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Abstract

We study the ergodic properties of quantized ergodic maps of the
torus. It is known that these satisfy quantum ergodicity: For almost all
eigenstates, the expectation values of quantum observables converge
to the classical phase-space average with respect to Liouville measure
of the corresponding classical observable.

The possible existence of any exceptional subsequences of eigen-
states is an important issue, which until now was unresolved in any
example. The absence of exceptional subsequences is referred to as
quantum unique ergodicity (QUE). We present the first examples of
maps which satisfy QUE: Irrational skew translations of the two-torus,
the parabolic analogues of Arnold’s cat maps. These maps are clas-
sically uniquely ergodic and not mixing. A crucial step is to find a
quantization recipe which respects the quantum-classical correspon-
dence principle.

In addition to proving QUE for these maps, we also give results
on the rate of convergence to the phase-space average. We give upper
bounds which we show are optimal. We construct special examples of
these maps for which the rate of convergence is arbitrarily slow.

1 Introduction

One of the central problems of “Quantum Chaos” is the question of the
asymptotic behaviour of eigenmodes of classically chaotic systems in the
semiclassical limit. In particular, one wants to find their limiting “mass
distribution” in a suitable sense.
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Consider for instance the geodesic flow on a compact Riemannian man-
ifold M (or rather, on its co-tangent bundle), whose quantum Hamilto-
nian is, in suitable units, represented by −∆, the positive Laplacian on
M . Let ψj be a sequence of normalized eigenfunctions: ∆ψj + λjψj = 0,∫
M |ψj |2 = 1. A suitable quantity for measuring the concentration prop-

erties of the eigenmodes ψj , in both the position and momentum repre-
sentations, is the distribution on the unit co-tangent bundle S∗M given
by

f ∈ C∞(S∗M) 7→
〈

Op(f)ψj , ψj
〉
. (1.1)

Here Op(f) is a zero-order pseudo-differential operator with principal sym-
bol f ∈ C∞(S∗M) and Op is some choice of quantization from symbols to
pseudo-differential operators. The operator Op(f) is a quantization of the
classical observable f , and 〈Op(f)ψj , ψj〉 are the expectation values for the
operator in the state ψj .

A celebrated result in this direction is “Schnirelman’s theorem” (an-
nounced in [S] with full proofs given by Zelditch [Z1] for hyperbolic sur-
faces, and Colin de Verdiere [C] in general; see also [HeMR]), which says
that if the flow is ergodic then these expectations converge to the phase-
space average of the classical observable f , for all but possibly a zero-density
subsequence of eigenfunctions. This phenomenon is commonly referred to
as quantum ergodicity. (There are other notions of ergodicity in quantum
mechanics, such as von Neumann’s [N], [KlLMR], which are not related to
the one used here.) There are no examples where it is known if there are
any exceptional subsequences. The case where there are none is referred to
as quantum unique ergodicity (QUE) [RS], [LS], [J].

In this paper, we consider a compact model of the above situation, where
the dynamics, instead of taking place in the co-tangent bundle, occur in
a compact symplectic manifold, namely the 2-torus T2. The (classical)
evolution is then given by iterating a symplectic map of the torus.

In order to quantize such a map, one looks for a Hilbert space of state-
vectors of the system, which are required to be periodic in both position
and momentum representations. This constrains Planck’s constant h to be
an inverse integer, h = 1/N , and then the state space HN is finite dimen-
sional, of dimension precisely N . The semiclassical limit is now N → ∞.
By means of an analogue of Weyl quantization, one defines quantum observ-
ables OpN (f) corresponding to smooth classical observables f ∈ C∞(T2).

Given a symplectic map A of T2, the quantum evolution is given by
specifying a unitary operator UN on the state space HN , which satisfies a
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version of the “correspondence principle” (Egorov’s theorem):∥∥U−1
N OpN (f)UN −OpN (f ◦A)

∥∥ −−−−→
N→∞

0 , ∀f ∈ C∞(T2) , (1.2)

where f ◦ A( pq ) = f(A( pq )), that is one requires that in the semiclassical
limit, quantum evolution becomes classical evolution. The analogue of
eigenmodes are then the eigenfunctions of the propagator UN .

The main focus in the literature has so far been on hyperbolic trans-
formations of the torus, the so-called cat maps [HB], [K], [De], [DeGI], to
which the proof of Schnirelman’s theorem [S], [Z1], [C] can be adapted to
prove quantum ergodicity, but not QUE [BD], [Z3]. Assuming the General-
ized Riemann Hypothesis, Degli Esposti, Graffi and Isola [DeGI] found an
explicit infinite (though sparse) subsequence of values of N , for which they
show that the expectation values for all eigenfunctions ψ ∈ HN converge
to the phase space average.

Here, we will study a parabolic map of the torus (also called a skew
translation), which is specified by choosing a real number α, and then
defining

Aα :
(
p
q

)
7→
(
p+ α
q + 2p

)
mod 1 .

(For a technical reason we shift q by 2p rather than p.)
When α = 0 the motion is clearly integrable as p is a constant of the

motion. For rational values of α, the map is “pseudo-integrable” in that
the dynamics of the map on an orbit can be identified with an interval
exchange transformation. For α irrational, the map is ergodic and in fact it
was found by Furstenberg [F] to be uniquely ergodic. These maps possess
no further “chaotic” properties; for instance they are not mixing.

We propose a quantization procedure that at each value of N replaces
α by a rational approximant a/N . We then construct a unitary propagator
Ua,N on HN which satisfies an exact version of Egorov’s Theorem:

U−1
a,N OpN (f)Ua,N = OpN (f ◦Aa/N ) .

Then taking any sequence a/N → α we show that (1.2) holds. This gives
us a quantization of the map A. There are other recipes in the literature
[DDG], [BD]; however, they do not satisfy (1.2).

Once we have the analogue of Egorov’s theorem (1.2) and have set up
the necessary tools from pseudo-differential calculus on T2, we show:

Theorem 1.1 (QUE for parabolic maps). Suppose α is irrational,
f ∈ C∞(T2) a smooth observable, and a/N → α a sequence of rational
approximants. Then for any normalized eigenfunctions ψ ∈ HN of the
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propagator Ua,N , we have〈
OpN (f)ψ,ψ

〉
→
∫
T2
f(p, q)dp dq , N →∞ .

That is, the parabolic map Aα satisfies quantum unique ergodicity. This
is the first known example of QUE. (That classical unique ergodicity should
imply QUE is a known phenomenon, cf. [Z2]; the main point is to find a
quantization which satisfies (1.2).)

The remainder of our paper concerns the rate of convergence. We take
approximants so that |α − a/N | < 1/N . Suppose that α is badly approx-
imable (in the sense that |α− p/q| �ε q

−2−ε for all ε > 0). We then show
(Corollary 4.3) that for any normalized eigenfunction ψ of the propagator
Ua,N we have∣∣∣∣〈OpN (f)ψ,ψ

〉
−
∫
T2
f(p, q)dp dq

∣∣∣∣�f,ε N
−1/4+ε , ∀ε > 0 .

The reason why the rate is N−1/4+ε and not, as one might have expected
N−1/2+ε, are degeneracies in the spectrum, which occur whenever a and N
are not co-prime. We can, however, always construct an explicit basis of
eigenfunctions ψj (j = 1, . . . ,N), for which∣∣∣∣〈OpN (f)ψj , ψj

〉
−
∫
T2
f(p, q)dp dq

∣∣∣∣�f N
−1/2 ,

see section 5. In the absence of degeneracies (a and N co-prime), we thus
indeed obtain a rate of N−1/2 (cf. also Theorem 4.1).

As for lower bounds on the rate, we show (Theorem 6.1) that for the
observable f(p, q) = e2πi·2p, for all irrationals there is a sequence of values
of N and normalized eigenfunctions ψ ∈ HN for which∣∣∣∣〈OpN (f)ψ,ψ

〉
−
∫
T2
f(p, q)dp dq

∣∣∣∣� 1
N1/4 .

Thus for badly approximable α, Corollary 4.3 is sharp. Moreover, unlike
the situation with badly approximable α, we can construct irrationals for
which the rate of convergence in Theorem 1.1 is arbitrarily slow, e.g. slower
then 1/ log log logN (Theorem 6.2).

2 Quantum Mechanics on T2

2.1 Notation. We write e(x) = e2πix and eN (x) = e
2πi
N
x. ZN denotes

the residue class ring Z/NZ. A �ε B and A = Oε(B) both mean that
there is a positive constant c depending only on ε, such that |A| ≤ c|B|.
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2.2 The Hilbert space of states. To recall the basics of quantum
mechanics on the compact phase-space T2 [HB], [De1,2], we begin by de-
scribing the Hilbert space of states of such a system. The guiding rule is
Heisenberg’s uncertainty principle, which asserts that simultaneous mea-
surements of momentum p and position q of a quantum particle are am-
biguous within Planck cells of volume h (Planck’s constant). Hence if the
phase space volume V is finite, the dimension N of the Hilbert space HN
describing the state of the quantum particle has to be finite as well, and is
precisely given by N = V/h.

In the case of the torus T2, we take state vectors to be distributions
on the line which are periodic in both momentum and position represen-
tations: ψ(q + 1) = ψ(q), [Fhψ](p + 1) = [Fhψ](p), where [Fhψ](p) =
h−1/2 ∫ ψ(q) e(−pq/h) dq. The space of such distributions is finite dimen-
sional, of dimension precisely N = 1/h, and consists of periodic point-
masses at the coordinates q = Q/N , Q ∈ Z.

We may then identify HN with the N -dimensional vector space L2(ZN ),
with the inner product 〈 · , · 〉 defined by

〈φ,ψ〉 = 1
N

∑
QmodN

φ(Q)ψ(Q) . (2.1)

This inner product induces a norm ‖·‖ on the space of operators on HN ,
that is on the space of N ×N matrices.

The Fourier transform FN may now be defined as the unitary map
ψ̂(P ) = [FNψ](P ) = N−1/2

∑
QmodN

ψ(Q)eN (−QP ) ; (2.2)

its inverse F−1
N is then clearly given by

ψ(Q) = [F−1
N ψ̂](Q) = N−1/2

∑
PmodN

ψ̂(P )eN(PQ) . (2.3)

2.3 Translation operators. A central role will be played by the trans-
lation operators

[t1ψ](Q) = ψ(Q+ 1)
and

[t2ψ](Q) = eN(Q)ψ(Q) ,
which may be viewed as the analogues of differentiation and multiplica-
tion operators (respectively) in usual Fourier analysis on Rn. In fact in
terms of the usual translation operators on the line q̂ψ(q) = qψ(q) and
p̂ψ(q) = h

2πi
d
dqψ(q), they are given by t1 = e(p̂), t2 = e(q̂). Heisenberg’s

commutation relations read in this context
ta1t

b
2 = tb2t

a
1eN (ab) ∀a, b ∈ Z . (2.4)
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The Fourier conjugates of t1 and t2 are
FN t1F−1

N = t2

and
FN t2F−1

N = t−1
1 .

2.4 Observables. For n = (n1, n2) ∈ Z2 put
TN (n) = eN

(
n1n2

2

)
tn2
2 tn1

1 .

Then
TN (m)TN (n) = eN

(
ω(m,n)

2

)
TN (m+ n)

with the symplectic form
ω(m,n) = m1n2 −m2n1 .

For any smooth function f ∈ C∞(T2) on our phase space T2, define a
quantum observable

OpN (f) =
∑
n∈Z2

f̂(n)TN (n)

where f̂(n) are the Fourier coefficients of f . The observable OpN (f) is also
called the Weyl quantization of f .

We have OpN (f)∗ = OpN (f̄) and hence OpN (f) is self-adjoint for real-
valued f .

The connection of these quantum observables with the “classical” trans-
lations of the torus

Sα1 :
(
p
q

)
7→
(
p+ α
q

)
, Sα2 :

(
p
q

)
7→
(

p
q + α

)
,

is explained in the following lemma.
Lemma 2.1. For every f ∈ C∞(T2), a ∈ Z, we have (i)

ta1 OpN (f)t−a1 = OpN (f ◦ Sa/N2 ) ,

ta2 OpN (f)t−a2 = OpN (f ◦ S−a/N1 ) ,
and (ii) for all α ∈ R,∥∥ta1 OpN (f)t−a1 −OpN (f ◦ Sα2 )

∥∥�f

∣∣α− a
N

∣∣ ,∥∥ta2 OpN (f)t−a2 −OpN (f ◦ S−α1 )
∥∥�f

∣∣α− a
N

∣∣ .
Proof. With the commutation relations (2.4) we find

ta1 OpN (f)t−a1 =
∑
n

f̂(n)eN (an2)TN (n) .

On the other hand,

OpN (f ◦ Sα2 ) =
∑
n

f̂(n)e(αn2)TN (n) ,
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and the bound ∣∣e(αn2)− e
(
a
N n2

)∣∣ ≤ |2πn2|
∣∣α− a

N

∣∣
concludes the proof of the statements concerning t1. The results for t2
follow accordingly. 2

2.5 Friedrichs symmetrization. Let h ∈ S(R2) be an even, real-
valued Schwartz function normalized such that∫

R2
h(x)2dx = 1 .

The kernel

KN (x, x′) = N1/2
∑
m∈Z2

h
(
N1/2(x− x′ +m)

)
is now used to define an alternative quantization (a variant of the “anti-
Wick quantization”)

ÕpN (f) : L2(ZN )→ L2(ZN )

of the observable f ∈ C∞(T2), by setting

ÕpN (f) =
1
CN

∫
T2

[
OpN (KN ( · , x))

]2
f(x) dx .

The normalization constant

CN =
∑
n∈Z2

∫
R2
h(x)h(x+N1/2n)dx

is chosen such that

ÕpN (1) = idN . (2.5)

Asymptotically,
CN = 1 +OR(N−R) , any R

The main feature of this quantization is positivity: If f ≥ 0 then〈
ÕpN (f)ψ,ψ

〉
≥ 0 , (2.6)

since 〈
ÕpN (f)ψ,ψ

〉
=

1
CN

∫
T2

∥∥OpN (KN ( · , x))ψ
∥∥2

2 f(x) dx ,

which is clearly non-negative. Hence

µN,ψ : f 7→
〈
ÕpN (f)ψ,ψ

〉
defines a measure on C∞(T2), with total mass ‖ψ‖22.

This “positive” quantization differs from the Weyl quantization at most
by terms of order 1/N , as stated in the following proposition.
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Proposition 2.2. For every f ∈ C∞(T2) we have∥∥OpN (f)− ÕpN (f)
∥∥�f

1
N .

Proof. By the Poisson summation formula, our kernel KN can be re-
expressed in the form

KN (x, x′) = 1
N1/2

∑
m∈Z2

ĥ
(

m
N1/2

)
e
(
m(x− x′)

)
,

where ĥ is the Fourier transform of h. Then, by definition,

OpN
(
KN ( · , x)

)
= 1

N1/2

∑
m∈Z2

ĥ
(

m
N1/2

)
e(−mx)TN (m)

and[
OpN (KN ( · , x))

]2 = 1
N

∑
m,n∈Z2

ĥ
(

m
N1/2

)
ĥ
(

n
N1/2

)
× e
(
− (m+ n)x

)
eN

(
ω(m,n)

2

)
TN (m+ n) .

With this, we find

ÕpN (f) =
1

NCN

∑
k,m∈Z2

f̂(k)ĥ
( m

N1/2

)
ĥ

(
k −m
N1/2

)
eN

(
ω(m,k)

2

)
TN (k)

=
∑
k∈Z2

f̂(k)GN
(

k
N1/2

)
TN (k)

with
GN (t) = 1

NCN

∑
m∈Z2

ĥ
(

m
N1/2

)
ĥ
(
t− m

N1/2

)
e
(

1
2ω
(

m
N1/2 , t

))
.

Therefore,

ÕpN (f)−OpN (f) =
∑
k∈Z2

f̂(k)
(
GN ( k

N1/2 )− 1
)
TN (k) .

We have GN (0) = 1 by Poisson summation and the definition of CN . It
is easy to see that GN and its derivatives are bounded uniformly in N by
rapidly decreasing functions of t. Moreover, GN (−t) = GN (t) is even as is
easy to see using h is even and the bilinearity of ω. Thus expanding GN (t)
in a Taylor series at t = 0 and noting that since GN is even, the first order
terms are missing, we find that for |t| � 1,

GN (t) = GN (0) +O(|t|2) = 1 +O(|t|2) .
Therefore, since the Fourier coefficients f̂(k) are rapidly decreasing,∥∥ÕpN (f)−OpN (f)

∥∥� ∑
k∈Z2

|f̂(k)|
∣∣∣GN ( k

N1/2

)
− 1
∣∣∣



1562 J. MARKLOF AND Z. RUDNICK GAFA

�
∑

|k|≤N1/10

|f̂(k)| |k|
2

N +
∑

|k|>N1/10

|f̂(k)|

�f
1
N + 1

NR � 1
N ,

and the proposition follows. 2

3 Quantizing Skew Translations

In this section we define a quantization Ua,N : L2(ZN ) → L2(ZN ) for the
skew translation of the torus

Aα :
(
p
q

)
7→
(
p+ α
q + 2p

)
.

We define the quantization in the momentum representation, that is Ua,N =
F−1
N Va,NFN , by choosing an approximation a/N to α, with∣∣α− a

N

∣∣ < 1
N (3.1)

and then setting
[Va,Nψ](P ) := eN

(
− (P − a)2)ψ(P − a) .

The relation between the quantized map and the classical map Aα is
given by
Theorem 3.1 (Egorov’s theorem for Aα). If |α − a/N | < 1/N then for
every f ∈ C∞(T2) we have∥∥U−1

a,N OpN (f)Ua,N −OpN (f ◦Aα)
∥∥�f

1
N .

This is an immediate conclusion of the following proposition together
with the choice (3.1):
Proposition 3.2. For every f ∈ C∞(T2) we have (i)

U−1
a,N OpN (f)Ua,N = OpN (f ◦Aa/N ) , (3.2)

and (ii) for all α ∈ R,∥∥U−1
a,N OpN (f)Ua,N −OpN (f ◦Aα)

∥∥�f

∣∣α− a
N

∣∣ .
Proof. We have to show that

V−1
a,N ÔpN (f)Va,N = ÔpN (f ◦Aa/N ) ,

and that for real α,∥∥V−1
a,N ÔpN (f)Va,N − ÔpN (f ◦Aα)

∥∥�f

∣∣α− a
N

∣∣
where

ÔpN (f) = FN OpN (f)F−1
N .

Note that we can write
Va,N = t−a1 V0,N , Aα = Sα1 ◦A0 .
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Since
V−1
a,N ÔpN (f)Va,N = V−1

0,N t
a
1FN OpN (f)F−1

N t−a1 V0,N

= V−1
0,NFN t

−a
2 OpN (f)ta2F−1

N V0,N ,

we find, by virtue of Lemma 2.1,

V−1
a,N ÔpN (f)Va,N = V−1

0,N ÔpN (f ◦ Sa/N1 )V0,N ,

and ∥∥V−1
a,N ÔpN (f)Va,N − V−1

0,N ÔpN (f ◦ Sα1 )V0,N
∥∥�f

∣∣α− a
N

∣∣ ,
respectively. It thus remains to be checked that

V−1
0,N ÔpN (f)V0,N = ÔpN (f ◦A0) .

To this end, note first that

ÔpN (f) =
∑
n

f̂(n)eN
(
n1n2

2

)
t−n2
1 tn1

2 .

Second, let us show that
V−1

0,N t
−n2
1 tn1

2 V0,N = eN (n2
2) t−n2

1 tn1+2n2
2 (3.3)

holds:
[V−1

0,N t
−n2
1 tn1

2 V0,Nψ](P )

= eN (P 2)[tn1
2 V0,N ]ψ(P − n2)

= eN
(
P 2 + n1(P − n2)− (P − n2)2)ψ(P − n2)

= eN (n2
2)eN

(
(n1 + 2n2)(P − n2)

)
ψ(P − n2)

= eN (n2
2)[tn1+2n2

2 ψ](P − n2)

= eN (n2
2)[t−n2

1 tn1+2n2
2 ψ](P ) .

The commutation relations (3.3) now lead to

V−1
0,N ÔpN (f)V0,N =

∑
n

f̂(n1 − 2n2, n2)eN
(
n1n2

2

)
t−n2
1 tn1

2 .

The Fourier coefficients of f ◦A0 are, however, exactly f̂(n1−2n2, n2), and
our proof is complete. 2

Remark 3.1. There are other quantization schemes of skew translations
in the literature [DDG], [BD]. However, they do not satisfy Theorem 3.1
and so their relevance to the classical dynamics is unclear.

3.1 Proof of Theorem 1.1. For each N , choose an approximant a/N
with |α − a/N | → 0, and a normalized eigenfunction ψ ∈ HN of Ua,N .
Using the results of section 2.5, we get a sequence of probability measures
µN,ψ(f) = 〈ÕpN (f)ψ,ψ〉. Since they differ from the distributions f 7→
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〈OpN (f)ψ,ψ〉 by terms which vanish as N → ∞, it suffices to show that
µN,ψ converge to Lebesgue measure λ : f 7→

∫
T2 f .

To see this, note that the space of probability measures on T2 is com-
pact, and hence any sequence of probability measures has a convergent sub-
sequence. Thus the sequence µN,ψ has a limit point, which is a probability
measure. Any such limit point ν is then invariant under the map Aα by
Egorov’s theorem (Theorem 3.1). For irrational α, the map Aα is uniquely
ergodic which forces ν = λ. Thus Lebesgue measure λ is the unique ac-
cumulation point of our sequence. This forces µN,ψ → λ, otherwise there
would be a neighborhood of λ which excludes infinitely many µN,ψ. But
then these latter would have to contain a convergent subsequence whose
limit would not be λ — a contradiction.

4 Upper Bounds for the Rate of Quantum Unique
Ergodicity

Besides the convergence result of Theorem 1.1, we can also give a bound
for the rate of convergence. To do this, we will always assume that we pick
approximants such that |α− a/N | < 1/N . Our first result is
Theorem 4.1. If α is irrational, then for all f ∈ C∞(T2), and any
normalized eigenfunction ψ ∈ L2(ZN ) of the propagator Ua,N ,

〈OpN (f)ψ,ψ〉 =
∫
T2
f(p, q) dp dq +Of

(
1

M1/2

)
, N →∞ ,

where M = N/ gcd(a,N).
To see that this has content, we note

Lemma 4.2. Suppose we take approximations a/N to α with a/N → α
as N →∞. If α is irrational then N/ gcd(a,N)→∞ as N →∞.

Indeed, write D = gcd(a,N), M = N/D, b = a/D. If α is irrational
then cM := min

{∣∣α− k
m

∣∣ : m ≤M
}
> 0, and so

∣∣α− a
N

∣∣ =
∣∣α− b

M

∣∣ ≥ cM > 0.
Thus if M is bounded, then cM is bounded away from zero, contradicting
a/N → α.

We say that an irrational α is badly approximable if∣∣α− a
n

∣∣�ε
1

n2+ε , ∀ε > 0 .
In that case, we can say something stronger than just that M → ∞ as
N →∞. In fact we have M �ε N

1/2−ε since
1
N >

∣∣α− a
N

∣∣ =
∣∣α− b

M

∣∣�ε
1

M2+ε .

We thus find:
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Corollary 4.3. If α is badly approximable then for any normalized
eigenfunction ψ of the propagator Ua,N we have〈

OpN (f)ψ,ψ
〉
−
∫
T2
f(p, q)dp dq �f,ε N

−1/4+ε for all ε > 0 .

4.1 Proof of Theorem 4.1. The idea of the proof of Theorem 4.1 is
to use the fact that for an eigenfunction ψ of Ua,N , we have 〈OpN (f)ψ,ψ〉 =
〈OpN (fT )ψ,ψ〉, where fT := 1

T

∑T
t=1 f ◦ Ata/N is the ergodic average

of f . Taking T = N we show directly that for any ψ ∈ HN , we have
|〈OpN (fN )ψ,ψ〉 −

∫
T2 f | �M−1/2.

We start the argument by taking for f the basic exponential em,n(p, q) :=
e(mp+ nq).
Lemma 4.4. For any normalized ψ ∈ L2(ZN ),∣∣〈OpN (eTm,n)ψ,ψ〉

∣∣2
≤ 1
T 2N

∑
ymodN

|ψ̂(y)|2
∣∣∣∣S (anN ,

a(m− n) + n2 + 2ny
N

;T
)∣∣∣∣2 , (4.1)

where

S(a, b;T ) :=
T∑
t=1

e(at2 + bt) . (4.2)

Proof. Iterating Aα gives

Atα

(
p
q

)
=
(

p+ tα
q + 2tp+ t(t− 1)α

)
mod 1 . (4.3)

From (4.3) we find that
em,n ◦Ata/N = eN

(
ant2 + a(m− n)t

)
em+2tn,n . (4.4)

Therefore,

eTm,n :=
1
T

T∑
t=1

em,n ◦Ata/N =
1
T

T∑
t=1

eN
(
ant2 + a(m− n)t

)
em+2tn,n ,

and quantizing we get

OpN (eTm,n) =
1
T

T∑
t=1

eN
(
ant2+(m−n)t

)
TN (m+2tn, n) . (4.5)

In particular, ‖OpN (eTm,n)‖ ≤ 1.
From (4.5) we get

OpN (eTm,n)ψ(x)

=
1
T

T∑
t=1

eN

(
ant2 + a(m− n)t+

1
2

(m+ 2tn)n+ nx

)
ψ(x+m+ 2tn) ,
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and so〈
OpN (eTm,n)ψ,ψ

〉
=
eN (mn2 )
TN

∑
xmodN

ψ(x)eN(nx)

·
T∑
t=1

eN
(
ant2 + (a(m− n) + n2)t

)
ψ(x+m+ 2tn) .

On applying Cauchy-Schwarz we find∣∣〈OpN (eTm,n)ψ,ψ
〉
|2 ≤ 1

T 2
1
N

∑
xmodN

|ψ(x)|2

· 1
N

∑
xmodN

∣∣∣∣ T∑
t=1

eN
(
ant2 + (a(m− n) + n2)t

)
ψ(x+m+ 2tn)

∣∣∣∣2 .
Now 1

N

∑
xmodN |ψ(x)|2 = ‖ψ‖2 = 1 and using the Fourier expansion

ψ(x) = N−1/2∑
y ψ̂(y)e(yx) in the second x-sum gives∣∣〈OpN (eTm,n)ψ,ψ〉
∣∣2

≤ 1
T 2

1
N2

∑
x,y,y′modN

ψ̂(y)ψ̂(y′) eN
(
x(y − y′)

)
·

T∑
t,t′=1

eN
(
an(t2 − t′2) + (a(m− n) + n2)(t− t′) + 2nyt− 2ny′t′

)
=

1
T 2N

∑
ymodN

|ψ̂(y)|2 ·
∣∣∣∣ T∑
t=1

eN
(
ant2 + (a(m− n) + n2 + 2ny)t

)∣∣∣∣2 ,
by Parseval’s identity. 2

We now take T = N and then get a Gauss sum for S(a, b;T ) in
Lemma 4.4: Define the complete Gauss sum

G(c, d;N) :=
∑

tmodN

eN (ct2 + dt) .

We will need a very classical estimate of its absolute value, which we recall:
Lemma 4.5. If gcd(2c,N) = 1 then∣∣G(c, d;N)

∣∣ = N1/2 .

If c 6= 0 mod N then∣∣G(c, d;N)
∣∣ ≤ N1/2 gcd(2c,N)1/2 , c 6= 0 mod N .

If c = 0 mod N then

G(0, d;N) =

{
N d ≡ 0 mod N
0 d 6= 0 mod N .
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Proof. Since the case c = 0 mod N is obvious, we assume c 6= 0 mod N . By
multiplying out |G(c, d;N)|2, changing variables and switching the order of
summation we find∣∣G(c, d;N)

∣∣2 =
∑

t1,t2modN

eN
(
c(t21 − t22) + d(t1 − t2)

)
=

∑
ymodN

eN (cy2 + dy)
∑

tmodN

eN (2cyt) .

The inner sum is either N or 0, depending if 2cy = 0 mod N or not. This
gives ∣∣G(c, d;N)

∣∣2 = N
∑

y:2cy=0modN

eN (cy2 + dy) .

If gcd(2c,N) = 1 then the only solution of 2cy = 0 mod N is y = 0 mod N ,
so we get equality |G(c, d;N)|2 = N , while in general the number of solu-
tions is gcd(2c,N) which gives the bound |G(c, d;N)|2 ≤ N gcd(2c,N). 2

Lemma 4.6. For any normalized ψ ∈ L2(ZN ), and |m|, |n| < M , (m,n) 6=
(0, 0), we have, if n 6= 0,∣∣〈OpN (eNm,n)ψ,ψ〉

∣∣ ≤ |2n|1/2M−1/2 , (4.6)
while if n = 0 but m 6= 0 mod M then〈

OpN (eNm,0)ψ,ψ
〉

= 0 . (4.7)
Proof. From Lemma 4.4 we have∣∣〈OpN (eNm,n)ψ,ψ〉

∣∣2 ≤ 1
N3

∑
ymodN

|ψ̂(y)|2
∣∣G(an, a(m− n) + n2 + 2ny;N)

∣∣2 .
Recall that a/N = b/M with b,M co-prime, D = gcd(a,N). We have
an 6= 0 mod N if and only if n 6= 0 mod M . Thus if n 6= 0 mod M then by
Lemma 4.5∣∣〈OpN (eNm,n)ψ,ψ〉

∣∣2 ≤ N−2
∑

ymodN

|ψ̂(y)|2 gcd(2an,N)

= M−1 gcd(2n,M)‖ψ̂‖2

≤ |2n|M−1 ,

since ‖ψ̂‖ = ‖ψ‖ = 1.
If n = 0 then by (4.4),

eNm,0 = em,0 · 1
N

∑
tmodN

eN (amt)

which vanishes if am 6= 0 mod N , equivalently if m 6= 0 mod M . Thus
OpN (eNm,0) = 0 if m 6= 0 mod M . 2
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4.2 Conclusion of the proof. If ψ is an eigenfunction of Ua,N , then〈
OpN (f)ψ,ψ

〉
=

1
T

T∑
t=1

〈
OpN (f)U ta,Nψ,U ta,Nψ

〉
=

1
T

T∑
t=1

〈
U−ta,N OpN (f)U ta,Nψ,ψ

〉
.

By Egorov (3.2),

U−ta,N OpN (f)U ta,N = OpN (f ◦Ata/N )

and so 〈
OpN (f)ψ,ψ

〉
=
〈

OpN (fT )ψ,ψ
〉
.

Then expanding f in a Fourier series f =
∑

(m,n) f̂(m,n)em,n and ap-
plying the ergodic average operator with T = N we get

fN =
∑

(m,n)6=(0,0)

f̂(m,n)eNm,n .

Therefore,〈
OpN (fN )ψ,ψ

〉
−
∫
T2
f(p, q)dp dq =

∑
(m,n)6=(0,0)

f̂(m,n)
〈

OpN (eNm,n)ψ,ψ
〉
.

Now we have ‖OpN (eNm,n)‖ ≤ 1 and so we truncate the sum above to
frequencies |m|, |n| < M with error at most∑

|m|≥M or |n|≥M
(m,n)6=(0,0)

∣∣f̂(m,n)
∣∣�M−K

since f̂(m,n) is rapidly decreasing. It is important to note that since α is
irrational, we have M →∞ as N →∞ which we assume.

For the small frequencies we use Lemma 4.6 to find∑
|m|,|n|<M

(m,n)6=(0,0)

f̂(m,n)
〈

OpN (eNm,n)ψ,ψ
〉
�

∑
|m|,|n|<M

n6=0

∣∣f̂(m,n)
∣∣|n|1/2M−1/2

�f M
−1/2 .

Thus we find that for normalized eigenfunctions ψ we have〈
OpN (f)ψ,ψ

〉
−
∫
T2
f(p, q)dp dq �f M

−1/2 +M−K �M−1/2 .

This concludes the proof of Theorem 4.1.
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5 Explicit Eigenfunctions

We begin by calculating the eigenvalues and a basis of eigenfunctions of the
quantum map Va,N , defined by

[Va,Nψ](P ) = eN
(
− (P − a)2)ψ(P − a) .

The eigenvalue equation

Va,N ψ = eN (φ) ψ (5.1)

yields the following simple recursion relation for the eigenfunction ψ,

ψ(P + a) = eN(−φ− P 2)ψ(P ) . (5.2)

We can now construct N linearly independent solutions ψj of (5.1), j =
1, . . . ,N , as follows. Let D = gcd(a,N) be the greatest common divisor of
a and N . Put

b = a
D , M = N

D ,

and write furthermore

j = η +Dl , η ∈ [1,D] , l ∈ [0,M − 1] .

For a given j ∈ [1,N ], the pair (η, l) is uniquely determined.

Proposition 5.1. The functions

ψη,l(P ) =


√
DeN

(
− ηaν2 − νlD + a2ν (M−1)(2M−1)−(ν−1)(2ν−1)

6

)
if P ≡ η + νa mod N

0 if P 6≡ η mod D

solve equation (5.1) with eigenphases

φη,l = lD − η2 + ηa− a2 (M − 1)(2M − 1)
6

, (5.3)

and form an orthonormal basis of L2(ZN ).

Proof. Put ψη,l(η) =
√
D. The recursion relation (5.2) then implies that

ψη,l at points of the form P = η + νa (ν = 1, 2, . . . ) reads

ψη,l(P ) =
√
DeN

(
− νφη,l −

ν−1∑
m=0

(η +ma)2
)
.

Since N divides Ma, and thus ψη,l(η +Ma) = ψη,l(η), the eigenphases are
determined by

eN

(
Mφη,l +

M−1∑
m=0

(η +ma)2
)

= 1 ,
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leaving an ambiguity mod N/M , which permits us to put

φη,l = lD − 1
M

M−1∑
m=0

(η +ma)2

= lD − η2 − ηa(M − 1)− a2 (M − 1)(2M − 1)
6

.

Since ηaM ≡ 0 mod N , we drop this term. A straightforward manipulation
leads to the expression for ψη,l as given in the proposition. Orthonormality
follows from

〈ψη,l, ψη′,l′〉 = 1
N

∑
PmodN

ψη,l(P )ψη′,l′(P )

=

{
D
N

∑M−1
ν=0 eN

(
− ν(l − l′)D

)
if η = η′

0 if η 6= η′

and
1
M

M−1∑
ν=0

eM
(
ν(l − l′)

)
=

{
1 if l = l′

0 otherwise .
�

Corollary 5.2. The multiplicity m(φ) of an eigenphase φ is bounded by
m(φ) � D

1
2 τ(D) �ε D

1
2 +ε, for any ε > 0, where τ(D) is the number of

divisors of D.

Proof. For a given φ, we would like to count the number of solutions of

lD − η2 + ηa− a2 (M − 1)(2M − 1)
6

= φ mod N . (5.4)

This implies that −η2 ≡ φ mod D. In order to count the number #D,φ of
solutions of the latter equation, define

δD(x) =

{
1 if x ≡ 0 mod D
0 if x 6≡ 0 mod D .

Then

#D,φ =
D∑
P=1

δD(P 2 + φ) .

Since
δD(x) = 1

D

∑
ρmodD

eD(ρx)

we find that

#D,φ =
1
D

∑
ρmodD

eD(ρφ)
( D∑
P=1

eD(ρP 2)
)
.
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The sum in brackets is a classical Gauss sum, whose absolute value is
bounded by

√
D gcd(D, 2ρ) (Lemma 4.5), and thus

#D,φ � D1/2τ(D) .

For fixed η, equation (5.4) determines l uniquely mod M . 2

Let us put

m2 = −n1b , m1 =
(
n2 − 2µη − µ(µ− 1)a

)
b− (l − l′) .

Lemma 5.3. We have∣∣〈TN (n)ψη,l, ψη′,l′〉
∣∣ =

{
|
∑M−1
ν=0 eM (m2ν2+m1ν)|

M , η − η′ = n1 mod D
0 , otherwise

and in particular for n1 ≡ 0 mod M∣∣〈TN (n)ψη,l, ψη′,l′〉
∣∣ =

{
0 if m1 6≡ 0 mod M
1 if m1 ≡ 0 mod M .

Proof. We have〈
TN (n)ψη,l, ψη′,l′

〉
= 1

N

∑
PmodN

eN
(
n1n2

2 + n2P
)
ψη,l(P + n1)ψη′,l′(P )

=
1
N

M−1∑
ν=0

eN

(n1n2

2
+ n2(η′ + νa)

)
ψη,l(η′ + νa+ n1)ψη′,l′(η

′ + νa) ,

which is non-zero only if there is a µ such that

n1 ≡ µa+ η − η′ mod N , (5.5)

hence in particular n1 + η′ − η ≡ 0 mod D. Taking absolute values and
using the explicit expressions for the eigenfunctions we obtain∣∣〈TN (n)ψη,l, ψη′,l′〉

∣∣
=

1
M

∣∣∣∣M−1∑
ν=0

eN

[
n2νa−(φη,l−φη′,l′)ν−

ν+µ−1∑
m=0

(η+ma)2+
ν−1∑
m=0

(η′+ma)2
]∣∣∣∣.

(5.6)
By virtue of Relation (5.5) we have

ν−1∑
m=0

(η′ +ma)2 ≡
ν+µ−1∑
m=µ

(η +ma− n1)2 mod N .

This formula allows us to simplify (5.6) to∣∣〈TN (n)ψη,l, ψη′,l′〉
∣∣

=
1
M

∣∣∣∣M−1∑
ν=0

eN

[
n2νa− (φη,l−φη′,l′)ν−n1aν(ν− 1)−n1(2µa+ 2η−n1)ν

]∣∣∣∣
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=
1
M

∣∣∣∣M−1∑
ν=0

eM (m2ν
2 +m1ν)

∣∣∣∣ , (5.7)

with
m2 = −n1b m1 =

(
n2 − 2µη − µ(µ− 1)a

)
b− (l − l′) .

In the case n1 ≡ 0 mod M we have m2 ≡ 0 mod M and thus∣∣〈TN (n)ψη,l, ψη′,l′〉
∣∣ =

1
M

∣∣∣∣M−1∑
ν=0

eM (m1ν)
∣∣∣∣ =

{
0 if m1 6≡ 0 mod M
1 if m1 ≡ 0 mod M .

2

In the sequel a ∈ Z will be chosen such that∣∣α− a
N

∣∣ < 1
N

holds.
Proposition 5.4. Let f ∈ C∞(T2), and assume α is diophantine. Then〈

OpN (f)ψη,l, ψη,l
〉

=
∫
T2
f dx+Of,α(N−1/2) .

If f is a polynomial, then the above relation holds for all irrational α.

Proof. Without loss of generality we assume
∫
T2 f dx = 0. We have〈

OpN (f)ψη,l, ψη,l
〉

=
∑
n6=0

f̂(n)
〈
TN (n)ψη,l, ψη,l

〉
,

where f̂(n) are the (rapidly decreasing) Fourier coefficients of f .
Following Lemma 5.3, we distinguish two cases.
Case A: n1 6≡ 0 mod M . Then m2 = −abµ ≡ −bn1 6≡ 0 mod M , and by

Lemma 4.5∣∣∣∣M−1∑
ν=0

eM (m2ν
2 +m1ν)

∣∣∣∣ ≤√M gcd(M, 2|n1|) ≤
√

2|n1|M ,

from which we obtain∣∣〈TN (n)ψη,l, ψη,l〉
∣∣ ≤√2|n1|M−1/2 .

Case B. n1 ≡ 0 mod M . Here∣∣〈TN (n)ψη,l, ψη,l〉
∣∣ =

1
M

∣∣∣∣M−1∑
ν=0

eM(n2bν)
∣∣∣∣ =

{
0 if n2 6≡ 0 mod M
1 if n2 ≡ 0 mod M .

In summary,∣∣〈OpN (f)ψη,l, ψη,l〉
∣∣ ≤ √2M−

1
2
∑
n1 6=0
D|n1

|n1|
1
2 |f̂(n)|+

∑
n6=0
D|n1

M |n1,n2

|f̂(n)| ,
(5.8)
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the first sum corresponds to Case A, and the second sum to Case B. Since
f is smooth we can bound the first sum by

√
2M−

1
2
∑
n1 6=0
D|n1

|n1|
1
2 |f̂(n)| �f,R M

− 1
2D−R = N−

1
2D−R+ 1

2

for any R. Hence
√

2M−
1
2
∑
n1 6=0
D|n1

|n1|
1
2 |f̂(n)| �f N

− 1
2 .

The second sum in (5.8) is bounded by∑
n6=0

M |n1,n2

|f̂(n)| �f,R M
−R .

In particular the sum is empty for N large enough, if f is a polynomial,
because for α irrational, M grows with N (see Lemma 4.2). Thus we get
the second part of the proposition. 2

6 Lower Bounds

We begin with a result which implies that our bound on the rate of con-
vergence (Corollary 4.3) for badly approximable α is the optimal one:

Theorem 6.1. For any irrational α, there are arbitrarily large N , ap-
proximants |α− a/N | < 1/N and eigenfunctions ψ of Ua,N so that∣∣〈TN (2, 0)ψ,ψ〉

∣∣ = 1
2N1/4 .

Unlike badly approximable α’s, where we have an upper bound on
the rate of convergence of 1/N1/4 (Corollary 4.3), we can construct ir-
rationals for which the rate of convergence is arbitrarily slow, e.g. slower
then 1/ log log logN :

Theorem 6.2. Let g(x) be an increasing positive function. Then there is
an irrational α such that there are arbitrarily large values of N for which
there are normalized eigenfunctions ψ of Ua,N satisfying∣∣〈TN (2, 0)ψ,ψ〉

∣∣� 1
g(N) .

6.1 Constructing special eigenfunctions. In order to prove Theo-
rems 6.1 and 6.2, we first use the results of section 5 to construct special
eigenfunctions ψ for which the upper bound of Theorem 4.1 is optimal:
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Proposition 6.3. If D = gcd(a,N) > 2 and M = N/ gcd(a,N) is odd,
then there are normalized eigenfunctions ψ so that∣∣〈TN (2, 0)ψ,ψ〉

∣∣ = 1
2M1/2 . (6.1)

Proof. To construct ψ, we use the multiplicities in the spectrum: From the
formulas (5.3) for the eigenphases φη,l we see that φη,l = φη′,l′ mod 1 if and
only if (η′)2 = η2 mod D, and in addition

l′ = l − η2 − (η′)2

D
+ b(η − η′) mod M .

In particular the multiplicity of φη,l is exactly
#
{
η′ mod D′ : (η′)2 = η2 mod D

}
,

which is independent of l. As a special case, we have φ1,−b = φ−1,b if D > 2.
Now take

ψ = 1√
2
(ψ1,−b + ψ−1,b) . (6.2)

Then since ψ1,−b, ψ−1,b are orthonormal eigenfunctions with the same eigen-
phase, ψ is a normalized eigenfunction. We compute〈

TN (2, 0)ψ,ψ
〉

= 1
2

(
〈TN (2, 0)ψ1,−b, ψ1,−b〉+ 〈TN (2, 0)ψ1,−b, ψ−1,b〉

+ 〈TN (2, 0)ψ−1,b, ψ1,−b〉+ 〈TN (2, 0)ψ−1,b, ψ−1,b〉
)
. (6.3)

By Lemma 5.3, we have 〈TN (2, 0)ψη,l, ψη′,l′〉 = 0 unless η′+n1 = η mod
D. Thus in our case if D > 2 we see that all but the second summand in
(6.3) are zero. As for that second summand, we see from Lemma 5.3 that
in absolute value it equals∣∣〈TN (2, 0)ψ1,−b, ψ−1,b〉

∣∣ =
|G(−2b,−2b;M)|

M
,

where the Gauss sum G(−2b,−2b;M) is given by

G(−2b,−2b;M) =
∑

xmodM

e

(
−2b(x2 + x)

M

)
.

In particular, if M is odd then by Lemma 4.5 its absolute value is
√
M .

Thus we find that if M is odd then for our eigenfunction ψ in (6.2) we have∣∣〈TN (2, 0)ψ,ψ〉
∣∣ = 1

2M1/2 ,

as required. 2

6.2 Proof of Theorem 6.2. We require the following construction:
Lemma 6.4. Given an increasing positive function g(x), there is an
irrational α, which has approximants |α − a/N | < 1/N with arbitrarily
large N so that M = N/ gcd(a,N) is odd, and satisfying

M � g(N)2 .
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Once Lemma 6.4 is proved, we will then take ψ as in Proposition 6.3
and then since M is odd, (6.1) holds so that∣∣〈TN (2, 0)ψ,ψ〉

∣∣ = 1
2M1/2 � 1

g(N) ,

which will conclude the proof of Theorem 6.2. 2

6.3 Continued fractions. To prove Theorem 6.1 and Lemma 6.4, we
first review some basic facts about continued fractions; see [HaW] for de-
tails. Give a sequence of integers a0, a1, a2, . . . with ai ≥ 1 if i ≥ 1, consider
the (finite) continued fraction

[a0; a1, a2, . . . , an] = a0 +
1

a1 + 1
. . .+an

.

The “partial convergents” pn, qn are defined through the recursion

pn+1 = an+1pn + pn−1 , qn+1 = an+1qn + qn−1 , n ≥ 1 (6.4)

with initial conditions p0 = a0, q0 = 1, p1 = a1a0 + 1, q1 = a1. We have
pn
qn

= [a0; a1, a2, . . . , an] .

The partial convergents satisfy the relation

pnqn−1 − pn−1qn = (−1)n−1,

from which it follows that pn and qn are co-prime, and that qn−1 and qn are
co-prime. In particular at least one of qn−1, qn is odd. Another consequence
is

pn
qn
− pn−1

qn−1
=

(−1)n−1

qn−1qn
. (6.5)

We now construct the continued fraction α := [a0; a1, a2, . . . ] as the
limit

α := [a0; a1, a2, . . . ] = a0 +
1

a1 + 1

a2+
. . .

= lim
n→∞

pn
qn

(the limit exists by virtue of (6.5)). It defines an irrational number.
Conversely, for any irrational α, set α0 = α, and for n ≥ 0 define

integers an and reals αn+1 > 1 by αn = an + 1/αn+1. The integers an are
called the “partial quotients” of α, and are positive if n ≥ 1. Then

α = [a0; a1, a2, . . . , an−1 +
1
αn

] = a0 +
1

a1 +
.. . + 1

an−1+ 1
αn

.

We have
α =

αn+1pn + pn−1

αn+1qn + qn−1
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and
α− pn

qn
=

(−1)n

qn(αn+1qn + qn−1)
.

In particular, since αn+1 > an+1 and qn ≥ 1 one gets∣∣∣∣α− pn
qn

∣∣∣∣ < 1
an+1q2

n

. (6.6)

6.4 Proof of Theorem 6.1. By Proposition 6.3, given α it suffices
to find arbitrarily large N and approximants |α − a/N | < 1/N so that
M = N/ gcd(a,N) is odd and satisfies N = M2. To do so, let b/M = pn/qn
be a partial convergent with M = qn odd. Since at least one of qn−1, qn is
odd, there are infinitely many such M . Set

N := q2
n = M2 , a := pnqn ,

so that D := gcd(a,N) = qn. We have∣∣α− a
N

∣∣ =
∣∣α− pn

qn

∣∣ < 1
q2
n

= 1
N ,

so all our requirements are satisfied. This proves Theorem 6.1. 2

6.5 Proof of Lemma 6.4. We begin with a construction of an irra-
tional:

Lemma 6.5. Given any positive increasing function F (x) there is an
irrational α so that there are arbitrarily large qn and approximants pn/qn
so that F (qn) ≤ an+1q

2
n and ∣∣α− pn

qn

∣∣ < 1
F (qn) .

Moreover, we can require that qn are all odd.

Proof. We define α through its continued fraction expansion, that is via
the partial quotients an. Set a0 = 0, and a1 ≥ 1 to be an integer with a1 ≥
F (1). We define the partial quotients ai inductively: Given a0, a1, . . . , an,
we get the partial convergents pn, qn, and now choose an+1 to be an integer
so that an+1 ≥ F (qn)/q2

n. Set α = [a0; a1, a2, . . . ]. Then from (6.6)∣∣∣∣α− pn
qn

∣∣∣∣ < 1
an+1q2

n

≤ 1
F (qn)

,

by our choice of an+1. Since at least one of every pair of consecutive qn is
odd, we get infinitely many pn/qn satisfying our requirements. 2

To conclude the proof of Lemma 6.4, that is to find the required α, set
G = g2, which is increasing. Then let F = G−1 be the inverse function to
G which exists since G is increasing, and is positive.
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Using Lemma 6.5, we construct an irrational α whose partial conver-
gents satisfy ∣∣∣∣α− pn

qn

∣∣∣∣ < 1
an+1q2

n

≤ 1
F (qn)

.

Now take n so that qn is odd (there are infinitely many such n) and set
M := qn, b := pn (these are co-prime), and

N = an+1q
2
n , a = an+1qnpn

so that D := gcd(a,N) = an+1qn, and |α − a/N | < 1/N . Finally, M ≤
G(N) = g(N)2 because F (qn) ≤ an+1q

2
n = N and since G is increasing,

M = qn = G(F (qn)) ≤ G(N) = g(N)2 as required. 2
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[C] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien,

Comm. Math. Phys. 102 (1985), 497–502.
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