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Abstract: We study eigenfunction localization for higher dimensional cat maps, a pop-
ular model of quantum chaos. These maps are given by linear symplectic maps in
Sp(2g, Z), which we take to be ergodic. Under some natural assumptions, we show
that there is a density one sequence of integers N so that as N tends to infinity along
this sequence, all eigenfunctions of the quantized map at the inverse Planck constant N
are uniformly distributed. For the two-dimensional case (g = 1), this was proved by
Kurlberg and Rudnick (Duke Math J 103:47-78, 2000). The higher dimensional case
offers several new features and requires a completely different set of tools, including
from additive combinatorics, such as a bound of Bourgain (J Am Math Soc 18:477-499,
2005) for Mordell sums, and a study of tensor product structures for the cat map, which
has never been exploited in this context.
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1. Introduction

1.1. Quantum ergodicity and the quantized cat map. Eigenfunction localization is one
of the central topics of Quantum Chaos. In this paper, we examine this question for
an important “toy model”, the quantized cat map [12], aiming for higher dimensional
maps. Our techniques, after a preliminary reduction, combine analytic number theory
and additive combinatorics.

Denote by Sp(2g, Z) the group of all integer matrices A which preserve the symplectic
form

o(X,y) =X1-y2 — X2 Y1, (1.1)

with x = (X1,X2), ¥y = (y1,¥2) € R® x RE. Any A € Sp(2g, Z) generates a classical
dynamical system via its action on the torus T>¢ = R2¢/Z2¢. We say that this dynamical
system is ergodic if for almost all initial positions x € T2¢, the orbit {A/x : j > 0} is
uniformly distributed in T28. This is equivalent to A having no eigenvalues which are
roots of unity, see [11].

Associated to any A € Sp(2g, Z) is a quantum mechanical system. We briefly recall
the key definitions: One constructs for each integer N > 1 (the inverse Planck constant,
necessarily an integer here) a Hilbert space of states Hy = L>((Z/NZ)?) equipped
with the scalar product

(e 02) = Y. awe@, g€ Hy.
ue(Z/NZ)&

The basic observables are given by the unitary operators
Tym): Hy — Hy, n=(n,m) e Z8 x Z8 = 7%,

as follows
(Tn(m)g) (Q) = ean(ny -m) ey (n2 - Q) (Q +ny), (1.2)
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where hereafter we always follow the convention that integer arguments of functions on
Z/NZ are reduced modulo N (thatis, (Q+n;) = ¢(Q+ (n; mod N))). It is also easy
to verify that (1.2) implies

Ty(m) Ty(m) = ezy (w (m, n)) Ty (m +n),
where @ (m, n) is defined by (1.1) and
e(z) =exp 2niz), ex(z) = e(z/k),
see also [19, Equation (2.6)].
For each real-valued function f € C(T28) (an “observable”), one associates a

self-adjoint operator Op, (f) on Hy, analogous to a pseudo-differential operator with
symbol f, defined by

Opy(f)= Y Fm)Tym), (1.3)
neZ28
where A
f® =" fmem-x). (1.4)
neZ28

Assuming A = I mod 2 (this condition can be weakened, see, for example, the
definition of the subgroup Sp,; (2g, Z) of Sp(2g, Z) as in [16, p. 817], where d is used
instead of g),

for each value of the inverse Planck constant N > 1, there is a unitary operator
Un(A) on Hy, unique up to scalar multiples, which generates the quantum evolution,
in the sense that for every observable f € C°(T?¢), we have the exact Egorov property

Un(A)* Opy (f)UN(A) = Opy(f o A), (1.5)

where Uy (A)* = U N(A)t, we refer to [18,23] for a detailed exposition in the case
g = 1 and [16] for higher dimensions.

The stationary states of the system are the eigenfunctions of Uy (A) and one of the
main goals is to study their localization properties. In particular, given any normalized
sequence of eigenfunctions ¥y € Hy, we ask if the expected values of observables in
these eigenfunctions converge, as N — 00, to the classical average (see § 2.1 for precise
definitions), that is, that

lim (Opy (/)Y Y} = / Fx)dx (1.6)
N—o00 T28

forall f € C°°(T28), in which case we say that the sequence of eigenfunctions {1y} is
uniformly distributed.

A fundamental result is the Quantum Ergodicity Theorem [4,25,28], valid in great
generality, which in our setting asserts that if A is ergodic, then for any orthonormal
basis Yy = {¢yjn : j =1,..., N&} of eigenfunctions of Uy (A) in Hy, there is a
subset S C {1, ..., N8} with asymptotic density one (that is, §S/N8 — 1, where 1S
denotes the cardinality of S) so that ¥; y are uniformly distributed for all j € S, see [3].
If all eigenfunctions are uniformly distributed, the system is said to exhibit Quantum
Unique Ergodicity [24]. In fact, more generally,
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setting

AA(f, N) = max
YNy

’

(Opy (NYN, ¥iy) — (N, y) /ng J(x)dx

the maximum taken over all pairs of normalized eigenfunctions ¥y, wl’\, of Un(A), we
ask if for all f € C*(T?%),
lim Ax(f, N)=0, (L.7)
N—o0
NeN

where N is a set of integers of asymptotic density 1 (that is, #(N N [1, x]) = x + o(x)
as x — 00).

Remark 1.1. Ttis interesting to note that even if we are mainly interested in scarring (that
is, decay of diagonal matrix coefficients corresponding to ¥, = ¥ in the above defi-
nition of A 4(f, N) and establishing (1.6)), for the full argument we still need estimates
for off-diagonals coefficients of the “nontrivial” tensor component in § 6.4.

The two-dimensional (g = 1) cat map is where the first counterexamples (‘“scars”) to
QUE have been proved to exist [9], associated with the N, where the period ord(A, N) of
the classical map reduced modulo N was almost minimally small, about 2 log N/ log A,
where A > 1 is the largest eigenvalue of A. We note that the relevance of the classical
period to the quantum system was recognized early on in the theory [5,12,15]. In [19],
it was shown that if ord(A, N) was somewhat larger than N 172 (and N satisfies a further
genericity condition), then all eigenfunctions in H x are uniformly distributed. Note that
the condition holds for almost all primes [7]. Separately, it was shown that ord(A, N)
is sufficiently large for almost all integers N.

A breakthrough was made by Bourgain [2], who showed that when N = p is prime
(that, and the prime power, cases are the basic building block for the theory since the
quantization with respect to composite moduli arise as tensor products of quantizations
with respect to prime power moduli), for all eigenfunctions to be uniformly distributed
it suffices to take ord(A, p) > p?, for some ¢ > 0, a condition that is much easier to
establish than a bound bigger than p!/2. This allowed Bourgain [2] to give a polynomial
rate of convergence for a version of (1.7) over a sequence of almost all integers: for some
8 > 0, for almost all N we have A4(f, N) < N -3, Using a different approach, in [20]
it is shown that one can take any 6 < 1/60.

1.2. Higher dimensional cat maps. Higher dimensional cat maps offer several more
challenges. In particular, we address the analogue of [19], namely all eigenfunctions
in Hy being uniformly distributed for almost all integers N. We do not discuss other
aspects of localizations, such as entropy bounds [8,22] and showing that all semiclassical
measures have full support [6,17,26].

In higher dimensions (that is, for g > 1), there is a significant change. Kelmer [16]
has shown that if A has nontrivial invariant rational istropic subspaces, then for all N,
uniform distribution (1.7) fails — there are so-called scars.

So we assume that there are no nontrivial invariant rational isotropic subspaces. We
want to find a full density sequence N of integers N for which all eigenfunctions of
Uy (A) are uniformly distributed, that is, if we fix f € C % (T28) then we have (1.7). If
this holds for all f then we say that A satisfies QUE for the subsequence N .
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Recall that we assume ergodicity, equivalently, that the eigenvalues of A € Sp(2g, Z)
are not roots of unity. For our results, we need to impose a further condition on A, that no
ratio of distinct eigenvalues is aroot of unity. In addition, we assume that the characteristic
polynomial f4(x) = det(x/ — A) € Z[x] is separable (that is, has no multiple roots)

Our main result establishes (1.7) for almost all integers under the above conditions
on A:

Theorem 1.2. Let A € Sp(2g, Z), with a separable characteristic polynomial, be such
that no ratio of distinct eigenvalues is a root of unity. Assume further that there are no
nontrivial A-invariant rational isotropic subspaces. Then A satisfies QUE as in (1.7)
for some set N of asymptotic density 1.

One can show that if the characteristic polynomial of A is irreducible, then there are
no nontrivial A-invariant rational subspaces.

1.3. Plan of the proof. We establish Theorem 1.2 via the following sequences of steps.

(1) To prove (1.7), it suffices to show it for the basic observables (translation op-
erators) Ty (n) = Opy (f), f(X) = e(x-n) (see also (1.3)), with frequency n
growing slowly with N.

Assume that the characteristic polynomial f4(x) = det(xI — A) is irreducible

over the rationals. Then we reduce the problem of estimating high powers

4v
‘(TN )y, ' )‘ of the matrix elements for all normalized eigenfunctions v, v/,
to a problem of estimating the number of solutions to the matrix congruence

AR e ARy At A% = O mod N,

for the zero matrix O with 1 < k;, ¢; < ord(A,N),i =1,...,2v,see Lemmas 4.1
and 4.3 (since indeed f4(x) being irreducible implies there is no nontrivial zero-
divisor in Q28).

(i1) In turn, this number can be treated by exponential sums. However this reduction
does not work directly due to the lack of nontrivial bounds on such sums except
when N = p is a prime, modulo which the characteristic polynomial of A splits
completely, in which case we can apply a striking result of Bourgain [1] on short
“Mordell sums". The result, roughly speaking, is that there is some y > 0 so that
for almost all split primes p,

max [(T, (v )] < 7. (18)

(iii) To take advantage of the bound (1.8) for split primes, we prove that the operators
Tx (n) have a tensor product structure with respect to the Chinese Remainder The-
orem, however with some losses depending on certain greatest common divisors.
Thus we deal with the operators T, (n) via exponential sums and use the trivial
bound

Ty, v)| <1,

where M is the largest divisor of N without split prime factors.

(iv) Finally, using some results from the anatomy of integers (§ 7) we show that for
almost all integers N, the saving we obtain from the split primes p | N, exceeds
the losses we incur in our version of the Chinese Remainder Theorem.
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(v) When the characteristic polynomial f4(x) of A is reducible, but separable, we
require extra consideration, as the reduction to counting solutions of matrix con-
gruences fails when n is a non-trivial zero-divisor. We make use of an additional
tensor structure to reduce to the setting of congruences for a smaller dimensional
case, see § 6 for details.

1.4. Notation. Throughout the paper, the notations
X=0@), XLY, Y>»X

are all equivalent to the statement that the inequality | X| < ¢Y holds with some constant
¢ > 0, which may depend on the matrix A, and occasionally, where obvious also on the
real parameter €.

We recall that the additive character with period 1 is denoted by

z€R — e(z) =exp(2miz).
For an integer k > 1 it is also convenient to define

er(z) = e(z/k).

The letter p, with or without indices, always denotes prime numbers.

Given an algebraic number y we denote by ord(y, N) its order modulo N (assuming
that the ideals generated by y and N are relatively prime in an appropriate number field).
In particular, for an element A € F s, ord(A, p) represents the order of A in [F ,s.

Similarly, we use ord(A, N) to denote the order of A modulo N (which always exists
if gcd(det A, N) = 1 and in particular for A € Sp(2g, Z)).

For a finite set S we use S to denote its cardinality.

As usual, we say that a certain property holds for almost all elements of an infinite
sequence s,, n = 1, 2, ..., if it fails for o(x) terms with n < x, as x — oo. In particular,
we say that it holds for almost all primes p and positive integers N if for x — oo, it fails
for o(x/log x) primes p < x and o(x) positive integers integers N < x, respectively.

Similarly, we say that a certain property holds for a positive proportion of primes p
or, equivalently for a set of positive density, if for some constant ¢ > 0, which throughout
this work may depend on the matrix A, for all sufficiently large x it holds for at least
cx/logx primes p < x.

2. A Chinese Remainder Theorem for the Operators Ty (n)

2.1. Observables. We begin by defining the mixed translation operators. Given r € Z,
coprime to N, and n = (n,m) € Z& x Z8 = 728, we define a unitary operator

T%)(n) :Hy — Hy by

(T%)(n)fﬂ) (Q) = exn(rny -m) en(rny - Q)u(Q +ny).

We have
TV (m) T (n) = ez (rw (m, n)) T (m +n), 2.1)

where @ (m, n) is defined by (1.1). In particular, taking powers gives

(¢ (n))k =T (kn).
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The canonical commutation relations can be encapsulated in the relations
Ty () T (m) = ey (re (n, m) Ty (m) TR (n)
and
(T @)Y =Ty (Vm) = (=1 ™ 1, n= (i, m).

For each function f € C* (T28) on the classical phase space (an “observable”), one
associates an operator Opy ,(f) on Hy, analogous to a pseudo-differential operator
with symbol f, by

Opy, ()= > T TP (m),
neZ28

where f(n) are defined by (1.4). If f is real valued, then Opy ,.(f) is self-adjoint.

When r = 1, we recover the definitions of Ty = Tg\}) and Opy = Opy ; in (1.2)
and (1.3), respectively.

Let A € Sp(2g, Z), satisfying the parity condition A = / mod 2. Fix N > 1 and r
coprime to N. Then there is a unitary operator Uy ,(A) : Hy — Hy, unique up to a
scalar multiple, so that we have the exact Egorov property

U (A T Uy ,(A) = T} (nA), (2.2)

fo all n € Z?¢, which is a full analogue of (1.5).

2.2. The Chinese Remainder Theorem and a tensor product structure. Assume that the
inverse Planck constant N factors as N = Np - N with Ny, N> coprime. We then use
the Chinese Remainder Theorem ¢ : Z/NZ = 7Z/N1Z & Z/ N1 Z to get an isomorphism

K L2(Z/NIZ)8) ® LP(Z/NAZ)8) = Hy ® Hu, = Hy = L*(Z/NZ)®)

so that
(01 ® 92)(Q) = ¢1(Q mod Ny) - ¢2(Q mod Na). (2.3)

The tensor product Hy, ® Hy, carries the inner product

llor ® gall = llgrll - N2l

and (* is actually an isometry, because it maps the orthonormal basis of tensor products
of normalized delta functions to normalized delta functions:

o (NFPsu @ N§8,) = e,

where w = u mod N, w = v mod N,.
Assume N = Nj - N with N1 > 1, N > 1 coprime. Fix nonzero ry, ry € Z so that

Nory + Nyrp = 1. 2.4)

Necessarily 7 is coprime to N and 7| is coprime to N».
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Lemma 2.1. Forn = (n,ny) € Z8 x Z8, the mixed translation operator Ty (n) =
Tg\}) (n) is mapped, via the isomorphism 1*, to Txf) n)® Tg\r,;)(n):

T o1 @) = (TP e ) @ (T4 g2 ).

Proof. Inserting (2.4) gives

(N 1) = e (Nara + Nirpng - mp
o (g M) = NN,

ranp - m rinp - m
=€ (S
2N 2Ny

ex(ny-y) = e (Nara + Nyrpmg -y
N (2 NN,

— e nn -y e rinp -y '
Ny Ny

{TyMm)* (01 @ 2)}(y) = exn(my - m) ey(my - y)i* (91 @ @2)(y +ny)

and fory € (Z/NZ)8,

By definition (1.2),

so that, using (2.3), we obtain

eov(my -m)eymy - y)i* (@1 ® ¢2)(y +np)

_ rang - mp rom -y

_e< 2Ny >e< Ny )¢1(y+n1)
ring - mp rmp -y

e( 2N ) e( N2 )goz(y+n1)

(T mer) ® - (Th g2) @)

= (TP me T m) (¢ @) @)

{Tv ) (@1 @ 92)}(y)

as claimed. O

2.3. Factorization of the quantized map. We continue to assume a factorization of N =
Ni - Np with N1 > 1, N > 1 coprime, and such that ry, r» satisfy (2.4). Then the
Chinese Remainder Theorem induces an isometry

Hyn =~ Hy, @ Hy,,

which is respected by the translation operators (see Lemma 2.1). Furthermore, from now
on, we identify the spaces Hy and Hy, ® Hy, and thus we do not use the isomorphism
map ¢* anymore. We argue that we get a corresponding factorization of the quantized
map Uy (A) = Un,1(A) defined by (1.5) as a tensor product:
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Lemma 2.2. There is some ¢ € C, with || = 1, such that we have a factorization
Un(A) = CUN, 1, (A) @ Un, 1 (A).

Proof. We saw in Lemma 2.1 that
TymA) = T{ mA) ® T (nA).

By (2.2), we have

TP (A) = Uy, (A TR MU, 1, (A)
and

TN (A) = Uy, (A TR MU, 1, (A).
Hence U = Un, r,(A) ® Un, r (A) satisfies

U Ty =0 (TP & T( ) 7
=T mA) ® Ty @A) = Ty @A)

for all n € Z*¢. Since Uy (A) is the unique (up to a scalar multiple) unitary operator
satisfying this relation, we must have that U is a scalar multiple, of absolute value one,
of Uy (A). O

3. Bounding Ty via the Tensor Product Structure

3.1. Basic properties of tensor products. We first recall a useful identity regarding oper-
ator norms of tensor products. Let V, W be finite dimensional inner product spaces, let
Ty: V—>VandTw : W — W be linear maps, and let | Ty || and || Tw || denote the
operator norms of Ty and T, respectively. There is a natural inner product on the tensor
product V ® W — given orthonormal bases {vy, ..., v,} and {wy, ..., w,} for V. W,
respectively, declare {v; ® w;}1<i<n, 1< <m to be an orthonormal basis for V @ W. We
then have the relation

[Ty @Tw I =1Tv -l Tw I, (3.1)

between the operator norms (cf. [21, Page 299, Proposition]).

3.2. Eigenspace decomposition in the coprime case. Assume that Ty and Ty are both
diagonalizable, with eigenvalues being roots of unity (in particular there exists, say
minimal, integers ¢1, #o > 0 such that Tt‘} = Iy and Ttvzv = Iy, where Iy and Iy are the
corresponding identity operators; note that we do not assume that Ty and Tw have the
same dimensions).

The eigenspaces of Ty ® Ty are particularly easy to describe in terms of the eigen-
spaces of Ty and Ty when gecd(#1, £2) = 1. Namely, let {V;}; denote the eigenspaces
of Ty, and let {W;}; denote the eigenspaces of Ty; here we allow both Ty, Ty to
have eigenvalues with multiplicities. The eigenspaces of Ty ® Ty are then given by
{Vi®W;}; . Further, if the eigenvalue associated with V; is denoted y; and the eigenvalue
associated with W; is denoted by v}, all eigenvalues of Ty ® Ty are of the form 4; ; =
w;v;. In particular, if gcd(t;, ;) = 1 we find that u;,vj, = u;,v;, implies that i} = i>
and j; = j. Informally, all multiplicities arise by combining multiplicities from the
Vi, W; eigenspaces (note that this is not true if ged(#1, o) > 1).
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3.3. Bounds using the tensor product structure. We now bound matrix coefficients of
the special form (T (n)vyr, ¥'), where, as in § 1.3,

Ty(m) =Opy(e(x-n))

and v, ¥ are eigenfunctions of Uy (A).
Let B be an element of Sp(2g, Z). Assume that N = Nj N, with coprime integers
Ni > 1, N» > 1. Let t; denote the order of B mod N;, i = 1, 2. Further assume that

ged(ty, 1) = 1. 3.2)
Let r1, rp € Z satisfy (2.4). Taking A = B in Lemmas 2.1 and 2.2, we find that
Tym) =Ty’ @) @ Ty M) and Uy(B) = ¢Uy, 1, (B) ® U,.r,(B)

for some ¢ € C* with [¢] = 1.

Lemma 3.1. Let r, ' denote norm one eigenfunctions of Uy (B). With assumptions as
above, we then have

Ty, ¢) < max [T e, ¢,
0.9'€PN

where ®y, », denotes the set of all eigenfunctions of Uy, r,(B) of norm one.

Proof. Let E, E' denote the eigenspaces of Uy (B) containing v, ¥/, and let A, " denote
the corresponding eigenvalues.
By the discussion in § 3.2, we have

E=VI® VWV, (3.3)

where V1 and V) are eigenspaces of Uy, , (B) and Uy, (B), respectively, and similarly
wehave E' = V/®V,. Thus,if welet S = Pg Ty (n) Pg, with Pg : Hy — E denoting
the orthogonal projection onto E (and similarly for Pgr), we have

max  [(Ty@y, ¥") = [IS]. (3.4)
veE, Yy eE’,

Ivli=ly'lI=1
Now, the decomposition (3.3) and Lemma 2.1, after a simple calculation, give that
S=851Q® 5 3.5)

where S| = Py, Tgﬁ)(n)P‘/1 and S, = Py, Tg\ré)(n)Pvz. Since both Sp, S, arise as
compositions of the unitary maps T%T)(n), T%l)(n) with orthogonal projections, they
are both sub-unitary, and we have the trivial %ounds [IS1ll, 11S2]] < 1. Thus, by the
operator norm identity of tensor products (3.1), we see from (3.5) that

ISI = ISt - 1520 < 1St

Using this, together with

ISi= max [T me. ¢,
peVi,¢'eV|
lel=l¢'lI=1

and recalling (3.4), the result now follows. o
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We now consider a more general case when instead of the coprimality condition (3.2)
we have

ged(ry, 1) =d.

Since any eigenfunction of Uy (A) is an eigenfunction for Uy (Ad) for any integer
d > 0, we have

max [(Tym)y, ¥')| < _max [Ty, ¥, (3.6)
v, U'eWy Y eVy g

where W and \TJNVd denote the set of normalized eigenfunctions of Uy (A) and U N (A4 ),
respectively.

4. Congruences and Exponential Sums

4.1. Reduction to a counting problem. For a (row) vector n € Z*¢, n # 0 mod N, we
denote by 07, (N; n) the number of solutions of the congruence

n (A% AR Al AR = 0 mod N, 4.1

with1 <k;, ¢; <ord(A,N),i =1,...,2v.
The key inequality below connects the 4v-th moment associated to the basic observ-

ables Tg\r,) (n) with the number of solutions to the system (4.1). This kind of inequality
(for v = 1) underlies the argument of [19], and also the argument of [2].

Lemma 4.1. Let 0 # n € Z*¢ and let r be an integer coprime to N. Then

W 0n(Nim)

(r) ’
max (T )y, 9| < N¥CZEEE (4.2)

where the maximum is taken over all pairs of normalized eigenfunctions of Uy ,(A).

Proof. We abbreviate 1 = ord(A, N).Givenapair (¥, ¥') of normalized eigenfunctions
of Uy ,(A) with eigenvalues A, A/, put u = A//A and note that u is a root of unity (since
A and A’ are). Let

T

1 < , | .
D@) = -3 Uy A7 T Uy () ' = = 3 TR A
i=1 i=1

be the p-twisted time averaged observable, where the last equality comes from (2.2).
Then for any pair of eigenfunctions (¥, ¥') of Uy ,(A), with eigenvalues A and A/, we
have

(TV )y, ¥') = (DY, ¥'),

see also the proof of [19, Proposition 4]. Put H(n) = D(n)*D(n); note that H (n) is
Hermitian. Clearly

(D@, ¥')| < IDMm)|| = ||Hm)|'?,
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where || H (n)|| denotes the operator norm of H (n). Therefore for any v > 1,
(T )y, )Y < IH@)IP = |H @))%,
We bound the operator norm by the Hilbert—Schmidt norm and obtain
IHm)"|1* < [1Hm)" 35 = w((Hm")* Hm)") = w(Hm?™),

where tr denotes the operator trace. Finally, compute

1 T
=Y

kiy.ooskop L. b2y =1

2v
<[] (Tj\j) (nAkJ' ) T (—nAfj)) i k=)
j=1

H(n)Zv —

2v
1 T
= > yk, & T [0 (A"f - A‘f)
kisekop, 1., 800 =1 j=1

with some complex coefficients y (k, £, n), satisfying |y (k, £, u)| = 1, where k =
(ki, ..., ko) and £ = (€;...,¥¢3,), and where the last equality comes from (2.1).
Taking the trace and using

N& ifm=0modN,

(r)
trTy, (m)| =
| N ()] {O otherwise,

we find

- , 4v v N8
Ty, v)| <o (Hm™) < S5 0a(Vin)

which concludes the proof. O

Remark 4.2. 1f the right hand side of (4.2) tends to zero, then (1.7) is satisfied, that is, all
eigenfunctions of Uy (A) are uniformly distributed, and more generally, all off-diagonal
matrix coefficients tend to zero. Thus Lemma 4.1 reduces the problem (1.7) to a purely
arithmetic issue.

4.2. Linear independence of matrix powers. The primal goal of this section is to show
that if the characteristic polynomial f4 of A is separable over Q we can essentially
eliminate the dependence on the vector n in our argument, except in some special cases.
In particular, instead of Q»,(N;n) we can consider the number of solutions of the
congruence

AR e ARy = AN 4+ AP mod N, (4.3)

with 1 < k;, £; < ord(A, N),i = 1,...,2v. Thisis based on the following result which
is also used in our bounds on exponential sums. However, we first need to introduce the
notion of zero-divisors amongst the row vectors n € Z4. For this we first identify
Q% x QIX1/(fa(X)) as a Q[A] module. We say that n is a zero-divisor, if its image
n € Q[X1/(fa(X)) is a zero-divisor in this module (we follow the convention that zero
is also a zero divisor, call all other zero divisors nontrivial.)
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Lemma 4.3. Let A € Sp(2g, Z) have a separable characteristic polynomial. Then for
any row vector n € 728 , which is not a zero-divisor, we have:

(i) the vectorsn, nA, ..., nA28~ ! are linearly independent;
(ii) there exists some po(A), depending only on A, such that for all primes p > po(A)

2 _ . .
||n||2g, the vectorsm, nA, ..., nAX 1 are linearly independent modulo p.

Proof. In the case when the characteristic polynomial is irreducible, Part (i) is proved
in [19, page 210] (for n = 2) and in the proof of [20, Theorem 2.5] (which is done over
a finite field but it remains valid over any field).

In our more general case of separability, assume that the vectorsnA’,i =0, ...,2g—
1, are linearly dependent over Q, that is, there is a linear relation

for some ¢; € Q not all zero. Since n is not a zero-divisor, we obtain

2g—1

Z CiAi =0.
i=0

However, this shows that the minimal polynomial of A has degree at most 2g — 1,
which contradicts the fact that the minimal polynomial is f4 since it is separable. This
concludes the proof of Part (i).

To show Part (ii) one considers the determinant of the matrix having rows n, .. .,
nA%~! whose vanishing is equivalent to linear independence; it is an integer, nonzero
by Part (i), hence for all primes p not dividing it we have linear independence mod p. O

4.3. Reduction to a system of exponential equations. We now consider (4.1) for a prime
N = p.

Let A € Sp(2g, Z) have separable characteristic polynomial f4 € Z[X]. Assume
that p is large enough so that f4 is separable modulo p, which also implies that A is
diagonalisable over IF,.

Next, let

fa(X) = hi(X) -+ h(X) mod p

be the factorization of f4 into irreducible factors h; € F,[X] of degrees d; = degh;,
i =1...,t. Inparticular, any root of /; belongs to Ide,- ,i =1...,t.Foreachh; we fix
arootA; € F Pl and consider the system of equations (in the algebraic closure of I,)

e N SRR U ) B2 (4.4)
with 1 < kj,£¢; < ord(A, p), j = 1,...,2v. Itis easy to see that for all choices of
roots Ap, ..., Ay we get equivalent systems.

Next, we reduce counting the number of solutions to (4.3) to counting the number of
solutions to (4.4).

In fact our treatment depends only on the degrees dj, ..., d; and so we denote the
number of solutions to (4.4) by Ry, (dy, ..., ds; p).
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Lemma 4.4. Under the above assumptions, there exists some po(A), depending only on

A, such that for any vector n € 728, which is not a zero divisor, and p > po(A)||n||§g
we have

Oov(p;m) = Roy(dy, ..., ds; p).
Proof. Let us denote
B=AM 4. Ak Al At

Multiplying (4.1) by powers of A, we conclude that
(nAi)BEOmodp, i=0,...,2¢g—1,

which is equivalent to

n
nA B =0 mod p.

nAngl

From Lemma 4.3 (ii), there exists some po(A), depending only on A, such that for
p > po(A) ||n||§g allrows n, nA, ..., nA%~! are linearly independent modulo p, and
thus from the above we conclude that B vanishes over IF,.

Since A is diagonalisable over Fp, the equation above is equivalent to

AR e AR = AT+ A% mod p,

where A is a diagonal matrix with elements on the diagonal all the roots of A;, i =
1, ..., t. Since for each irreducible factor of f modulo p, all roots are conjugate (that

421
is, the roots of ; in ¥ 4 are A, A, ..., A7 ), we conclude the proof. o

5. Multiplicative Orders and Exponential Sums

5.1. Ergodicity and the order modulo p. It is natural that our argument, as in [2,19,20],
rests on various results on multiplicative orders.

We begin by showing that the multiplicative orders of the eigenvalues of A €
Sp(2g, Z), and their ratios, are sufficiently large for almost all primes. The argument is
a modification of that of Hooley [13].

We recall the definition of ord(X, p) in § 1.4 and also that we say that p is split prime
if the characteristic polynomial of the matrix A splits completely modulo p.

Lemma 5.1. Assume that A € Sp(2g, Z) has separable characteristic polynomial and
that no eigenvalue or ratio of distinct eigenvalues is a root of unity. Let Ay, ..., A2g be
the eigenvalues of A. Then for almost all split primes p we have

ord(A;, p),ord(x;/%j, p) > p'*/logp, 1<i # j<2g.
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Proof. For a sufficiently large Y > 2, let
AV =[] ] Nmga!-1 [] Nmgo®?—ip.
n<Y 1<i<2g 1<j<h<2g

where Nmg /@ (¢) is the normof { € K = Q (Aq, ..., A,) in Q. Note that A(Y) # 0
because of the condition on the avoidance of roots of unity among the eigenvalues and
their ratios, and A(Y) € Z since all eigenvalues are algebraic integers. Since

Nmgg (4 =1)= [[ (oG ~1)
oeGal(K /Q)

and

Nmg g (k’} - KZ) = [I @©ep'—ocew").
oeGal(K /Q)

where both products are over all automorphisms o from the Galois group Gal(K /Q) of
K over Q, and thus

logNmg (A — 1), logNmg g1} — i) < n,

we see that
log|A(Y)| < Y2. (5.1)

Let P(Y) be the set of primes for which

min min__ {ord(%;, p), ord(A;/Ap, <Y.
1<i<2g1<j<hg2g{ (i, p) (Xj/An, )} <

We observe that for p € P(Y), we must have p | A(Y), and hence
fP(Y) < w(A(Y)), (5.2)

where, as usual, w (k) denotes the number of prime divisors of the integer k > 1. From
the trivial observation that w (k)! < k and the Stirling formula, we derive

logk

— k>l 5.3
loglog(k +2) (5-3)

(k) K

Putting together (5.1), (5.2) and (5.3), we see that
tP(Y) < Y?/logY.

Since the number of primes p < X is 7(X) ~ X/log X, we can take ¥ = /X /log X
to assure that for all but o (7 (X)) primes p < X, we have

ord(A;, p),ord(A; /2j, p) > X /log X = /p/logp, 1<i#j<2g.

Since splitting fields of polynomials are Galois extensions, by the Chebotarev Density
Theorem, see [14, Theorem 21.2], for a positive proportion of primes p, see our con-
vention in § 1.4, the characteristic polynomial of the matrix A splits modulo p. This
concludes the proof. O
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5.2. Relation with short exponential sums. Asdiscussedin § 4.1, one relates the uniform
distribution of the eigenfunctions of the operator Uy (A), as well as the decay of off-
diagonal matrix elements, to bounding the number of solutions Q5,(N; n) forn € 728
to the matrix congruence (4.1), see Lemma 4.1.

Following the discussion after Theorem 1.2 and Lemma 4.1, we thus reduce the
problem to showing that

d(A, 4v
02 (pm) =0 (%)

forasetof ‘good’ primes p for which the characteristic polynomial of A splits completely
over I[F,, with eigenvalues A; € IF’;,, i=1,...,2g.

In turn, using the orthogonality of exponential sums, this leads us to a problem of
obtaining nontrivial cancellation in exponential sums of the form

ord(A, p)

J j
Z e, (Ol])\l +... +Ol2g)\2g>
Jj=1

for (ap, ..., 004) € ]Ff,g.

These exponential sums are not treatable by algebro-geometric methods of Weil and
Deligne, but fortunately they can be treated by methods from additive combinatorics. In
particular, we make use of the bounds of Bourgain [1, Corollary] on Mordell type sums
over prime fields.

Lemma 5.2. For every ¢ > 0 there exists some § > 0 such that the following holds. Let
ay,...,os €IFp, notall zero, and Ay, ..., Ay € IF; be such that

ord(A;, p), ord(Aj/Aj, p) = p°, 1<i,j<s, i#].

Then
T
> ep (@A ..+ ad)| < TpP,
x=1

where T is the order of the subgroup of]F*;) generated by M1, ..., As.

According to Lemma 4.4, in the split case, that is, for A; € F*,i = 1,...,2g, the
number of solutions to the system (4.4) is given by Q2,(p; n) = Ry, (1, ..., 1; p) (with
t = 2g therein). Using the orthogonality of exponential functions we obtain

On(p;m) = Roy(1,...,1; p)

T 4v
1

= Z Z e, (O(])\tl +... +(¥2g)nt2g)

p 28 | t=1

acly

T4V T 4v
< g+ max Z e (oqk’l +... +a2gA’2g)

P™ 0tacFE |1
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Inserting Lemma 5.2, exactly as in [2], we derive

4v T4u

4v _—4vs

T
Q2 (pin) K pen

for v > g/(26). Hence we find:

Corollary 5.3. Let A € Sp(2g, Z) have separable characteristic polynomial. For every
& > 0 there exists some integer vy > 0 such that the following holds. For a prime p so
that A splits modulo p, let the eigenvalues of A be

Alsevns A2g EF;.
Assume that
ord(A;, p), ord(Aj/Aj, p) = p®, 1<i,j<2g, i+#].

Then, for any vector n € 78, which is not a zero-divisor and such that for p >
po(A)||n||§g, where po(A) is as in Lemma 4.4, and all v > vy, we have

ord(A, p)*
02, (p;m) K =ar
p%

5.3. Bounding (T;,r)(n)l//, Y'Y for a positive proportion of primes. We remark that the
assumptions of Lemma 5.2 and Corollary 5.3 hold for a positive proportion of primes
p (in fact, for a full density subset of the set of primes p for which the characteristic
polynomial of A splits completely, see Lemma 7.3). Hence, combining Lemma 4.1 and
Corollary 5.3, we obtain the desired estimate (1.8) on (Tg)(n)w, ¥’} when n is not a
zero-divisor.

Corollary 54. Let A € Sp(2g,Z) have separable characteristic polynomial. There
exists some constant y > 0, depending only on A, such that for a positive proportion
of primes p the following holds: For all integers r coprime to p, and for any n € 78,

which is not a zero-divisor and with p > po(A) ||n||§g, where po(A) is as in Lemma 4.4,
max (TO @y, v)| < p77,

the maximum over all pairs of normalized eigenvectors of Up, »(A).

6. Treatment of Zero-Divisors

6.1. Preliminaries. We remark that if f4 is irreducible then there are no nontrivial zero-
divisors, and thus the results of § 4.1 allow us to complete the proof. However in the
case when f4 is separable but not irreducible we need additional considerations to treat
vectors n € Z28 which are zero-divisors, as defined in § 4.2. Thus this section is not
needed if one is only interested in the case of matrices A € Sp(2g, Z) with irreducible
characteristic polynomials.



174 Page 18 of 29 P. Kurlberg, A. Ostafe, Z. Rudnick, I. E. Shparlinski

6.2. Remarks on symplectic spaces. We next record some basic facts regarding sym-
plectic vector spaces. Let W be a symplectic space, that is, a vector space with a
non-degenerate alternating bilinear form, which we denote (-, -). We note that a sub-
space U C V is symplectic, that is, the restriction of the symplectic form to U is
non-degenerate, if and only if U N U+ = {0}.

Lemma 6.1. Let A € Sp(V) be a symplectic matrix over V. Assume thatU C V isan A-
invariant subspace on which A acts irreducibly, and assume that U is not isotropic. Then
U is symplectic, and its orthogonal complement U~ is also A-invariant and symplectic.

Proof. Assume for contradiction that the restriction of the above bilinear form (-, -) to
U is degenerate. Then there exist nonzero ug € U such that (u, up) = 0 forallu € U,
and hence (A'u, A'ug) = 0 for all u € U and all integers i > 0 (note that here we
follow the usual convention of groups acting on the left.)

Since A is symplectic it is invertible, and so is the restriction to U, hence (u, Al uy) =
0 for allu € U. Since the span of Alug,i =0,1,..., equals U we find that U C U+,
contradicting that U is not isotropic.

The argument for the first part of second assertion is similar. If w € U~ then (u, w) =
0 for allu € U, and thus (Au, Aw) = 0 for all u € U and hence, again using that A|y
(that is, the map induced by A on U) is invertible, we have (u, Aw) = O forallu € U
and thus U~ is A-invariant. Since U is symplectic we have U N U+ = {0} and thus
W = U @ U™ (since dim(U) + dim(U~+) = dim(W) always holds).

Now, if the restriction of the form to UL is degenerate there exists v € U 1 with
(v, ul) = 0 for all ut € UL, and since (v,u) = O for all u € U, we find that
(v,w) = 0 for all w € W, which contradicts W being symplectic. O

A simple consequence of Lemma 6.1 is that if W splits into irreducible A-invariant
subspaces, then each such subspace is either symplectic or isotropic. If there exist an
invariant isotropic subspace, there is scarring as shown by Kelmer [16, Theorem 1].
Otherwise, we can decompose W into smaller invariant symplectic subspaces and use a
certain tensor product structure to reduce the dimension, and this allows us to treat the
problem of small zero-divisors.

6.3. Quantized cat maps and tensor products revisited. Let A € Sp(2g, Z) have sepa-
rable characteristic polynomial and let N = p be a prime. Let us consider an element

n € 728 for which the reduction modulo p in Z¢ /(pZ*8) ~ ]F?,g is not a zero-divisor in
the sense defined in § 4.2, where we identify F?,g >~ Fp[x]/(fa(x)). In order to bound

the matrix coefficient (Tg\r,) (n)v, ¥') we need some further properties of the quantiza-
tion related to invariant symplectic subspaces and an associated tensor product structure;
these properties are consequences of U, (A) being implicitly defined via the Weil (or
oscillator) representation of Sp(2¢g, IF,). We briefly outline the construction below, for
more details see [10,16].

Hereafter, to simplify the notation in this section we regard p as a fixed prime, and
suppress the dependence on p and n in most places. Let W be a symplectic vector
space over I ,, and assume that W splits into a direct sum of symplectic subspaces, that
is, W = W & W, where W L W, (that is, W, = WIL), and the restrictions of the
symplectic form to W; and W5 are both non-degenerate.

We emphasise that in our application, W1, W> depend not only on p but on n as well:

) . . . . .
we write pg ~ W @ W,, where the image of n in W5 is zero, whereas the image in W
does not correspond to a zero-divisor.
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With V; € W;, i = 1,2, denoting maximal isotropic subspaces, we note that V =
Vi @ V2 € W is a maximal isotropic subspace. We may define the Heisenberg group

HW)={(f,w): feF, weW]
with the group law given by
(f,W)'(f/,W/) = (f+f/+<w’w/>7w+w/)

where (-, -) denotes the symplectic form on W (and similarly H (W;) fori = 1, 2).
Let Z € H(Wp) x H(W>) denote the subgroup

Z={(f,0)x(=£,0): felF,}
We find that the surjection H(W;) x H(W,) — H (W), given by

(f1, w1) x (f2, w2) = (f1 + f2, Wi +W2)
factors through Z, and that we have the isomorphism
(H(W1) x HW2))/Z = H(W).

The irreducible non-abelian representations of H (W) arise in the following way.
Given a non-trivial additive character x : F, — C,let K =F, x V € H(W) denote a
maximal abelian subgroup of H(W) and extend x to K (say, by letting x (f, v) = x (f)).
We remark that the character x depends on r present in the definition of our observables
T,S’), but the precise dependence is not important; we only need that ged(r, p) = 1
implies that x is non-trivial. By inducing the extended character x from K to H(W),
we obtain an irreducible representation p : H(W) — GL(L*(V)), and similarly
irreducible representations

ov: HW,) = GL(L*(Vy)), v=1,2.

Now, as V = Vj x Vo wehave L2(V) = L*(V})®L?(V,). Since the action of Z is trivial,
we find that H (W) x H (W), and thus H (W), acts in a natural way on L2 (V) QL2(Vy).

Briefly, the Weil representation 7 of Sp(2g, F,) = Sp(W) is then defined as fol-
lows: Sp(W) acts on H(W), and this induces an action on the set of irreducible repre-
sentations of H(W). The action preserves the central character, and since irreducible
representations of H (W) are determined by their central characters (this holds since
H (W) is a two step nilpotent group), the action on the set of irreducible representations
is, up to intertwining operators, trivial. In particular, for each g € Sp(W), define p$ by
p8(h) = p(g(h)) (for h € H(W)); we then find that p >~ p8&, that is, there exists an
intertwining operator (only defined up to a scalar; it turns out that this gives projective
representation of Sp(W); for p odd a non-trivial fact is that it is possible to choose
scalars to obtain a true representation) 7 (g) acting on L3(V) = L*(V}) ® L%(V») so
that w(g)p8 = pm(g). Further, we similarly obtain “smaller” Weil representations p,
of Sp(W,) acting on L?>(V), for v = 1,2; to fix compatible central characters it is
convenient to use the maps H(W,) — H(W;) x H(W,) — H (W) to obtain the action
of Sp(W,) on L%(V,).

The product Sp(W1) x Sp(W>), under the inclusion

Sp(W1) x Sp(W2) < Sp(W),
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then acts componentwise on the tensor product L2(V}) ® L3(V3). In particular, if A €
Sp(W) leaves both Wi and W, invariant, let A, € Sp(W,) denote the corresponding
restrictions of A to W, for v = 1, 2. We now note that letting w = w; + wy denote the
reduction of n modulo p, we can write,

Upr(A) =Ui(A)) ® Uz(Ar),
TS () = p((0, ) = p1((0, w1)) ® p2((0, w2)),
where U, ,(A) = mw(A) and U, (A)) = 7, (A)) forv =1, 2.

(6.1)

6.4. Eigenfunctions of tensor products. We next describe eigenfunctions of U, ;- (A) in
terms of the tensor product structure. With W, Wy, W, and V, V1, V, as in § 6.3, for
v = 1, 2, we may decompose L%(V,) into U, (A,)-eigenspaces

E,; =ker(U,(A)) — AI), AEA,,

(possibly with multiplicities), where A ranges over the set of eigenvalues A, of U, (A,).
Further, for v = 1, 2 we may find bases of orthonormal eigenfunctions ¥, ; ; € Ey 3,

i=1,...,1,,, for some positive integers /, , = dim(E, ;) with
Y ha+ Y ha=2g
reN rEA)

which follows from the separability of the characteristic polynomial of A. That is,
Uy(AD)Yv i =i, v=12,i=1,...,1,;,

where A, ; ranges over the whole set A,. We further note that the set
Wia.i ® Vo ey, iv=1,.... 0, v=12}

gives an orthonormal eigenbasis of L2(V) = L2(V}) @ L3(V,).In particular, the eigen-
values of Uj, (A) = U1(A1) ® Uz(A3) are given by

A={ Xl A € A1, A € Ay},
and for u € A, an eigenbasis for £, = ker(Up ,(A) — 1) is given by

Wiri®@Youmj: e, i=1.. I, j=1...,Lu:).

Note that the quantizations U, , (A), U1(A1), and U, (A3) are only defined up to scalars,
but once we have chosen scalars for Uj(A1), and U>(A>) we may chose the scalar for
Up,r(A) so that multiplicativity of eigenvalues hold.

We can now bound matrix coefficients corresponding to observables having zero-
divisors.

Lemma 6.2. Let A € Sp(2g, Z) with a separable characteristic polynomial, such that
there are no A-invariant rational istropic subspaces. There exists some constant y > 0,
depending only on A, such that for a positive proportion of primes p the following holds:
Let € E, and ' € E,s denote two eigenfunctions of U, ,(A), and let w denote a

non-trivial zero-divisor. Then for p > po(A)||w||§g, where po(A) is as in Lemma 4.4,
we have

(TS W, ¥ < p 7 1l - 192
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Proof. Let 0 # w € Z*¢, which is a zero-divisor. Then there is an A-stable rational
subspace Wi, necessarily symplectic by Lemma 6.1, so that with respect to the decom-
position w = (wy, wp) € W @ W;, where W, = Wli, the component w; € Wy of wis
not a zero divisor, while the component wy in W, = Wf- is zero.

For u, ' € A, write

V= Z i j V1 @ V2, u/mjs

(niy )EQ
where
Q={Ai,j)):reA,i=1.... I j=1,....0un}
and
v = Z Boit Wi @ Yot
O, jhe
where

Q={W.,i",j)y: Nen,i'=1,....hy, j=2,....0hu}

with complex coefficients a; ;. j, By i7,j» € C.
Since wo = 0, by (6.1), we have

T (W) = p((0, W) = p1((0. w1)) ® p2((0, wa)) = p1((0, w1)) ®Id,

and thus

(O, w)Y, ¥ Y=Y > @By

Ouis )EQ (Vi1 j)eQ!
{1 (O, WY1 i Vi) (2w, o, i, jr)-

Now, since

1 ifj = j/ and u/h = 'V,
V2o Vo) = 0 otherwise,

only terms for which j = j’ and for which A’ = n()) for the bijection n : A; — A}
contribute (more precisely, we have n(1) = (Au)/ . Hence

(p (O, W)Y, ¥')

T 6.2)
= Z Zle,i,jﬁn(x),icj(m(((lW1))1/f1,x,i,Wl,n(x)m.

(i, j)eQ i'=1
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We now apply Corollary 5.4 with respect to the matrix A in the decomposition (6.1),
which applies since wy is not a zero-divisor. Then, by the Cauchy-Schwarz inequality,
for every A and j fixed, we have

W SRTeN)
Z Z i, Bn.it,j (1O, WDV Y go,ir)

i=1 i'=1
(6.3)
I 172 Iy 172

<p 7D el > 1Bo.iril?
i=1

i'=1

Finally, using the Cauchy-Schwarz inequality again, and then recalling that 5 is a
bijection on A, we derive

Loyup [ s 172 Iy 1/2
2 2
Z Z Z|05A,i,j| Z 1Bnony,ir,jl
reA j=1 \i=l i'=1
Doy I 172 VR SRTeN) 172
2 2
<22 2 2 il 22 2 Bl
reA j=1 i=l reA j=1 i'=1
=¥l I1¥'l2
and recalling (6.2) and (6.3), we conclude the proof. O

7. Anatomy of Integers

7.1. Some sums and products over primes. Itis convenient to denote by log, x the k-fold
iterated logarithm, that is, for x > 1 we set

logix =logx and  log; =log,_; max{logx,2}, k=2,3,....

We begin by recording an upper bound for Mertens type sums over primes in progres-
sions, together with a simple consequence.

Lemma 7.1. Let g be a prime and let j > 1 be an integer. We have

S Ly o8
P<X 1
qlp’ -1

where the implied constant depends only on j.

Proof. For an integer k > 0 define the dyadic interval [} = [2k q, 2k+1q], and note that
g | p/ — 1 implies that p must lie in a progression p = a mod g, where 0 < a < ¢
ranges over over at most j possible values. For any a, the Brun—Titchmarsh inequality,
see, for example, [14, Theorem 6.6] or [27, Chapter I, Theorem 4.16], implies that

2k+lq 1 1

Y P e K
o qlog?**lq/q) 2%q ~ q(k+1)
p=a mod g
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If 2fg < x we have k < log x, and summing over such k we find that the contribution
from primes p > g is O (q_l log, x). Since there are at most j primes p < g for which

g | p/ — 1, and each such prime satisfies p > ¢'// we find that the contribution from

p < qis O (¢~'%), and the proof is concluded. O
We remark that for j = 1 the bound of Lemma 7.1 simplifies as
1 log, x
P .1)
ol q
p=1 mod ¢

We control the contribution from small prime divisors of p — 1 as follows. For a
prime g and positive integer k, we define v, (k) to be the positive integer £ such that

g1k and ¢"'tk.
We fix some z > 0 and let

s =T]TTa"" " =11 I] 4" (7.2)

PIN g<z PIN g<z
q‘llp—1

that is, s, (N) is the product of the z-smooth parts of p — 1, as p ranges over all prime
divisors of N.

Lemma 7.2. Let

Z =exp ((log2 x)(logs x)3/2) and 7 = (log, x)Om )

For all but o(x) integers N < x we have s;,(N) < Z.

Proof. From the definition of s.(N) in (7.2), extending over all powers ¢¢ < x, ¢ < z,
such that ¢¢ | (p — 1), we have

Y logs.(N) < Y log(gh) > Lx/pl=Si+S5,
N<x gt<x p=1 mod g*
q <z, prime

where Sy is the contribution from the terms corresponding to £ = 1 and S is the
contribution from the terms with ¢ > 2.
For S1, we have

N Z logg Z %

q<z, prime psx
p=1 modgq

Using (7.1) applied to the inner sum, we now derive
log, x

S K x Z logg
q4<z

(7.3)

lo

< x(log, x) Z 289 « x(log, x)(log z).
q<z
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The sum S is estimated trivially by discarding the primality conditions on p and
thus using that

1 log
Z < Z que < —Zx,

p<x 1<k<x/qt 1
p=1 mod ¢*

S| -

which implies, after we abandon the condition of primality on ¢ and the inequality ¢ < z,

1 l
S>> < x(logx) Z Z og(rzz )

m
2<e<logx/log2 1<m<Lxl/t (7'4)

< x(logx)? Z x T « X2 (log x)>2.
2<¢<logx/log2

Clearly the bound on S in (7.3) dominates the bound on S>> in (7.4). Hence,

> logs.(N) < x(log, x)(log z) < x(log, x)(log x).
N<x

Therefore we have s.(N) > Z = exp ((log, x) (logs x)*/?) for at most

0 (x(10g2 x)(logs x)(log Z)_1> =0 (x (log; x)_l/z)

positive integers N < x. O

7.2. Good primes and integers. We recall that A € Sp(2g, Z).
We say that a prime p is good if the following two conditions are satisfied:

e the characteristic polynomial of A is separable and splits completely modulo p;
o for the roots Ap, ..., Az, of the characteristic polynomial of A modulo p we have

ord(hi, p), ord(hi/Aj, p) = p'P, 1<, j<s, i # ).

We note that the exponent 1/3 is somewhat arbitrary and can be replaced by any
y < 1/2.

Let Pgood denote the set of good primes.

Applying Lemma 5.1, we now derive

Lemma 7.3. The set Pgood is of positive density.
Next, given integers U > V > 1 we define
PgOOd(Vv U) = Pgood N[V, Ul.

We now set ,
D(x) = (logx)!°&¥)",

V(x) = exp (exp (\/@)) , (7.5)

W(x) = xlog3 )c/logz)c7
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and define the following set N, sood (X) of good integers

Ngood ={N:3pe Pgood(V(N)a W(N))
with N = pM, M € Z, gcd(p, M) = 1, (7.6)
ged (p — 1,0rd(A, M)) < D(N)}.

We then set

Naood () = Ngooa N [1, x].

The next statement is our main tool.
Lemma 7.4. We have
ENeood () = x +0(x).
Proof. 1t is certainly enough to show that
# (Naood N [x/2, x]) = x/2 + o(x).
In turn, we set
Do =D(x/2), Vo=V(x), Wo= W(x/2),

such that

[Vo, Wol € [V(N), W(N)],

for all N € [x/2, x] and define the following set f\v/'good (x) of good integers N < x:

Ngood(x) ={N < x: 3Ap € Pgooa(Vo, Wo) with N = pM, M € Z,
ged(p, M) =1, ged (p — 1, 0rd(A, M)) < Do}

Clearly

Ngood(x) N[x/2,x] C Ngood N[x/2, x],
hence it is enough to show that
N good (X) = x + 0(x). (7.7)

That is, in the above, we first consider integers N in a dyadic interval. This allows us to
replace Pyood (V (N), W(N)) with Pyood(Vo, Wo). After this is done, we can bring back
integers below x /2 as well: if the exceptional set is of size o(x) on [1, x] then so it is on
[x/2, x] and we are done. Thus indeed we only need to establish (7.7).

First recall that by Lemma 7.3 the set of good primes Pgy0q is of positive density.
Therefore, there are some constants C, ¢ > 0 (depending on the matrix A) such that for
Z > 2 the set Pgood(Z, CZ) contains at least cZ/log Z + O (1) primes, that is,

1 Peo0d(Z,CZ) = ¢ + O(1). (7.8)

log Z

Taking x sufficiently large such that the interval [2, Wy] contains / non-overlapping
intervals of the form [C!, C**1), i =1, ..., I, where

log Wy <« I < log Wy,
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we derive
Yo Upx= > Up— > 1/p
Pepgood(VOs Wo) Pepgond (2,Wo) p< Vo, prime
I
=D DD DR Ve DIV
i=1 pePyooa(C!,CH1) p<Vo, prime

1
>3 C T tPgaa (€1 CM) = 30 Up,
i=1

p<Vo, prime

Next, recalling (7.8) and the Mertens formula (or simply using (7.1) withg = 1), we
obtain

) C!
I/p > c™! +0() |+ 0(og, V,
> 1/p Z (CilogC ()) (log, Vo)
pepgood(VOsWO) i=l

I

1
> =+ 0(og, Vo) >
i=1 !
> log, Wo + O(log, Vo) > log, Wo > log, x.

c
>
logC

c
logI + O(l \%
logC o8 (logy Vo)

Therefore,

[T a-vp<ep|- > 1/p]<ogx)”
pepgood Vo, Wo) Pepgn()d Vo, Wo)
for some y > 0, which depends only on C and ¢, and thus only on the matrix A. Thus,
by the classical Brun sieve, see, for example, [27, Chapter I, Theorem 4.4], almost all

N < x are divisible by some prime p € Pgood (Vo, Wo).

We now set z = (10g2 x)2g+l and note that Dy > Z, where Z is as in Lemma 7.2.

Thus Lemma 7.2 allows us to discard o(x) positive integers N < x with
s:(N) = Do,
where s, (N) is defined by (7.2). Hence for the remaining integers N € [x/2, x] we have
s:(N) < Dy < D(N).

We also discard O (x/ Vp) integers N < x which are divisible by p? for some prime
p > Vo. Hence, for the remaining integers N, for any p € Pgood(Vo, Wo) with p | N
we now have ged(p, N/p) = 1.

Furthermore, for the remaining N < x, we see that if

ged (p — 1,0rd(A, N/p)) > Dy,

then, since s,(p) < s;(N) < Dy, there is a prime ¢ > z with ¢ | p — | and another
prime £ | N, £ # p, such that

2g

q|ord(A,£)|l—[(£j—l>.

j=1



On Quantum Ergodicity for Higher Dimensional Cat Maps Page 27 of 29 174

Hence to conclude the proof it suffices to show that forevery j = 1, ..., 2g we have

3 3 3 % = o(x). (1.9)

g>z, prime p<x, prime ¢<x/p, prime
p=1 modgq p#t
glei—1

To establish (7.9), we first discard the condition £ # p, and extend the summation
over £ up to £ < x. Then we recall Lemma 7.1 (for the sum over £) and its special
case (7.1) (for the sum over p) and derive

) MD ST D DD DI D DA

q>z, prime p<x, prime ¢<x/p, prime q>z, prime p<x, prime £<x, prime
p=1 modgq p#L p=1 modgq qlei—1
glei—1

log, x . logy x
<L x Z i <q_1// + i)

g>z, prime q 4

1 1 2
<<x<ogzx N (log, x) )

Z1/i 22
log, x  (log, x)2
<Lx (Zl/(z‘g) + o) .

Recalling our choice z = (log2 x)2g+l, we obtain (7.9).
Thus all together we have discarded o(x) integers and all remaining integers N < x
belong to Ngood. Hence we see that (7.7) holds, and the result follows. m]

8. Proof of Theorem 1.2

We recall the definition of good integers given by (7.6). We now show that (1.7) holds
with N = Ngood, that iS,

:O,

lim malzc Opy (NN Yy) — (Un. Yy) /ng fx)dx

where the maximum is taken over all pairs of normalized eigenfunctions ¥y, ), of
Un(A). By Lemma 7.4, the set Ngood is of full density and hence this is sufficient for
our goal.

As in [2,19], using the rapid decay of coefficients of f € C °°(T23 ), it suffices to
show that

max  max Ty @y, Yy)| — 0

€z’ YUN.Vy
0<n]<L(N)

asN — oo, N € Ngood, with ¢y, ‘p//v running over all normalized eigenfunctions of
Un(A), with a slowly growing function L(N) — oo.

We recall the definition of the functions D(x), V(x) and W(x) as in (7.5). In
particular, we take L(N) to grow sufficiently slowly to guarantee that for any p €
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Poood(V(N), W(N)) and for any n € 728 with 0 < In| < L(N) the conditions of
Corollary 5.4 and Lemma 6.2 are satisfied provided that N is sufficiently large.

We now fix some N € Ngooq and choose a prime p which satisfies all properties
in (7.6).

We set

d = ged (ord(A, p), ord(A, M)) .
Clearly
d < ged(p — 1, 0rd(A, M)) < D(N).

Now, applying (3.6), and then Lemma 3.1 (with Ny = p and with A? instead of A), we
derive

Ty, ¥')] <  max I(T;,(n)fp,fp/ﬂ, (8.1)
.9 €D)

r

where r is some integer coprime to p and ¢, ¢’ range over all normalized eigenfunctions
of Uy, »(AY).

We note that the roots of the characteristic polynomial of A4 are 24 e, Agg, where
Al, ..., Ayg are the roots of the characteristic polynomial of A modulo p and we also
have

ord(f, p), ord({ /25, p) = p'Pa™ > p'h 1 <i j <2, i #
since obviously for a sufficiently large N we have
d < D(N) S V()12 < pl/t2,

Thus the conditions of Corollary 5.3 are satisfied. Combining Corollary 5.4 and Lemma 6.2
(when n is a zero divisor) with (8.1) we conclude the proof.
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