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Abstract: We study the small scale distribution of the L2 mass of eigenfunctions of the
Laplacian on the flat torus T

d . Given an orthonormal basis of eigenfunctions, we show
the existence of a density one subsequencewhose L2 mass equidistributes at small scales.
In dimension two our result holds all the way down to the Planck scale. For dimensions
d = 3, 4 we can restrict to individual eigenspaces and show small scale equidistribution
in that context. We also study irregularities of quantum equidistribution: We construct
eigenfunctions whose L2 mass does not equidistribute at all scales above the Planck
scale. Additionally, in dimension d = 4 we show the existence of eigenfunctions for
which the proportion of L2 mass in small balls blows up at certain scales.

1. Introduction

1.1. The semiclassical eigenfunction hypothesis. LetM be a compact Riemannianman-
ifold (smooth, connected and with no boundary), with associated Laplace-Beltrami op-
erator �, and {ψn} an orthonormal basis of L2(M, dvol) consisting of eigenfunctions:
−�ψn = λnψn , where dvol is the normalized Riemannian volume form. If the geodesic
flow is ergodic, the Quantum Ergodicity Theorem [5,31,37] says that for any choice
of orthonormal basis (ONB) {ψn} consisting of eigenfunctions of the Laplacian, there
is a density one subsequence of these eigenfunctions that are uniformly distributed in
the unit cotangent bundle S∗M , where a density one subsequence {ψn�

} ⊂ {ψn} of
eigenfunctions is one such that

lim
�→∞

#{ψn�
: λn�

≤ �}
#{λn ≤ �} = 1.

(For certain chaotic billiards, exceptional eigenfunctions do exist, see [11].) In particular,
there is a density-one subsequence of the eigenfunctions so that the probability densities
|ψn(x)|2 converge weakly to the uniform distribution in configuration space M along
this subsequence, i.e., for any (nice) fixed subset � ⊆ M of positive measure,
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1

vol(�)

∫
�

|ψn(x)|2 dvol(x) → 1.

Uniform distribution in configuration space is not only a feature of ergodicity: Marklof
and Rudnick [23] show that this is also the case for rational polygons and for flat tori.

Berry [1,2] in his work on the “Semiclassical Eigenfunction Hypothesis” (see also
[35]), proposed to go beyond uniform distribution, and study the amplitudes |ψn(x)|2
when smoothed over regions in M , whose diameter shrinks as λn → ∞, but at a rate
slower than the Planck scale � ≈ 1/

√
λn , that is to study the local averages

1

vol B(xn, rn)

∫
B(xn ,rn)

|ψn(x)|2 dvol(x) (1.1)

where B(xn, rn) is a geodesic ball of radius rn centered at xn ∈ M , so that as λn →
∞, rn → 0, but rn

√
λn → ∞. We will say that small scale equidistribution of the

eigenfunctions {ψn} holds if (1.1) tends to 1.
There are very few rigorous results on small scale equidistribution in the literature.

Luo and Sarnak [21] studied the case of the modular surface, and the orthonormal set of
eigenfunctions of theLaplacianwhich are eigenfunctions of allHeckeoperators, showing
that for these, small scale equidistribution holds along a density one subsequence for radii
r � λ−α , for some small α > 0. Under the assumption of the Generalized Riemann
Hypothesis, Young [36] showed that small scale equidistribution holds for all such
eigenfunctions for radii r � λ−1/4+o(1).

The case of compact manifolds with negative sectional curvature was recently inves-
tigated independently by Hezari and Rivière [12] and Han [9] who obtained commen-
surability of the masses along a density one subsequence for logarithmically small radii

r = (log λ)−α (0 ≤ α < 1
3 dim M ):

a1 ≤ 1

vol(B(xn, rn))

∫
B(xn ,rn)

|ψn(x)|2 dvol(x) ≤ a2

along the subsequence, where the constants 0 < a1 < a2 are independent of the centers
of the balls xn and of the subsequence.

1.2. Small scale equidistribution on the flat torus. The case of interest for us is that
of the flat d-dimensional torus T

d = R
d/2πZ

d . The “Semiclassical Eigenfunction
Hypothesis” predicts that (1.1) converges to 1 in this setting for radii rn → 0 with
rn

√
λn → ∞, as λ → ∞. Hezari and Rivière [13] have recently studied small scale

equidistribution in T
d . They show that for a fixed center x0 ∈ T

d , for any ONB of
eigenfunctions {ψn}, there is a density one subsequence so that for all balls B(x0, rn) of

radius rn > λ
− 1

4(d+1)
n one has that (1.1) tends to 1 along the subsequence.

Note that below the Planck scale r = λ−1/2, equidistribution fails badly. For example,
consider theONBof eigenfunctionsψ−

μ (x) = √
2 sin(〈μ, x〉),ψ+

μ(x) = √
2 cos(〈μ, x〉),

μ ∈ Z
d/{±1}, with eigenvalue λ = |μ|2. For r = o(λ−1/2), and x ∈ B(0, r) one has

ψ±
μ (x) ∼ ψ±

μ (0) = 1±1, so that every eigenfunction in this ONB is not equidistributed
below the Planck scale.

One of our goals is to prove small scale equidistribution on T
d , uniformly for all

not too small balls. We succeed for radii rn � λ
− 1

2(d−1)+o(1)
n , in particular in dimension

d = 2, our result extends all the way down to the Planck scale r � λ−1/2+o(1):
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Theorem 1.1. Let {ψn} be an orthonormal basis of eigenfunctions of L2(Td , dvol), and

Bn =
{
B(y, r) ⊂ T

d : r > λ
−1

2(d−1)+o(1)
n

}
.

Then along a density one subsequence,

lim
n→∞ sup

B(y,r)∈Bn

∣∣∣∣ 1

vol(B(y, r))

∫
B(y,r)

|ψn(x)|2 dvol(x) − 1

∣∣∣∣ = 0.

This result gives that the L2 mass of “almost all” eigenfunctions in the given or-
thonormal basis is uniformly distributed in every small ball B(y, r). Even though our
result does not reach the Planck scale for dimensions d > 2, the scale we achieve is
actually optimal (up to the λo(1) factor). This was pointed out to us by Jean Bourgain
(see Remark 1.3 after Theorem 1.2).

1.3. Irregularities in quantum equidistribution. Theorem 1.1 leaves open the existence
of exceptional sequences of eigenfunctions. In Theorem 3.1 we show that these do exist,
so that one cannot improve the “almost all” statement. We show that there is a sequence
of eigenvalues λn → ∞ and corresponding L2-normalized eigenfunctions ψn so that
for any choice of radii rn so that rn → 0, but rn

√
λn → ∞,

lim
n→∞

1

vol(B(0, rn))

∫
B(0,rn)

|ψn(x)|2 dvol(x) = 2.

For a fixed radius r ≈ 1, see [18] for information on possible “quantum limits”.
In dimension d = 4, we can also create “massive irregularities”, where we find an

infinite sequence of eigenvalues λn → ∞, so that given any sequence of balls B(xn, rn)

of radius rn � λ
− 1

2(d−1) −o(1), there are normalized eigenfunctions ψn whose L2-mass
on the specific balls B(xn, rn) blows up:

lim
n→∞

1

vol(B(xn, rn))

∫
B(xn ,rn)

|ψn(x)|2 dvol(x) = ∞.

A related feature was found on certain negatively curved surfaces by Iwaniec and Sarnak
[17], who found eigenfunctions of the Laplacian whose values blow up at special points,
see also [24].

On the other hand, in dimension d = 2 we rule out the existence of such “mas-
sive irregularities” at scales above r > λ−1/4+o(1) and expect that they do not exist at
all for r > λ−1/2+o(1), i.e., just above the Planck scale. We will show that for every
eigenfunction ψ(x) in dimension d = 2 that for radii r > λ−1/4+o(1)

sup
y∈T2

1

vol(B(y, r))

∫
B(y,r)

|ψ(x)|2 dvol(x) � 1. (1.2)

The problemof obtaining an upper bound for the proportion of L2 mass of eigenfunctions
in small balls was previously studied by Sogge [32], who showed for any compact d-
dimensional Riemannian manifold (smooth, connected and with no boundary) M and
an L2-normalized eigenfunction of the Laplace-Beltrami operator ψ that

sup
y∈M

1

vol(B(y, r))

∫
B(y,r)

|ψ(x)|2 dvol(x) � r1−d ,

for r > λ−1/2.
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1.4. Localizing on eigenspaces. In higher dimensions (d ≥ 3), the eigenspaces have
fairly large dimension, and we can also localize on each λ-eigenspace in dimensions
d = 3, 4. That is, prove analogues of Theorem 1.1 when we restrict to an orthonormal
basis of an individual eigenspace. For instance, in dimension d = 3 for λ �≡ 0, 4, 7
(mod 8), the dimension of the λ-eigenspace, which we denote Nλ, is quite large of size

≈ λ
1
2±o(1); for d = 4 and λ odd, λ ≤ Nλ � λ1+o(1). Using results from the arithmetic

theory of quadratic forms, we show

Theorem 1.2. Suppose that d = 3 and λ �≡ 0, 4, 7 (mod 8), or, d = 4 and λ is odd.
Let {ψn}λn=λ be an ONB of eigenfunctions of the λ-eigenspace and let

Bλ =
{
B(y, r) ⊂ T

d : r > λ
− 1

2(d−1)+o(1)
}

.

Then there exists a subset Sλ ⊆ {ψn}λn=λ of cardinality Nλ(1+o(1)), as λ → ∞, which
consists of eigenfunctions such that

sup
B(y,r)∈Bλ

∣∣∣∣ 1

vol(B(y, r))

∫
B(y,r)

|ψn(x)|2 dvol(x) − 1

∣∣∣∣ = o(1), λ → ∞, ψn ∈ Sλ.

Theorem 1.2 reaches the same scale r > λ
−1

2(d−1)+o(1) as Theorem 1.1. Moreover, it gives
that the L2 mass of “almost all” eigenfunctions in the λ-eigenspace equidistributes inside

balls of radii r > λ
−1

2(d−1)+o(1) whereas Theorem 1.1 does not guarantee the existence of
even one such eigenfunction. We believe that the analogue of Theorem 1.2 also holds in
dimensions d ≥ 5.

Remark 1.3. Bourgain (private communication) has pointed out that our result is sharp,
in that for d ≥ 3, under the conditions on λ of Theorem 1.2, for radii λ−1/2 < r <

λ
− 1

2(d−1) −o(1) each λ-eigenspace has an ONB for which a positive proportion of the
eigenfunctions fail to equidistribute in B(0, r), in fact for which

1

vol(B(0, r))

∫
B(0,r)

|ψn(x)|2 dvol(x) ∼ 0, λ → ∞.

The construction is detailed in § 4.

1.5. Discrepancy. Given an ONB {ψn} consisting of eigenfunctions of the Laplacian,
and a ∈ C∞(Td), let

V2(a,�) := 1

#{λn ≤ �}
∑

λn≤�

∣∣∣∣
∫

Td
a(x)|ψn(x)|2 dvol(x) −

∫
Td

a(x) dvol(x)

∣∣∣∣
2

.

Here dvol(x) = dx/(2π)d where dx is Lebesgue measure. Marklof and Rudnick [23]
showed that V2(a,�) decays as� → ∞. This was done via arguing as in Schnirelman’s
theorem and using Kronecker’s theorem that generic geodesics are uniformly distrib-
uted when projected to configuration space; the point of [23] was that this argument
extends to rational polygons. Hezari and Rivière [13] arrive at their results on small
scale equidistribution by giving a quantitative rate of decay of V2(a,�).

We will derive Theorem 1.1 from an upper bound on the L1 discrepancy

V1(a,�) := 1

#{λn ≤ �}
∑

λn≤�

∣∣∣∣
∫

Td
a(x)|ψn(x)|2 dvol(x) −

∫
Td

a(x) dvol(x)

∣∣∣∣ .
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For a fixed a trigonometric polynomial, we will show that

V1(a,�) �a �−1/2. (1.3)

Note that for chaotic systems, it is expected that the L1 discrepancy V1(a,�) is larger,
of size about�−1/4, see [6,7] giving physical arguments for generic chaotic systems, and
[19,22] for rigorous results of this quality for the L2 discrepancy in arithmetic settings,
and [38] for logarithmic upper bounds for the general negatively curved case (see also
[29]).

1.6. About the proofs. Our arguments rely upon lattice point estimates in place of dy-
namical properties of the geodesic flow. In particular, the proof of the bound (1.3), given
in Sect. 2.1, combines harmonic analysis and a lattice point argument from the geometry
of numbers (see Lemma 2.3). The proof of Theorem 1.2 in Sect. 5 replaces this lattice
point count with a more refined statistic, which counts lattice points on a sphere that
lie within a small spherical cap (see Remark 5.4). To estimate this quantity, we require
deeper arithmetic information on the number of representations of a positive definite
binary quadratic form by sums of squares of linear forms. This is also used in the con-
struction of “massive irregularities” in high dimensions in § 6. Bourgain’s argument,
which shows Theorem 1.1 reaches the optimal scale, is detailed in § 4 and also relies
upon estimates for the number of lattice points within spherical caps. The construction
of quantum irregularities in § 3 relies on more direct arguments.

1.7. Notation. Throughout we use the notation, f (x) � g(x), by which we mean
f (x) = O(g(x)). In addition we write f (x) � g(x) provided there exists a c > 0 such
that | f (x)| ≥ cg(x) for all x under consideration, and, if f (x) � g(x) and f (x) � g(x)
we write f (x) ≈ g(x).

2. Small Scale Equidistribution

2.1. L1 discrepancy on the torus. The goal of this section is to prove the upper bound
(1.3) on the L1 discrepancy.

On the torus T
d each eigenfunction ψn of −� with eigenvalue λn is of the following

form

ψn =
∑

μ∈Zd :|μ|2=λn

cn(μ)eμ

where eμ(x) = ei〈μ,x〉. Throughout, we assume ψn is L2-normalized so that∫
Td

|ψn(x)|2 dvol(x) =
∑

|μ|2=λn

|cn(μ)|2 = 1.

Lemma 2.1. For μ ∈ Z
d such that |μ|2 = λ we have∑

λn=λ

|cn(μ)|2 = 1.

Proof. The functions {ψn : λn = λ} and {eμ : |μ|2 = λ} are both orthonormal bases of
the λ-eigenspace of −�, with respect to the inner product
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〈 f, g〉 =
∫

Td
f (x)g(x) dvol(x).

Hence in the expansion

ψn =
∑

|μ|2=λ

〈ψn, eμ〉eμ

we have

〈ψn, eμ〉 = cn(μ)

and hence the expansion of eμ is

eμ =
∑
λn=λ

〈eμ,ψn〉ψn =
∑
λn=λ

cn(μ)ψn

and therefore
∑
λn=λ

|cn(μ)|2 =
∑
λn=λ

|〈eμ,ψn〉|2 = 〈eμ, eμ〉 = 1.

��
Lemma 2.2. If |ζ | ≤ 2

√
λ then

∑
λn=λ

∣∣∣∣
∫

Td
eζ (x)|ψn(x)|2 dvol(x)

∣∣∣∣ ≤ #{μ ∈ Z
d : |μ|2 = λ = |μ + ζ |2}.

If |ζ | > 2
√

λ then each summand is zero.

Proof. Expand ψn to get

∣∣∣∣
∫

Td
eζ (x)|ψn(x)|2 dvol(x)

∣∣∣∣ =
∣∣∣∣∣∣

∑
|μ|2=λn=|μ+ζ |2

cn(μ)cn(μ + ζ )

∣∣∣∣∣∣
≤

∑
|μ|2=λn=|μ+ζ |2

1

2
|cn(μ)|2 + 1

2
|cn(μ + ζ )|2.

Hence,

∑
λn=λ

∣∣∣∣
∫

Td
eζ (x)|ψn(x)|2 dvol(x)

∣∣∣∣ ≤
∑
λn=λ

∑
|μ|2=λn=|μ+ζ |2

1

2
|cn(μ)|2 + 1

2
|cn(μ + ζ )|2

=
∑

|μ|2=λ=|μ+ζ |2

1

2

∑
λn=λ

|cn(μ)|2 + 1

2

∑
λn=λ

|cn(μ + ζ )|2

=
∑

|μ|2=λ=|μ+ζ |2

1

2
+
1

2
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since by Lemma 2.1 both inner sums equal one. Hence,

∑
λn=λ

∣∣∣∣
∫

Td
eζ (x)|ψn(x)|2 dvol(x)

∣∣∣∣ ≤ #{μ ∈ Z
d : |μ|2 = λ = |μ + ζ |2}.

Now if |ζ | > 2
√

λ then there is no (real) solution of |μ|2 = λ = |μ + ζ |2 and hence all
terms above vanish. ��
Lemma 2.3. For a nonzero integer vector ζ ∈ Z

d write ζ = mζ̂ , with m ≥ 1 and ζ̂ a
primitive integer vector. If 0 < |ζ | ≤ 2

√
X then

#{μ ∈ Z
d : |μ|2 ≤ X, |μ|2 = |μ + ζ |2} � (

√
X)d−1

|̂ζ | ,

while for |ζ | > 2
√
X, the set above is empty.

Proof. Suppose we have a solution μ ∈ Z
d with |μ + ζ | = |μ| ≤ √

X then |ζ | ≤
|μ + ζ | + |μ| ≤ 2

√
X and hence if |ζ | > 2

√
X then there are no solutions. So from now

on assume |ζ | ≤ 2
√
X .

The equality |μ|2 = |μ + ζ |2 is equivalent to
2〈μ, ζ 〉 = −|ζ |2 (2.1)

which only has solutions if |ζ |2 is even.
If there are no solutions to (2.1) with |μ| ≤ √

X , then we are done. Otherwise, there
exists a solution μ0 and any other such solution satisfies

〈μ − μ0, ζ 〉 = 0, |μ − μ0| ≤ 2
√
X .

We see that the number of solutions |μ| ≤ √
X to (2.1) is bounded by the number of

ν ∈ Z
d such that

〈ν, ζ 〉 = 0, |ν| ≤ 2
√
X .

That is, we are counting lattice points in the (d − 1)-dimensional sub-lattice which is
the ortho-complement of ζ , which lie in a ball. The co-volume (discriminant) of this
sub-lattice is |̂ζ |, where ζ = mζ̂ with ζ̂ primitive, m ≥ 1 integer, and by [28, Section 2]
the number of such integer solutions is

cd
(2

√
X)d−1

|̂ζ | + O((
√
X)d−2) � X (d−1)/2

|̂ζ | ,

since |̂ζ | ≤ |ζ | � √
X . Here cd = πd/2

�( d2 +1)
is the volume of the d-dimensional unit ball

in R
d . ��

Proposition 2.4. If |ζ | ≤ 2
√

� then

V1(eζ ,�) � �−1/2

|̂ζ | .

If |ζ | > 2
√

� then V1(eζ ,�) = 0.
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Proof. By Lemma 2.2,

V1(eζ ,�) = 1

#{λn ≤ �}
∑
λ≤�

∑
λn=λ

∣∣∣∣
∫

Td
eζ (x)|ψn(x)|2 dvol(x)

∣∣∣∣

≤ 1

#{λn ≤ �}
∑
λ≤�

#{μ ∈ Z
d : |μ|2 = λ = |μ + ζ |2}

= 1

#{λn ≤ �}#{|μ| ≤ √
� : |μ|2 = |μ + ζ |2}.

The denominator is #{λn ≤ �} ≈ �d/2 (Weyl’s law, which follows from an elementary
argument since #{λn ≤ �} = #{μ ∈ Z

d : |μ|2 ≤ �}), while by Lemma 2.3, the
numerator is � (

√
�)d−1/|̂ζ |, which gives the claim. ��

Note that the upper bound (1.3) on the L1 discrepancy V1(a,�) for a general trigono-
metric polynomial follows from Proposition 2.4.

2.2. Proof of Theorem 1.1. We will need majorants and minorants for the indicator
function of a ball. We now cite Lemma 4 of Harman [10] (see also the work of Holt [14]
and Holt and Vaaler [15]), which constructs an appropriate version of Beurling-Selberg
polynomials:

Lemma 2.5. Let B(0, r) ⊂ T
d be the ball of radius r around the origin. Let T, r > 0

with Tr ≥ 1. There exist trigonometric polynomials a± such that:

(i) a−(x) ≤ 1B(0,r)(x) ≤ a+(x);
(ii) â±(ζ ) = 0 if |ζ | ≥ T ;
(iii) â±(0) = vol(Bd(0, r)) + Od(rd−1/T );
(iv) |̂a(ζ )| �d rd .

Proof of Theorem 1.1. Let

Bn =
{
B(y, r) ⊂ T

d : r > λ−θ1
n

}

with θ1 to be determined later. Also, for r > λ
−θ1
n let a±

n be the Beurling-Selberg
polynomials from Lemma 2.5, which majorize and minorize the indicator function of
the ball B(0, r) and also satisfy â±

n (ζ ) = 0 for |ζ | ≥ Tn = λ
θ2
n , with θ2 > θ1. The

trigonometric polynomials

b±
n,y(x) := a±

n (x − y)

majorize and minorize the translated ball B(y, r) = y + B(0, r), and their Fourier
coefficients are given by b̂±

n,y(ζ ) = e−iζ ·y â±
n (ζ ), which therefore satisfy the same in-

equalities as â±
n (ζ ) in Lemma 2.5 (independently of y). In particular, |̂b±

n,y(ζ )| � rdn and

for Tn = λ
θ2
n with θ2 > θ1 ≥ 0 it follows that b̂±

n,y(0) = vol(B(0, r))(1 + O(λ
θ1−θ2
n )).

For δ > 0 let

S± =
{
λn : sup

B(y,r)∈Bn

∣∣∣∣
∫
Td b±

n,y(x)|ψn(x)|2 dvol(x)∫
Td b

±
n,y(x) dvol(x)

− 1

∣∣∣∣ ≥ λ−δ
n

}
.
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We will now show that for θ1 < θ2 < 1
2(d−1) − δ the sets S± have zero density. First

note that

sup
B(y,r)∈Bn

∣∣∣∣
∫
Td b±

n,y(x)|ψn(x)|2 dvol(x)∫
Td b

±
n,y(x) dvol(x)

− 1

∣∣∣∣ ≤
∑

1≤|ζ |≤λ
θ2
n

sup
B(y,r)∈Bn

∣∣∣∣∣
b̂±
n,y(ζ )

b̂±
n,y(0)

〈eζ ψn, ψn〉
∣∣∣∣∣

�
∑

1≤|ζ |≤λ
θ2
n

∣∣〈eζ ψn, ψn〉
∣∣ .

Next, apply Chebyshev’s inequality, the above estimate, and Lemma 2.2 to get that

#{λn ∈ S± : λn ≤ �}
#{λn ≤ �} � 1

�d/2−δ

∑
λn≤�

sup
B(y,r)∈Bn

∣∣∣∣
∫
Td b±

n,y(x)|ψn(x)|2 dvol(x)∫
Td b

±
n,y(x) dvol(x)

− 1

∣∣∣∣

� 1

�d/2−δ

∑
λ≤�

∑
1≤|ζ |≤λθ2

∑
λn=λ

∣∣〈eζ ψn, ψn〉
∣∣

� 1

�d/2−δ

∑
λ≤�

∑
1≤|ζ |≤λθ2

#{μ ∈ Z
d : |μ|2 = λ = |μ + ζ |2}.

By Lemma 2.3

∑
λ≤�

∑
1≤|ζ |≤λθ2

#{μ ∈ Z
d : |μ|2 = λ = |μ + ζ |2} � �(d−1)/2

∑
1≤|ζ |≤�θ2

1

|̂ζ | ,

where ζ = mζ̂ and ζ̂ is primitive. The last sum is bounded by

∑
1≤m≤�θ2

∑
1≤|̂ζ |≤�θ2/m

1

|̂ζ | � �θ2(d−1)
∑

1≤m≤�θ2

1

md−1 �
{

�θ2 log� if d = 2,
�θ2(d−1) if d ≥ 3.

Collecting estimates, we have shown that

#{λn ∈ S± : λn ≤ �}
#{λn ≤ �} � �θ2(d−1)− 1

2 +δ log�

which tends to zero for θ2 < 1
2(d−1) − δ.

To conclude the proof first observe that if λn /∈ S+ with θ1 < θ2 < 1
2(d−1) − δ (so

λn lies in a set of density one) it follows by parts (i) and (i i i) of Lemma 2.5 that

∫
B(y,r)

|ψn(x)|2 dvol(x) − vol(B(y, r))

≤
∫

Td
b+n,y(x)|ψn(x)|2 dvol(x) − b̂+n,y(0) + O(rdλθ1−θ2

n ).

(2.2)
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A similar analysis holds for λn /∈ S− with the inequality reversed. Therefore, for λn /∈
(S+ ∪ S−) and θ1 < θ2 < 1

2(d−1) − δ (so λn lies in a density one set)

sup
B(y,r)∈Bn

∣∣∣∣
∫
B(y,r)

|ψn(x)|2 dvol(x) − vol(B(y, r))

∣∣∣∣
≤ max± sup

B(y,r)∈Bn

∣∣∣∣
∫

Td
b±
n,y(x)|ψn(x)|2 dvol(x) − b̂±

n,y(0)

∣∣∣∣ + O(rdλθ1−θ2
n )

� rdλ−δ + rdλθ1−θ2
n ,

(2.3)

so the claim follows. ��

3. Irregularities of quantum equidistribution

In the previous section we saw that given an ONB of eigenfunctions {ψn} the L2 mass of

almost all eigenfunctions ψn equidistributes within balls with radii rn ≥ λ
− 1

2(d−1)+o(1)
n .

We will show the existence of a sequence of eigenvalues {λm} which tends to infinity
with corresponding eigenfunctions whose L2 mass is not equidistributed within balls
with radii rm ≥ λ

−1/2+o(1)
m , which is just above the Planck scale.

Theorem 3.1. There exists a sequence {λm}m of eigenvalues of−� onT
d with λm → ∞

and corresponding L2-normalized eigenfunctions ψm so that for any choice of radii rm
so that rm → 0, but rm

√
λm → ∞,

1

vol(B(0, rm))

∫
B(0,rm )

|ψn(x)|2 dvol(x) = 2 + o(1) (m → ∞).

Proof. Let λm = m2 + (m + 1)2 and take

ψm(x) = cos(mx1 + (m + 1)x2) + cos((m + 1)x1 + mx2),

where x = (x1, x2, . . . , xd), which are L2-normalized eigenfunctions on (Td , dvol)
with eigenvalue λm . See Fig. 1 for a plot of the intensities |ψm(x)|2.

Squaring out we get

|ψm(x)|2 = 1 + cos(x1 − x2) + cos((2m + 1)(x1 + x2))

+
1

2
cos((2m + 2)x1 + 2mx2) +

1

2
cos(2mx1 + (2m + 2)x2)

and we wish to average this over the ball B(0, rm).
For the term cos(x1 − x2), observe that its average over B(0, rm) tends to 1, because

on this shrinking ball, we have |x1 − x2| ≤ 2rm and hence cos(x1 − x2) = 1 + O(r2m),
so that

1

vol(B(0, rm))

∫
B(0,rm )

cos(x1 − x2) dvol(x) = 1 + O(r2m) → 1, as rm → 0.

To handle the other three terms, note that if μ ∈ Z
d is any frequency vector, then

changing variables we find

1

vol(B(0, rm))

∫
B(0,rm )

cos(〈μ, x〉) dvol(x)= 1

vol(B(0, 1))

∫
B(0,1)

cos(〈rmμ, y〉) dvol(y)
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Fig. 1. Plot of the intensities of |ψm (x)|2 for m = 10 in dimension d = 2, where ψm (x) = cos(mx1 + (m +
1)x2) + cos((m + 1)x1 + mx2)

that is we get the Fourier transform of the unit ball at the frequency rmμ. As is well
known, the Fourier transform of the unit ball decays in all directions:

1

vol(B(0, 1))

∫
B(0,1)

cos(〈ξ, x〉) dvol(x) → 0, as |ξ | → ∞.

Therefore, applying this to the frequency vectors μ = (2m, 2m + 2, �0), (2m + 2, 2m, �0)
and (2m + 1, 2m + 1, �0), which have length |μ| ≈ m, we get

1

vol(B(0, rm))

∫
B(0,rm )

cos(〈μ, x〉) dvol(x) → 0, rm |μ| → ∞.

Thus whenever rm → 0, with rm · m ≈ rm
√

λm → ∞,

1

vol(B(0, rm))

∫
B(0,rm )

|ψm(x)|2 dvol(x) = 2 + o(1)

giving our claim. ��

4. Below the Critical Radius: r < λ
− 1

2(d−1)

In this section, we detail Bourgain’s argument which gives for balls with radii r <

λ
− 1

2(d−1) −o(1) that in each eigenspace there is an orthonormal set of eigenfunctions with
size exceeding a positive multiple of the dimension of the eigenspace, which consists of
eigenfunctions whose L2 mass is scarce in the ball B(0, r).

Denote

Eλ = {μ ∈ Z
d : |μ|2 = λ}, Nλ = #Eλ.



290 S. Lester, Z. Rudnick

Theorem 4.1 (Bourgain). Suppose d ≥ 3. Also, if d = 3 suppose λ �≡ 0, 4, 7 mod 8,
and, if d = 4 suppose λ is odd. Then for each such λ-eigenspace there exists an ortho-
normal set of eigenfunctions A ⊂ {ψλn }λn=λ with size #A � Nλ such that for each
ψ ∈ A

1

vol(B(0, r))

∫
B(0,r)

|ψ(x)|2 dvol(x) → 0 (λ → ∞)

provided that r < λ
− 1

2(d−1) −o(1).

Completing the orthonormal set A in Theorem 4.1 (in any way) gives an ONB
of eigenfunctions B with the property that a positive proportion of ψ ∈ B do not

equidistribute within the small balls B(0, r), r < λ
1

2(d−1) −o(1). Hence, the scale achieved
in Theorems 1.1 and 1.2 is sharp.

Before detailingBourgain’s argumentwe require the following lemmaon the distribu-
tion of points on spheres. For each pointμ ∈ √

λSd−1, we associate the cap cap(μ; Y ) =
Ball(μ,Y ) ∩ √

λSd−1 of size Y about μ, where Ball(x,Y ) = {y ∈ R
d : |x − y| ≤ Y }.

Lemma 4.2. Suppose for a sequence of λ’s, we are given a finite set Aλ ⊂ √
λSd−1

of points on the sphere, with cardinality #Aλ → ∞ as λ → ∞. Let Y = Yλ satisfy

Yλ � λ1/2+o(1)/(#Aλ)
1

d−1 . Then the set V ⊂ Aλ consisting of ν ∈ Aλ such that

# (Aλ ∩ cap(ν,Y )) ≥ 2

has density one: #V ∼ #Aλ as λ → ∞.

Proof. Let

U = {μ ∈ Aλ : #(Aλ ∩ cap(μ; Y )) < 2} .

We wish to show that #U = o(#Aλ).
Each point on the sphere

√
λSd−1 is contained in at most one of the caps of size Y/2

around μ ∈ U , because if cap(μ1; Y/2) ∩ cap(μ2; Y/2) is non-empty for distinct μ1 �=
μ2 ∈ U then μ2 ∈ cap(μ1; Y ) contradicting the assumption μ2 ∈ U . Consequently the
caps cap(μ1; Y/2) and cap(μ1; Y/2) are disjoint, so that we have

vol
( ⋃

μ∈U
cap(μ, Y/2)

)
=

∑
μ∈U

vol
(
cap(μ,Y/2)

)
≈ Yd−1#U

and also we have the trivial bound

vol
( ⋃

μ∈U
cap(μ, Y/2)

)
≤ vol(

√
λSd−1) �d λ(d−1)/2.

Combining these formulas we obtain

#U
#Aλ

� 1

#Aλ

· λ(d−1)/2

Yd−1 � λ−o(1) → 0

under our assumption on Y , which gives the claim. ��
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Proof of Theorem 4.1. First observe that if we have two distinct lattice points μ �= μ′ ∈
Eλ, which are close: 0 < |μ − μ′| < Mλ (we will take Mλ = λ

1
2(d−1)+o(1)), then the

eigenfunction

ψμ(x) := 1√
2

(
ei〈μ,x〉 − ei〈μ′,x〉)

fails to equidistribute in the ball B(0, r) centered at the origin for any r = o(M−1
λ ).

Indeed, for x ∈ B(0, r)

|ψμ(x)|2 = 1 − cos(〈μ − μ′, x〉) = O
(
(r |μ − μ′|)2

)

and since r |μ − μ′| ≤ rMλ = o(1), we have

|ψμ(x)|2 = o(1), x ∈ B(0, r).

Therefore

1

vol(B(0, r))

∫
B(0,r)

|ψμ(x)|2 dvol(x) → 0.

Next we claim that there is a set S ⊂ Eλ containing a positive proportion of μ’s
(#S/Nλ � 1) such that :

• for each μ ∈ S there is another lattice point μ′ which is close to μ: |μ − μ′| <

λ
1

2(d−1)+o(1);
• if μ �= ν ∈ S are distinct, then the pairs {μ,μ′} and {ν, ν′} are disjoint, that is

ν �= μ′ and ν′ �= μ,μ′.

Given this, we form for each μ ∈ S the eigenfunction ψμ, and then for μ �= ν ∈ S the
pairs {μ,μ′} and {ν, ν′} are disjoint, and so the eigenfunctionsψμ andψν are orthogonal.
This establishes Bourgain’s result Theorem 4.1

It remains to prove the claim. Let Yλ = λ
1

2(d−1)+o(1). We construct S as follows: In
Lemma 4.2 first take A0

λ = Eλ, and note that under the assumption of the theorem on

λ, we have #A0
λ = Nλ � λ

d
2 −1−o(1) (see Sect. 5.1) so that Yλ � λ1/2+o(1)/N

1
d−1
λ .

Hence by Lemma 4.2 we get a set V of density one. Take some μ ∈ V; then there exists
μ′ ∈ A0

λ such that 0 < |μ − μ′| < λ
1

2(d−1)+o(1). Now remove the pair {μ,μ′} from Eλ,
to obtain a smaller set A1

λ = A0
λ\{μ,μ′}, and repeat this process ( 12 − o(1))Nλ times,

at each time getting a non-empty remainder set A j
λ, of size #A j

λ � Nλ, so that still

Yλ � λ1/2+o(1)/#A j
λ and we can continue to invoke Lemma 4.2.

We obtain ( 12 −o(1))Nλ resulting pairs, which by construction are close and disjoint.
In this way we obtain a set S of density 1

2 − o(1) with the desired properties. ��

5. Results for Individual Eigenspaces

5.1. Arithmetic background. We denote by Rd(n) the number of representations of n as
a sum of d squares. This is the dimension of the n-eigenspace of the Laplacian on T

d .
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For d = 4, Jacobi’s four square theorem says that R4(n) = 8
∑

d|n,4�d d so that

R4(n) � n1+o(1) and for n odd we have a lower bound R4(n) ≥ 8n.
For d = 3, we have R3(n) � n1/2+o(1) and Siegel’s theorem says that for n �= 0, 4, 7

mod 8, we have a lower bound R3(n) � n1/2−o(1). When d ≥ 5, a classical result
of Hardy and Ramanujan gives Rd(n) ≈ nd/2−1. For more details on these bounds
including more precise formulas see e.g. [16, Chapter 11], [8].

For n, t ≥ 1 let Ad(n, t) denote the number of representations of the positive definite
binary quadratic form

Q(x, y) = nx2 + 2t xy + ny2

as a sum of squares of d linear forms. That is,

Ad(n, t) = #

⎧⎨
⎩(μ, ν) ∈ Z

d × Z
d :

d∑
j=1

(μ j x + ν j y)
2 = Q(x, y)

⎫⎬
⎭ .

where x , y are indeterminates. Equivalently,

Ad(n, t) = #
{
(μ, ν) ∈ Z

d × Z
d : |μ|2 = |ν|2 = n and 〈μ, ν〉 = t

}
.

The number of representations of quadratic forms by quadratic forms has beenwidely
studied. This generalizes the classical problem of representing integers by quadratic
forms, and for a survey of results on these problems see [30]. The study of the more
specific case of representing a quadratic form by a sum of squares of linear forms dates
back to at least Mordell, who studied the criteria for which such a representation exists
in a small number of variables (such a representation always exists if the number of
variables is sufficiently large). In the case d = 3 Venkov [33] [34, Chapter 4.16] and
Pall [25,26] studied A3(n, t), obtaining an exact, but complicated formula for it. From
this one can deduce the following useful bound:

Lemma 5.1. If |t | < n then

A3(n, t) � gcd(n, t)1/2no(1).

This kind of bound was stated and used by Linnik [20], who omitted the factor of
gcd(n, t)1/2. A correct version was given by Pall [25, §7], [26, Theorem 4], see also [3,
Proposition 2.2].

In the case d = 4, Pall and Taussky [27] established an exact formula for A4(n, t).
The relevant case for us will be when n is odd, in this case their formulas states the
following.

Lemma 5.2. If n is odd and |t | < n then setting e := gcd(n, t), we have

A4(n, t) =
∑
h|e

R4(h) · #{ν ∈ Z
3 : |ν|2 = n2 − t2, gcd(ν1, ν2, ν3, e) = h}.

In particular, for n odd Lemma 5.2 gives

A4(n, t) ≥ 8 · R3(n
2 − t2). (5.1)
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with equality holding if gcd(n, t) = 1. This is seen by using R4(h) ≥ 8 for odd h and
noting that every ν with |ν|2 = n2 − t2, will satisfy gcd(ν1, ν2, ν3, e) = h for some
h | e.

To get an upper bound for A4(n, t), first note that for |t | < n and h|e
#{ν ∈ Z

3 : |ν|2 = n2 − t2, gcd(ν1, ν2, ν3, e) = h}

≤ R3

(
n2 − t2

h2

)
�

(
n2 − t2

h2

)1/2+o(1)

,

where in the last step we used the bound R3(m) � m1/2+o(1). Now use this estimate in
Lemma 5.2 along with the bounds R4(h) � h1+o(1) and

∑
h|e 1 � eo(1) to get for n odd

and |t | < n that
A4(n, t) � n1/2+o(1)(n − t)1/2, (5.2)

uniformly for |t | < n.

5.2. L1 discrepancy for each λ-eigenspace. For a ∈ C(Td) define the localized L1

discrepancy

V loc
1 (a, λ) =

∑
λn=λ

|〈aψn, ψn〉 − 〈a, 1〉|.

Lemma 5.3. Suppose T ≤ √
2λ. Then

∑
1≤|ζ |≤T

V loc
1 (eζ , λ) ≤

∑
λ−T 2/2≤t≤λ−1

Ad(λ, t).

Proof. Applying Lemma 2.2 gives

∑
1≤|ζ |≤T

V loc
1 (eζ , λ) ≤

∑
2≤|ζ |2≤T 2

#
{
μ : |μ|2 = λ = |μ + ζ |2

}
.

(Note we can ignore ζ with |ζ |2 odd, since for these 〈eζ ψn, ψn〉 = 0.) Next, observe
that

∑
2≤|ζ |2≤T 2

#
{
μ : |μ|2 = λ = |μ + ζ |2

}
=

∑
2≤�≤T 2

∑
μ,ν∈Z

d

|μ|2=λ=|ν|2
|μ−ν|2=�

1.

For |μ|2 = |ν|2 = λ we have |μ − ν|2 = � iff 〈μ, ν〉 = (λ − �/2). Hence,

∑
2≤�≤T 2

∑
μ,ν∈Z

d

|μ|2=λ=|ν|2
|μ−ν|2=�

1 =
∑

λ−T 2/2≤t≤λ−1

Ad(λ, t).

��
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5.3. Proof of Theorem 1.2. Suppose that d = 3 or d = 4. For d = 3 suppose λ �≡ 0, 4, 7
(mod 8), so the dimension of the λ-eigenspace, Nλ, is ≈ λ1/2±o(1); if d = 4 suppose λ

is odd so that λ � Nλ � λ1+o(1). Let

Bλ =
{
B(y, r) ⊂ T

d : r ≥ λ−θ1
}

for θ1 to be determined later. As in the proof of Theorem 1.1 we take b±
n,y to be Beurling-

Selberg polynomials which majorize and minorize the indicator function of the ball
B(y, r) with r ≥ λ

−θ1
n = λ−θ1 . We take the lengths of the polynomials b±

n,y to be

Tn = λ
θ2
n = λθ2 with θ2 > θ1. Given an orthonormal basis {ψn}λn=λ of the λ-eigenspace

define

S±
λ =

{
λn = λ : sup

B(y,r)∈Bλ

∣∣∣∣
∫
Td b±

n,y(x)|ψn(x)|2 dvol(x)∫
Td b

±
n,y(x) dvol(x)

− 1

∣∣∣∣ ≥ λ−δ

}
.

Using Lemma 5.3 along with the bound b̂±
n,y � rd given by Lemma 2.5 (iv) (which

holds uniformly in y), we get fromChebyshev’s inequality as in the proof of Theorem 1.1
that

#S±
λ

Nλ

� 1

λ
d
2 −1−2δ

∑
1≤|ζ |≤λθ2

∑
λn=λ

|〈eζ ψn, ψn〉| sup
B(y,r)∈Bλ

∣∣∣∣∣
b̂±
n,y(ζ )

b̂±
n,y(0)

∣∣∣∣∣
� 1

λ
d
2 −1−2δ

∑
1≤|ζ |≤λθ2

V loc
1 (eζ , λ)

� 1

λ
d
2 −1−2δ

∑
λ−λ2θ2/2≤t<λ

Ad(λ, t).

Since we assume d = 3 and λ �≡ 0, 4, 7 (mod 8) or d = 4 and λ odd, combining
Lemma 5.1 and (5.2) gives

Ad(λ, t) � λ(d−3)/2+o(1) gcd(λ, t)(λ − t)(d−3)/2.

Thus,
∑

λ−λ2θ2/2≤t<λ

Ad(λ, t) � λ(d−3)/2+θ2(d−3)+o(1)
∑

λ−λ2θ2/2≤t<λ

gcd(λ, t)

� λ(d−3)/2+θ2(d−3)+o(1)
∑
e|λ

e
∑

λ−λ2θ2 /2
e ≤t0<λ/e

1

� λ(d−3)/2+θ2(d−1)+o(1),

where in the last step we bounded the inner sum as O(λ2θ2/e) since if λ2θ2/(2e) < 1
then the sum is empty. Collecting estimates gives

#S±
λ

Nλ

� λθ2(d−1)− 1
2 +3δ,

which tends to zero if θ1 < θ2 < 1
2(d−1) − 3δ.
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Thus, the subset of the ONB {ψn}λn=λ, which consists of eigenfunctions ψn with
λn /∈ (S+λ ∪ S−

λ ) has cardinality Nλ(1+o(1)) provided θ1 < θ2 < 1
2(d−1) −3δ. Repeating

the same argument given at the end of the proof of Theorem 1.1 (see equations (2.2),
(2.3)) we see that each eigenfunction in this subset satisfies

sup
B(y,r)∈Bλ

∣∣∣∣
∫
B(y,r)

|ψn(x)|2 dvol(x) − vol(B(y, r))

∣∣∣∣ � rdλ−δ + rdλθ1−θ2 .

��
Remark 5.4. Our argument reduces the problem of small scale quantum ergodicity to a
lattice point estimate, which can be rephrased in terms of statistics of lattice points in
caps: For each lattice point ν ∈ Eλ = {μ ∈ Z

d : |μ|2 = λ}, let
n(ν,Y ) = #(Eλ ∩ cap(ν,Y )) − 1 = #{μ ∈ Eλ : 0 < |μ − ν| ≤ Y } (5.3)

be the number of other lattice points in a cap of size Y about ν. In fact we actually show
that in any dimension d ≥ 3 if

1

Nλ

∑
|ν|2=λ

n(ν,Y ) → 0, as λ → ∞

then the assertion of Theorem 1.2 holds in dimension d at scales r > Y−1+o(1) (we also
assume here that λ �≡ 0, 4, 7 (mod 8) if d = 3 and λ is odd if d = 4, for d ≥ 5 no such
restrictions are needed). That is, given the above, small scale quantum ergodicity holds
in dimension d at scales above r > Y−1+o(1) on every such λ-eigenspace.

6. Massive Irregularities

In this section we are concerned with the existence of a sequence of eigenfunctions ψλ

for which the proportion of the L2 mass of ψλ within small balls becomes arbitrarily
large as λ → ∞. For d = 4 we show the existence of such a sequence of eigenfunctions
ψλ for balls with radii rλ ≤ λ−1/6−o(1). On the other hand, for d = 2 we are able to rule
out this behavior for balls with radii that shrink sufficiently slowly.

6.1. Blowup for d = 4. Let

ψλ(x) = 1√
Nλ

∑
|μ|2=λ

eμ(x). (6.1)

We show that at small scales the L2 mass of ψλ blows up in dimension d = 4.

Theorem 6.1. Let ψm = ψλm be as given in (6.1) in dimension d = 4. Then along the

sequence of odd eigenvalues λm we have for any sequence of radii rm < λ
−1/6−o(1)
m ,

lim
m→∞

1

vol(B(0, rm))

∫
B(0,rm )

|ψm(x)|2 dvol(x) = ∞.
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Note that the result is trivial for r = o(λ−1/2), because then for x ∈ B(0, r) we can
replace ψλ(x) ∼ ψ(0) = √

Nλ and then the average of |ψλ(x)|2 over the ball B(0, r)
will be large. This also implies that for r ≥ ελ−1/2 with ε > 0 sufficiently small

1

vol(B(0, r))

∫
B(0,r)

|ψλ(x)|2 dvol(x) ≥ 1

vol(B(0, r))

∫
B(0,ελ−1/2)

|ψλ(x)|2 dvol(x)

� Nλ

rd
· εdλ−d/2

in every dimension d ≥ 2. Recall for d ≥ 3, Nλ � λ
d
2 −1−o(1) provided that λ is odd

if d = 4 and if d = 3, λ �≡ 0, 4, 7 (mod 8). For such λ the RHS tends to infinity for

rλ ≤ λ− 1
d −o(1). Theorem 6.1 shows that massive irregularities extend beyond this trivial

regime.
For T ≤ √

2λ let

Sd(λ, T ) =
∑

λ−T 2/2≤t<λ

Ad(λ, t)

and note that in the proof of Lemma 5.3 we saw that

Sd(λ, T ) =
∑

2≤|ζ |2≤T 2

#{μ : |μ|2 = λ = |μ + ζ |2}. (6.2)

Lemma 6.2. Let ψλ be as in (6.1). Suppose that rλ → 0 as λ → ∞. Then for any
dimension d ≥ 2

1

vol B(0, rλ)

∫
B(0,rλ)

|ψλ(x)|2 dvol(x) � 1 + Sd(λ, r−1+o(1)
λ )

Nλ

.

Remark 6.3. The RHS is bounded below by the mean value

1

Nλ

∑
|ν|2=λ

n(ν, r−1+o(1)
λ )

of the other lattice points in caps of size r−1+o(1)
λ , where n(ν, Y ) is as defined in (5.3).

So if this tends to infinity then the conclusion of Theorem 6.1 holds in dimension d at
scales rλ.

Proof. We first construct an auxiliary smooth minorant of 1B(0,rλ)(x) on the torus. Let
f ∈ C∞

0 (R) be a nonzero function such that 0 ≤ f (x) ≤ 1 and supp f = [− 1
2 ,

1
2 ]. Let

g : R
d → R be given by g(x) = f (|x |) and define Frλ : T

d → R by

Frλ(x) =
∑
n∈Zd

(g ∗ g)

(
x + 2πn

rλ

)
.

Observe that

(g ∗ g)(y) =
∫

Rd
f (|x |) f (|y − x |)dx < 1.
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Also, for |y| ≥ 1

0 ≤ (g ∗ g)(y) ≤
∫

|y−x |< 1
2 ,|x |< 1

2

1 dx = 0.

It follows that 1B(0,1)(x) ≥ (g ∗ g)(x) ≥ 0. Write

F(g ∗ g)(ξ) =
∫

Rd
(g ∗ g)(x)e−ξ (x)

dx

(2π)d
=

∣∣∣∣
∫

Rd
g(x)e−ξ (x)

dx

(2π)d

∣∣∣∣
2

and note by Poisson summation

Frλ(x) =
∑
n∈Zd

(g ∗ g)

(
x + 2πn

rλ

)
=rdλ

∑
ζ∈Zd

F(g ∗ g)(rλζ )eζ (x).

Hence, Frλ : T
d → R is a smooth minorant of 1B(0,rλ)(x) and has non-negative Fourier

coefficients. Also, observe thatF(g∗g)(ξ) = F(g∗g)(0)+O(|ξ |). From these estimates
we get that

∫
B(0,rλ)

|ψλ(x)|2 dvol(x) ≥
∫

Td
Frλ(x)|ψλ(x)|2 dvol(x)

= rdλ
Nλ

∑
ζ∈Zd

F(g ∗ g)(rλζ )#{μ : |μ|2 = λ = |μ + ζ |2}

≥ rdλ
2Nλ

F(g ∗ g)(0)

⎛
⎜⎝1 +

∑
0 �=|ζ |≤r−1+o(1)

λ

#{μ : |μ|2 = λ = |μ + ζ |2}
⎞
⎟⎠

by dropping the large frequencies using the non-negativity of F(g ∗ g) and also noting

note thatF(g∗g)(0) =
∣∣∣∫

Rd g(x) dx
(2π)d

∣∣∣2 > 0.Applying (6.2) to the inner sumcompletes

the proof. ��

6.2. Proof of Theorem 6.1. By Lemma 6.2 it suffices to show that for odd values of

λ → ∞ such that for any sequence rλ � λ− 1
6−o(1), we have

S4(λ, r−1+o(1)
λ )/R4(λ) → ∞.

By definition, if T = r−1+o(1),

S4(λ, T ) =
∑

0<λ−t≤T 2/2

A4(λ, t)

≥
∑

0<λ−t≤T 2/2
t even

A4(λ, t).
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We now assume r > λ−1/2 so that |t | < λ. Applying (5.1) for odd λwe have A4(λ, t) ≥
8R3(λ

2 − t2) so that

S4(λ, T ) ≥
∑

0<λ−t≤T 2/2
t even

R3(λ
2 − t2).

Recall that if n �= 0, 4, 7 (mod 8) then Siegel’s theorem gives R3(n) � n
1
2−o(1). Now

if λ is odd and t is even then λ2 − t2 = 1, 5 (mod 8) and in particular Siegel’s theorem
implies

R3(λ
2 − t2) � (λ2 − t2)

1
2−o(1) � λ

1
2−o(1)(λ − t)

1
2 .

Hence we find

S4(λ, T ) � λ
1
2−o(1)

∑
0<λ−t≤T 2/2

t even

(λ − t)
1
2

= λ
1
2−o(1)

∑
1≤m≤T 2/2

m odd

m1/2 � λ
1
2−o(1)T 3.

Hence for T ≈ r−1+o(1) with λ−1/2 < r � λ−1/6+o(1)

S4(λ, r−1+o(1)) � λ
1
2−o(1)r−3.

Since R4(λ) � λ1+o(1), we find that along the sequence of odd integers

S4(λ, r−1+o(1)
λ )

R4(λ)
� λ−1/2−o(1)r−3 → ∞

for rλ � λ− 1
6−o(1). ��

6.3. Ruling out blowup for d = 2 at certain scales. The construction of massive irregu-
larities in the previous section used some features particular to high dimensions. In fact
for d = 2, we can rule out the existence of this behavior at scales that are not too small,
and expect that massive irregularities do not exist at all scales that are at least slightly
above the Planck scale. More precisely, if d = 2 then for every eigenfunctionψλ wewill
prove that the proportion of L2 mass inside balls with radii rλ > λ−1/4+o(1) is bounded
and we expect this should be true as long as rλ > λ−1/2+o(1).

Proposition 6.4. Let ψλ(x) be an L2(T2, dvol) normalized eigenfuction in dimension
d = 2 with eigenvalue λ. Then for any ball with radius rλ > λ−1/4+o(1)

sup
y∈T2

1

vol(B(y, r))

∫
B(y,r)

|ψλ(x)|2 dvol(x) � 1. (6.3)
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Proof. Let b+y be the translated Beurling-Selberg polynomial described in the proof
of Theorem 1.1 which majorizes the indicator function of B(y, r) on T

2 with length
T = 2/r , so in particular |̂b+y (ζ )/ vol(B(y, r))| � 1, uniformly for y ∈ T

2. Write

ψλ(x) =
∑

|μ|2=λ

c(μ)eμ(x)

and argue as in the proof of Lemma 5.3 to get

1

vol(B(y, r))

∫
B(y,r)

|ψλ(x)|2 dvol(x) � 1 +
∑

2≤�≤T 2

∑
μ,ν∈Z

2

|μ|2=λ=|ν|2
|μ−ν|2=�

|c(μ)c(ν)|

≤ 1 +
∑

|μ|2=λ

|c(μ)|2
∑

2≤�≤T 2

∑
|ν|2=λ

|μ−ν|2=�

1,

uniformly for y ∈ T
2. To bound the inner sum, let

M(R, ρ) = max|μ|=R
#{ν ∈ Z

2 : |μ| = R = |ν|, |μ − ν| ≤ ρ}
be the maximal number of lattice points in an arc of size ρ on the circle of radius R.
Note that ∑

2≤�≤T 2

∑
|ν|2=λ

|μ−ν|2=�

1 ≤ M(
√

λ, T ) − 1.

Since T = 2/r we conclude

sup
y∈T2

1

vol(B(y, r))

∫
B(y,r)

|ψλ(x)|2 dvol(x) � M

(√
λ,

2

r

)
.

A result of Cilleruelo and Córdoba [4] states that for any 0 < δ < 1/2,

M(R, R1/2−δ) �δ 1,

thus (6.3) holds for r > λ−1/4+o(1) as claimed.Moreover,we expect thatM(R, R1−δ) �δ

1; this would imply that (6.3) holds for rλ > λ−1/2+o(1). ��
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