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Abstract: We study eigenfunction localization for higher dimensional cat maps, a pop-
ular model of quantum chaos. These maps are given by linear symplectic maps in
Sp(2g, Z), which we take to be ergodic. Under some natural assumptions, we show
that there is a density one sequence of integers N so that as N tends to infinity along
this sequence, all eigenfunctions of the quantized map at the inverse Planck constant N
are uniformly distributed. For the two-dimensional case (g = 1), this was proved by
Kurlberg and Rudnick (Duke Math J 103:47–78, 2000). The higher dimensional case
offers several new features and requires a completely different set of tools, including
from additive combinatorics, such as a bound of Bourgain (J Am Math Soc 18:477–499,
2005) for Mordell sums, and a study of tensor product structures for the cat map, which
has never been exploited in this context.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Quantum ergodicity and the quantized cat map . . . . . . . . . . . . . 2
1.2 Higher dimensional cat maps . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Plan of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. A Chinese Remainder Theorem for the Operators TN (n) . . . . . . . . . . 6
2.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Chinese Remainder Theorem and a tensor product structure . . . 7
2.3 Factorization of the quantized map . . . . . . . . . . . . . . . . . . . 8

3. Bounding TN via the Tensor Product Structure . . . . . . . . . . . . . . . 9
3.1 Basic properties of tensor products . . . . . . . . . . . . . . . . . . . 9
3.2 Eigenspace decomposition in the coprime case . . . . . . . . . . . . . 9
3.3 Bounds using the tensor product structure . . . . . . . . . . . . . . . 10

4. Congruences and Exponential Sums . . . . . . . . . . . . . . . . . . . . . 11

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-025-05350-1&domain=pdf
http://orcid.org/0000-0002-5246-9391


174 Page 2 of 29 P. Kurlberg, A. Ostafe, Z. Rudnick, I. E. Shparlinski

4.1 Reduction to a counting problem . . . . . . . . . . . . . . . . . . . . 11
4.2 Linear independence of matrix powers . . . . . . . . . . . . . . . . . 12
4.3 Reduction to a system of exponential equations . . . . . . . . . . . . 13

5. Multiplicative Orders and Exponential Sums . . . . . . . . . . . . . . . . 14
5.1 Ergodicity and the order modulo p . . . . . . . . . . . . . . . . . . . 14
5.2 Relation with short exponential sums . . . . . . . . . . . . . . . . . . 16

5.3 Bounding 〈T(r)
p (n)ψ,ψ ′〉 for a positive proportion of primes . . . . . 17

6. Treatment of Zero-Divisors . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Remarks on symplectic spaces . . . . . . . . . . . . . . . . . . . . . 18
6.3 Quantized cat maps and tensor products revisited . . . . . . . . . . . 18
6.4 Eigenfunctions of tensor products . . . . . . . . . . . . . . . . . . . 20

7. Anatomy of Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1 Some sums and products over primes . . . . . . . . . . . . . . . . . . 22
7.2 Good primes and integers . . . . . . . . . . . . . . . . . . . . . . . . 24

8. Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1. Introduction

1.1. Quantum ergodicity and the quantized cat map. Eigenfunction localization is one
of the central topics of Quantum Chaos. In this paper, we examine this question for
an important “toy model”, the quantized cat map [12], aiming for higher dimensional
maps. Our techniques, after a preliminary reduction, combine analytic number theory
and additive combinatorics.

Denote by Sp(2g, Z) the group of all integer matrices Awhich preserve the symplectic
form

ω(x, y) = x1 · y2 − x2 · y1, (1.1)

with x = (x1, x2), y = (y1, y2) ∈ R
g × R

g . Any A ∈ Sp(2g, Z) generates a classical
dynamical system via its action on the torus T

2g = R
2g/Z

2g . We say that this dynamical
system is ergodic if for almost all initial positions x ∈ T

2g , the orbit {A jx : j ≥ 0} is
uniformly distributed in T

2g . This is equivalent to A having no eigenvalues which are
roots of unity, see [11].

Associated to any A ∈ Sp(2g, Z) is a quantum mechanical system. We briefly recall
the key definitions: One constructs for each integer N ≥ 1 (the inverse Planck constant,
necessarily an integer here) a Hilbert space of states HN = L2((Z/NZ)g) equipped
with the scalar product

〈ϕ1, ϕ2〉 = 1

Ng

∑

u∈(Z/NZ)g

ϕ1(u)ϕ2(u), ϕ1, ϕ2 ∈ HN .

The basic observables are given by the unitary operators

TN (n) : HN → HN , n = (n1,n2) ∈ Z
g × Z

g = Z
2g,

as follows

(TN (n)ϕ) (Q) = e2N (n1 · n2) eN (n2 · Q)ϕ(Q + n1), (1.2)
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where hereafter we always follow the convention that integer arguments of functions on
Z/NZ are reduced modulo N (that is, ϕ(Q+n1) = ϕ(Q+ (n1 mod N ))). It is also easy
to verify that (1.2) implies

TN (m) TN (n) = e2N (ω (m,n)) TN (m + n),

where ω (m,n) is defined by (1.1) and

e(z) = exp (2π i z) , ek(z) = e(z/k),

see also [19, Equation (2.6)].
For each real-valued function f ∈ C∞(T2g) (an “observable”), one associates a

self-adjoint operator OpN ( f ) on HN , analogous to a pseudo-differential operator with
symbol f , defined by

OpN ( f ) =
∑

n∈Z2g

f̂ (n) TN (n), (1.3)

where
f (x) =

∑

n∈Z2g

f̂ (n) e(n · x). (1.4)

Assuming A = I mod 2 (this condition can be weakened, see, for example, the
definition of the subgroup Spϑ(2g, Z) of Sp(2g, Z) as in [16, p. 817], where d is used
instead of g),

for each value of the inverse Planck constant N ≥ 1, there is a unitary operator
UN (A) on HN , unique up to scalar multiples, which generates the quantum evolution,
in the sense that for every observable f ∈ C∞(T2g), we have the exact Egorov property

UN (A)∗ OpN ( f )UN (A) = OpN ( f ◦ A), (1.5)

where UN (A)∗ = UN (A)
t
, we refer to [18,23] for a detailed exposition in the case

g = 1 and [16] for higher dimensions.
The stationary states of the system are the eigenfunctions of UN (A) and one of the

main goals is to study their localization properties. In particular, given any normalized
sequence of eigenfunctions ψN ∈ HN , we ask if the expected values of observables in
these eigenfunctions converge, as N → ∞, to the classical average (see § 2.1 for precise
definitions), that is, that

lim
N→∞〈OpN ( f )ψN , ψN 〉 =

∫

T2g
f (x)dx (1.6)

for all f ∈ C∞(T2g), in which case we say that the sequence of eigenfunctions {ψN } is
uniformly distributed.

A fundamental result is the Quantum Ergodicity Theorem [4,25,28], valid in great
generality, which in our setting asserts that if A is ergodic, then for any orthonormal
basis ΨN = {ψ j,N : j = 1, . . . , Ng} of eigenfunctions of UN (A) in HN , there is a
subset S ⊆ {1, . . . , Ng} with asymptotic density one (that is, �S/Ng → 1, where �S
denotes the cardinality of S) so that ψ j,N are uniformly distributed for all j ∈ S, see [3].
If all eigenfunctions are uniformly distributed, the system is said to exhibit Quantum
Unique Ergodicity [24]. In fact, more generally,



174 Page 4 of 29 P. Kurlberg, A. Ostafe, Z. Rudnick, I. E. Shparlinski

setting

	A( f, N ) = max
ψN ,ψ ′

N

∣∣∣∣〈OpN ( f )ψN , ψ ′
N 〉 − 〈ψN , ψ ′

N 〉
∫

T2g
f (x)dx

∣∣∣∣ ,

the maximum taken over all pairs of normalized eigenfunctions ψN , ψ ′
N of UN (A), we

ask if for all f ∈ C∞(T2g),
lim

N→∞
N∈N

	A( f, N ) = 0, (1.7)

where N is a set of integers of asymptotic density 1 (that is, #(N ∩ [1, x]) = x + o(x)
as x → ∞).

Remark 1.1. It is interesting to note that even if we are mainly interested in scarring (that
is, decay of diagonal matrix coefficients corresponding to ψ ′

N = ψN in the above defi-
nition of 	A( f, N ) and establishing (1.6)), for the full argument we still need estimates
for off-diagonals coefficients of the “nontrivial” tensor component in § 6.4.

The two-dimensional (g = 1) cat map is where the first counterexamples (“scars”) to
QUE have been proved to exist [9], associated with the N , where the period ord(A, N ) of
the classical map reduced modulo N was almost minimally small, about 2 log N/ log λ,
where λ > 1 is the largest eigenvalue of A. We note that the relevance of the classical
period to the quantum system was recognized early on in the theory [5,12,15]. In [19],
it was shown that if ord(A, N ) was somewhat larger than N 1/2 (and N satisfies a further
genericity condition), then all eigenfunctions in HN are uniformly distributed. Note that
the condition holds for almost all primes [7]. Separately, it was shown that ord(A, N )

is sufficiently large for almost all integers N .
A breakthrough was made by Bourgain [2], who showed that when N = p is prime

(that, and the prime power, cases are the basic building block for the theory since the
quantization with respect to composite moduli arise as tensor products of quantizations
with respect to prime power moduli), for all eigenfunctions to be uniformly distributed
it suffices to take ord(A, p) > pε, for some ε > 0, a condition that is much easier to
establish than a bound bigger than p1/2. This allowed Bourgain [2] to give a polynomial
rate of convergence for a version of (1.7) over a sequence of almost all integers: for some
δ > 0, for almost all N we have 	A( f, N ) � N−δ . Using a different approach, in [20]
it is shown that one can take any δ < 1/60.

1.2. Higher dimensional cat maps. Higher dimensional cat maps offer several more
challenges. In particular, we address the analogue of [19], namely all eigenfunctions
in HN being uniformly distributed for almost all integers N . We do not discuss other
aspects of localizations, such as entropy bounds [8,22] and showing that all semiclassical
measures have full support [6,17,26].

In higher dimensions (that is, for g > 1), there is a significant change. Kelmer [16]
has shown that if A has nontrivial invariant rational istropic subspaces, then for all N ,
uniform distribution (1.7) fails – there are so-called scars.

So we assume that there are no nontrivial invariant rational isotropic subspaces. We
want to find a full density sequence N of integers N for which all eigenfunctions of
UN (A) are uniformly distributed, that is, if we fix f ∈ C∞(T2g) then we have (1.7). If
this holds for all f then we say that A satisfies QUE for the subsequence N .
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Recall that we assume ergodicity, equivalently, that the eigenvalues of A ∈ Sp(2g, Z)

are not roots of unity. For our results, we need to impose a further condition on A, that no
ratio of distinct eigenvalues is a root of unity. In addition, we assume that the characteristic
polynomial f A(x) = det(x I − A) ∈ Z[x] is separable (that is, has no multiple roots)

Our main result establishes (1.7) for almost all integers under the above conditions
on A:

Theorem 1.2. Let A ∈ Sp(2g, Z), with a separable characteristic polynomial, be such
that no ratio of distinct eigenvalues is a root of unity. Assume further that there are no
nontrivial A-invariant rational isotropic subspaces. Then A satisfies QUE as in (1.7)
for some set N of asymptotic density 1.

One can show that if the characteristic polynomial of A is irreducible, then there are
no nontrivial A-invariant rational subspaces.

1.3. Plan of the proof. We establish Theorem 1.2 via the following sequences of steps.

(i) To prove (1.7), it suffices to show it for the basic observables (translation op-
erators) TN (n) = OpN ( f ), f (x) = e (x · n) (see also (1.3)), with frequency n
growing slowly with N .

Assume that the characteristic polynomial f A(x) = det(x I − A) is irreducible
over the rationals. Then we reduce the problem of estimating high powers∣∣∣〈TN (n)ψ,ψ ′〉

∣∣∣
4ν

of the matrix elements for all normalized eigenfunctions ψ,ψ ′,
to a problem of estimating the number of solutions to the matrix congruence

Ak1 + . . . + Ak2ν − A�1 − . . . − A�2ν ≡ O mod N ,

for the zero matrix O with 1 � ki , �i � ord(A, N ), i = 1, . . . , 2ν, see Lemmas 4.1
and 4.3 (since indeed f A(x) being irreducible implies there is no nontrivial zero-
divisor in Q

2g).
(ii) In turn, this number can be treated by exponential sums. However this reduction

does not work directly due to the lack of nontrivial bounds on such sums except
when N = p is a prime, modulo which the characteristic polynomial of A splits
completely, in which case we can apply a striking result of Bourgain [1] on short
“Mordell sums". The result, roughly speaking, is that there is some γ > 0 so that
for almost all split primes p,

max
ψ,ψ ′

∣∣〈Tp(n)ψ,ψ ′〉∣∣ � p−γ . (1.8)

(iii) To take advantage of the bound (1.8) for split primes, we prove that the operators
TN (n) have a tensor product structure with respect to the Chinese Remainder The-
orem, however with some losses depending on certain greatest common divisors.
Thus we deal with the operators Tp(n) via exponential sums and use the trivial
bound

∣∣〈TM (n)ψ,ψ ′〉∣∣ � 1,

where M is the largest divisor of N without split prime factors.
(iv) Finally, using some results from the anatomy of integers (§ 7) we show that for

almost all integers N , the saving we obtain from the split primes p | N , exceeds
the losses we incur in our version of the Chinese Remainder Theorem.
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(v) When the characteristic polynomial f A(x) of A is reducible, but separable, we
require extra consideration, as the reduction to counting solutions of matrix con-
gruences fails when n is a non-trivial zero-divisor. We make use of an additional
tensor structure to reduce to the setting of congruences for a smaller dimensional
case, see § 6 for details.

1.4. Notation. Throughout the paper, the notations

X = O(Y ), X � Y, Y � X

are all equivalent to the statement that the inequality |X | � cY holds with some constant
c > 0, which may depend on the matrix A, and occasionally, where obvious also on the
real parameter ε.

We recall that the additive character with period 1 is denoted by

z ∈ R �→ e(z) = exp (2π i z) .

For an integer k � 1 it is also convenient to define

ek(z) = e(z/k).

The letter p, with or without indices, always denotes prime numbers.
Given an algebraic number γ we denote by ord(γ, N ) its order modulo N (assuming

that the ideals generated by γ and N are relatively prime in an appropriate number field).
In particular, for an element λ ∈ Fps , ord(λ, p) represents the order of λ in Fps .

Similarly, we use ord(A, N ) to denote the order of A modulo N (which always exists
if gcd(det A, N ) = 1 and in particular for A ∈ Sp(2g, Z)).

For a finite set S we use �S to denote its cardinality.
As usual, we say that a certain property holds for almost all elements of an infinite

sequence sn , n = 1, 2, . . ., if it fails for o(x) terms with n � x , as x → ∞. In particular,
we say that it holds for almost all primes p and positive integers N if for x → ∞, it fails
for o(x/ log x) primes p � x and o(x) positive integers integers N � x , respectively.

Similarly, we say that a certain property holds for a positive proportion of primes p
or, equivalently for a set of positive density, if for some constant c > 0, which throughout
this work may depend on the matrix A, for all sufficiently large x it holds for at least
cx/ log x primes p � x .

2. A Chinese Remainder Theorem for the Operators TN (n)

2.1. Observables. We begin by defining the mixed translation operators. Given r ∈ Z,
coprime to N , and n = (n1,n2) ∈ Z

g × Z
g = Z

2g , we define a unitary operator
T(r)
N (n) : HN → HN by

(
T(r)
N (n)ϕ

)
(Q) = e2N (rn1 · n2) eN (rn2 · Q)ϕ(Q + n1).

We have
T(r)
N (m) T(r)

N (n) = e2N (rω (m,n)) T(r)
N (m + n), (2.1)

where ω (m,n) is defined by (1.1). In particular, taking powers gives
(

T(r)
N (n)

)k = T(r)
N (kn).
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The canonical commutation relations can be encapsulated in the relations

T(r)
N (n) T(r)

N (m) = eN (rω (n,m)) T(r)
N (m) T(r)

N (n)

and

(T(r)
N (n))N = T(r)

N (Nn) = (−1)r Nn1·n2 I, n = (n1,n2).

For each function f ∈ C∞(T2g) on the classical phase space (an “observable”), one
associates an operator OpN ,r ( f ) on HN , analogous to a pseudo-differential operator
with symbol f , by

OpN ,r ( f ) =
∑

n∈Z2g

f̂ (n) T(r)
N (n),

where f̂ (n) are defined by (1.4). If f is real valued, then OpN ,r ( f ) is self-adjoint.

When r = 1, we recover the definitions of TN = T(1)
N and OpN = OpN ,1 in (1.2)

and (1.3), respectively.
Let A ∈ Sp(2g, Z), satisfying the parity condition A = I mod 2. Fix N ≥ 1 and r

coprime to N . Then there is a unitary operator UN ,r (A) : HN → HN , unique up to a
scalar multiple, so that we have the exact Egorov property

UN ,r (A)∗ T(r)
N (n)UN ,r (A) = T(r)

N (nA), (2.2)

fo all n ∈ Z
2g , which is a full analogue of (1.5).

2.2. The Chinese Remainder Theorem and a tensor product structure. Assume that the
inverse Planck constant N factors as N = N1 · N2 with N1, N2 coprime. We then use
the Chinese Remainder Theorem ι : Z/NZ ∼= Z/N1Z⊕Z/N2Z to get an isomorphism

ι∗ : L2((Z/N1Z)g) ⊗ L2((Z/N2Z)g) = HN1 ⊗ HN2
∼= HN = L2((Z/NZ)g)

so that
ι∗(ϕ1 ⊗ ϕ2)(Q) = ϕ1(Q mod N1) · ϕ2(Q mod N2). (2.3)

The tensor product HN1 ⊗ HN2 carries the inner product

‖ϕ1 ⊗ ϕ2‖ = ‖ϕ1‖ · ‖ϕ2‖
and ι∗ is actually an isometry, because it maps the orthonormal basis of tensor products
of normalized delta functions to normalized delta functions:

ι∗
(
Ng/2

1 δu ⊗ Ng/2
2 δv

)
= Ng/2δw

where w = u mod N1, w = v mod N2.
Assume N = N1 · N2 with N1 > 1, N2 > 1 coprime. Fix nonzero r1, r2 ∈ Z so that

N2r2 + N1r1 = 1. (2.4)

Necessarily r2 is coprime to N1 and r1 is coprime to N2.
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Lemma 2.1. For n = (n1,n2) ∈ Z
g × Z

g, the mixed translation operator TN (n) =
T(1)
N (n) is mapped, via the isomorphism ι∗, to T(r2)

N1
(n) ⊗ T(r1)

N2
(n):

TN (n)ι∗ (ϕ1 ⊗ ϕ2) = ι∗
((

T(r2)
N1

(n)ϕ1

)
⊗

(
T(r1)
N2

(n)ϕ2

))
.

Proof. Inserting (2.4) gives

e2N (n1 · n2) = e
(

(N2r2 + N1r1)n1 · n2

2N1N2

)

= e
(
r2n1 · n2

2N1

)
e
(
r1n1 · n2

2N2

)

and for y ∈ (Z/NZ)g ,

eN (n2 · y) = e
(

(N2r2 + N1r1)n2 · y
N1N2

)

= e
(
r2n2 · y

N1

)
· e

(
r1n2 · y

N2

)
.

By definition (1.2),

{TN (n)ι∗(ϕ1 ⊗ ϕ2)}(y) = e2N (n1 · n2) eN (n2 · y)ι∗(ϕ1 ⊗ ϕ2)(y + n1)

so that, using (2.3), we obtain

{TN (n)ι∗(ϕ1 ⊗ ϕ2)}(y) = e2N (n1 · n2) eN (n2 · y)ι∗(ϕ1 ⊗ ϕ2)(y + n1)

= e
(
r2n1 · n2

2N1

)
e

(
r2n2 · y

N1

)
ϕ1(y + n1)

· e
(
r1n1 · n2

2N2

)
e
(
r1n2 · y

N2

)
ϕ2(y + n1)

=
(

T(r2)
N1

(n)ϕ1

)
(y) ·

(
T(r1)
N2

(n)ϕ2

)
(y)

= ι∗
((

T(r2)
N1

(n) ⊗ T(r1)
N2

(n)
)

(ϕ1 ⊗ ϕ2)
)

(y)

as claimed. ��

2.3. Factorization of the quantized map. We continue to assume a factorization of N =
N1 · N2 with N1 > 1, N2 > 1 coprime, and such that r1, r2 satisfy (2.4). Then the
Chinese Remainder Theorem induces an isometry

HN � HN1 ⊗ HN2 ,

which is respected by the translation operators (see Lemma 2.1). Furthermore, from now
on, we identify the spaces HN and HN1 ⊗HN2 and thus we do not use the isomorphism
map ι∗ anymore. We argue that we get a corresponding factorization of the quantized
map UN (A) = UN ,1(A) defined by (1.5) as a tensor product:
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Lemma 2.2. There is some ζ ∈ C, with |ζ | = 1, such that we have a factorization

UN (A) = ζUN1,r2(A) ⊗UN2,r1(A).

Proof. We saw in Lemma 2.1 that

TN (nA) = T(r2)
N1

(nA) ⊗ T(r1)
N2

(nA).

By (2.2), we have

T(r2)
N1

(nA) = UN1,r2(A)∗ T(r2)
N1

(n)UN1,r2(A)

and

T(r1)
N2

(nA) = UN2,r1(A)∗ T(r1)
N2

(n)UN2,r1(A).

Hence Ũ = UN1,r2(A) ⊗UN2,r1(A) satisfies

Ũ∗ TN (n)Ũ = Ũ∗ (
T(r2)
N1

(n) ⊗ T(r1)
N2

(n)
)
Ũ

= T(r2)
N1

(nA) ⊗ T(r1)
N2

(nA) = TN (nA)

for all n ∈ Z
2g . Since UN (A) is the unique (up to a scalar multiple) unitary operator

satisfying this relation, we must have that Ũ is a scalar multiple, of absolute value one,
of UN (A). ��

3. Bounding TN via the Tensor Product Structure

3.1. Basic properties of tensor products. We first recall a useful identity regarding oper-
ator norms of tensor products. Let V,W be finite dimensional inner product spaces, let
TV : V → V and TW : W → W be linear maps, and let ‖ TV ‖ and ‖ TW ‖ denote the
operator norms of TV and TW , respectively. There is a natural inner product on the tensor
product V ⊗ W — given orthonormal bases {v1, . . . , vn} and {w1, . . . , wm} for V,W ,
respectively, declare {vi ⊗ w j }1�i�n,1� j�m to be an orthonormal basis for V ⊗W . We
then have the relation

‖ TV ⊗ TW ‖ = ‖ TV ‖ · ‖ TW ‖, (3.1)

between the operator norms (cf. [21, Page 299, Proposition]).

3.2. Eigenspace decomposition in the coprime case. Assume that TV and TW are both
diagonalizable, with eigenvalues being roots of unity (in particular there exists, say
minimal, integers t1, t2 > 0 such that Tt1

V = IV and Tt2
W = IW , where IV and IW are the

corresponding identity operators; note that we do not assume that TV and TW have the
same dimensions).

The eigenspaces of TV ⊗ TW are particularly easy to describe in terms of the eigen-
spaces of TV and TW when gcd(t1, t2) = 1. Namely, let {Vi }i denote the eigenspaces
of TV , and let {Wj } j denote the eigenspaces of TW ; here we allow both TV , TW to
have eigenvalues with multiplicities. The eigenspaces of TV ⊗ TW are then given by
{Vi⊗Wj }i, j . Further, if the eigenvalue associated withVi is denotedμi and the eigenvalue
associated with Wj is denoted by ν j , all eigenvalues of TV ⊗ TW are of the form λi, j =
μiν j . In particular, if gcd(t1, t2) = 1 we find that μi1ν j1 = μi2ν j2 implies that i1 = i2
and j1 = j2. Informally, all multiplicities arise by combining multiplicities from the
Vi ,Wj eigenspaces (note that this is not true if gcd(t1, t2) > 1).
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3.3. Bounds using the tensor product structure. We now bound matrix coefficients of
the special form 〈TN (n)ψ,ψ ′〉, where, as in § 1.3,

TN (n) = OpN ( e (x · n))

and ψ,ψ ′ are eigenfunctions of UN (A).
Let B be an element of Sp(2g, Z). Assume that N = N1N2 with coprime integers

N1 > 1, N2 > 1. Let ti denote the order of B mod Ni , i = 1, 2. Further assume that

gcd(t1, t2) = 1. (3.2)

Let r1, r2 ∈ Z satisfy (2.4). Taking A = B in Lemmas 2.1 and 2.2, we find that

TN (n) = T(r2)
N1

(n) ⊗ T(r1)
N2

(n) and UN (B) = ζUN1,r2(B) ⊗UN2,r1(B)

for some ζ ∈ C
∗ with |ζ | = 1.

Lemma 3.1. Let ψ,ψ ′ denote norm one eigenfunctions of UN (B). With assumptions as
above, we then have

|〈TN (n)ψ,ψ ′〉| � max
ϕ,ϕ′∈�N1,r2

|〈T(r2)
N1

(n)ϕ, ϕ′〉|,

where �N1,r2 denotes the set of all eigenfunctions of UN1,r2(B) of norm one.

Proof. Let E, E ′ denote the eigenspaces ofUN (B) containing ψ,ψ ′, and let λ, λ′ denote
the corresponding eigenvalues.

By the discussion in § 3.2, we have

E = V1 ⊗ V2, (3.3)

where V1 and V2 are eigenspaces ofUN1,r2(B) andUN2,r1(B), respectively, and similarly
we have E ′ = V ′

1 ⊗V ′
2. Thus, if we let S = PE ′ TN (n)PE , with PE : HN → E denoting

the orthogonal projection onto E (and similarly for PE ′ ), we have

max
ψ∈E, ψ ′∈E ′,
‖ψ‖=‖ψ ′‖=1

|〈TN (n)ψ,ψ ′〉| = ‖S‖. (3.4)

Now, the decomposition (3.3) and Lemma 2.1, after a simple calculation, give that

S = S1 ⊗ S2 (3.5)

where S1 = PV ′
1

T(r2)
N1

(n)PV1 and S2 = PV ′
2

T(r1)
N2

(n)PV2 . Since both S1, S2 arise as

compositions of the unitary maps T(r2)
N1

(n), T(r1)
N2

(n) with orthogonal projections, they
are both sub-unitary, and we have the trivial bounds ‖S1‖, ‖S2‖ � 1. Thus, by the
operator norm identity of tensor products (3.1), we see from (3.5) that

‖S‖ = ‖S1‖ · ‖S2‖ � ‖S1‖.
Using this, together with

‖S1‖ = max
ϕ∈V1,ϕ

′∈V ′
1‖ϕ‖=‖ϕ′‖=1

|〈T(r2)
N1

(n)ϕ, ϕ′〉|,

and recalling (3.4), the result now follows. ��
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We now consider a more general case when instead of the coprimality condition (3.2)
we have

gcd(t1, t2) = d.

Since any eigenfunction of UN (A) is an eigenfunction for UN
(
Ad

)
for any integer

d > 0, we have

max
ψ,ψ ′∈�N

|〈TN (n)ψ,ψ ′〉| � max
ψ̃,ψ̃ ′∈�̃N ,d

|〈TN (n)ψ̃, ψ̃ ′〉|, (3.6)

where �N and �̃N ,d denote the set of normalized eigenfunctions ofUN (A) andUN (Ad),
respectively.

4. Congruences and Exponential Sums

4.1. Reduction to a counting problem. For a (row) vector n ∈ Z
2g , n �= 0 mod N , we

denote by Q2ν(N ;n) the number of solutions of the congruence

n
(
Ak1 + . . . + Ak2ν − A�1 − . . . − A�2ν

)
≡ 0 mod N , (4.1)

with 1 � ki , �i � ord(A, N ), i = 1, . . . , 2ν.
The key inequality below connects the 4ν-th moment associated to the basic observ-

ables T(r)
N (n) with the number of solutions to the system (4.1). This kind of inequality

(for ν = 1) underlies the argument of [19], and also the argument of [2].

Lemma 4.1. Let 0 �= n ∈ Z
2g and let r be an integer coprime to N. Then

max
ψ,ψ ′

∣∣∣〈T(r)
N (n)ψ,ψ ′〉

∣∣∣
4ν

� Ng Q2ν(N ;n)

ord(A, N )4ν
, (4.2)

where the maximum is taken over all pairs of normalized eigenfunctions of UN ,r (A).

Proof. We abbreviate τ = ord(A, N ). Given a pair (ψ,ψ ′)of normalized eigenfunctions
of UN ,r (A) with eigenvalues λ, λ′, put μ = λ′/λ and note that μ is a root of unity (since
λ and λ′ are). Let

D(n) = 1

τ

τ∑

i=1

UN ,r (A)−i T(r)
N (n)UN ,r (A)iμi = 1

τ

τ∑

i=1

T(r)
N (nAi )μi

be the μ-twisted time averaged observable, where the last equality comes from (2.2).
Then for any pair of eigenfunctions (ψ,ψ ′) of UN ,r (A), with eigenvalues λ and λ′, we
have

〈T(r)
N (n)ψ,ψ ′〉 = 〈D(n)ψ,ψ ′〉,

see also the proof of [19, Proposition 4]. Put H(n) = D(n)∗D(n); note that H(n) is
Hermitian. Clearly

|〈D(n)ψ,ψ ′〉| � ‖D(n)‖ = ‖H(n)‖1/2,



174 Page 12 of 29 P. Kurlberg, A. Ostafe, Z. Rudnick, I. E. Shparlinski

where ‖H(n)‖ denotes the operator norm of H(n). Therefore for any ν ≥ 1,

|〈T(r)
N (n)ψ,ψ ′〉|4ν � ‖H(n)‖2ν = ‖H(n)ν‖2.

We bound the operator norm by the Hilbert–Schmidt norm and obtain

‖H(n)ν‖2 � ‖H(n)ν‖2
HS = tr((H(n)ν)∗H(n)ν) = tr(H(n)2ν),

where tr denotes the operator trace. Finally, compute

H(n)2ν = 1

τ 4ν

τ∑

k1,...,k2ν ,�1...,�2ν=1

×
2ν∏

j=1

(
T(r)
N

(
nAk j

)
T(r)
N

(
−nA� j

))
μ

∑2ν
j=1(k j−� j )

= 1

τ 4ν

τ∑

k1,...,k2ν ,�1...,�2ν=1

γ (k, �, μ) T(r)
N

⎛

⎝n
2ν∑

j=1

(
Ak j − A� j

)
⎞

⎠

with some complex coefficients γ (k, �, μ), satisfying |γ (k, �, μ)| = 1, where k =
(k1, . . . , k2ν) and � = (�1 . . . , �2ν), and where the last equality comes from (2.1).
Taking the trace and using

| tr T(r)
N (m)| =

{
Ng if m = 0 mod N ,

0 otherwise,

we find
∣∣∣〈T(r)

N (n)ψ,ψ ′〉
∣∣∣
4ν

� tr
(
H(n)2ν

)
� Ng

τ 4ν
Q2ν(N ;n)

which concludes the proof. ��
Remark 4.2. If the right hand side of (4.2) tends to zero, then (1.7) is satisfied, that is, all
eigenfunctions of UN (A) are uniformly distributed, and more generally, all off-diagonal
matrix coefficients tend to zero. Thus Lemma 4.1 reduces the problem (1.7) to a purely
arithmetic issue.

4.2. Linear independence of matrix powers. The primal goal of this section is to show
that if the characteristic polynomial f A of A is separable over Q we can essentially
eliminate the dependence on the vector n in our argument, except in some special cases.
In particular, instead of Q2ν(N ;n) we can consider the number of solutions of the
congruence

Ak1 + . . . + Ak2ν ≡ A�1 + . . . + A�2ν mod N , (4.3)

with 1 � ki , �i � ord(A, N ), i = 1, . . . , 2ν. This is based on the following result which
is also used in our bounds on exponential sums. However, we first need to introduce the
notion of zero-divisors amongst the row vectors n ∈ Z

2g . For this we first identify
Q

2g ∼= Q[X ]/( f A(X)) as a Q[A] module. We say that n is a zero-divisor, if its image
ñ ∈ Q[X ]/( f A(X)) is a zero-divisor in this module (we follow the convention that zero
is also a zero divisor, call all other zero divisors nontrivial.)
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Lemma 4.3. Let A ∈ Sp(2g, Z) have a separable characteristic polynomial. Then for
any row vector n ∈ Z

2g, which is not a zero-divisor, we have:

(i) the vectors n,nA, . . . ,nA2g−1 are linearly independent;
(ii) there exists some p0(A), depending only on A, such that for all primes p > p0(A)

‖n‖2g
2 , the vectors n,nA, . . . ,nA2g−1 are linearly independent modulo p.

Proof. In the case when the characteristic polynomial is irreducible, Part (i) is proved
in [19, page 210] (for n = 2) and in the proof of [20, Theorem 2.5] (which is done over
a finite field but it remains valid over any field).

In our more general case of separability, assume that the vectorsnAi , i = 0, . . . , 2g−
1, are linearly dependent over Q, that is, there is a linear relation

2g−1∑

i=0

cinAi = n

⎛

⎝
2g−1∑

i=0

ci A
i

⎞

⎠ = 0

for some ci ∈ Q not all zero. Since n is not a zero-divisor, we obtain

2g−1∑

i=0

ci A
i = 0.

However, this shows that the minimal polynomial of A has degree at most 2g − 1,
which contradicts the fact that the minimal polynomial is f A since it is separable. This
concludes the proof of Part (i).

To show Part (ii) one considers the determinant of the matrix having rows n, . . . ,

nA2g−1 whose vanishing is equivalent to linear independence; it is an integer, nonzero
by Part (i), hence for all primes p not dividing it we have linear independence mod p. ��

4.3. Reduction to a system of exponential equations. We now consider (4.1) for a prime
N = p.

Let A ∈ Sp(2g, Z) have separable characteristic polynomial f A ∈ Z[X ]. Assume
that p is large enough so that f A is separable modulo p, which also implies that A is
diagonalisable over Fp.

Next, let

f A(X) = h1(X) · · · ht (X) mod p

be the factorization of f A into irreducible factors hi ∈ Fp[X ] of degrees di = deg hi ,
i = 1 . . . , t . In particular, any root of hi belongs to Fpdi , i = 1 . . . , t . For each hi we fix
a root λi ∈ Fpdi and consider the system of equations (in the algebraic closure of Fp)

λ
k1
i + · · · + λ

k2ν

i = λ
�1
i + · · · + λ

�2ν

i , i = 1 . . . , t, (4.4)

with 1 � k j , � j � ord(A, p), j = 1, . . . , 2ν. It is easy to see that for all choices of
roots λ1, . . . , λt we get equivalent systems.

Next, we reduce counting the number of solutions to (4.3) to counting the number of
solutions to (4.4).

In fact our treatment depends only on the degrees d1, . . . , dt and so we denote the
number of solutions to (4.4) by R2ν(d1, . . . , dt ; p).
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Lemma 4.4. Under the above assumptions, there exists some p0(A), depending only on
A, such that for any vector n ∈ Z

2g, which is not a zero divisor, and p > p0(A)‖n‖2g
2

we have

Q2ν(p;n) = R2ν(d1, . . . , dt ; p).
Proof. Let us denote

B = Ak1 + · · · + Ak2ν − A�1 − · · · − A�2ν .

Multiplying (4.1) by powers of A, we conclude that

(
nAi

)
B ≡ 0 mod p, i = 0, . . . , 2g − 1,

which is equivalent to

⎛

⎜⎝

n
nA
· · ·

nA2g−1

⎞

⎟⎠ B ≡ 0 mod p.

From Lemma 4.3 (ii), there exists some p0(A), depending only on A, such that for
p > p0(A)‖n‖2g

2 all rows n,nA, . . . ,nA2g−1 are linearly independent modulo p, and
thus from the above we conclude that B vanishes over Fp.

Since A is diagonalisable over Fp, the equation above is equivalent to

�k1 + . . . + �k2ν ≡ ��1 + . . . + ��2ν mod p,

where � is a diagonal matrix with elements on the diagonal all the roots of hi , i =
1, . . . , t . Since for each irreducible factor of f modulo p, all roots are conjugate (that

is, the roots of hi in Fpdi are λi , λ
p
i , . . . , λ

pdi−1

i ), we conclude the proof. ��

5. Multiplicative Orders and Exponential Sums

5.1. Ergodicity and the order modulo p. It is natural that our argument, as in [2,19,20],
rests on various results on multiplicative orders.

We begin by showing that the multiplicative orders of the eigenvalues of A ∈
Sp(2g, Z), and their ratios, are sufficiently large for almost all primes. The argument is
a modification of that of Hooley [13].

We recall the definition of ord(λ, p) in § 1.4 and also that we say that p is split prime
if the characteristic polynomial of the matrix A splits completely modulo p.

Lemma 5.1. Assume that A ∈ Sp(2g, Z) has separable characteristic polynomial and
that no eigenvalue or ratio of distinct eigenvalues is a root of unity. Let λ1, . . . , λ2g be
the eigenvalues of A. Then for almost all split primes p we have

ord(λi , p), ord(λi/λ j , p) > p1/2/ log p, 1 � i �= j � 2g.
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Proof. For a sufficiently large Y � 2, let

A(Y ) =
∏

n�Y

∏

1�i�2g

NmK/Q(λni − 1)
∏

1� j<h�2g

NmK/Q(λnj − λnh),

where NmK/Q (ζ ) is the norm of ζ ∈ K = Q (λ1, . . . , λn) in Q. Note that A(Y ) �= 0
because of the condition on the avoidance of roots of unity among the eigenvalues and
their ratios, and A(Y ) ∈ Z since all eigenvalues are algebraic integers. Since

NmK/Q

(
λni − 1

) =
∏

σ∈Gal(K/Q)

(
σ(λi )

n − 1
)

and

NmK/Q

(
λnj − λnh

)
=

∏

σ∈Gal(K/Q)

(
σ(λ j )

n − σ(λh)
n) ,

where both products are over all automorphisms σ from the Galois group Gal(K/Q) of
K over Q, and thus

log NmK/Q(λni − 1), log NmK/Q(λnj − λnh) � n,

we see that
log |A(Y )| � Y 2. (5.1)

Let P(Y ) be the set of primes for which

min
1�i�2g

min
1� j<h�2g

{ord(λi , p), ord(λ j/λh, p)} � Y.

We observe that for p ∈ P(Y ), we must have p | A(Y ), and hence

�P(Y ) � ω (A(Y )) , (5.2)

where, as usual, ω(k) denotes the number of prime divisors of the integer k � 1. From
the trivial observation that ω(k)! � k and the Stirling formula, we derive

ω(k) � log k

log log(k + 2)
, k � 1. (5.3)

Putting together (5.1), (5.2) and (5.3), we see that

�P(Y ) � Y 2/ log Y.

Since the number of primes p � X is π(X) ∼ X/ log X , we can take Y = √
X/ log X

to assure that for all but o (π(X)) primes p � X , we have

ord(λi , p), ord(λi/λ j , p) >
√
X/ log X ≥ √

p/ log p, 1 � i �= j � 2g.

Since splitting fields of polynomials are Galois extensions, by the Chebotarev Density
Theorem, see [14, Theorem 21.2], for a positive proportion of primes p, see our con-
vention in § 1.4, the characteristic polynomial of the matrix A splits modulo p. This
concludes the proof. ��
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5.2. Relation with short exponential sums. As discussed in § 4.1, one relates the uniform
distribution of the eigenfunctions of the operator UN (A), as well as the decay of off-
diagonal matrix elements, to bounding the number of solutions Q2ν(N ;n) for n ∈ Z

2g

to the matrix congruence (4.1), see Lemma 4.1.
Following the discussion after Theorem 1.2 and Lemma 4.1, we thus reduce the

problem to showing that

Q2ν(p;n) = o

(
ord(A, p)4ν

pg

)

for a set of ‘good’ primes p for which the characteristic polynomial of A splits completely
over Fp, with eigenvalues λi ∈ F

∗
p, i = 1, . . . , 2g.

In turn, using the orthogonality of exponential sums, this leads us to a problem of
obtaining nontrivial cancellation in exponential sums of the form

ord(A,p)∑

j=1

ep
(
α1λ

j
1 + . . . + α2gλ

j
2g

)

for (α1, . . . , α2g) ∈ F
2g
p .

These exponential sums are not treatable by algebro-geometric methods of Weil and
Deligne, but fortunately they can be treated by methods from additive combinatorics. In
particular, we make use of the bounds of Bourgain [1, Corollary] on Mordell type sums
over prime fields.

Lemma 5.2. For every ε > 0 there exists some δ > 0 such that the following holds. Let
α1, . . . , αs ∈ Fp, not all zero, and λ1, . . . , λs ∈ F

∗
p be such that

ord(λi , p), ord(λi/λ j , p) � pε, 1 � i, j � s, i �= j.

Then
∣∣∣∣∣

T∑

x=1

ep
(
α1λ

x
1 + . . . + αsλ

x
s

)
∣∣∣∣∣ � T p−δ,

where T is the order of the subgroup of F
∗
p generated by λ1, . . . , λs .

According to Lemma 4.4, in the split case, that is, for λi ∈ F
∗
p, i = 1, . . . , 2g, the

number of solutions to the system (4.4) is given by Q2ν(p;n) = R2ν(1, . . . , 1; p) (with
t = 2g therein). Using the orthogonality of exponential functions we obtain

Q2ν(p;n) = R2ν(1, . . . , 1; p)

= 1

p2g

∑

α∈F2g
p

∣∣∣∣∣

T∑

t=1

ep
(
α1λ

t
1 + . . . + α2gλ

t
2g

)∣∣∣∣∣

4ν

<
T 4ν

p2g + max
0 �=α∈F2g

p

∣∣∣∣∣

T∑

t=1

ep
(
α1λ

t
1 + . . . + α2gλ

t
2g

)∣∣∣∣∣

4ν

.
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Inserting Lemma 5.2, exactly as in [2], we derive

Q2ν(p;n) � T 4ν

p2g + T 4ν p−4νδ � 2
T 4ν

p2g

for ν ≥ g/(2δ). Hence we find:

Corollary 5.3. Let A ∈ Sp(2g, Z) have separable characteristic polynomial. For every
ε > 0 there exists some integer ν0 > 0 such that the following holds. For a prime p so
that A splits modulo p, let the eigenvalues of A be

λ1, . . . , λ2g ∈ F
∗
p.

Assume that

ord(λi , p), ord(λi/λ j , p) � pε, 1 � i, j � 2g, i �= j.

Then, for any vector n ∈ Z
2g, which is not a zero-divisor and such that for p >

p0(A)‖n‖2g
2 , where p0(A) is as in Lemma 4.4, and all ν ≥ ν0, we have

Q2ν(p;n) � ord(A, p)4ν

p2g .

5.3. Bounding 〈T(r)
p (n)ψ,ψ ′〉 for a positive proportion of primes. We remark that the

assumptions of Lemma 5.2 and Corollary 5.3 hold for a positive proportion of primes
p (in fact, for a full density subset of the set of primes p for which the characteristic
polynomial of A splits completely, see Lemma 7.3). Hence, combining Lemma 4.1 and
Corollary 5.3, we obtain the desired estimate (1.8) on 〈T(r)

p (n)ψ,ψ ′〉 when n is not a
zero-divisor.

Corollary 5.4. Let A ∈ Sp(2g, Z) have separable characteristic polynomial. There
exists some constant γ > 0, depending only on A, such that for a positive proportion
of primes p the following holds: For all integers r coprime to p, and for any n ∈ Z

2g,
which is not a zero-divisor and with p > p0(A)‖n‖2g

2 , where p0(A) is as in Lemma 4.4,

max
ψ,ψ ′

∣∣∣〈T(r)
p (n)ψ,ψ ′〉

∣∣∣ � p−γ ,

the maximum over all pairs of normalized eigenvectors of Up,r (A).

6. Treatment of Zero-Divisors

6.1. Preliminaries. We remark that if f A is irreducible then there are no nontrivial zero-
divisors, and thus the results of § 4.1 allow us to complete the proof. However in the
case when f A is separable but not irreducible we need additional considerations to treat
vectors n ∈ Z

2g which are zero-divisors, as defined in § 4.2. Thus this section is not
needed if one is only interested in the case of matrices A ∈ Sp(2g, Z) with irreducible
characteristic polynomials.
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6.2. Remarks on symplectic spaces. We next record some basic facts regarding sym-
plectic vector spaces. Let W be a symplectic space, that is, a vector space with a
non-degenerate alternating bilinear form, which we denote 〈·, ·〉. We note that a sub-
space U ⊆ V is symplectic, that is, the restriction of the symplectic form to U is
non-degenerate, if and only if U ∩U⊥ = {0}.
Lemma 6.1. Let A ∈ Sp(V ) be a symplectic matrix over V . Assume thatU ⊆ V is an A-
invariant subspace on which A acts irreducibly, and assume that U is not isotropic. Then
U is symplectic, and its orthogonal complement U⊥ is also A-invariant and symplectic.

Proof. Assume for contradiction that the restriction of the above bilinear form 〈·, ·〉 to
U is degenerate. Then there exist nonzero u0 ∈ U such that 〈u,u0〉 = 0 for all u ∈ U ,
and hence 〈Aiu, Aiu0〉 = 0 for all u ∈ U and all integers i ≥ 0 (note that here we
follow the usual convention of groups acting on the left.)

Since A is symplectic it is invertible, and so is the restriction toU , hence 〈u, Aiu0〉 =
0 for all u ∈ U . Since the span of Aiu0, i = 0, 1, . . ., equals U we find that U ⊆ U⊥,
contradicting that U is not isotropic.

The argument for the first part of second assertion is similar. Ifw ∈ U⊥ then 〈u,w〉 =
0 for all u ∈ U , and thus 〈Au, Aw〉 = 0 for all u ∈ U and hence, again using that A|U
(that is, the map induced by A on U ) is invertible, we have 〈u, Aw〉 = 0 for all u ∈ U
and thus U⊥ is A-invariant. Since U is symplectic we have U ∩ U⊥ = {0} and thus
W = U ⊕U⊥ (since dim(U ) + dim(U⊥) = dim(W ) always holds).

Now, if the restriction of the form to U⊥ is degenerate there exists v ∈ U⊥ with
〈v,u⊥〉 = 0 for all u⊥ ∈ U⊥, and since 〈v,u〉 = 0 for all u ∈ U , we find that
〈v,w〉 = 0 for all w ∈ W , which contradicts W being symplectic. ��

A simple consequence of Lemma 6.1 is that if W splits into irreducible A-invariant
subspaces, then each such subspace is either symplectic or isotropic. If there exist an
invariant isotropic subspace, there is scarring as shown by Kelmer [16, Theorem 1].
Otherwise, we can decompose W into smaller invariant symplectic subspaces and use a
certain tensor product structure to reduce the dimension, and this allows us to treat the
problem of small zero-divisors.

6.3. Quantized cat maps and tensor products revisited. Let A ∈ Sp(2g, Z) have sepa-
rable characteristic polynomial and let N = p be a prime. Let us consider an element
n ∈ Z

2g for which the reduction modulo p in Z
2g/(pZ

2g) � F
2g
p is not a zero-divisor in

the sense defined in § 4.2, where we identify F
2g
p � Fp[x]/( f A(x)). In order to bound

the matrix coefficient 〈T(r)
N (n)ψ,ψ ′〉 we need some further properties of the quantiza-

tion related to invariant symplectic subspaces and an associated tensor product structure;
these properties are consequences of Up,r (A) being implicitly defined via the Weil (or
oscillator) representation of Sp(2g, Fp). We briefly outline the construction below, for
more details see [10,16].

Hereafter, to simplify the notation in this section we regard p as a fixed prime, and
suppress the dependence on p and n in most places. Let W be a symplectic vector
space over Fp, and assume that W splits into a direct sum of symplectic subspaces, that
is, W = W1 ⊕ W2 where W1 ⊥ W2 (that is, W2 = W⊥

1 ), and the restrictions of the
symplectic form to W1 and W2 are both non-degenerate.

We emphasise that in our application, W1,W2 depend not only on p but on n as well:
we write F

2g
p � W1 ⊕W2, where the image of n in W2 is zero, whereas the image in W1

does not correspond to a zero-divisor.
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With Vi ⊆ Wi , i = 1, 2, denoting maximal isotropic subspaces, we note that V =
V1 ⊕ V2 ⊆ W is a maximal isotropic subspace. We may define the Heisenberg group

H(W ) = {( f,w) : f ∈ Fp, w ∈ W }
with the group law given by

( f,w) · ( f ′,w′) = ( f + f ′ + 〈w,w′〉,w + w′)

where 〈·, ·〉 denotes the symplectic form on W (and similarly H(Wi ) for i = 1, 2).
Let Z ⊆ H(W1) × H(W2) denote the subgroup

Z = {( f, 0) × (− f, 0) : f ∈ Fp}.
We find that the surjection H(W1) × H(W2) → H(W ), given by

( f1,w1) × ( f2,w2) → ( f1 + f2,w1 + w2)

factors through Z , and that we have the isomorphism

(H(W1) × H(W2))/Z ∼= H(W ).

The irreducible non-abelian representations of H(W ) arise in the following way.
Given a non-trivial additive character χ : Fp → C, let K = Fp × V ⊆ H(W ) denote a
maximal abelian subgroup of H(W ) and extend χ to K (say, by letting χ( f, v) = χ( f )).
We remark that the character χ depends on r present in the definition of our observables
T (r)
p , but the precise dependence is not important; we only need that gcd(r, p) = 1

implies that χ is non-trivial. By inducing the extended character χ from K to H(W ),
we obtain an irreducible representation ρ : H(W ) → GL(L2(V )), and similarly
irreducible representations

ρν : H(Wν) → GL(L2(Vν)), ν = 1, 2.

Now, as V = V1×V2 we have L2(V ) = L2(V1)⊗L2(V2). Since the action of Z is trivial,
we find that H(W1)×H(W2), and thus H(W ), acts in a natural way on L2(V1)⊗L2(V2).

Briefly, the Weil representation π of Sp(2g, Fp) = Sp(W ) is then defined as fol-
lows: Sp(W ) acts on H(W ), and this induces an action on the set of irreducible repre-
sentations of H(W ). The action preserves the central character, and since irreducible
representations of H(W ) are determined by their central characters (this holds since
H(W ) is a two step nilpotent group), the action on the set of irreducible representations
is, up to intertwining operators, trivial. In particular, for each g ∈ Sp(W ), define ρg by
ρg(h) = ρ(g(h)) (for h ∈ H(W )); we then find that ρ � ρg , that is, there exists an
intertwining operator (only defined up to a scalar; it turns out that this gives projective
representation of Sp(W ); for p odd a non-trivial fact is that it is possible to choose
scalars to obtain a true representation) π(g) acting on L2(V ) = L2(V1) ⊗ L2(V2) so
that π(g)ρg = ρπ(g). Further, we similarly obtain “smaller” Weil representations ρν

of Sp(Wν) acting on L2(Vν), for ν = 1, 2; to fix compatible central characters it is
convenient to use the maps H(Wν) → H(W1) × H(W2) → H(W ) to obtain the action
of Sp(Wν) on L2(Vν).

The product Sp(W1) × Sp(W2), under the inclusion

Sp(W1) × Sp(W2) ⊆ Sp(W ),
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then acts componentwise on the tensor product L2(V1) ⊗ L2(V2). In particular, if A ∈
Sp(W ) leaves both W1 and W2 invariant, let Aν ∈ Sp(Wν) denote the corresponding
restrictions of A to Wν , for ν = 1, 2. We now note that letting w = w1 + w2 denote the
reduction of n modulo p, we can write,

Up,r (A) = U1(A1) ⊗U2(A2),

T(r)
p (n) = ρ((0,w)) = ρ1((0,w1)) ⊗ ρ2((0,w2)),

(6.1)

where Up,r (A) = π(A) and Uν(Aν) = πν(Aν) for ν = 1, 2.

6.4. Eigenfunctions of tensor products. We next describe eigenfunctions of Up,r (A) in
terms of the tensor product structure. With W,W1,W2 and V, V1, V2 as in § 6.3, for
ν = 1, 2, we may decompose L2(Vν) into Uν(Aν)-eigenspaces

Eν,λ = ker(Uν(Aν) − λI ), λ ∈ �ν,

(possibly with multiplicities), where λ ranges over the set of eigenvalues �ν of Uν(Aν).
Further, for ν = 1, 2 we may find bases of orthonormal eigenfunctions ψν,λ,i ∈ Eν,λ,

i = 1, . . . , Iν,λ, for some positive integers Iν,λ = dim(Eν,λ) with
∑

λ∈�1

I1,λ +
∑

λ∈�2

I2,λ = 2g,

which follows from the separability of the characteristic polynomial of A. That is,

Uν(Aν)ψν,λ,i = λν,iψν,λ,i , ν = 1, 2, i = 1, . . . , Iν,λ,

where λν,i ranges over the whole set �ν . We further note that the set

{ψ1,λ1,i1 ⊗ ψ2,λ2,i2 : λν ∈ �ν, iν = 1, . . . , Iν,λ, ν = 1, 2}
gives an orthonormal eigenbasis of L2(V ) = L2(V1)⊗ L2(V2). In particular, the eigen-
values of Up,r (A) = U1(A1) ⊗U2(A2) are given by

� = {λ1λ2 : λ1 ∈ �1, λ2 ∈ �2},
and for μ ∈ �, an eigenbasis for Eμ = ker(Up,r (A) − μI ) is given by

{ψ1,λ,i ⊗ ψ2,μ/λ, j : λ ∈ �1, i = 1, . . . , I1,λ, j = 1, . . . , I2,μ/λ}.
Note that the quantizationsUp,r (A),U1(A1), andU2(A2) are only defined up to scalars,
but once we have chosen scalars for U1(A1), and U2(A2) we may chose the scalar for
Up,r (A) so that multiplicativity of eigenvalues hold.

We can now bound matrix coefficients corresponding to observables having zero-
divisors.

Lemma 6.2. Let A ∈ Sp(2g, Z) with a separable characteristic polynomial, such that
there are no A-invariant rational istropic subspaces. There exists some constant γ > 0,
depending only on A, such that for a positive proportion of primes p the following holds:
Let ψ ∈ Eμ and ψ ′ ∈ Eμ′ denote two eigenfunctions of Up,r (A), and let w denote a

non-trivial zero-divisor. Then for p > p0(A)‖w‖2g
2 , where p0(A) is as in Lemma 4.4,

we have

|〈T(r)
p (w)ψ,ψ ′〉| � p−γ ‖ψ‖2 · ‖ψ ′‖2.
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Proof. Let 0 �= w ∈ Z
2g , which is a zero-divisor. Then there is an A-stable rational

subspace W1, necessarily symplectic by Lemma 6.1, so that with respect to the decom-
position w = (w1,w2) ∈ W1 ⊕ W2, where W2 = W⊥

1 , the component w1 ∈ W1 of w is
not a zero divisor, while the component w2 in W2 = W⊥

1 is zero.
For μ,μ′ ∈ �, write

ψ =
∑

(λ,i, j)∈�

αλ,i, jψ1,λ,i ⊗ ψ2,μ/λ, j ,

where

� = {(λ, i, j) : λ ∈ �1, i = 1, . . . , I1,λ, j = 1, . . . , I2,μ/λ},

and

ψ ′ =
∑

(λ′,i ′, j ′)∈�′
βλ′,i ′, j ′ψ1,λ′,i ′ ⊗ ψ2,μ′/λ′, j ′ ,

where

�′ = {(λ′, i ′, j ′) : λ′ ∈ �1, i ′ = 1, . . . , I2,λ′ , j ′ = 2, . . . , I2,μ′/λ′ },

with complex coefficients αλ,i, j , βλ′,i ′, j ′ ∈ C.
Since w2 = 0, by (6.1), we have

T(r)
p (w) = ρ((0,w)) = ρ1((0,w1)) ⊗ ρ2((0,w2)) = ρ1((0,w1)) ⊗ Id,

and thus

〈ρ((0,w))ψ,ψ ′〉 =
∑

(λ,i, j)∈�

∑

(λ′,i ′, j ′)∈�′
αλ,i, jβλ′,i ′, j ′

·〈ρ1((0,w1))ψ1,λ,i , ψ1,λ′,i ′ 〉〈ψ2,μ/λ, j , ψ2,μ′/λ′, j ′ 〉.

Now, since

〈ψ2,μ/λ, j , ψ2,μ′/λ′, j ′ 〉 =
{

1 if j = j ′ and μ/λ = μ′/λ′,
0 otherwise,

only terms for which j = j ′ and for which λ′ = η(λ) for the bijection η : �1 → �1
contribute (more precisely, we have η(λ) = (λμ′)/μ. Hence

〈ρ((0,w))ψ,ψ ′〉

=
∑

(λ,i, j)∈�

I1,η(λ)∑

i ′=1

αλ,i, jβη(λ),i ′, j 〈ρ1((0,w1))ψ1,λ,i , ψ1,η(λ),i ′ 〉.
(6.2)
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We now apply Corollary 5.4 with respect to the matrix A1 in the decomposition (6.1),
which applies since w1 is not a zero-divisor. Then, by the Cauchy-Schwarz inequality,
for every λ and j fixed, we have

∣∣∣∣∣∣

I1,λ∑

i=1

I1,η(λ)∑

i ′=1

αλ,i, jβη(λ),i ′, j 〈ρ1((0,w1))ψ1,λ,i , ψ1,η(λ),i ′ 〉
∣∣∣∣∣∣

� p−γ

⎛

⎝
I1,λ∑

i=1

|αλ,i, j |2
⎞

⎠
1/2 ⎛

⎝
I1,η(λ)∑

i ′=1

|βη(λ),i ′, j |2
⎞

⎠
1/2 (6.3)

Finally, using the Cauchy-Schwarz inequality again, and then recalling that η is a
bijection on �, we derive

∑

λ∈�

I2,μ/λ∑

j=1

⎛

⎝
I1,λ∑

i=1

|αλ,i, j |2
⎞

⎠
1/2 ⎛

⎝
I1,η(λ)∑

i ′=1

|βη(λ),i ′, j |2
⎞

⎠
1/2

�
⎛

⎝
∑

λ∈�

I2,μ/λ∑

j=1

I1,λ∑

i=1

|αλ,i, j |2
⎞

⎠
1/2 ⎛

⎝
∑

λ∈�

I2,μ/λ∑

j=1

I1,η(λ)∑

i ′=1

|βη(λ),i ′, j |2
⎞

⎠
1/2

= ‖ψ‖2 · ‖ψ ′‖2

and recalling (6.2) and (6.3), we conclude the proof. ��

7. Anatomy of Integers

7.1. Some sums and products over primes. It is convenient to denote by logk x the k-fold
iterated logarithm, that is, for x � 1 we set

log1 x = log x and logk = logk−1 max{log x, 2}, k = 2, 3, . . . .

We begin by recording an upper bound for Mertens type sums over primes in progres-
sions, together with a simple consequence.

Lemma 7.1. Let q be a prime and let j � 1 be an integer. We have

∑

p�x
q|p j−1

1

p
� q−1/j +

log2 x

q
,

where the implied constant depends only on j .

Proof. For an integer k ≥ 0 define the dyadic interval Ik = [2kq, 2k+1q], and note that
q | p j − 1 implies that p must lie in a progression p ≡ a mod q, where 0 � a < q
ranges over over at most j possible values. For any a, the Brun–Titchmarsh inequality,
see, for example, [14, Theorem 6.6] or [27, Chapter I, Theorem 4.16], implies that

∑

p∈Ik
p≡a mod q

1/p � 2k+1q

q log(2k+1q/q)
· 1

2kq
� 1

q(k + 1)
.
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If 2kq � x we have k � log x , and summing over such k we find that the contribution
from primes p � q is O

(
q−1 log2 x

)
. Since there are at most j primes p < q for which

q | p j − 1, and each such prime satisfies p > q1/j we find that the contribution from
p < q is O

(
q−1/j

)
, and the proof is concluded. ��

We remark that for j = 1 the bound of Lemma 7.1 simplifies as

∑

p�x
p≡1 mod q

1

p
� log2 x

q
. (7.1)

We control the contribution from small prime divisors of p − 1 as follows. For a
prime q and positive integer k, we define vq(k) to be the positive integer � such that

q� | k and q�+1
� k.

We fix some z > 0 and let

sz(N ) =
∏

p|N

∏

q�z

qvq (p−1) =
∏

p|N

∏

q�z
q�‖p−1

q�, (7.2)

that is, sz(N ) is the product of the z-smooth parts of p − 1, as p ranges over all prime
divisors of N .

Lemma 7.2. Let

Z = exp
(
(log2 x)(log3 x)

3/2
)

and z = (
log2 x

)O(1)
.

For all but o(x) integers N � x we have sz(N ) � Z.

Proof. From the definition of sz(N ) in (7.2), extending over all powers q� � x , q � z,
such that q� | (p − 1), we have

∑

N�x

log sz(N ) �
∑

q��x
q�z, prime

log(q�)
∑

p≡1 mod q�

�x/p� = S1 + S�2,

where S1 is the contribution from the terms corresponding to � = 1 and S�2 is the
contribution from the terms with � � 2.

For S1, we have

S1 � x
∑

q�z, prime

log q
∑

p�x
p≡1 mod q

1

p
.

Using (7.1) applied to the inner sum, we now derive

S1 � x
∑

q�z

log q
log2 x

q

� x(log2 x)
∑

q�z

log q

q
� x(log2 x)(log z).

(7.3)
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The sum S�2 is estimated trivially by discarding the primality conditions on p and
thus using that

∑

p�x
p≡1 mod q�

1

p
�

∑

1�k�x/q�

1

1 + kq�
� log x

q�
,

which implies, after we abandon the condition of primality on q and the inequality q � z,

S�2 � x(log x)
∑

2���log x/ log 2

∑

1�m�x1/�

log(m�)

m�

� x(log x)2
∑

2���log x/ log 2

x−1+1/� � x1/2(log x)2.

(7.4)

Clearly the bound on S1 in (7.3) dominates the bound on S�2 in (7.4). Hence,
∑

N�x

log sz(N ) � x(log2 x)(log z) � x(log2 x)(log3 x).

Therefore we have sz(N ) � Z = exp
(
(log2 x)(log3 x)

3/2
)

for at most

O
(
x(log2 x)(log3 x)(log Z)−1

)
= O

(
x

(
log3 x

)−1/2
)

positive integers N � x . ��

7.2. Good primes and integers. We recall that A ∈ Sp(2g, Z).
We say that a prime p is good if the following two conditions are satisfied:

• the characteristic polynomial of A is separable and splits completely modulo p;
• for the roots λ1, . . . , λ2g of the characteristic polynomial of A modulo p we have

ord(λi , p), ord(λi/λ j , p) � p1/3, 1 � i, j � s, i �= j.

We note that the exponent 1/3 is somewhat arbitrary and can be replaced by any
γ < 1/2.

Let Pgood denote the set of good primes.
Applying Lemma 5.1, we now derive

Lemma 7.3. The set Pgood is of positive density.

Next, given integers U � V � 1 we define

Pgood(V,U ) = Pgood ∩ [V,U ].
We now set

D(x) = (log x)(log3 x)
2
,

V (x) = exp
(

exp
(√

log2 x
))

,

W (x) = x log3 x/ log2 x ,

(7.5)
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and define the following set Ngood(x) of good integers

Ngood = {N : ∃p ∈ Pgood(V (N ),W (N ))

with N = pM, M ∈ Z, gcd(p, M) = 1,

gcd (p − 1, ord(A, M)) � D(N )}.
(7.6)

We then set

Ngood(x) = Ngood ∩ [1, x].
The next statement is our main tool.

Lemma 7.4. We have

�Ngood(x) = x + o(x).

Proof. It is certainly enough to show that

�
(Ngood ∩ [x/2, x]) = x/2 + o(x).

In turn, we set

D0 = D(x/2), V0 = V (x), W0 = W (x/2),

such that

[V0,W0] ⊆ [V (N ),W (N )],
for all N ∈ [x/2, x] and define the following set Ñgood(x) of good integers N � x :

Ñgood(x) = {N � x : ∃p ∈ Pgood(V0,W0) with N = pM, M ∈ Z,

gcd(p, M) = 1, gcd (p − 1, ord(A, M)) � D0}.
Clearly

Ñgood(x) ∩ [x/2, x] ⊆ Ngood ∩ [x/2, x],
hence it is enough to show that

�Ñgood(x) = x + o(x). (7.7)

That is, in the above, we first consider integers N in a dyadic interval. This allows us to
replace Pgood(V (N ),W (N )) with Pgood(V0,W0). After this is done, we can bring back
integers below x/2 as well: if the exceptional set is of size o(x) on [1, x] then so it is on
[x/2, x] and we are done. Thus indeed we only need to establish (7.7).

First recall that by Lemma 7.3 the set of good primes Pgood is of positive density.
Therefore, there are some constants C, c > 0 (depending on the matrix A) such that for
Z � 2 the set Pgood(Z ,CZ) contains at least cZ/ log Z + O(1) primes, that is,

�Pgood(Z ,CZ) � c
Z

log Z
+ O(1). (7.8)

Taking x sufficiently large such that the interval [2,W0] contains I non-overlapping
intervals of the form [Ci ,Ci+1), i = 1, . . . , I , where

log W0 � I � log W0,
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we derive
∑

p∈Pgood(V0,W0)

1/p �
∑

p∈Pgood(2,W0)

1/p −
∑

p�V0, prime

1/p

�
I∑

i=1

∑

p∈Pgood(Ci ,Ci+1)

1/p −
∑

p�V0, prime

1/p

�
I∑

i=1

C−i�Pgood

(
Ci ,Ci+1

)
−

∑

p�V0, prime

1/p.

Next, recalling (7.8) and the Mertens formula (or simply using (7.1) with q = 1), we
obtain

∑

p∈Pgood(V0,W0)

1/p �
I∑

i=1

C−i
(
c

Ci

i logC
+ O(1)

)
+ O(log2 V0)

� c

logC

I∑

i=1

1

i
+ O(log2 V0) � c

logC
log I + O(log2 V0)

� log2 W0 + O(log2 V0) � log2 W0 � log2 x .

Therefore,

∏

p∈Pgood(V0,W0)

(1 − 1/p) � exp

⎛

⎝−
∑

p∈Pgood(V0,W0)

1/p

⎞

⎠ � (log x)−γ

for some γ > 0, which depends only on C and c, and thus only on the matrix A. Thus,
by the classical Brun sieve, see, for example, [27, Chapter I, Theorem 4.4], almost all
N � x are divisible by some prime p ∈ Pgood (V0,W0).

We now set z = (
log2 x

)2g+1 and note that D0 > Z , where Z is as in Lemma 7.2.
Thus Lemma 7.2 allows us to discard o(x) positive integers N � x with

sz(N ) � D0,

where sz(N ) is defined by (7.2). Hence for the remaining integers N ∈ [x/2, x] we have

sz(N ) < D0 � D(N ).

We also discard O(x/V0) integers N � x which are divisible by p2 for some prime
p > V0. Hence, for the remaining integers N , for any p ∈ Pgood(V0,W0) with p | N
we now have gcd(p, N/p) = 1.

Furthermore, for the remaining N � x , we see that if

gcd (p − 1, ord(A, N/p)) > D0,

then, since sz(p) < sz(N ) < D0, there is a prime q > z with q | p − 1 and another
prime � | N , � �= p, such that

q | ord(A, �) |
2g∏

j=1

(
� j − 1

)
.
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Hence to conclude the proof it suffices to show that for every j = 1, . . . , 2g we have

∑

q>z, prime

∑

p�x, prime
p≡1 mod q

∑

��x/p, prime
p �=�

q|� j−1

x

�p
= o(x). (7.9)

To establish (7.9), we first discard the condition � �= p, and extend the summation
over � up to � � x . Then we recall Lemma 7.1 (for the sum over �) and its special
case (7.1) (for the sum over p) and derive

∑

q>z, prime

∑

p�x, prime
p≡1 mod q

∑

��x/p, prime
p �=�

q|� j−1

x

�p
� x

∑

q>z, prime

∑

p�x, prime
p≡1 mod q

1

p

∑

��x, prime
q|� j−1

1

�

� x
∑

q>z, prime

log2 x

q

(
q−1/j +

log2 x

q

)

� x

(
log2 x

z1/j
+

(log2 x)
2

z2

)

� x

(
log2 x

z1/(2g)
+

(log2 x)
2

z2

)
.

Recalling our choice z = (
log2 x

)2g+1, we obtain (7.9).
Thus all together we have discarded o(x) integers and all remaining integers N � x

belong to Ñgood. Hence we see that (7.7) holds, and the result follows. ��

8. Proof of Theorem 1.2

We recall the definition of good integers given by (7.6). We now show that (1.7) holds
with N = Ngood, that is,

lim
N→∞

N∈Ngood

max
ψN ,ψ ′

N

∣∣∣∣〈OpN ( f )ψN , ψ ′
N 〉 − 〈ψN , ψ ′

N 〉
∫

T2g
f (x)dx

∣∣∣∣ = 0,

where the maximum is taken over all pairs of normalized eigenfunctions ψN , ψ ′
N of

UN (A). By Lemma 7.4, the set Ngood is of full density and hence this is sufficient for
our goal.

As in [2,19], using the rapid decay of coefficients of f ∈ C∞(T2g), it suffices to
show that

max
n∈Z2g

0<|n|�L(N )

max
ψN ,ψ ′

N

∣∣〈TN (n)ψN , ψ ′
N 〉∣∣ → 0

as N → ∞, N ∈ Ngood, with ψN , ψ ′
N running over all normalized eigenfunctions of

UN (A), with a slowly growing function L(N ) → ∞.
We recall the definition of the functions D(x), V (x) and W (x) as in (7.5). In

particular, we take L(N ) to grow sufficiently slowly to guarantee that for any p ∈
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Pgood(V (N ),W (N )) and for any n ∈ Z
2g with 0 < |n| � L(N ) the conditions of

Corollary 5.4 and Lemma 6.2 are satisfied provided that N is sufficiently large.
We now fix some N ∈ Ngood and choose a prime p which satisfies all properties

in (7.6).
We set

d = gcd (ord(A, p), ord(A, M)) .

Clearly

d � gcd(p − 1, ord(A, M)) � D(N ).

Now, applying (3.6), and then Lemma 3.1 (with N1 = p and with Ad instead of A), we
derive

|〈TN (n)ψ,ψ ′〉| � max
ϕ,ϕ′∈�p,r

|〈Tr
p(n)ϕ, ϕ′〉|, (8.1)

where r is some integer coprime to p and ϕ, ϕ′ range over all normalized eigenfunctions
of Up,r (Ad).

We note that the roots of the characteristic polynomial of Ad are λd1 , . . . , λd2g , where
λ1, . . . , λ2g are the roots of the characteristic polynomial of A modulo p and we also
have

ord(λdi , p), ord(λdi /λ
d
j , p) � p1/3d−1 � p1/4, 1 � i, j � 2g, i �= j,

since obviously for a sufficiently large N we have

d � D(N ) � V (N )1/12 � p1/12.

Thus the conditions of Corollary 5.3 are satisfied. Combining Corollary 5.4 and Lemma 6.2
(when n is a zero divisor) with (8.1) we conclude the proof.
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