρ′(n)|2 ∼ (R+
F +R+

F ′)N ,

and consequently,
∑

1≤≤N

4πn ℑ(ρ(n)ρ′(n)) = o(N ).

This proves
∑

1≤n≤N
4πnρ(n)ρ′(n)= o(N ).

5.3. A Mellin transform. Fix µ= i r and ν= i r ′ and define

Mk (s) :=
∫∞

0
Wk ,µ(y)Wk ,ν(y)y s−2 d y.

In view of the asymptotics (4.1), (4.2), and (4.3), the integral is absolutely con-
vergent for ℜ(s) > 0 and hence Mk (s) is analytic in that region. The asymptotic
behavior of Mk (s) is given by the following.

LEMMA 5.4. Assume that |k | < 1/2. Then as |s|→∞,

Mk (s) =
Γ(s − 1

2 +k)2

Γ(s)

(

1+Oµ,ν(|s|−1/2)
)

.

Proof. This is a direct generalization of Lemma 4.1 in [27], which deals with the
case r ′ = r . As in [27], we use the integral representation

Wk ,i r (y) =
1

2πi

∫

L

Γ( 1
2 −v − i r )Γ( 1

2 −v + i r )Γ(v −k)

Γ( 1
2 + i r −k)Γ( 1

2 − i r −k)
y v d v,

where the path of integration runs from −i∞ to i∞ and is chosen in such a way
that all poles of Γ(v − k) are to the left and all poles of Γ( 1

2 − v ± i r ) are to the
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right of L; this is possible since we assume that |k | < 1/2. Inserting this into the
formula for Mk (s) gives

Mk (s) =
∫∞

0
Wk ,i r ′(y)

1

2πi

∫

L

Γ( 1
2 −v − i r )Γ( 1

2 −v + i r )Γ(v −k)

Γ( 1
2 + i r −k)Γ( 1

2 − i r −k)
y v+s−2 d v d y.

Then, one uses the formula
∫∞

0
Wk ,i r ′(y)e−y/2yu−1 d y =

Γ( 1
2 +u + i r ′)Γ( 1

2 +u − i r ′)

Γ(u −k +1)
, ℜ(u) >−1

to find

Mk (s) =
1

2πi

∫

L
Γ(−

1

2
+v + s + i r ′)Γ(−

1

2
+v + s − i r ′)

×
Γ( 1

2 −v − i r )Γ( 1
2 −v + i r )Γ(v −k)

Γ(v + s −k)Γ( 1
2 + i r −k)Γ( 1

2 − i r −k)
d v.

One then shifts the contour of integration to the line ℜ(v) = k −1/2, picking up a
single residue at v = k , and estimates the remaining integral as in [27], giving

Mk (s) =
Γ(s − 1

2 +k − i r ′)Γ(s − 1
2 +k + i r ′)

Γ(s)
+Oµ,ν

(

Γ(s −
3

2
+2k)

)

.

The conclusion of the lemma now follows from Stirling’s formula.

Let

(5.7) M (s)=
[

M−k (s +1) M−k (s)
Mk (s +1) −Mk (s)

]

.

LEMMA 5.5. M (s) is analytic and nonsingular for ℜ(s) > 0.

Proof. Holomorphy in ℜ(s) > 0 follows from that of Mk (s). As in [27], one shows
that there is a recurrence relation

(5.8) (s+1)Mk (s+2)−2k(2s+1)Mk (s+1) =
1

s

(

s2 − (µ+ν)2)(

s2 − (µ−ν)
)

Mk (s).

By the recurrence relation (5.8), we infer that

(s +1)det M (s +1)= (s det M (s))
(s2 − (µ+ν)2) (s2 − (µ−ν)2)

s2
,

and

det M (s)=
Γ(s +µ+ν)Γ(s +µ−ν)Γ(s −µ+ν)Γ(s −µ−ν)

Γ(s +n +µ+ν)Γ(s +n +µ−ν)Γ(s +n −µ+ν)Γ(s +n −µ−ν)

×
(s +n)Γ2(s +n)

s Γ2(s)
det M (s +n) .

By using Lemma 5.4 with Stirling’s formula, we deduce that6

lim
n→∞

(s +n)Γ2(s +n)detM (s +n)

Γ(s +n +µ+ν)Γ(s +n +µ−ν)Γ(s +n −µ+ν)Γ(s +n −µ−ν)
=−2 .

6Note the limit is −2 instead of 1 as in Matthes’ paper [27].
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Therefore we conclude that

det M (s)=−2
Γ(s +µ+ν)Γ(s +µ−ν)Γ(s −µ+ν)Γ(s −µ−ν)

s Γ2(s)
,

and thus det M (s) 6= 0 for ℜ(s)> 0.

5.4. Proof of Proposition 5.1. We define the Eisenstein series of weight −2 and
2 by

E−2(z, s) =
∑

γ∈Γ∞\Γ0(4)

(

j (γ, z)

| j (γ, z)|

)2

ℑ(γz)s

E−2(z, s) =
∑

γ∈Γ∞\Γ0(4)

(

j (γ, z)

| j (γ, z)|

)−2

ℑ(γz)s .

These series are absolutely convergent for ℜ(s) > 1, with an analytic continua-
tion (no poles) to ℜ(s) > 1/2.

Using the Maass raising operator K1/2, we get a form K1/2F of weight 5/2 with
Fourier expansion

K1/2F (z)=
∞
∑

n=1
−ρ(n)W5/4,i r (4πn y)e(nx)

+
∞
∑

n=1

(

(
3

4
)2 + r 2

)

ρ(−n)W−5/4,i r (4πn y)e(−nx),

and using the lowering operator Λ1/2 we get a form Λ1/2F of weight −3/2 with
Fourier expansion

Λ1/2F (z) =
∞
∑

n=1
−

(

(
1

4
)2 + r 2

)

ρ(n)W−3/4,i r (4πn y)e(nx)

+
∞
∑

n=1
ρ(−n)W3/4,i r (4πn y)e(−nx).

Consider the Rankin–Selberg integrals

A (s) =
∫

Γ0(4)\H
F (z)F ′(z)E (z, s)

d x d y

y2

and

2B(s)=
∫

Γ0(4)\H
K1/2F (z)F ′(z)E−2(z, s)

d x d y

y2

+
∫

Γ0(4)\H
Λ1/2F (z)F ′(z)E2(z, s)

d x d y

y2
.

Since E±2(z, s) are analytic in ℜ(s) > 1/2, B(s) is analytic in ℜ(s) > 1/2; and since
E (z, s) is analytic in ℜ(s) > 1/2 except for simple pole at s = 1, A (s) is analytic for
ℜ(s) > 1/2 except for possibly a simple pole at s = 1, where the residue is

Ress=1A (s)=
〈F,F ′〉

vol(Γ0(4)\H)
=

〈F,F ′〉
2π

,
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so A (s) is analytic also at s = 1 if F and F ′ are orthogonal.
By the standard unfolding trick, we find that for ℜ(s) > 1,

A (s) =
∞
∑

n=1

4πnρ(n)ρ′(n)

(4πn)s

∫∞

0
W1/4,i r (y)W1/4,i r ′(y)y s−2 d y

+
∞
∑

n=1

4πnρ(−n)ρ′(−n)

(4πn)s

∫∞

0
W−1/4,i r (y)W−1/4,i r ′(y)y s−2 d y

and

2B(s)=−
∞
∑

n=1

4πnρ(n)ρ′(n)

(4πn)s

∫∞

0
W5/4,i r (y)W1/4,i r ′(y)y s−2 d y

+
(

(
3

4
)2 + r 2

) ∞
∑

n=1

4πnρ(−n)ρ′(−n)

(4πn)s

∫∞

0
W−5/4,i r (y)W−1/4,i r ′(y)y s−2 d y.

Setting k = 1/4, we then have

A (s) = (4π)−s (

L+(s)Mk (s)+L−(s),M−k (s)
)

,

and moreover the following holds.

LEMMA 5.6.

(5.9)

B(s)= (4π)−s (L+(s)(
r

2
Mk (s)−

1

2
Mk (s +1))+L−(s)(

r

2
M−k (s) +

1

2
M−k (s +1))).

Proof. Let k > 0 be any half integer. In our case, k = 1/2. We have, by unfolding
the integral, that

∫

Γ0\H
Kk F (z)F ′(z)E−2(z, s)

d x d y

y2
=

∫∞

0

∫1

0
Kk F (z)F ′(z)y s−2 d x d y,

and
∫

Γ0\H
Λk F (z)F ′(z)E2(z, s)

d x d y

y2
=

∫∞

0

∫1

0
Λk F (z)F ′(z)y s−2 d x d y.

Now

KkWsg n(n)k/2, i r (4π|n|y)e(nx)=
[

(k/2−2sign(n)π|n|y)Wsg n(n)k/2, i r (4π|n|y)

+4π|n|yW
′

sg n(n)k/2, i r (4π|n|y)
]

e(nx),

and

ΛkWsg n(n)k/2, i r (4π|n|y)e(nx)=
[

(k/2−2sign(n)π|n|y)Wsg n(n)k/2, i r (4π|n|y)

−4π|n|yW
′

sg n(n)k/2, i r (4π|n|y)
]

e(nx).

Hence Lemma 5.5 follows.
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Consequently,

A (s) = (4π)−s (L+(s)Mk (s)+L−(s)M−k (s))

r A (s)−2B(s) = (4π)−s (L+(s)Mk (s +1)−L−(s)M−k (s +1)) .

Solving for L+(s), L−(s), we obtain
[

L+(s)
L−(s)

]

=−
(4π)s

det M (s)
M (s)

[

A (s)
r A (s)−2B(s)

]

,

where M (s) is given by (5.7). Therefore Proposition 5.1 follows from Lemma 5.5.

5.5. Proof of Proposition 5.2. Consider the Rankin–Selberg integrals

I (s) =
∫

Γ0(4)\H
F (z)F (z)E (z, s)

d x d y

y2

and

J (s)=
∫

Γ0(4)\H
K1/2F (z)F (z)E−2(z, s)

d x d y

y2
.

Since E−2(z, s) is analytic in ℜ(s) > 1/2, J (s) is analytic in ℜ(s) > 1/2; and since
E (z, s) except for simple pole at s = 1, I (s) is analytic for ℜ(s) > 1/2 except for a
simple pole at s = 1, where the residue is

Ress=1I (s) =
〈F,F 〉

vol(Γ0(4)\H)
=

〈F,F 〉
2π

.

By the standard unfolding trick, we find that for ℜ(s) > 1,
(5.10)

I (s) =
∞
∑

n=1

|ρ(n)|2

(4πn)s−1

∫∞

0
W1/4,i r (y)2 y s−2 d y+

∞
∑

n=1

|ρ(−n)|2

(4πn)s−1

∫∞

0
W−1/4,i r (y)2 y s−2 d y

and

(5.11) J (s)=−
∞
∑

n=1

|ρ(n)|2

(4πn)s−1

∫∞

0
W5/4,i r (y)W1/4,i r (y)y s−2 d y

+
(

(
3

4
)2 + r 2

) ∞
∑

n=1

|ρ(−n)|2

(4πn)s−1

∫∞

0
W−5/4,i r (y)W−1/4,i r (y)y s−2 d y.

Denoting by R± the residue at s = 1 of L±(s), we find from (5.11) that, since
J (s) is analytic at s = 1,
(

(
3

4
)2 + r 2

)∫∞

0
W−5/4,i r (y)W−1/4,i r (y)

d y

y
R− =

∫∞

0
W5/4,i r (y)W1/4,i r (y)

d y

y
R+.

From the formula [6, p. 858], valid for |ℜ(µ)| < 1/2,

∫∞

0
Wκ, µ(x)Wλ, µ(x)

d x

x

=
1

(κ−λ)sin 2πµ

[

1

Γ(1/2−κ+µ) Γ(1/2−λ−µ)
−

1

Γ(1/2−κ−µ) Γ(1/2−λ+µ)

]

,
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it follows that
∫∞

0
W 5

4 , i r (x)W 1
4 , i r (x)

d x

x
=

1

sinh(2rπ)

2r

|Γ(1/4+ i r )|2
,

and
∫∞

0
W− 5

4 , i r (x)W− 1
4 , i r (x)

d x

x
=

1

sinh(2rπ)

2r

|Γ(7/4+ i r )|2
.

Hence

(5.12) R+ =
|Γ(1/4+ i r )|2

|Γ(3/4+ i r )|2
R− .

Computing the residue at s = 1 of I (s) using (5.10) gives

(5.13)
4π〈F,F 〉

vol(Γ0(4)\H)
=R+

∫∞

0
W 1

4 ,i r (y)2 d y

y
+R−

∫∞

0
W− 1

4 ,i r (y)2 d y

y
.

We have for |ℜ(µ)| < 1/2 [6, p. 858]:
∫∞

0
W 2

κ, µ(z)
d z

z
=

π

sin 2πµ

ψ(1/2+µ−κ)−ψ(1/2−µ−κ)

Γ(1/2+µ−κ) Γ(1/2−µ−κ)
,

where ψ(x) = d
dx logΓ(x). Therefore

(5.14)
∫∞

0
W 1

4 ,i r (y)2 d y

y
=

π

i sinh2πr

ψ(1/4+ i r )−ψ(1/4− i r )

|Γ(1/4+ i r )|2

and

(5.15)
∫∞

0
W− 1

4 ,i r (y)2 d y

y
=

π

i sinh2πr

ψ(3/4+ i r )−ψ(3/4− i r )

|Γ(3/4+ i r )|2
.

Inserting (5.14), (5.15), and (5.12) into (5.13) gives

2〈F,F 〉 =R+ π

i sinh(2πr )|Γ( 1
4 + i r )|2

(

ψ(
1

4
+ i r )−ψ(

1

4
− i r )+ψ(

3

4
+ i r )−ψ(

3

4
− i r )

)

Taking the logarithmic derivative of the reflection formula

Γ(x)Γ(1−x) =
π

sin(πx)

gives
ψ(x)−ψ(1−x) =−πcot(πx).

Hence we find

ψ(
1

4
+ i r )−ψ(

1

4
− i r )+ψ(

3

4
+ i r )−ψ(

3

4
− i r )

=−
πcosπ( 1

4 + i r )

sinπ( 1
4 + i r )

+
πcosπ( 1

4 − i r )

sinπ( 1
4 − i r )

=
πi sinh(2πr )

|sinπ( 1
4 + i r )|2

=
2πi sinh(2πr )

cosh(2πr )

= 2i sinh(2πr )|Γ(
1

2
+2i r )|2 .
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Therefore, we get

〈F,F 〉 =π
|Γ( 1

2 +2i r )|2

|Γ( 1
4 + i r )|2

·R+,

which proves (5.4).

6. THETA LIFTS AND PERIODS

We summarize the results on theta lifts of Shintani [39] and Kohnen [14, 15] in
the holomorphic case, and of Katok and Sarnak [13] in the Maass case.

6.1. Holomorphic forms. For a holomorphic form f of weight 2k (we will later
take only even k) for the full modular group SL2(Z), Shintani [39] showed that
it can be lifted to a cuspidal Hecke eigenform θ( f , z) ∈ Sk+ 1

2
(Γ0(4),χk ) of weight

k + 1
2 with character χk

(

(

a b
c d

)

)

=
(−1

d

)k for Γ0(4), that is, transforming as

F (γz) = χk (γ)J1(γ, z)2k+1F (z), γ ∈ Γ0(4),

where J1(γ, z) = θ1(γz)/θ1(z), θ1(z) =
∑∞

n=−∞ e(n2z). Thus

J1(

(

a b
c d

)

, z)= ǫ−1
d

( c

d

)
p

cz +d ,

with ǫd = 1 if d = 1 mod 4 and ǫd = i if d = 3 mod 4. In particular, J1(γ, z)2 =
(−1

d )(cz +d ).
We write the Fourier expansion of θ( f , z) as

θ( f , z) =
∑

d≥1

c f (d )e(d z).

Then

c f (d )=
∑

disc(q)=d

∫

C (q)
f (w )(a −bw +cw 2)k−1 d w,

the sum over all SL2(Z)-equivalence classes of binary quadratic forms q = [a,b,c]
of positive discriminant d = b2 −4ac .

We note that from (2.5),
∫

C (q)
f (w )(a −bw +cw 2)k−1 d w = d

k−1
2

∫

C (q)
f dµC (q)

is a simple multiple of the period of f over the closed (primitive, oriented) geo-
desic C (q) corresponding to q . Thus

c f (d )

d (k− 1
2 )/2

=
1

d 1/4

∑

disc q=d

∫

C (q)
f dµC (q)

(the sum over all forms of discriminant d , not necessarily primitive), that is

(6.1)
c f (d )

d (k− 1
2 )/2

=
µd ( f )

d 1/4
.
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6.1.1. An inner product formula. Denote by S+
k+1/2(Γ0(4)) the space of cusp forms

of weight k +1/2 on Γ0(4) whose Fourier expansion
∑

n≥1 c(n)e(nz) satisfies the
condition c(n)= 0 unless (−1)k n ≡ 0,1 mod 4. It was proved by Kohnen [14] that
the two spaces S2k(Γ0(1)) and S+

k+1/2(Γ0(4)) are isomorphic as modules over the
Hecke algebra under the Shimura correspondence. Assuming k is even, let

f (z) =
∞
∑

n=1
a f (n)e(nz)∈ S2k(Γ0(1)),

and normalize the L-function of f as

L(s, f ) =
∞
∑

n=1

a f (n)

ns+(2k−1)/2

so the functional equation is s 7→ 1− s. Let

h f (z) =
∑

n≥1
ch f

(n)e(nz)∈ S+
k+1/2(Γ0(4))

correspond to f as above and such that 〈h f ,h f 〉 = 1. By the work of Kohnen [15,
Theorem 3 and Corollary 1], we have

ch f
(m)ch f

(1) =
(−1)k/22k

〈 f , f 〉
a f (m)

and

|ch f
(1)|2 =

(k −1)!

πk

L( 1
2 , f )

〈 f , f 〉
.

Hence we see that θ( f , z) 6= 0 if and only if L( 1
2 , f ) 6= 0, and in this case h f is

proportional to θ( f , z):

ch f
(1)h f (z) =

(−1)k/22k

〈 f , f 〉
θ( f , z).

Thus we get a formula for the inner product of the lift: if g is another cuspidal
Hecke eigenform in S2k(Γ0(1)), then

(6.2) 〈θ( f , ·), θ(g , ·)〉 =
(k −1)!

22kπk
L(

1

2
, f )〈 f , g 〉.

6.2. Maass forms. Given an even Maass form φ for SL2(Z), with eigenvalue λ=
1
4 + (2r )2, the theta lift F (z) = θ(φ, z) is a Maass form for Γ0(4) of weight 1/2, that
is, it transforms under Γ0(4) as

F (γz) = J(γ, z)F (z), γ ∈ Γ0(4),

where J(γ, z) = θ(γz)/θ(z), θ(z) = y1/4θ1(z) = y1/4 ∑∞
n=−∞ e(n2z). Moreover, F is

an eigenfunction of ∆1/2 with eigenvalue 1
4 + r 2.

The Fourier expansion of F is given by [13] as

F (u + i v)=
∑

d 6=0
ρ(d )W sign(d)

4 ,i r
(4π|d |v)e(d v),

where for d > 0,

ρ(d )=
1

p
8π1/4d 3/4

∑

disc(q)=d

∫

C (q)
φd s,
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the sum over all SL2(Z)-equivalence classes of binary quadratic forms q = [a,b,c]
of positive discriminant d = b2−4ac and C (q) is the closed (primitive, oriented)
geodesic corresponding to q . (For d < 0 there is an analogous formula involving
Heegner points.) Thus

(6.3) ρ(d )=
1

p
8π1/4d 3/4

µd .

Moreover, if ψ is another Hecke–Maass eigenform, we have in view of [13,
formula (5.6), p. 224] the inner product formula

(6.4) 〈θ(φ, ·), θ(ψ, ·)〉 =
3

2
Λ(1/2, φ)〈φ, ψ〉,

where

Λ(s, φ) =π−s
Γ

(

s +2i r

2

)

Γ

(

s −2i r

2

)

L(s, φ).

Note the above formula is still valid even if φ, ψ are not even.

7. PROOF OF THE MAIN THEOREM

7.1. Expected value of µd . In §6, we identified the measures µd ( f ) with Fourier
coefficients of theta-lifts up to a normalization. Hence the vanishing of the mean
value of µd ( f )/d 1/4 follows from the corresponding fact for Fourier coefficients
of forms of half-integer weight.

The first statement of Theorem 1.1 follows immediately from Hecke’s bound
that, for any α ∈R and ǫ> 0, we have

∑

n≤N
a(n)e(αn)=O(N 1/2+ǫ) ,

where a(n) is the normalized Fourier coefficient of any holomorphic or Maass
cusp form and the implicit constant depends on the form and ǫ alone. For the
proof, see for example [8, page 111, Theorem 8.1] and [9, page 71, Theorem 5.3].
One makes use of the following formula ([6, page 857, 7.611]:

∫∞

0
x−1Wk ,µ(x)d x =

π3/22k sec(µπ)

Γ( 3
4 −

k
2 + µ

2 )Γ( 3
4 − k

2 − µ
2 )

.

7.2. Proof of Theorem 1.2. We wish to compute the bilinear form

B ( f , g ) = lim
N→∞

1

#{d : d ≤ N }

∑

d≤N

µd ( f )µd (g )

d 1/2
,

where f , g ∈ L2
cusp(Γ\G) are smooth and K -finite, and the sum is over discrimi-

nants. We take f and g to lie in the irreducible subspaces Uπ defined in (1.11),
that is, the subspaces of L2

cusp(Γ\G) irreducible under the joint actions of G , the
orientation-reversal symmetry r, and under the Hecke algebra. We wish to show
that for such f , g ,

(7.1) B ( f , g ) = 0
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if f , g lie in distinct (hence orthogonal) subspacesU f , Ug and to compute B ( f , f ).
By the results of §3, it suffices to consider “minimal”, or generating vectors, that
is, to consider holomorphic forms or Maass forms. In particular, we need to show
that for such f ,

(7.2) lim
N→∞

1

#{d : d ≤ N }

∑

d≤N

|µd ( f )|2

d 1/2
= c( f )L(

1

2
, f )V sym( f , f ),

where

c( f ) =
{

6/π, f Maass form

1/π, f holomorphic .

Since both B and V sym vanish when f is holomorphic of weight ≡ 2 mod 4 or
an odd Maass form, it suffices to treat the cases of holomorphic forms of weight
divisible by 4 and of even Maass forms. To do so, we recall that in these cases we
have identified µd ( f ) with simple multiples of the Fourier coefficients of theta-
lifts θ( f , z). Thus we may use Rankin–Selberg theory (Corollary 5.3) to recover
(7.1) and (7.2) once we have made the correct identifications. We treat separately
the case of holomorphic forms and Maass forms.

7.2.1. Holomorphic forms. For a cuspidal Hecke eigenform of weight 2k , k even,
the theta lift has weight k +1/2 with Fourier expansion θ( f , z) =

∑

d≥1 c f (d )e(d z)
satisfying (6.1), i.e.,

c f (d )

d (k− 1
2 )/2

=
µd ( f )

d 1/4
.

By standard Rankin–Selberg theory (see Section 5.1), the series

(4π)−(s+k− 1
2 )
Γ(s +k −

1

2
)

∞
∑

n=1
|

c(n)

n
k−1/2

2

|2n−s

has a simple pole at s = 1 with residue

R+( f ) =
〈θ( f ),θ( f )〉

2π
=

1

2π
(4π)−k

Γ(k)L(
1

2
, f )〈 f , f 〉

by (6.2) and hence the Dirichlet series

D(s) =
∞
∑

n=1
|
µn( f )

n1/4
|2n−s

has a simple pole at s = 1 with residue

(4π)k+ 1
2

Γ(k + 1
2 )

R+( f ) =
Γ(k)

p
πΓ(k + 1

2 )
L(

1

2
, f )〈 f , f 〉 .

Note that by (3.27)

V sym( f , f )=
1

2
22k Γ(k)2

Γ(2k)
〈 f , f 〉 =π

Γ(k)
p
πΓ(k + 1

2 )
〈 f , f 〉,

and therefore the residue at s = 1 of D(s) is
1

π
V sym( f , f )L(

1

2
, f ) .
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Consequently, we find

lim
N→∞

1

N

∑

n≤N

|
µn( f )

n1/4
|2 =

1

π
V sym( f , f )L(

1

2
, f ).

7.2.2. Maass forms. Let φ be an even Maass Hecke eigenform with Laplace ei-
genvalue 1/4+ (2r )2 and F = θ(φ, ·) its theta-lift with Fourier expansion

F (u + i v)=
∑

d 6=0

ρ(d )W sign(d)
4 ,i r

(4π|d |v)e(d v)

Recall (6.3), that for d > 0 we have

ρ(d )=
p

2

4π1/4d 3/4
µd .

Thus by Corollary 5.3, we have

1

N

∑

1≤n≤N

(

µn(φ)

n1/4

)2

∼
2
p
π

R+(φ),

where R+(φ) is given by (5.4).
Inserting (6.4) into (5.4) gives

(7.3) R+ =
3

2π3/2

|Γ( 1
4 + i r )|4

|Γ( 1
2 +2i r )|2

L(
1

2
,φ)〈φ,φ〉.

We note that by (3.26),

|Γ( 1
4 + i r )|4

2π|Γ( 1
2 +2i r )|2

〈φ,φ〉 = V sym(φ,φ) ,

and hence

(7.4) R+ =
3
p
π

V sym(φ,φ)L(
1

2
,φ).

Therefore, we get

(7.5)
1

N

∑

1≤n≤N

(

µn(φ)

n1/4

)2

∼
2
p
π

R+ =
6

π
V sym(φ,φ).L(

1

2
,φ)

7.2.3. Orthogonality. Finally, the fact that B ( f , g ) = 0 if the subspaces U f , Ug are
distinct follows from standard Rankin–Selberg theory when at least one of f or
g is holomorphic (see (5.2) and (5.3)), while the case of both f , g being Maass
forms follows from Corollary 5.3.
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