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A lower bound on the least common multiple
of polynomial sequences

Abstract. For an irreducible polynomial f € Z[z] of degree d > 2,
Cilleruelo conjectured that the least common multiple of the values of
the polynomial at the first N integers satisfies loglem(f(1),..., f(IV)) ~
(d—1)NlogN as N — oo. This is only known for degree d = 2. We
give a lower bound for all degrees d > 2 which is consistent with the
conjecture: loglem(f(1),..., f(N)) > NlogN.
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1 - The LCM problem

For a polynomial f € Z[X] with integer coefficients, set
Li(N):=lem{f(n):n=1,...,N}.

The goal is to understand the asymptotic growth of log L;(N) as N — oo.
It is a well known and elementary fact that the least common multiple of
all integers 1,2,..., N is exactly given by

loglem{1,2,..., N} =4(N) := > A(n)

n<N

with A(n) being the von Mangoldt function, and hence by the Prime Number
Theorem,
loglem{1,2,...,N} ~ N.
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In the linear case deg f = 1, we still have log L;(N) ~ ¢;N from the Prime
Number Theorem in arithmetic progressions [1]. A similar growth occurs for
products of linear polynomials [6].

However, in the case of irreducible polynomials of higher degree, Cilleruelo
[3] conjectured that the growth is faster than linear, precisely:

Conjecture 1.1. If f is an irreducible polynomial with deg f > 2, then
log L¢(N) ~ (deg f —1)Nlog N, N — oo.

Cilleruelo proved Conjecture 1.1 for quadratic polynomials. No other case
of Conjecture 1.1 is known to date.

Remark. An examination of Cilleruelo’s argument shows that for any
irreducible f of degree d > 3, we have an upper bound

log Ly(N) S (d—1)NlogN.
Here f < g means that | f(z)| < (1+0(1))g(z).
In this note, we give a lower bound of the right order of magnitude:

Theorem 1.2. Let f € Z[x] be irreducible, of degree d > 2. Then
log Ly(N) > NlogN.
Remark. The argument gives that log Ly(N) 2 éNlog N.

Corollary 1.3. Suppose f € Z[x] has an irreducible factor of degree > 2,
i.e. f(x) is not a product of linear polynomials (over Q). Then

Nlog N <« log L¢(N) < Nlog N.
This is because max(lem{ay, }, lem{b,,}) < lem{a,b,} <lem{a,}-lem{b,,}.

Prior to this note, the only available bound was of size > N: Hong et
al [5] show that log L¢(NN) > N for any polynomial with non-negative integer
coeflicients.

2 - Proof of Theorem 1.2

Let PT(n) denote the largest prime factor of n. We will need a result on
the greatest prime factor PT(f(n)) of f(n) (“Chebyshev’s problem”). This is
a well-studied subject, and we need a relatively simple bound, which we state
here and explain in § 3:
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Theorem 2.1. Let f(x) € Z[z] be irreducible of degree d > 2. Then
P (f(n)) >n
for a positive proportion of integers n.

Remark. In fact one can show Pt (f(n)) > n for a proportion at least
1-— é of integers n.

A result of this form goes back to T. Nagell in 1921 [7], though he did not
state this with positive density, but instead with a better bound of n(logn)® for
all @ < 1. Once one gets that PT(f(n)) > n holds on a set of positive density,
one automatically obtains a better bound of P*(f(n)) > nlogn, again in a set
of positive density, see § 3. A form of Theorem 2.1 was given by Cassels [2] in
1960. The problem was studied by Erdés [4] in 1952, and in 1990 Tenenbaum [8]
showed that PT(f(n)) > nexp((logn)®) infinitely often for all a < 2 — log4.

Alongside Theorem 2.1, we need the following simple lemma. Let

N +
Lemma 2.2. Given a prime p, and for N sufficiently large in terms of f,
the number of m € N with PT(f(m)) = p is at most d.

Proof. If PT(f(m)) = p then we must have
f(m)=0 (mod p).

If m € N and PT(f(m)) = p we must also have that N/log N < m < p.
Since p > N/log N and N is sufficiently large in terms of f, we see that f is
a non-zero polynomial modulo p. Therefore f has at most d roots modulo p,
and all choices of m must be congruent to one of these roots. Since we only
consider 0 < m < p, there is at most one choice of m = a (mod p) for each
root a modulo p, and so at most d choices of m. O

2.1 - Proof of Theorem 1.2

Given Theorem 2.1, we proceed as follows. The result is trivial for bounded
N, so we may assume that N is sufficiently large in terms of f. By Theorem 2.1,
there is an absolute constant ¢ > 0 such that PT(f(n)) > n for 2 c¢N integers
in [1, N], and so certainly #/N > cN. Let

P :={P"(f(n)): neN}
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be the set of largest prime factors occurring. Then, by Lemma 2.2, we have
that

cN SHN =D #{n e N: Pt(f(n)) =p} < d#P,
p

and so

Moreover, by definition of NV, if p € P then p > N/log N and p|f(n) for some
n < N. Therefore we have that

loglem(f(1),..., f(N)) =) logp > #Plog

peEP
cN
d

as claimed. ]

log N
2 — log N,
3 - Proof of Theorem 2.1

We begin by recording a simple bound on the number of times a prime p
can divide values of f. Let oy, (V) be the exponents in the prime factorization

N
[T =T]p>™.
n=1 p

We then have the following result.

Lemma 3.1. Let ps(m) denote the number of roots of f modulo m. Assume
that f has no rational zeros. Let p be a prime, p < N.
Then if p 1 disc f, we have

ps(p) log N
1 N)=N
(1) ap(N) p—1+0(logp>
and if p | disc f, we have
N
Qp(N) < ?

Proof. Since f has no rational zeros, Hrjy:l f(n) # 0 and so ay,(N) is well
defined. By definition,

ap(N)=> Y 10" | f(n) = Y #{n<N:f(n)=0modp"}.

n<N k>1 1<k<dlog N
=S Togp
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To count the number #{n < N : f(n) = 0 mod p*}, divide the interval [1, N]
into | N/p*| consecutive intervals of length p*, and a remaining interval. On
each such interval of length p*, the number of solutions of f(n) = p” is the total
number ps (p*) of solutions of this congruence. On the remaining interval, the
number of solutions is not greater than that. Hence

W)= > pr" Q;V,;J + 0(1)> .

1<k<dlogN

log

By Hensel’s lemma, p(p*) = p(p) for ptdisc f. Hence for pt disc f

W= X o (| 5] Fow) =pw (Lo (FET)).

lo
1<k<dlogN gp
—"r~ logp

For primes p | disc f dividing the discriminant of f, a more detailed exami-
nation gives the bound [7, Théoreme II]

pr(p*) < d(dise f)* = O(1)

which gives for p | disc f

a(N) <5 (ﬁh()(l))«lz,

1<k 4osk

as claimed. (]
Proof. Let N_ := N/logN, and define the exceptional set E(N) C
(N-, N] by
E(N):={N_<n<N:P(f(n)) <n}.

Let

QN) =[] If()

ne&(N)

We compute log Q(N) in two ways:
Using log |f(n)| ~ dlogn as n — oo, we have

log Q(N Z log|f(n Z dlogn.
ne&(N ne&(N
Since logn ~ log N for n € £(N) C [N_, N, we have

Z dlogn ~ dlog N#E(N)
ne&(N)
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so that

(2) log Q(N) ~ dlog N#E(N).
On the other hand, write the prime power decomposition of Q(N) as
QN = [ Irml=]]p"
ne&(N) p

Since P*(f(n)) < n < N for all n € £(N), only primes p < N appear in the
product. Thus

log Q(N) = ) 7,(N)logp.

p<N

We also have 7,(N) < a,(N) where [T2_, | f(n)] = [I,p**"). Thus

log Q(N) < > ap(N)logp.

p<N
Therefore, by Lemma 3.1,
log Q(N) < > ay(N)logp

p<N

log N N1
<Z< (og >>logp+0 Z o8P
== logp : p
2 p|disc f

-NY pf 1°gp +0(n(N)log N ) + O(N).
p<N

Now for f irreducible it follows from the Chebotarev density theorem (or earlier
work of Kronecker or Frobenius) that (see [7, equation (4)]):

)l
Z”f ng —log N + O(1),
p<N

hence
log Q(N) < N(logN + 0(1)) +O(N) ~ Nlog N.

Comparing with (2) gives
dlog N#E(N) <logQ(N) < Nlog N

and hence we obtain

#E(N) < =N.

ISR
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Therefore

#{n € [LN]: PT(f(n)) <n} < N_+#EN) SN-+ NS -N

Y

Q=

1
d
that is the proportion of elements of [1, N] with P*(f(n)) < n is at most 1/d.0]

We owe to Andrew Granville the following observation: Theorem 2.1 can
be boot-strapped to give a slightly better result:

Corollary 3.2. Let f(x) € Z[z] be irreducible of degree d > 2. Then for
any 6 < 1/d?,
Pt(f(n)) > dnlogn

for a positive proportion of the integers.

Proof. Let § > 0 be fixed, and let
N +
S = {ne [m,]\f} : PT(f(n)) < dnlogn}.

Assume by contradiction that S has full density, that is #S ~ N as N — oc.

As before, let
N
=l < N:P* .
N {logN<n_N PT(f(n)) > n}
We saw that #A > 1 N. Since #S ~ N by assumption, we see that #A NS >
LN Let
d

Ps:={PT(f(n)):ne€SNN}

be the set of largest prime divisors arising from n € N ' NS. Then we saw
in Lemma 2.2 that each prime p € Py can occur at most d times as some
PT(f(m)) for m € N, and so

1 1
#Ps > #NNSZ 5N

On the other hand, since P*(f(n)) < dnlogn for n € SNN, we must have
Ps C [1,0N log N]. Therefore

#Ps < m(6NlogN) ~ N

by the Prime Number Theorem. Thus

1
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which is a contradiction if § < 1/d?. O

Acknowledgments. We thank the referee for their careful reading of

our paper.
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