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On Cilleruelo’s conjecture for the least common
multiple of polynomial sequences

Zeév Rudnick and Sa’ar Zehavi

Abstract. A conjecture due to Cilleruelo states that for an irreducible
polynomial f with integer coefficients of degree d > 2, the least com-
mon multiple L¢(N) of the sequence f(1), f(2),..., f(N) has asymptotic
growth log Ly(N) ~ (d —1)Nlog N as N — co. We establish a version of
this conjecture for almost all shifts of a fixed polynomial, the range of N
depending on the range of shifts.

1. Introduction

1.1. Background

It is a well known and elementary fact that the least common multiple of all integers
1,2,..., N is exactly given by

loglem{1,2,...,N} =¢(N) := Z A(n),

n<N

with A(n) being the von Mangoldt function, and hence by the prime number
theorem,
loglem{1,2,...,N} ~ N.

For a polynomial f € Z[X], set
Li(N) :=lem{f(n):n=1,...,N}.

The goal is to understand the asymptotic growth of log Ly(N) as N — oo.

In the linear case deg f = 1, we still have log L¢(N) ~ ¢;N from the prime
number theorem in arithmetic progressions, see e.g. [1]. A similar growth occurs
for products of linear polynomials, see [3]. However, in the case of irreducible
polynomials of higher degree, Cilleruelo [2] conjectured that the growth is faster
than linear, precisely:
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Conjecture 1.1. If f is an irreducible polynomial with deg f > 2, then
logLy(N) ~ (deg f —1)Nlog N, N — oc.

Cilleruelo proved Conjecture 1.1 for quadratic polynomials. Moreover, in that
case there is a secondary main term (see also [6]):

log Ly(N) = Nlog N +b;N + o(N).

No other case of Conjecture 1.1 is known to date. We do know that for any
irreducible f of degree d > 3, we have an upper bound precisely compatible with
the conjecture: log Ly(N) < (d—1)Nlog N, and a lower bound of the correct order
of magnitude: log L;(N) > Nlog N, see [4].

We will show that Conjecture 1.1 holds for almost all f in a suitable sense.

1.2. General setup

We fix a polynomial fy(z) € Z[x] of degree d > 3, which we assume is monic, and
for a € Z we set

fa(x) = fo(2) —a.

It is known that f,(z) is generically irreducible. Set
L,(N)=1em{fo(n)—a:n=1,...,N}.

We want to show that:

Theorem 1.2. For almost all |a| < T, and for all N satisfying

T
TV/(E=1) « N « =
sAs logT’

we have

(1.1) log Lo(N) ~ (d—1)Nlog N.

Remark. What one would like to show is that (1.1) holds for all N > Ny(a), for
all but o(T) values of |a| < T. At this time we do not know how to do this.

1.3. Plan

Let
P.(N) = [] Ifo(n) —al.

n<N

We write down the prime power factorization

P) = [T,
p

If T < N1, then ay(a; N) = 0 for p > N? and (see Lemma 2.3 below)
log P,(N) =dNlog N + O(N).
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We also write the prime power factorization of L,(N) as

La(N) = HpBP(N)~
p

Let
D(a) = disc(fo(z) — a)

be the discriminant of fo(x) — a. It is a polynomial in a of degree d — 1, with
integer coefficients.
We will show (see Proposition 2.2) that

(1.2) log L,(N) = dNlog N — Bady(a) — Ay(a) — NCy(a) + O(N),
where

Bady(a) = Z ap(N) log p,
p<N
p|D(a)

An(@)= Y (ap(N) = B,(N))logp,

N<pKNd

On(@) = 3 B2 i),

gn P
ptD(a)

with
pla;d) = #{nmod d : fo(n) —a =0mod d}.

We will show that for almost all |a| < T, with Nlog N < T < N9~! we have

(1.3) Cn(a) ~log N,
(1'4) BadN(a) < N(log log N)l""o(l))
(1.5) An(a) < N(loglog N)+e),

Inserting these into (1.2) will prove Theorem 1.2.

To prove (1.3), (1.4) and (1.5) we use averaging: denoting by (e) the average
over all |a| < T such that fo(x)—a is irreducible, we show that for Nlog N < T <
Nd_l,

(1.6) {|Cn(a) —log N|*) < (loglog N)?,
(1.7) (Badny(a)) < Nloglog N,
(1.8) (An(a)) < Nloglog N.

Noting that Ay (a),Bady(a) > 0 are non-negative, we obtain (1.3), (1.4), (1.5)
from the Chebyshev/Markov inequality.
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Remark. In the deterministic case (a fixed, N — o0), the quantities Bady and Cn
can be handled easily, as in the quadratic case d = 2, see [2]. It is the quan-
tity An(a) which we do not know how to show is o( N log N) individually (though
the upper bound O(Nlog N) is easy). This is why we need to average over a.
However, letting a grow with N introduces new problems, in particular for the
study of C, which may need the generalized Riemann hypothesis to overcome
individually. The results (1.6) and (1.7) for random a are much easier and this is
the method that we use.

Acknowledgements. We thank Shaofang Hong and Guoyou Qian for introducing
the problem during a visit to Chengdu in 2017, and Lior Bary Soroker and James
Maynard for discussions.

2. Background

2.1. Generic irreducibility

Fix fo(z) € Z[z] monic, of degree d > 2. It is known that fo(z) — a is generically
irreducible; in fact (see Section 9.7 of [8]):

Lemma 2.1. Fiz fo(x) € Z[z] of degree d > 2. Then the number of |a| < T for
which fo(z) — a is reducible is O(\/T).

This is sharp in this generality, since for even degree d = 2m, for the polynomial
fo(xz) = 2®™ we have 2™ — a is reducible whenever a = b? is a perfect square.
Denote

D(a) = disc(fo(z) — a)

the discriminant of f,(x), which is a polynomial in a of degree < d—1 with integer
coefficients (depending on the coefficients of f;). We assume that a is such that
fo(z) — a is irreducible, and therefore D(a) is not zero, i.e., f, has no multiple
roots.

Examples:

i) fo(z) = 23, then disc(fo(x) — a) = disc(a® — a) = —27a?.

ii) fo(z) = 2® — 3z, then disc(fo(x) — a) = —27(a — 2)(a + 2).

2.2. A decomposition
Proposition 2.2. For |a| < N9! such that fo(x) — a is irreducible, we have
log Ly(N) = dlog N — Bady(a) — NCy(a) — An(a) + O(N).

For a € Z such that f,(z) = fo(x) — a is irreducible, let

Py(N) = [T lfa(n)l,

n<N



ON CILLERUELO’S CONJECTURE 5

which is nonzero since f, has no rational roots, and write the prime power decom-
position as

Py(N) =[] pr™
p

so that

ap(N) = D" vp(fa(n),

n<N

where v,(m) := max(k > 0: p* | m).
Following Cilleruelo [2], we want to relate log L,(NN) to log P,(N), which is
clearly bigger. We write the prime power decomposition of L,(N) as

Lo(N) = [[p%™), with B,(N) = max{v,(fa(n)) : n < N}.

Using the prime factorization of L,(N) and P,(N), we have

(2.1) log La(N) =log Pa(N) = Y ap(N)logp+ Y B,(N)logp
p<N p<N
- Z (ap(N) = Bp(N)) log p,
p>N

where we have separated out the contribution of primes p < N, and the larger
ones. We further break off the contribution of primes p < N which divide the
discriminant D(a) = disc(f,), by setting

Bady(a) := Z a,(N)logp,
p<N
p|D(a)

and abbreviate the contribution of big primes p > N as
An(a) =Y (ap(N) = B,(N))logp.
p>N
Note that Bady and Ay > 0 are both non-negative. We obtain the expression

log L,(N) =log P,(N) + Z Bp(N)logp
PN

— Bady(a) — Z ap(N)logp — An(a).
p<N
ptD(a)

(2.2)

2.3. The quantity P,(N)

Lemma 2.3. For fo(z) € Z[z] monic of degree d, and for |a| < N1 so that
fo(x) — a is irreducible, we have

log P,(N) =dNlog N + O(N).
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Proof. Write
log Pa(N) = ) _ log|fo(n) — al.

n<N

Since we assume fo(z) —a is irreducible, non of the factors fo(n) —a can vanish, so
that log P, (N) is well defined. If fo(z) = 2% +cq_ 12971 +- -, we have for n < N,

Cd—1
J’_ _|_...__
n n2 nd

fom) —a=n?(1+ Ca2 “).

Consider first the n’s satisfying N/log N < n < N, for which we use (recall
that |a] < N471)

. B log N )¢
g (14 92 1 S22 ) - o(LERD),
so that
d
NZ log | fo(n)—a| = NZ (dbg%()(%)) = dNlog N+O(N).
oew <n<N Tog ¥ <N

For 1 <n < N/log N, we just use 1 < | fo(n) —a| < N¢so that 0 < log | fo(n)—
a| < log N, and

> loglfon)—al< > logN < N.
n<N/log N n<N/log N

Hence
log P,(N) =dNlog N + O(N)

as claimed. O

2.3.1. Dealing with 3,(IN). For a such that fy(z) — a is irreducible, we have
log N
logp

Bp(N) <

because
B,(V) = maxmax(k > 0 p* | fo(n) —a),

and since fo(n) —a # 0 for all n, if p* | fo(n) —a # 0, then

k< log | fo(n) —a| _ logn+loglal

logp logp
Hence, since |a| << N9,
log N
N
/Bp( ) < logp 9
and hence the contribution of primes p < N to (2.2) is
(2.3) Z Bp(N)logp <« Z log N < N.

p<N p<N
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2.3.2. Dealing with a,(IN). Using Hensel’s lemma, it is easy to check that
(see [5], and also Lemma 4 in [2]):

Lemma 2.4. For pt D(a) = disc(fo(x) — a), we have

p(a;p) log N
N)=N
ap(N) p—1+0(10gp>’

where p(a;p) = #{n mod p: fy(n) —a = 0 mod p}.

Consequently, we find that in (2.2),

1
E ap(N)logp = NCn(a)+ O(N), where Cy(a):= E Ogli p(a;p).
<N p<nv P
ptD(a) ptD(a)

Therefore we have proven Proposition 2.2.

3. Bounding Bady almost surely

Recall that we defined
Bady(a) = 3 logp 3 #{k>1:p* | fo(n) — a}

p<N n<N
pID(a)
(we assume that fo(x) — a is irreducible).

We denote the averaging operator over |a| < T such that fo(x) — a is irre-
ducible by

1
() = #{la| < T : fo(z) — a is irreducible} a|z<:T ¢
fo(z)—a irreducible

The number of |a| < T for which fo(z) — a is reducible is O(v/T) (Lemma 2.1),
so that

1
(3.1) ()= —— Z
2T + O(VT) =
fo(z)—a irreducible
Proposition 3.1. If T > N but logT < log N, then
(Bady) < Nloglog N.

Proof. We separate out the contribution Bj(a) of k = 1 and the contribution Bs(a)
of the remaining k > 2:

BadN(A) = Bl ((l) + BQ((Z),

where

Bi(a)= Y logp#{n < N: fo(n) = a mod p}
pzl)ééi)
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and
By(a)= 3 logp S #{k>2:p" | fo(n) - a}.

p<N n<N

p|D(a)
We will show that
(3.2) Bj(a) < Nloglog N
and that

<BQ> < N,

proving Proposition 3.1.
We first show that
By(a) < Nloglog |D(a)],

which suffices for (3.2) since log|D(a)| < logT < log N.
Indeed, for p < N we have

#{n < N : fo(n) = a mod p} = (% —|—O(1)) #{n mod p: fo(n) = a mod p}
< N (a;
27 a;p),

where
pla;p) := #{n mod p: fo(n) = a mod p},
which we see by dividing the interval [1, N] into consecutive intervals of length p.

Since fo(x) is a monic polynomial of degree d, it is nonzero modulo p and still
of degree < d, hence p(a;p) < d. Thus

N lo
Bi(a) < Y logp = pla;p) < N ) 82,
p<N p piD@) P
p|D(a)
We use:

Lemma 3.2. For k > 1,

1
Z osp < loglogk.
p
plk

Proof. Indeed, splitting the sum into small primes p < logk, and the rest (where
the summands are at most loglog k/log k), we get

lo lo lo lo loglog k
nggz gp+z gp<<z gp—"{go]gle
ST e P e P p<ioge P &

p<logk p>logk

loglogk  logk

< loglogk +

log log k
logk loglogk < loglog R,

since the number of distinct prime divisors of k is < log k/ loglog k. O
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Therefore )
Z 8P « loglog |D(a)| < loglog|al,
p|D(a)

and we obtain
Bj(a) < Nloglog|D(a)|.

Next we bound the mean value of By(a):

1
(Ba) = 3T+ OWT) Z Z longI(fo(n) = amod p").

la|l<T  p<N k>2
fo(x)—a p|D(a)
irreducible
Now if fo(x)—ais irreducible, then fo(n)—a # 0, and soif p* | fo(n)—a withn < N,
then k < log N/logp, so we restrict the summation to 2 < k < log N/logp.
Moreover, given n, the condition fo(n) = a mod p* determines a modulo p*, so
there are < T'/p* + 1 choices for a. Hence we may bound

1 T
<B2><<T210gpz Z <F+1)

p<N n<N 2<k<log N/ logp
N T
:?ZIng Z (F—f—l).
p<N 2<k<log N/logp
We have
N T 1 logp
?Zlogp > ﬁ<<NZIngZE<<NZ <N
p<N 2<k<log N/ log p p<N k>2 p<N
and 5
N N log N N
— 1 IR 1 e -
A5 ST DENE TS gt
p<N 2<k<log N/logp p<N
Altogether we find
N2
<BQ> <N+ T7
which is O(N) if T > N. O

4. Averaging An(a)

Let
An(a) =Y logp(an(N) = B,(N)).

p>N

Then clearly Ay > 0, and we want to show:

Proposition 4.1. Assume that T > Nlog N, but logT < log N. Then
(An) <y, Nloglog N.
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4.1. Preparations

Let

G(m7n) _ fo(m) — f()(n) ’

m-—-n

which, given n, is a (nonzero) polynomial in m, of degree < d — 1. If fy is monic
then so is G(m,n), so its degree is exactly d — 1.

Lemma 4.2. There is some C1 = C1(fo) so that if m,n > 1 and max(m,n) > Cy,
then G(m,n) # 0.

Proof. We have
. I
(mm) = 3 S

and if j > 2 then, for n = max(m,n),

J_pnd
m) —n .- i i i
—— = I < T
m—n
while
d d
m®—n _ _ _ _
- " =pd 1—|—nd 2m—|—---+md 1>nd 1’
m—n

so that (assuming fy monic, so ¢g = 1)

d—1 d—1
md —nd md —nd d1 i1
Gmn) 2 ——— = ejl ——— — et > 0™ =Y eyl in? 7,
m—n m—n ;

Jj=2 J=1
which is clearly positive once n is sufficiently large in terms of the coeflicients
Clye-yCd—1 Offo. O

Lemma 4.3. There is some C(d) > 0 so that for all |a| < N¢ such that f,(z) =
fo(z) — a is irreducible, we have a,(N) < C(d) if p > N. Moreover, ap,(N) =0
unless p < N% + |al.

Proof. We have, by definition,

ap(N) = Z Zl(fo(n) = a mod pF) = Z#{n < N : fo(n) = a mod p*}.

n<N k>1 k>1

Since we assume that f,(x) = fo(x) — a is irreducible, hence has no rational zeros,
we must have, if p | f.(n), that p < |f.(n)| < N+ |a| < N¢ uniformly in |a| < T
(recall T < N%). Hence a,(N) =0 for p > N<

Given n so that p | fo(n), with p > N, we claim that there are at most d such
integers:

#{m < N: fa(m) = fa(n) mod p} < d.
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Indeed, for any ¢ € Z/pZ, the number of solutions m mod p of f,(m) = ¢ mod p
is at most d, and since p > N, this certainly applies to those m < N which solve
fa(m) = ¢ with ¢ = f,(n).

Moreover, if p > N, the maximal k so that p* | fo(n) — a for some n < N is,
because we assume f,(n) # 0,

log(N*
< losNla)
logp
since we assume that |a| < T with logT <« log N.
Therefore
ap(N)=> #{n<N:f(n)=0modp*} < > d=04(1)
k>1 1<k<0a(1)
as claimed. O

4.2. A preliminary bound on A (a)

Lemma 4.4. If a is such that fo(x) —a has no rational zeros, and log|a| < log N,
then

(4.1) An(a) <€ Z Z logp+ O(log N).

1<m<n<N N<p<<Nd

G(m,n)#0 p|fo(m)—a

p|G(m,n)

Proof. We have a,(N) # B,(N) if and only if there are two distinct integers
m,n < N so that p | fo(m) and p | fo(n). Using Lemma 4.3, we see that a,(N) —
Bp(N) = Oq4(1) for p > N, and hence applying a union bound we obtain, if a is
such that f,(x) has no rational zeros,

An(a) <4 Z Z log p.

1<m<n<N N<pgN?
plfo(m)—a
plfo(n)—a
Note that if p | fo(m) and p | fo(n) then p | fo(m) — fo(n) = (m —n)G(m,n), and
so since p{m —n (because 1 <n—m < N —1 < p), we must have p | G(m,n).
Thus

(4.2) An(a) < z Z log p.

1<m<n<N N<pg N9
plfo(m)—a

p|G(m,n)
We break off the terms corresponding to G(m,n) = 0. According to Lemma 4.2,
the condition G(m,n) = 0 forces m,n < C; to be bounded. Hence the contribution
of such pairs to (4.2) is bounded by

< Z Z logp < log N max #{p>N:pla-— fo(m)}.
m,n<C1 N<pgN? =
plfo(m)—a
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Note that 0 < |fo(m) —a|] < |a] + 1 if m < C; (we assume that a is such that
fo(x) — a has no rational zeros, hence fo(m) — a # 0), and hence the number of
primes p > N dividing fo(m)—a is at most < log |a|/log N. Hence the contribution
of pairs m < n with G(m,n) = 0 to (4.2) is at most < log |a|. Thus

An(a) < > > logp+ O(loglal).
1<m<n<N N N¢
G(m,n)#0 p<|})(<§1)
p|G(m,n)

Finally, the assumption log |a| < log N gives (4.1). O

4.3. Proof of Proposition 4.1

Now to average over |a|] < T (such that fo(x) — a is irreducible). Using (4.1),
noting that log|a| < logT < log N gives

1
(An) < Z Z logpf#{|a| <T:pla- fo(m)} + O(log N).
1<m<n<N N<p<<Nd
G(m,n)#0 p|G(m,n)

Given 1 <m < N and N < p < N%, the number of |a| < T with a = fy(m) mod p
is < T/p+ 1. Hence

(An) < Z Z 10%—!—% Z Z logp + O(log N)

1<m<n<N N<pg N9 1<m<n<N N<pg N?
G(m,n)#0 p|G(m,n) G(m,n)#0 p|G(m,n)
=: I+ 11+ O(log N).

To treat the sum 11, we note if m,n < N, then |G(m,n)| < C(fo)N9~! and
so there are at most d — 1 distinct primes p > N which divide G(m,n) (which we
assume is non-zero), and for these, log p < log N. Therefore

log N N2?log N

11 —1 _

< T E d-1)< T
1<m<n<N

which is O(N) if T > Nlog N.
To treat the sum I, we separate the prime sum into primes with N < p <
Nlog N and the remaining large primes Nlog N < p < N1 to get

I < Z Z 10gp+ Z Z lo;g)p.

1<m<n<N N<p<N log N p 1<m<n<N NlogN<p<<Nd
G(m,n)#0  p|G(m,n) G(m,n)#0 p|G(m,n)
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We treat the sum over small primes by switching the order of summation:

>y
1<m<n<N N<p<N log N p
G(m.n)Z0  p|G(m,n)

1
< Z ng#{l§m<n§N:G(m,n):0modp}.
N<p<N log N

Now given m, the congruence G(m,n) = 0 mod p (if solvable) determines n mod p
up to d — 1 possibilities, since G(m,n) is a monic polynomial of degree d — 1
in n, and since n < N < p means that n is determined as an integer up to d — 1
possibilities. Hence

#{1<m<n<N:Gm,n)=0modp} <(d—1)N,

and the sum over small primes is bounded by

lo
< z gpN:N{(log(NlogN)—|—O(1))—(log;N—l—O(l))} ~ Nloglog N
N<p<N log N
on using Mertens’ theorem.
The sum over large primes is treated by using logp/p < 1/N for p > Nlog N,
giving

lo 1
E E ﬂ<<N E #{p> NlogN :p| G(m,n)}.
1<m<n<N Nlog N<pg N?¢ p 1<m<n<N
G(m,n)#0 p|G(m,n) G(m,n)#0

Now given 1 < m < n < N with G(m,n) # 0, there are at most d — 1 primes
p > Nlog N dividing G(m,n) < N1, so that the contribution of large primes is
bounded by

1
<3 > (d-1)<N.
1<m<n<N
This gives I < N loglog N, and hence,

(An) < Nloglog N,

as claimed. O

5. Almost sure behaviour of C'xn

5.1. An identity involving Cn(a)

Let f € Z[z] be an irreducible polynomial, and let p¢(p) be the number of distinct
roots of the polynomial f modulo a prime p. It is well known [5] that for fixed f,
the mean value of py(p) over all primes is 1:

ﬁzp,«p) —1+0s(1),

p<z
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We write
pr(p) =1+ 0s(p),

where o¢(p) is a fluctuating quantity, having mean zero.
Now fix
fo@) =2+ a2+ + crz € Z[a],

a monic polynomial of degree d, and for a € Z set
fal2) = fo(x) —a.
Write p(a;p) = py, (p) and o(a;p) = oy, (p). Note that 0 < p(a;p) < d.

We write
lo lo
On(a)= > PEhpleip)= Y °F ~ Ex(a) + Dy(a) +0(1),
p<N p<N
pidisc(f)
where | )
o o
Dy (a) := Z 8p o(a;p) and En(a):= Z 8.
p<N p<v P
ptdisc(fa) p|D(a)

By Mertens’ theorem,

Z logp _ log N + O(1).

p<N

The contribution Ey (a) of primes dividing the discriminant D(a) = disc(fo(z) —a)
can be bounded individually, for |a] < T < N9 using Lemma 3.2 (assuming

D(a) # 0):

log p logp
En(a)= ) y = > —= < loglog|D(a)|.
p<N p|D(a)
p|D(a)

Since D(a) is a polynomial of degree d — 1 in a, and |a| < T < N¢, we find
1
Z o8P < loglog N,
p<n P
pID(a)
which is negligible relative to the main term. Hence

Cn(a) =log N + Dy(a) + O(loglog N).

In the following part, we will establish the following upper bound on the second
moment of Dy (a).

Proposition 5.1. For T > Nlog N, the second moment of Dy (a) satisfies

(IDn[?) < 1.
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Using the triangle inequality and Cauchy—Schwartz, we obtain:

Proposition 5.2.
{|ICn —log N|*) < (loglog N)?.

As a consequence, we deduce our main objective for this section.
Proposition 5.3. For almost all |a| < T (with Nlog N <T < N471),

Cn(a) =log N + O(loglog N).

5.2. Proof of Proposition 5.1
Proof. Expanding, we have
log plog q
((Dx)?) =3 3 === (o(asp) olasq)).
p<ng<n P4
The diagonal contribution p = ¢ gives

o 2
$ (1 g2p) (o(a;p)?).

p<n P

Now note that
—1<o(a;p) <d-—1

is uniformly bounded. This is because the polynomial fy(2)—a is monic of degree d,
hence has at most d zeros modulo p, so that 0 < p(a;p) < d and so —1 < o(a;p) <
d — 1. Thus we obtain a bound for the diagonal sum:

Z (logp)2 <U(a;p)2> < Z (10521’)2 < 1.

2
p<n P p<N

For the off-diagonal terms, we use:

Lemma 5.4. For distinct primes p # q,

: : VPalog(pg) | 1
| <0’(0,p) U<.’Q)> | < # + ﬁ

Therefore, given Lemma 5.4, we obtain

> 710gp10gq| (o(asp)o(a;q)) | < Y logplogq(\/p_qlog(pQ) * L)

pF#q<N pq pF#qSN pq T VT
log N logp\ 2 1 log p\ 2
< (X5 =72
T A Z VP VIS P
< Nlog N (logN)2’
T VT

which is O(1) if T > N log N, proving Proposition 5.1. O
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5.3. Proof of Lemma 5.4

For the argument, it will be important to have a run over an interval. So we first
remove the restriction on a in the averaging, that fo(z) — a is irreducible. Since
—1 < o(a;p) <d— 1, this introduces an error bounded by

1 1 1
- ) )2« = <T: - ible} <« ——
<7 P (d-1)*< T #{la| < T : fo(z) — a reducible} < Wik

fo(xz)—a reducible

and so

1 1
(o(a;p)o(asq)) = T+ OWT) > U(G;P)U(WQ)*‘O(W)-

la|<T
We express p(a; p) as an exponential sum:
1 t T)—a
pla;p) = #{x mod p: fo(x) —a =0mod p} = Z - Z e(M).
x mod p p t mod p p

The term ¢t = 0 contributes the main term of 1, and we obtain the following
expression for o(a;p) = p(a;p) — 1:

o =) 3 () T ()

t#0 mod p p z mod p
where e(z) := 2™, Set
bfo(m)
Sfo(b, n) = Z e(T)
z mod n
Using (5.1), we have on switching orders of summation,

1

m Z o(a;p)o(a;q)

la|<T

:mpiq > X e(—a(5+2))suensna.

0#t mod p |a|<T
0#s mod q

Weil’s bound [9], [7] shows that there is a constant ¢(d) > 0 so that, for all
primes p and all b coprime to p,

(5.2) S5, (b,p)| < c(d) /-

In fact, for any fo € Z[x] with fo(z) primitive of degree d, if p > d then

157, (b, )| < (d = 1)/



ON CILLERUELO’S CONJECTURE 17

Hence we find

| (o(e;p) o(e59)) | <a

i |5 ol 2) ol )

la|<T
0#s mod g

S o P o)

mod pq la|<T
ged(m,pg)=1

where we have used that if p # g are distinct primes, then as ¢ and s vary over all
invertible residues modulo p (resp., modulo ¢), tq+ sp mod pq covers all invertible
residues modulo pq exactly once.

We sum the geometric progression

|3 (=Sl <m0

where |laf| = dist(«, Z). We may take 1 < m < pq/2, and then the bound is

< pg/m.
This gives
1 pq _ VPilog(pg) 1
(powa)l<—— Y Hio()< +0(—=).
TVpa 1<m<pq/2 mn VT T <\/T
ged(m,pg)=1
proving Lemma 5.4. O
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