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ABSTRACT

Fermat showed that every prime p = 1 mod 4 is a sum of two squares:

p = a2 + b2. To any of the 8 possible representations (a, b) we associate

an angle whose tangent is the ratio b/a. In 1919 Hecke showed that these

angles are uniformly distributed as p varies, and in the 1950’s Kubilius

proved uniform distribution in somewhat short arcs. We study fine scale

statistics of these angles, in particular the variance of the number of such

angles in a short arc. We present a conjecture for this variance, motivated

both by a random matrix model, and by a function field analogue of this

problem, for which we prove an asymptotic form for the corresponding

variance.
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1. Introduction

1.1. Angles of Gaussian primes. An odd prime p is a sum of two squares

if and only if p = 1 mod 4, and in that case there are exactly 8 representations.

Each representation corresponds to a Gaussian integer a + ib =
√
peiθa,b . We

wish to understand the statistics of the resulting angles.

It is useful to formulate the results in terms of prime ideals of the ring of

Gaussian integers Z[i], which is the ring of integers of the imaginary quadratic

field Q(i). The basic infra-structure that we need is complex conjugation z �→ z̄,

the norm map Norm : Q(i)× → Q×, Norm(z) = zz̄, and the norm one elements

S1
Q = {z ∈ Q(i) : Norm(z) = 1} = Q(i) ∩ S1.

For a Gaussian number α ∈ Q(i)×, we have a direction vector given by

u(α) :=
(α
ᾱ

)2

∈ S1Q

so that u(α) = e4iθ, θ = argα.

Let p be a prime ideal in Z[i]. If p = 〈α〉 is generated by the Gaussian

integer α, we associate a direction vector u(p) := u(α) ∈ S1Q. Since all generators

of the ideal differ by multiplication by a unit Z[i]× = {±1,±i}, the direction

vector u(p) = ei4θp is well-defined on ideals, while the angle θp is only defined

modulo π/2. We can choose θp to lie say in [0, π/2), corresponding to taking

α = a+ ib, with a > 0, b ≥ 0.

Hecke [5] showed that as p varies over prime ideals of Z[i], the angles θp

become uniformly distributed in [0, π2 ): For a fixed sector, defined by an interval

I ⊆ [0, π2 ),

(1.1)
#{Norm p ≤ x : θp ∈ I}

#{Norm p ≤ x} ∼ |I|
π/2

, x→∞

where |I| is the length of the interval I.

The validity of (1.1) for shrinking sectors was studied by Kubilius and his

school [11, 12, 10, 14, 15, 16], obtaining that (1.1) holds for any sector as

long as |I| > x−δ for some 1/4 < δ < 1/2. See also [4] for existence of prime

angles in somewhat smaller sectors without the full force of (1.1). Assuming the

Generalized Riemann Hypothesis (GRH), we know that (1.1) holds for intervals

with length(I)� x−1/2+o(1). This regime is the limit of what can be expected

to hold for individual sectors, because it is easy to see that there are no Gaussian
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integers (let alone primes) in the sector{
a, b > 0 : a2 + b2 ≤ x, 0 < arctan

b

a
< x−1/2

}
.

Hence for smaller sectors we can only hope for a statistical theory, rather than

individual results.

To formulate the theory, we introduce some notation: Given x� 1, let N be

the number of prime ideals p ⊂ Z[i] of norm at most x:

N := #{p prime : Norm p ≤ x} ∼ x

log x
,

where the asymptotic holds by the Prime Ideal Theorem for Q(i). Given an

interval IK(θ) = [θ− π
4K , θ+

π
4K ] of length π/(2K) centered at θ, define a sector

Sect(θ, x) = {z ∈ C : Norm(z) = zz̄ ≤ x, arg(z) ∈ IK(θ)}
of radius

√
x and opening angle defined by IK(θ).

Given K � 1, we divide the interval [0, π/2) into K disjoint arcs

IK(θ1), . . . , IK(θK)

of equal length, which in turn define K disjoint sectors Sect(θj , x), and study

the number of prime angles falling into each such sector. If the sectors are too

small, in the sense that the number K of sectors is larger than the number N

of angles involved, then the typical such sector will not contain any Gaussian

prime. We want to show that in the range K � N1−ε, almost all sectors with

opening angles of size ≈ 1/K contain at least one angle θp, Norm(p) ≤ x. We

can do so assuming GRH (for the family of Hecke L-functions):

Theorem 1.1: Assume GRH. Then almost all arcs of length 1/K contain at

least one angle θp for a prime ideal with Norm(p) ≤ K(logK)2+o(1).

Unconditionally, one may use zero-density theorems as in [16] to obtain a

result with Norm(p) < K2−δ for some small δ > 0.

It is surprising that something like Theorem 1.1 does not seem to have been

considered long ago. It has come up independently in the recent work of Ori

Parzanchevski and Peter Sarnak [17].

1.2. The number variance. One way to obtain such an “almost-everywhere”

result is by computing the variance of a suitable counting function. The study

of the structure of the variance is the main point of this paper.
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Let

(1.2) NK,x(θ) = #{p prime, Norm p ≤ x, θp ∈ IK(θ)}
be the number of angles θp in IK(θ).

The expected number is

〈NK,x〉 :=
∫ π/2

0

NK,x(θ)
dθ

π/2
=
N

K
.

We wish to study the number variance

Var(NK,x) =

∫ π/2

0

|NK,x − 〈NK,x〉|2 dθ
π/2

.

If N = o(K), then for almost all intervals, we do not have any angles θp in

the interval IK(θ). We can easily compute the variance in this “trivial” regime:

Var(NK,x) ∼ N

K
, N = o(K).

For the interesting range, when K � N1−ε, we expect:

Conjecture 1.2: For 1� K � N1−o(1)

Var(NK,x) ∼ N

K
min

(
1, 2

logK

logN

)
.

For random angles (N uniform independent points in [0, π/2)), the variance

would be ∼ N/K. Thus we expect the Gaussian angles to display a marked

deviation from randomness, in that there is a crossover from purely random

behavior for very short intervals (K � N1/2), to a saturation for moderately

short intervals (1 � K � N1/2), where the variance is smaller than that of

random angles, so one can say that they display some measure of rigidity. See

Figure 1 for numerical evidence. For an explanation of the underlying rigidity

present here and for other deviations from randomness, see §2.
A related saturation effect was previously observed by Bui, Keating and

Smith [2], in the context of computing the variance of sums in short intervals

of coefficients of a fixed L-function of higher degree.

One of our main goals is to justify Conjecture 1.2. In §3 we define a suitably

smoothed version of the counting function NK,x and express the corresponding

variance in terms of zeros of a family of Hecke L-functions. This enables us,

in §4, to use GRH to give an upper bound for this variance and consequently

deduce the almost-everywhere result of Theorem 1.1. Moreover, in §5 we go
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Figure 1. A plot of the ratio Var(NK,x)/E(NK,x) versus

β = logK/ logN , for x ≈ 108. The smooth line is min(1, 2β).

on to develop a suitable random matrix theory model of this result, which

gives a result corresponding to Conjecture 1.2. We now turn to formulating a

similar problem in a function field setting, where we can prove an analogue of

Conjecture 1.2.

1.3. A function field analogue. Let Fq be a finite field of cardinality q,

from now on assumed to be odd. We want to write prime (irreducible monic)

polynomials as

(1.3) P (T ) = A(T )2 + TB(T )2

with A,B ∈ Fq[T ], which is equivalent to the constant term P (0) being a square

in Fq (see, e.g., [1]). If additionally P (0) �= 0, then there are exactly four such

representations, obtained from (1.3) by changing the signs of A and B. This

decomposition gives a factorization in Fq[T ][
√−T ] = Fq[

√−T ] as
P = p · p̃ = (A+

√−TB)(A−√−TB)

and the corresponding factorization of the ideal (P ) ⊂ Fq[T ] into a pair of

conjugate prime ideals of Fq[
√−T ]. The number N of such prime polynomials

p(
√−T ) of degree ν with p(0) �= 0 satisfies

N =
qν

ν
+O

(qν/2
ν

)
by the Prime Polynomial Theorem in Fq[

√−T ].
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Denote S=
√−T and consider the quadratic extension Fq(T )(

√−T ) = Fq(S),

which is still rational (genus zero). Let Fq[[S]] be the ring of formal power series.

It is equipped with the Galois involution

σ : S �→ −S, σ(f)(S) = f(−S),

and the norm map

Norm : Fq[[S]]
× → Fq[[T ]]

×, Norm(f) = f(S)f(−S).

We denote

S1 := {g ∈ Fq[[S]]
× : g(0) = 1, Norm(g) = 1}

the formal power series with constant term 1 and unit norm. This is a group,

which is our analogue of the unit circle. It is important to note that since q is

odd, Hensel’s Lemma tells us that the square map u �→ u2 is an automorphism

of S1, and in particular each element of S1 admits a unique square root
√
u.

We put an absolute value |f | = q− ord(f) on Fq[[S]], where

ord(f) = max(j : Sj | f).

We then divide S1 into “sectors”

Sect(u; k) = {v ∈ S1 : |v − u| ≤ q−k}.

We denote by

S1k = {f ∈ Fq[S]/(S
k) : f(0) = 1, Norm(f) := f(−S)f(S) = 1 mod Sk}

the elements of unit norm and constant term unity in (Fq[S]/(S
k))×. The

group S1k parameterizes the different sectors. The order of S1k is

K := #S1k = qκ,

where

κ := �k
2
�, so that k =

⎧⎨⎩2κ+ 1,

2κ.

We next want to define the notion of direction (essentially an angle) for any

nonzero polynomial

f = A(T ) +
√−TB(T ) ∈ Fq[

√−T ].



Vol. TBD, 2019 ANGLES OF GAUSSIAN PRIMES 7

To motivate the definition below, recall that for a nonzero complex number

α = |α|eiθ , we have α/α = e2iθ. To any nonzero f ∈ Fq[S] which is coprime

to S, we associate a norm-one element U(f) ∈ S1 via the map

(1.4) U : f �→
√

f

σ(f)
.

Note that since f(0) �= 0, f/σ(f) has constant term one, lies in Fq[[S]], and has

unit norm, that is f/σ(f) ∈ S1, and hence
√
f/σ(f) ∈ S1 exists and is unique.

Moreover,

U(cf) = U(f)

for all scalars c ∈ F×
q , so that if f ∈ Fq[S] then U(f) only depends on the ideal

(f) ⊂ Fq[S] generated by f .

We want to count the number of prime ideals (p) ⊂ Fq[S] with p(0) �= 0,

whose directions U(p) lie in a given sector. For u ∈ S1, let

Nk,ν(u) := #{(p) prime, p(0) �= 0 : deg p = ν, U(p) ∈ Sect(u, k)}.
The mean value is clearly

〈Nk,ν〉 := 1

qκ

∑
u∈S1k

Nk,ν(u) =
N

K
∼ qν/ν

qκ
.

For k ≤ ν we can show (see Corollary 6.5) that as q →∞,

(1.5) Nk,ν(u) =
N

K
+O(qν/2)

which gives an asymptotic result if κ < ν/2. For larger values of κ, there are

sectors which do not contain prime directions, as in the number field case; see

Remark 6.6.

Our main result is the computation, in the large q limit, of the number

variance

Var(Nk,ν) :=
1

qκ

∑
u∈S1k

|Nk,ν − 〈Nk,ν〉|2.

Theorem 1.3: Assume that κ ≥ 3, or if κ = 2 that 5 � q. Then as q →∞,

Var(Nk,ν) ∼ qν−κ

ν2
×
⎧⎨⎩2κ− 2, ν ≥ 2κ− 2

ν − 1 + η(ν), κ ≤ ν ≤ 2κ− 2

where η(ν) = 1 if ν is even, and 0 otherwise.
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To compare it to our number field conjecture, here the number of sectors

is K = qκ, the number of directions (the number of Gaussian prime ideals p of

degree ν) is N ∼ qν/ν, so that the expected value is N/K, and the variance

satisfies, as q →∞,

Var(Nκ,ν)

N/K
∼

⎧⎨⎩2
logq K

logq N − 2
logq N , logqK ≤ 1

2 logq N + 1,

1 +
η(logq N)−1

logq N , 1
2 logq N + 1 ≤ logqK ≤ logq N.

Our Conjecture 1.2 for the number-field variance is

Var(NK,N )

N/K
∼ min

(
1, 2

logK

logN

)
which is analogous to the above.

Acknowledgments. We thank Steve Lester, for his help in the beginning of

the project, and to Jon Keating, Corentin Perret-Gentil and Peter Sarnak for

their comments.

The research leading to these results has received funding from the European

Research Council under the European Union’s Seventh Framework Programme

(FP7/2007-2013) / ERC grant agreement no 320755.

2. Repulsion between angles

2.1. Repulsion and its consequences. Let a be a nonzero ideal in Z[i].

If a = 〈α〉 is generated by the Gaussian integer α, we associate a direction vector

u(p) := u(α) ∈ S1Q. Since all generators of the ideal differ by multiplication by

a unit Z[i]× = {±1,±i}, the direction vector u(a) = ei4θa is well-defined on

ideals, while the angle θa is only defined modulo π/2. We can choose θa to lie

say in [0, π/2), corresponding to taking α = a+ ib, with a > 0, b ≥ 0. If a = 〈α〉
for nonzero α ∈ Z, then θa = 0.

Lemma 2.1: (i) If θa �= 0 then

θa � 1√
Norm a

.

(ii) If p �= q are ideals with distinct angles θp �= θq then

|θp − θq| ≥ 1√
Norm pNorm q

.
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Proof. (i) Write a = 〈a+ ib〉 with a, b > 0. Then

tan θa =
b

a
≥ 1

a
≥ 1√

a2 + b2
=

1√
Norm a

.

Since we may assume that θa ∈ (0, π/4), we have tan θa ≤
√
2θa which gives

our claim.

(ii) Write p = 〈a+ ib〉, q = 〈c+ id〉, with a, b > 0 and c > 0, d ≥ 0. Consider

the triangle having vertices at the origin, a + ib and c + id. Since θp �= θq, its

area is positive and being a lattice triangle, its area is at least 1/2.

On the other hand, its area is given in terms of the angle θp− θq between the

sides a+ ib and c+ id as

area =
1

2

√
Norm p

√
Norm q sin |θp − θq|.

Thus we find √
Norm p

√
Norm q sin |(θp − θq)| ≥ 1

and hence

|θp − θq| ≥ sin |θp − θq| ≥ 1√
Norm pNormq

.

Lemma 2.1 implies that the interval {0 < θ < 1/
√
x} will contain no angles θp

for Norm p � x, so that the number NK,x of prime angles θp in this interval

is zero. Hence we cannot expect an asymptotic formula NK,x ∼ N/K to hold

for all intervals if K � N1/2, while it does hold (assuming GRH) for larger

intervals. Theorem 1.1 guarantees that almost all intervals will contain angles

if K � N1−o(1).

2.2. Deviations from randomness. The existence of a “big hole” as above

displays a striking deviation from randomness of the angles, when compared

to N random angles in [0, π/2). For these, the maximal gap is almost surely

of order logN/N , while Lemma 2.1(i) guarantees a much larger gap, of size

N−1/2−o(1).

Another statistic which indicates that Gaussian angles behave differently than

random points is the minimal spacing statistic: For N random angles in [0, π/2)

as above, the smallest gap is almost surely of size ≈ 1/N2 [13]. In contrast, the

minimal gap between the angles {θp �= 0 : Norm p ≤ x} is by Lemma 2.1

min{|θp − θp′ | : Norm p,Norm p′ ≤ x, p �= p′} � 1

x
≈ 1

N logN
,

which is much bigger than the random case.
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2.3. The variance in the trivial regime. We want to study fluctuations in

the number NK,x of angles falling in “random” short intervals. Take the interval

length 1/K=o(1/x), equivalently the number K of intervals, to be much larger

than the number N∼x/ log x of angles: N=o(K). Then for almost all intervals,

we do not have any angles θp in the interval IK(θ). Nonetheless we can compute

the variance in this “trivial” regime.

Proposition 2.2: If x = o(K) then

Var(NK,x) ∼ N

K
.

Proof. We recall definition (1.2): Given an interval IK(θ) = [θ− π
4K , θ+

π
4K ] of

length π/2K centered at θ, let1

NK,x(θ) = #{p prime, Norm p ≤ x : θp ∈ IK(θ)} =
∑

Norm p≤x
prime

IK(θp − θ)

be the number of prime angles θp in IK(θ). We will take the center θ of the

interval to be random, that is uniform in (0, π/2).

We compute the second moment of N = NK,x using its definition

〈N 2〉 =
∑

Norm p≤x

∑
Norm q≤x

〈IK(θp − θ)IK(θq − θ)〉,

where throughout we use

〈H〉 := 1

π/2

∫ π/2

0

H(θ)dθ.

The contribution of pairs of inert primes, where θp = 0, p = 〈p〉, p = 3 mod 4,

Norm p = p2 ≤ x, is
(#{p = 3 mod 4, p ≤ √x})2 · 〈IK(−θ)2〉.

Note that I2K = IK and

〈IK(−θ)2〉 = 〈IK(θ)〉 = length(IK)

π/2
=

1

K
.

Moreover, the number of p = 3 mod 4, p ≤ √x is � √x/ logx. Hence the

contribution of pairs of inert primes is O( x
K(log x)2 ).

1 We abuse notation and use the same symbol for the interval and its indicator function.
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If p �= q and at least one of p, q is not inert, so that θp �= θq, then Lemma 2.1

gives

|θp − θq| ≥ 1

x
.

For the integral 〈IK(θp− θ)IK(θq− θ)〉 to be nonzero, it is necessary that there

be some θ so that both θp, θq ∈ IK(θ), which forces the distance between the

two angles to be at most π/2K:

|θp − θq| ≤ π

2K
.

Hence if x = o(K) then such off-diagonal pairs contribute nothing.

We conclude that the second moment of NK,x is essentially given by the sum

of the diagonal terms

〈N 2〉 =
∑

Norm p≤x

〈IK(θp − θ)2〉+O
( x

K(log x)2

)
=

∑
Norm p≤x

1

K
+O

( x

K(log x)2

)
∼ N

K
.

We can now compute the variance:

Var(N ) = 〈N 2〉 − 〈N〉2 ∼ N

K
−
(N
K

)2

.

Since N = o(K) we find

Var(N ) ∼ N

K

as claimed.

3. Almost all sectors contain an angle

3.1. A smooth count. Our goal in this section is to prove Theorem 1.1, which

claims (assuming GRH) that in the non-trivial range K � X1−ε, almost all

arcs of size ≈ 1/K contain at least one angle θp, Norm(p) ≤ X . We can do so

assuming GRH (for the family of Hecke L-functions).

To count the number of angles θp lying in a short segment of [0, π/2), pick

a window function f ∈ C∞
c (R), which we take to be even and real valued, and

for K � 1 define

FK(θ) :=
∑
j∈Z

f
( K

π/2

(
θ − j π

2

))
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which is π/2-periodic, and localized on a scale of 1/K. The Fourier expansion

of FK is

(3.1) FK(θ) =
∑
k∈Z

F̂K(k)ei4kθ, F̂K(k) =
1

K
f̂
( k
K

)
,

where the Fourier transform is normalized as f̂(y) =
∫∞
−∞ f(x)e−2πiyxdx. Note

that since f is even and real valued, the same holds for f̂ .

Let Φ ∈ C∞
c (0,∞). Now set

ψprime
K,X (θ) :=

∑
p prime

Φ
(Norm p

X

)
logNorm(p)FK(θp − θ),

the sum over all prime ideals of Z[i], which gives a smooth count of prime

angles θp lying in a smooth window defined FK around θ. We also define

ψK,X(θ) :=
∑
a

Φ
(Norm a

X

)
Λ(a)FK(θa − θ),

the sum over all powers of prime ideals, with the von Mangoldt function

Λ(a) = logNorm(p) if a = pr is a power of a prime ideal p, and equal to zero

otherwise.

We next compute the mean value.

Lemma 3.1: The mean values of ψK,X and ψprime
K,X are asymptotically

(3.2) 〈ψK,X〉 ∼ 〈ψprime
K,X 〉 ∼

X

K

∫ ∞

−∞
f(x)dx

∫ ∞

0

Φ(u)du.

Moreover,

|〈ψK,X〉 − 〈ψprime
K,X 〉| �

X1/2

K
.

Proof. The mean value is

〈ψK,X〉 = 1

K
f̂(0)

∑
p prime

Φ
(Norm p

X

)
Λ(p).

We can evaluate this using the Prime Ideal Theorem to obtain

〈ψK,X〉 ∼ X

K

∫ ∞

−∞
f(x)dx

∫ ∞

0

Φ(u)du,

and likewise for 〈ψprime
K,X 〉. If in addition we use GRH, we obtain a remainder

term of O(X
1/2

K ) for both.
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We bound the difference by

〈ψK,X〉 − 〈ψprime
K,X 〉 =

∑
a �=prime

Λ(a)Φ
(Norm a

X

) f̂(0)
K

� 1

K

∑
Norm(a)�X

a �=prime

Λ(a)� X1/2

K
,

which shows that the mean values are close.

Note that the inert primes p = 〈p〉 give angle θp = 0, but that Norm p = p2

so that in ψprime
K,X , we get a contribution of size

√
X if θ ≈ 0. This is significantly

larger than the mean value if K � X1/2.

3.2. Variance in the trivial regime. The variance of ψprime
K,X in the trivial

regime X = o(K) is

(3.3) Var(ψK,X) ∼ Var(ψprime
K,X ) ∼ c2(f,Φ) · X logX

K
,

where

c2(f,Φ) :=

∫ ∞

−∞
f(y)2dy

∫ ∞

0

Φ(t)2dt.

Indeed, if X = o(K) then the same argument of repulsion between angles as in

§2.3 allows us to compute the second moment as asymptotically equal to the

sum over the diagonal pairs

〈|ψK,X |2〉 ∼ 〈|FK(θ)|2〉
∑
a

Φ
(Norm(a)

X

)2

Λ(a)2.

By Parseval’s theorem, we have

〈|FK(θ)|2〉 = 1

π/2

∫ π/2

0

|FK(θ)|2dθ =
∑
k∈Z

|F̂K(k)|2

=
1

K2

∑
k∈Z

f̂
( k
K

)2

∼ 1

K

∫ ∞

−∞
f(y)2dy

and ∑
a

Φ
(Norm(a)

X

)2

Λ(a)2 ∼
∫ ∞

0

Φ(t)2dt ·X logX

by the Prime Ideal Theorem. This gives the second moment as

〈|ψprime
K,X |2〉 ∼

∫ ∞

−∞
f(y)2dy

∫ ∞

0

Φ(t)2dt · X logX

K
,
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and since X = o(K), we obtain (3.3) for Var(ψK,X). The argument for

Var(ψprime
K,X ) is identical.

3.3. An upper bound. We give an upper bound on the variance of ψprime
K,X in

the non-trivial regime K � X , assuming GRH.

Theorem 3.2: Assume GRH. Then

Var(ψprime
K,X )� X

K
(logK)2.

From this bound we easily deduce Theorem 1.1: We use Chebyshev’s inequal-

ity and Theorem 3.2 to deduce

Prob{θ : |ψprime
K,X (θ)− E(ψprime

K,X )| > 1

2
E(ψprime

K,X )} ≤ Var(ψprime
K,X )

1
4 (E(ψ

prime
K,X ))2

�
X
K (logK)2

(XK )2
� K(logK)2

X
.

Taking X = K(logK)2+o(1) we find that for almost all θ,

ψprime
K,X (θ)� X

K

is nonzero. Therefore the sum defining ψprime
K,X is non-empty, and since it is a

sum over prime ideals giving angles θp in the arc of length ≈ 1/K around θ, we

find that for almost all θ, such arcs contain an angle θp for a prime ideal with

Norm(p) ≤ X = K(logK)2+o(1).

The proof of Theorem 3.2 will be presented in §4.4.

4. Relation to zeros of Hecke L-functions

4.1. Hecke characters and their L-functions. The Hecke characters

Ξk(α) = (α/ᾱ)2k, k ∈ Z,

give well defined functions on the ideals of Z[i]. In terms of the angles associated

to ideals, we have

ei4kθp = Ξk(p).
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To each such character Hecke [5] associated its L-function

L(s,Ξk) =
∑

0�=a⊆Z[i]

Ξk(a)

(Norm a)s
=

∏
p

prime

(1− Ξk(p)(Norm p)−s)−1, Re(s) > 1.

Note that L(s,Ξk) = L(s,Ξ−k). Hecke showed that if k �= 0, these functions

have an analytic continuation to the entire complex plane, and satisfy a func-

tional equation:

(4.1) ξk(s) := π−(s+2|k|)Γ(s+ 2|k|)L(s,Ξk) = ξk(1 − s).

The completed L-function ξk(s) has all its zeros in the critical strip

0 < Re(s) < 1 (the non-trivial zeros of L(s,Ξk)), and the Generalized

Riemann Hypothesis asserts that they all lie on the critical line Re(s) = 1/2.

The growth of the number of non-trivial zeros of L(s,Ξk) in a fixed rectangle is

(4.2) #{ρ : 0 ≤ Im(ρ) ≤ T0} ∼ T0 log k

π
, k →∞, T0 > 0 fixed,

in other words, the density of zeros is log |k|
π .

Lemma 4.1:

(4.3) ψK,X(θ) =
∑
k

e−i4kθ 1

K
f̂
( k
K

)∑
a

Φ
(Norm a

X

)
Λ(a)Ξk(a)

and

(4.4) ψprime
K,X (θ) =

∑
k

e−i4kθ 1

K
f̂
( k
K

) ∑
p prime

Φ
(Norm p

X

)
Λ(p)Ξk(p).

Proof. Inserting the Fourier expansion (3.1) of FK gives

ψprime
K,X (θ) =

∑
k

e−i4kθ 1

K
f̂
( k
K

)∑
p

Φ
(Norm p

X

)
Λ(p)ei4kθp .

Now note that ei4kθp = Ξk(p) is the Hecke character, to obtain (4.4). The same

argument gives (4.3).

The zero mode k=0 in (4.4) is the mean value (3.2). The same holds for ψK,X .
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4.2. An Explicit Formula.

Proposition 4.2: Let Φ ∈ C∞
c (0,∞), and let

Φ̃(s) =

∫ ∞

0

Φ(x)xs
dx

x

be its Mellin transform. Then for k �= 0 and X �Φ 1,∑
a

Λ(a)Ξk(a)Φ
(Norm(a)

X

)
=−

∑
ξk(ρ)=0

Φ̃(ρ)Xρ +
1

2πi

∫
(2)

{Γ′

Γ
(s+ 2|k|) + Γ′

Γ
(1− s+ 2|k|)

}
Φ̃(s)Xsds,

where the sum on the RHS is over all non-trivial zeros of L(s,Ξk).

Proof. We abbreviate Lk(s) := L(s,Ξk). Using Mellin inversion

Φ(x) =
1

2πi

∫
Re(s)=2

Φ̃(s)x−sds

we obtain∑
a

Λ(a)Ξk(a)Φ
(Norm(a)

X

)
=

1

2πi

∫
(2)

∑
a

Λ(a)Ξk(a)
Xs

Norm(a)s
Φ̃(s)ds

=
1

2πi

∫
(2)

−L
′
k

Lk
(s)Φ̃(s)Xsds.

In terms of the completed L-function ξk(s), the logarithmic derivative of L(s,Ξk)

is

−L
′
k

Lk
(s) = − log π +

Γ′

Γ
(s+ 2|k|)− ξ′k

ξk
(s).

Inserting into the above gives

1

2πi

∫
(2)

−L
′
k

Lk
(s)Φ̃(s)Xsds =

1

2πi

∫
(2)

(
− log π +

Γ′

Γ
(s+ 2|k|)

)
Φ̃(s)Xsds

+
1

2πi

∫
(2)

−ξ
′
k

ξk
(s)Φ̃(s)Xsds.

We shift the contour in the integral to Re(s) = −1, picking up the poles

of − ξ′k
ξk
(s), which are all simple poles with residue −1 at the non-trivial zeros

of Lk(s), giving

1

2πi

∫
(2)

−ξ
′
k

ξk
(s)Φ̃(s)Xsds = −

∑
ρ

Φ̃(ρ)Xρ +
1

2πi

∫
(−1)

−ξ
′
k

ξk
(s)Φ̃(s)Xsds.
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Changing variables s �→ 1− s gives

1

2πi

∫
(−1)

−ξ
′
k

ξk
(s)Φ̃(s)Xsds =

1

2πi

∫
(2)

−ξ
′
k

ξk
(1− s)Φ̃(1− s)X1−sds.

The functional equation (4.1) of L(s,Ξk) implies

−ξ
′
k

ξk
(s) =

ξ′k
ξk

(1− s),

which gives

1

2πi

∫
(2)

−ξ
′
k

ξk
(1 − s)Φ̃(1− s)X1−sds =

1

2πi

∫
(2)

ξ′k
ξk

(s)Φ̃(1− s)X1−sds.

Returning to the incomplete L-function gives

1

2πi

∫
(2)

ξ′k
ξk

(s)Φ̃(1− s)X1−sds

=
1

2πi

∫
(2)

(
− log π +

Γ′

Γ
(s+ 2|k|) + L′

k

Lk
(s)

)
Φ̃(1 − s)X1−sds

=− log π
1

2πi

∫
(2)

Φ̃(s)Xsds+
1

2πi

∫
(2)

Γ′

Γ
(1 − s+ 2|k|)Φ̃(s)Xsds

+
1

2πi

∫
(2)

L′
k

Lk
(s)Φ̃(1 − s)X1−sds.

By Mellin inversion,

1

2πi

∫
(2)

Φ̃(s)Xsds = Φ
( 1

X

)
,

which vanishes for X � 1 as Φ is compactly supported in (0,∞). Likewise,

1

2πi

∫
(2)

L′
k

Lk
(s)Φ̃(1− s)X1−sds

=− 1

2πi

∫
(2)

∑
a

Λ(a)Ξk(a)

Norm(a)s
X1−sΦ̃(1− s)ds

=−
∑
a

Λ(a)Ξk(a)

Norm(a)

1

2πi

∫
(2)

Φ̃(1 − s)(X Norm(a))1−sds

=−
∑
a

Λ(a)Ξk(a)

Norm(a)
Φ
( 1

X Norm(a)

)
= 0,

since each term vanishes for X � 1 (independently of a, since Norm(a) ≥ 1).
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Collecting terms, we find∑
a

Λ(a)Ξk(a)Φ
(Norm(a)

X

)
=−

∑
ρ

Φ̃(ρ)Xρ +
1

2πi

∫
(2)

{Γ′

Γ
(s+ 2|k|) + Γ′

Γ
(1 − s+ 2|k|)

}
Φ̃(s)Xsds,

as claimed.

Lemma 4.3: For k �= 0,

1

2πi

∫
(2)

{Γ′

Γ
(s+ 2|k|) + Γ′

Γ
(1− s+ 2|k|)

}
Φ̃(s)Xsds� X1/2 log 2|k|

(logX)100
.

Proof. Note that the integrand is analytic in −2 < Re(s) < 3, so we may shift

the contour of integration to Re(s) = 1/2. Let

hk(t) :=
{Γ′

Γ

(1
2
+ it+ 2|k|

)
+

Γ′

Γ

(1
2
− it+ 2|k|

)}
Φ̃
(1
2
+ it

)
.

The integral is essentially X1/2 times the Fourier transform ĥk(logX), that is

X1/2 1

2π

∫ ∞

−∞
hk(t)e

it logXdt.

We can estimate the derivatives of hk(t) by using Stirling’s formula and the

rapid decay of Φ̃(12 + it) as being bounded by

|h(j)k (t)| � log 2|k|
(1 + |t|)200 .

Hence integration by parts shows that the Fourier transform of hk is bounded

by

|ĥk(logX)| � log 2|k|
(logX)100

,

which proves the Lemma.

From Lemma 4.1, Proposition 4.2 and Lemma 4.3 we deduce

Corollary 4.4: Assume GRH. Then

ψK,X(θ)−〈ψK,X〉

=−X1/2
∑
k �=0

e−i4kθ 1

K
f̂
( k
K

)( ∑
ξk(

1
2+iγk,n)=0

Φ̃
(1
2
+iγk,n

)
X iγk,n+O

( logK

(logX)100

))
.

Averaging Corollary 4.4 over θ we find
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Corollary 4.5: Assume GRH. Then

Var(ψK,X)

=
X

K2

∑
k �=0

f̂
( k
K

)2
( ∑

ξk(
1
2+iγk,n)=0

Φ̃
(1
2
+ iγk,n

)
X iγk,n +O

( logK

(logX)100

))2

.

Corollary 4.6: Assume GRH. Then

Var(ψK,X)� X

K
(logK)2.

Proof. We use GRH to obtain |X iγk,n | = 1 so that

(4.5)

∣∣∣∣∑
n

Φ̃
(1
2
+ iγk,n

)
X iγk,n

∣∣∣∣ ≤∑
n

∣∣∣Φ̃(1
2
+ iγk,n

)∣∣∣.
We use a standard bound for the number of zeros of L(s,Ξk) in an interval (see

[6, Proposition 5.7]):

(4.6) #{n : Im(ρn,k) ∈ [T − 1, T + 1]} � log
(∣∣∣1

2
+ iT

∣∣∣+ 2|k|
)
.

Note that Φ̃ decays rapidly in vertical strips, say∣∣∣Φ̃(1
2
+ iu

)∣∣∣�Φ
1

(1 + |u|)100 ,

which together with (4.6) gives

(4.7)

∣∣∣∣∑
n

Φ̃
(1
2
+ iγk,n

)∣∣∣∣ ≤∑
j∈Z

∑
n:j≤γk,n<j+1

∣∣∣Φ̃(1
2
+ iγk,n

)∣∣∣
�Φ

∑
j∈Z

1

(1 + |j|)100 log(|2k|+ |j|)� log(2|k|).

Inserting (4.7) into Corollary 4.5 gives

Var(ψK,X)� X

K2

∑
k>0

∣∣∣f̂( k
K

)∣∣∣2(log 2k)2 � X

K
(logK)2,

as claimed.

4.3. Primes vs prime powers. We pass from a sum over prime ideals to a

sum over all prime powers:

Lemma 4.7: Assume GRH. For k �= 0 such that log |k| � logX ,∑
a

Λ(a)Ξk(a)Φ
(Norm(a)

X

)
=

∑
p prime

Λ(p)Ξk(p)Φ
(Norm(p)

X

)
+O(X1/3).
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Proof. We denote

Σprime(X, k,Φ) :=
∑

p prime

Λ(p)Ξk(p)Φ
(Norm(p)

X

)
and

Σall(X, k,Φ) :=
∑
a

Λ(a)Ξk(a)Φ
(Norm(a)

X

)
.

Assuming GRH, we have

Σall(X, k,Φ)� X1/2 log(2|k|).

Indeed, from the Explicit Formula (Proposition 4.2), Lemma 4.3, and GRH we

have

Σall(X, k,Φ)

=−
∑

ξk(
1
2+iγ)=0

Φ̃
(1
2
+iγ

)
X

1
2+iγ+

1

2πi

∫
(2)

{Γ′

Γ
(s+2k)+

Γ′

Γ
(1−s+2k)

}
Φ̃(s)Xsds

�X1/2
∑

ξk(
1
2+iγ)=0

∣∣∣Φ̃(1
2
+ iγ

)∣∣∣+ X1/2 log 2|k|
(logX)100

�X1/2 log(2|k|)

on using the density of zeros of L(s,Ξk) (4.2).

Next we crudely bound the contribution Σ≥2(X, k,Φ) to Σall(X, k,Φ) of the

higher prime powers pj, j ≥ 2:

Σ≥2(X, k,Φ) :=
∑

p prime

∑
j≥2

Λ(pj)Ξk(p
j)Φ

(Norm(pj)

X

)
≤

∑
p prime

logNorm(p)
∑
j≥2

Φ
(Norm(p)j

X

)
�

∑
p prime

Norm(p)�X1/2

logNorm(p)
logX

logNorm(p)

� X1/2.

Therefore we obtain a crude a priori bound on the contribution of primes:

(4.8) Σprime(X, k,Φ) = Σall(X, k,Φ)− Σ≥2(X, k,Φ)� X1/2 log(2|k|).
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We now seek a more refined estimate. In the sum Σall(X, k,Φ) over all prime

powers, we separately treat the contributions of primes, of squares of primes,

and of higher powers:

Σall(X, k,Φ) = Σprime(X, k,Φ) + Σ2(X, k,Φ) + Σ≥3(X, k,Φ),

where

Σ≥3(X, k,Φ) :=
∑

p prime

∑
j≥3

Λ(pj)Ξk(p
j)Φ

(Norm(pj)

X

)
and

Σ2(X, k,Φ) =
∑

p prime

Λ(p2)Ξk(p
2)Φ

(Norm(p2)

X

)
=

∑
p prime

logNorm(p)Ξ2k(p)Φ
(Norm(p)2

X

)
.

By definition,

Σ2(X, k,Φ) = Σprime(X
1/2, 2k,Φ2)

where Φ2(u) = Φ(u2). Therefore inputting the a priori bound (4.8) (which uses

GRH to get cancellation) gives

Σ2(X, k,Φ)� X1/4 log(2|k|).

For the contribution of higher powers, we use

Σ≥3(X, k,Φ)�
∑

p prime

logNorm(p)
∑
j≥3

Φ
(Norm(p)j

X

)
�

∑
p prime

Norm(p)�X1/3

logNorm(p)
logX

logNorm(p)

� X1/3.

Thus we obtain

Σall(X, k,Φ) = Σprime(X, k,Φ) +O(X1/4 log(2|k|)) +O(X1/3),

which gives us the result since log |k| � logX .
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Lemma 4.8: Assume GRH. Then

〈|ψK,X − ψprime
K,X |2〉 �

X2/3

K
.

Proof. We use Lemma 4.1 to write

ψK,X(θ) − ψprime
K,X (θ) =

1

K

∑
k

e−i4kθ f̂
( k
K

) ∑
a �=prime

Λ(a)Φ
(Norm a

X

)
Ξk(a).

The term k = 0 is the difference between mean values, which by Lemma 3.1 is

O(X1/2/K). Hence

ψK,X(θ)− ψprime
K,X (θ)

=
1

K

∑
k �=0

e−i4kθ f̂
( k
K

) ∑
a �=prime

Λ(a)Φ
(Norm a

X

)
Ξk(a) +O

(X1/2

K

)
=I +O

(X1/2

K

)
say. Hence it suffices to show that 〈I2〉 � X2/3/K.

We have

〈I2〉 = 1

K2

∑
k �=0

f̂
( k
K

)2
∣∣∣∣ ∑
a �=prime

Λ(a)Φ
(Norm a

X

)
Ξk(a)

∣∣∣∣2.
By Lemma 4.7, the sum over a non-prime is O(X1/3) (assuming logK � logX),

and therefore

〈I2〉 � 1

K2

∑
k �=0

f̂
( k
K

)2

X2/3 � X2/3

K

as desired.

4.4. Proof of Theorem 3.2. We want to show that

Var(ψprime
K,X ) = ||ψprime

K,X − 〈ψprime
K,X 〉||22 �

X

K
(logK)2,

where

||f ||22 =
1

π/2

∫ π/2

0

|f(θ)|2dθ
is the standard L2 norm on [0, π/2].

Using the triangle inequality, we have

||ψprime
K,X − 〈ψprime

K,X 〉||2 ≤||ψprime
K,X − ψK,X ||2 + ||ψK,X − 〈ψK,X〉||2

+ |〈ψK,X〉 − 〈ψprime
K,X 〉|.
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By Lemma 4.8

||ψprime
K,X − ψK,X ||2 = 〈|ψK,X − ψprime

K,X |2〉1/2 �
(X2/3

K

)1/2

;

by Corollary 4.6,

||ψK,X − 〈ψK,X〉||2 = (Var(ψK,X))1/2 �
(X
K

(logK)2
)1/2

,

and by Lemma 3.1, the mean values are close:

|〈ψK,X〉 − 〈ψprime
K,X 〉| �

X1/2

K
.

Thus we obtain

||ψprime
K,X − 〈ψprime

K,X 〉||2 �
(X2/3

K

)1/2

+
(X
K

(logK)2
)1/2

+
X1/2

K

�
(X
K

(logK)2
)1/2

,

hence

Var(ψprime
K,X )� X

K
(logK)2

which proves Theorem 3.2.

5. A random matrix theory model

In this section we present a conjecture for the variance of the smooth count

ψK,X :

Conjecture 5.1:

Var(ψK,X) ∼ c2(f,Φ)X
K
·min(logX, 2 logK)

where

c2(f,Φ) =

∫ ∞

−∞
f(y)2dy

∫ ∞

0

Φ(t)2dt.

Note that Conjecture 5.1 coincides with our result (3.3) in the trivial regime

range K � X .

To recover Conjecture 1.2 from Conjecture 5.1, we can (at a heuristic level)

pass to an actual count with sharp cutoffs: Take f = 1[−1/2,1/2] and Φ = 1(0,1],

and replace the weight Λ(p) by logX throughout, and ignore the contribution

of higher powers of primes.
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We use Corollary 4.5 with X = Kα for α > 0, and note that since f̂ is even,

and ξ−k(s) = ξk(s), we can pass to a sum over positive k’s, to obtain

(5.1) Var(ψK,X) ∼ 2X

K2

∑
k>0

f̂
( k
K

)2
∣∣∣∣∑

j

Φ̃
(1
2
+ iγk,j

)
eiα logKγk,j

∣∣∣∣2,
the inner sums over all non-trivial zeros of L(s,Ξk); we have ignored the re-

mainder term in Corollary 4.5 as it can be seen to be o(X/K) by using (4.7).

Let

(5.2) n :=
α

2

logK

π
,

and

Sn(Ξk) =
∑
j

Φ̃
(1
2
+ iγk,j

)
e2πinγk,j .

Since the density of zeros of L(s,Ξk) is about ≈ log |k|, the sum in Sn(Ξk) is

over O(logK) zeros.

Conjecture 5.1 is clearly implied by

Conjecture 5.2: Fix α > 0. Then as K →∞,

(5.3)
2

K

∑
k>0

f̂
( k
K

)2

|Sn(Ξk)|2 ∼ c2(f,Φ) logKmin(α, 2).

5.1. The model. We model the sum Sn(Ξk) by replacing the zeros of L(s,Ξk)

by the eigenvalues of a fictitious N ×N (diagonal) unitary matrix

U = diag(e2πiγj )j=1,...,N .

We may want to require that U be symplectic,2 in which case N = 2g is even

and the eigenphases γj will come in conjugate pairs γN−j = −γj , j = 1, . . . , g.

We choose N so that the density of angles, namely N , matches the density

of zeros of L(s,Ξk) by requiring

(5.4) N ≈ logK

π
.

We replace Φ̃(12 + iγ) by a periodic function w(γ) = w(γ +1), to get a linear

statistic

Sn(U) :=
N∑
j=1

w(γj)e
2πinγj .

2 or orthogonal
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Expanding w(γ) =
∑

∈Z ŵ(�)e
2πiγ in a Fourier series we obtain

(5.5) Sn(U) =
∑


ŵ(�)
∑
j

e2πi(n+)γj =
∑
m

ŵ(m− n) tr(Um).

We obtain the following model for the sum (5.3):

(5.3) ←→ 2

K

∑
k>0

f̂
( k
K

)2

|Sn(Uk)|2,

where the unitary matrices Uk are picked uniformly and independently from

a certain subgroup G(N) ⊆ U(N) of unitary N × N matrices, N ≈ 1
π logK,

say G(N) = U(N) is the full unitary group, or the symplectic group

G(N) = USp(N) (possible only when N is even).

We now replace the discrete average

2

K

∑
k>0

f̂
( k
K

)2

H(Uk)

by the continuous average

cf

∫
G(N)

H(U)dU

with respect to the Haar probability measure on G(N), with cf chosen so that

the two averages coincide when the test function H(U) ≡ 1 is constant, that is

cf := lim
K→∞

2

K

∑
k>0

f̂
( k
K

)2

=

∫ ∞

−∞
f(y)2dy

(recalling that f is even and real valued). Therefore we model (5.3) by the

matrix integral

(5.6) (5.3) ←→ cf

∫
G(N)

|Sn(U)|2dU,

where n ≈ N grows linearly with the matrix size N , precisely so that under the

correspondence (5.4) and (5.2), n←→ α
2
logK

π is assumed to be an integer.

We claim that for all the classical groups (G = U,USp, O) under these con-

ditions the answer is

Proposition 5.3: For G(N) = U(N), USp(2N), SO(2N), and n ≈ N , as

N →∞ ∫
G(N)

|Sn(U)|2dU ∼ min(n,N)

∫ 1

0

|w(γ)|2dγ.
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Therefore we are led to Conjecture 5.2, once we understand the analogue of∫ 1

0 |w(γ)|2dγ: Recall that w(γ) corresponded to Φ̃(12 + iγ), which we can write

in terms of φ(t) := Φ(et)et/2 as

Φ̃
(1
2
+ iγ

)
=

∫ ∞

0

Φ(x)x
1
2+iγ dx

x
=

∫ ∞

−∞
Φ(ey)ey/2eiγydy = φ̂

(
− γ

2π

)
.

Hence
∫ 1

0 |w(γ)|2dγ corresponds to∫ ∞

−∞
φ̂
(
− γ

2π

)2

dγ = 2π

∫ ∞

−∞
φ(t)2dt = 2π

∫ ∞

0

Φ(x)2dx.

Thus we obtain Conjecture 5.2

(5.3) ∼ cf2π
∫ ∞

0

Φ(x)2dx · logK
π

min
(α
2
, 1
)
= c2(f,Φ) · logKmin(α, 2).

5.2. Proof of Proposition 5.3.

Proof. We use the Fourier expansion (5.5) to obtain∫
G(N)

|Sn(U)|2dU =
∑
m,m′

ŵ(m− n)ŵ(m′ − n)
∫
G(N)

tr(Um)tr(Um′)dU.

We trivially have | trUm| ≤ N , and since n ≈ N and ŵ is rapidly decreas-

ing, only the terms with say m,m′ = n + O(logN) contribute anything non-

negligible. Thus∫
G(N)

|Sn(U)|2dU ∼
∑

m,m′=n+O(logN)

ŵ(m−n)ŵ(m′ − n)
∫
G(N)

tr(Um)tr(Um′)dU.

The unitary case G(N) = U(N):

We use Dyson’s lemma [3]

∫
U(N)

tr(Um)tr(Um′)dU =

⎧⎨⎩N2, m = m′ = 0,

δ(m,m′)min(|m|, N), (m,m′) �= (0, 0).

In particular, only the diagonal terms contribute. In our case, m,m′ ∼ n are

nonzero, hence we get∫
U(N)

|Sn(U)|2dU ∼
∑

m=n+O(logN)

|ŵ(m− n)|2 min(|m|, N).
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Since m varies very little around n, we can replace min(|m|, N) by min(n,N)

with negligible error to obtain∫
U(N)

|Sn(U)|2dU ∼ min(n,N)
∑

m=n+O(logN)

|ŵ(m− n)|2

∼ min(n,N)
∑
all m

|ŵ(m)|2 = min(n,N)

∫ 1

0

|w(γ)|2dγ

by Plancherel.

The symplectic case G(N) = USp(2g):

The expected values for the symplectic group (N = 2g) are [8, Lemma 2]:

(i) If m = n then

∫
USp(2g)

| trUn|2dU =

⎧⎪⎪⎨⎪⎪⎩
n+ η(n), 1 ≤ n ≤ g,
n− 1 + η(n), g + 1 ≤ n ≤ 2g,

2g, n > 2g.

(ii) If 1 ≤ m < n then

∫
USp(2g)

trUm trUndU =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
η(m)η(n), m+ n ≤ 2g,

η(m)η(n)− η(m+ n), m < n ≤ 2g, m+ n > 2g,

−η(m+ n), n > 2g, n−m ≤ 2g,

0, n−m > 2g,

and, in particular, if m �= m′ (and neither is zero) then

(5.7)

∫
USp(N)

tr(Um)tr(Um′)dU = O(1)

while for m = m′ �= 0 we obtain

(5.8)

∫
USp(N)

| tr(Um)|2dU = min(m,N) +O(1)

so that∫
USp(N)

|Sn(U)|2dU ∼
∑

m=n+O(logN)

|ŵ(m− n)|2 min(m,N)

+
∑

m,m′=n+O(logN)

ŵ(m− n)ŵ(m′ − n)O(1).
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The second term is O(logN), while the first is as in the unitary case, so that

again we recover∫
USp(N)

|Sn(U)|2dU ∼ min(n,N)

∫ 1

0

|w(γ)|2dγ.

For the orthogonal group G(N) = SO(N) with N even, we have the same

result because (5.7), (5.8) are still valid (see [8, Lemma 2]).

6. A function field model

6.1. The group of sectors. Our goal in this section is to formulate and

prove an analogue of Conjecture 1.2 and of Conjecture 5.1 in the setting of

the ring of polynomials over a finite field of q elements (q odd), in the limit of

large q. Using the notation in the Introduction, we denote by3

S1k = {f ∈ Fq[S]/(S
k) : f(0) = 1, f(−S)f(S) = 1 mod Sk}

the elements of unit norm and constant term 1 in (Fq[S]/(S
k))×, and by

Hk := {f ∈ (Fq[S]/(S
k))× : f(−S) = f(S) mod Sk}

the subgroup of even polynomials.

Lemma 6.1 ([7, Lemma 2.1]): (i) We have a direct product decomposi-

tion

(Fq[S]/(S
k))× = Hk × S1k.

(ii) The order of S1k is

#S1k = qκ,

where

κ := k − 1−
⌊k − 1

2

⌋
=

⌊k
2

⌋
,

so that

k =

⎧⎨⎩2κ+ 1,

2κ.

3 Katz [7, §2] denotes B×
even = Hk, and B×

odd = S1k.



Vol. TBD, 2019 ANGLES OF GAUSSIAN PRIMES 29

Proof. (i) is stated in [7] for k even, but the proof is valid for arbitrary k ≥ 1.

(ii) The order of Hk is

#Hk = (q − 1)q�
k−1
2 �

since we can write any element of Hk as

h =
∑

0≤2j<k

hjS
2j =

� k−1
2 �∑

j=0

hjS
2j ∈ Hk, h0 �= 0

and the number of such elements is clearly (q − 1)q�
k−1
2 �. Since the order of

(Fq[S]/(S
k))× is (q − 1)qk−1, we obtain that the order of S1k is

#S1k = qk−1−� k−1
2 � = qκ,

as claimed.

We put an absolute value

|f | = q− ord(f)

on Fq[[S]], where ord(f) = max(j : Sj | f). We then divide S1 into “sectors”

Sect(u; k) = {v ∈ S1 : |v − u| ≤ q−k},
so that by definition, for u, v ∈ S1 ⊂ Fq[[S]]

(6.1) v ∈ Sect(u; k)⇔ u = v mod Sk.

Consequently, the sectors Sect(u; k) are in bijection with the group S1k, and their

number is

K := #S1k = qκ.

Expanding in Fq[[S]]:

u =

∞∑
j=0

ujS
j , u0 = 1,

and likewise for v, we see that v ∈ Sect(u; k) is equivalent to

vj = uj , j = 1, . . . , k − 1.

We have a modular version of the homomorphism U from (1.4)

Uk : (Fq[S]/(S
k))× → S1k, f �→

√
f/σ(f) mod Sk

whose kernel is Hk. Note that f/σ(f) ∈ S1k as it has unit norm and constant

term 1, and in S1k the square root is well defined since S1k = qκ has odd order.
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Lemma 6.2: The homomorphism Uk : (Fq[S]/(S
k))× → S1k is surjective.

Proof. The kernel of Uk : (Fq[S]/(S
k))× → S1k is Hk because the kernel of

f �→ f/σ(f) is, by definition, Hk, and the square root map is an automorphism

of S1k. According to Lemma 6.1(i), the map is therefore onto.

6.2. Super-even characters and their L-functions. A super-even char-

acter modulo Sk is a Dirichlet character

Ξ : (Fq[S]/(S
k))× → C×

which is trivial on Hk. In particular, Ξ is even (trivial on the scalars F×
q ).

These are the analogues of Hecke characters in §4.1. The group of super-even

characters mod Sk is the character group of (Fq[S]/(S
k))×/Hk � S1k. Hence

by general orthogonality relations for characters of a finite Abelian group, the

super-even characters separate the cosets of Hk, that is the elements of S1k.

Proposition 6.3: For f ∈ (Fq[S]/(S
k))×, and u ∈ S1k, the following are equiv-

alent:

(i) Uk(f) ∈ Sect(u; k),

(ii) Uk(f) = Uk(u),

(iii) f ·Hk = u ·Hk,

(iv) Ξ(f) = Ξ(u) for all super-even characters mod Sk.

Proof. For u ∈ S1 we have Uk(u) =
√
u/σ(u) =

√
u2 = u mod Sk, and so com-

bining with (6.1) we find that Uk(f) = Uk(u) is equivalent to Uk(f) ∈ Sect(u; k).

According to Lemma 6.2, the map Uk is onto. Therefore, since the kernel of

Uk(u) is Hk, we obtain that Uk(f) = Uk(u) is equivalent to f ·Hk = u ·Hk in

(Fq[S]/(S
k))×.

Using the orthogonality relations for characters of S1k (super-even characters)

we obtain the final equivalence.

The Swan conductor of an even non-trivial character Ξ mod Sk is the maximal

integer d < k such that Ξ is non-trivial on the subgroup

Γd := (1 + (Sd))/(Sk) ⊂ (Fq[S]/(S
k))×.

Then Ξ is a primitive character modulo Sd(Ξ)+1. For a super-even character,

the Swan conductor is necessarily odd, since super-even characters are auto-

matically trivial on Γd for d even.
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Let Ξ be a non-trivial even character modulo Sk. The L-function associated

to Ξ is

(6.2) L(z,Ξ) =
∑

f monic

Ξ(f)zdeg f =
∏

P prime

(1− Ξ(P )zdegP )−1, |z| < 1/q,

which for non-trivial even Ξ is a polynomial in z of degree exactly d(Ξ) (the

Swan conductor of Ξ), including a trivial zero at z = 1. Thus we write for any

non-trivial super-even character

(6.3) L(z,Ξ) = (1− z) det(I − zq1/2ΘΞ)

for a unitary matrix ΘΞ ∈ U(N) (N = d(Ξ) − 1).

For any non-trivial super-even character mod Sk, let

Ψ(ν; Ξ) :=
∑

deg f=ν

Λ(f)Ξ(f)

be the sum over all monic polynomials of degree ν, with Λ(f) being the

von Mangoldt function. The Explicit Formula (obtained by comparing the

logarithmic derivative of (6.2) and (6.3); see, e.g., [9]) shows that for non-trivial

super-even Ξ, the sum over prime powers Ψ(ν; Ξ) is a sum over zeros of the

L-function associated to Ξ:

(6.4) Ψ(ν; Ξ) = −qν/2 tr Θν
Ξ − 1.

6.3. A weighted count. We introduce a weighted count in terms of the

von Mangoldt function on Fq[S], defined as Λ(f) = deg p if f = cpj for some

prime p ∈ Fq[S] and j ≥ 1 and scalar c ∈ F×
q , and Λ(f) = 0 otherwise. Set

Ψk,ν(u) =
∑

U(f)∈Sect(u;k)

Λ(f),

the sum over monic f ∈ Fq[S] with deg f = ν and f(0) �= 0.

We want to average over all directions u ∈ S1k. The mean value is

E(Ψk,ν) =
1

qκ

∑
u∈S1k

Ψk,ν(u).

By definition, the sum is just the sum over all monicf∈Mν (withf(0) �=0), that is

E(Ψk,ν) =
1

qκ

∑
deg f=ν
f(0) �=0

Λ(f) =
1

qκ

( ∑
deg f=ν

Λ(f)− 1

)
=
qν − 1

qκ

by the Prime Polynomial Theorem in Fq[S].



32 Z. RUDNICK AND E. WAXMAN Isr. J. Math.

We use Proposition 6.3 to pick out prime powers lying in a given sector, and

obtain a formula for the sum Ψk,ν(u) in terms of super-even characters.

Lemma 6.4:

Ψk,ν(u)− qν − 1

qκ
= −q

ν/2

qκ

∑
Ξ �=Ξ0

Ξ(u) trΘν
Ξ − δ(u, 1) +

1

qκ
,

the sum being over all non-trivial super-even characters mod Sk.

Proof. From Proposition 6.3 and the orthogonality relations we find

1

qκ

∑
Ξ super-even mod Sk

Ξ(u)Ξ(f) =

⎧⎨⎩1, U(f) ∈ Sect(u; k),

0, otherwise,

which gives

Ψk,ν(u) =
∑

deg f=ν
Uk(f)∈Sect(u;k)

Λ(f) =
1

qκ

∑
Ξ super-even mod Sk

Ξ(u)
∑

deg f=ν

Λ(f)Ξ(f),

with the sum over all monic f ∈ Fq[S] of degree ν. Hence

(6.5) Ψk,ν(u) =
1

qκ

∑
Ξ super-even mod Sk

Ξ(u)Ψ(ν; Ξ).

The contribution of the trivial character Ξ0 is

1

qκ

∑
deg f=ν
f(0) �=0

Λ(f) =
1

qκ

( ∑
deg f=ν

Λ(f)− 1

)
=
qν − 1

qκ
.

Inserting the Explicit Formula (6.4) gives

Ψk,ν(u)− qν − 1

qκ
= − 1

qκ

∑
Ξ super-even mod Sk

Ξ �=Ξ0

Ξ(u)(qν/2 tr Θν
Ξ + 1)

= −q
ν/2

qκ

∑
Ξ super-even mod Sk

Ξ �=Ξ0

Ξ(u) tr Θν
Ξ − δ(u, 1) +

1

qκ

on using the orthogonality relations in the form

1

qκ

∑
Ξ �=Ξ0

Ξ(u) = δ(u, 1)− 1

qκ
.

We use | trΘν
Ξ| ≤ 2κ− 2 for Ξ �= Ξ0 to obtain
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Corollary 6.5: As q →∞,

Ψk,ν(u) =
qν

qκ
+O(qν/2).

Hence for κ < ν/2, we obtain an asymptotic formula.

By a standard argument, this implies that Nk,ν(u) = N/K +O(qν/2).

Remark 6.6: Note that for κ > ν/2, it is no longer necessarily the case that

Ψk,ν(u) ∼ qν

qκ , in fact there may not be any polynomials g ∈ Fq[S] of degree

deg g = ν < 2κ with direction U(g) ∈ Sect(u; k). As an example, assume that

k − 1 is odd, take

u =
1 + Sk−1

1− Sk−1
= 1 + 2Sk−1 mod Sk

and suppose that deg g = ν < 2κ ≤ k − 1 satisfies

U(g) ∈ Sect(u; k) = Sect(1 + 2Sk−1; k).

By Proposition 6.3, this is equivalent to g ∈ (1 + 2Sk−1)Hk. Reducing mod-

ulo Sk−1 gives g ∈ Hk−1, so that g(−S) = g(S) mod Sk−1. But deg g < k − 1

hence g(−S) = g(S), that is g is an even polynomial, hence U(g) = 1. But then

U(g) = 1 /∈ Sect(1 + 2Sk−1; k), a contradiction.

6.4. The variance of Ψk,ν. The variance of Ψk,ν is

Var(Ψk,ν) =
1

qκ

∑
u∈S1k

∣∣∣Ψk,ν(u)− qν − 1

qκ

∣∣∣2.
Theorem 6.7: Assume q is odd, and κ ≥ 3, or that κ = 2 and additionally 5 � q.

Then as q →∞,

Var(Ψk,ν) ∼ qν−κ

⎧⎪⎪⎨⎪⎪⎩
ν + η(ν), 1 ≤ ν ≤ κ− 1,

ν − 1 + η(ν), κ ≤ ν ≤ 2(κ− 1),

2κ− 2, ν > 2κ− 2.

In other words, if we denote X = qν the number of all monics of degree ν,

then

Var(Ψk,ν)

X/K
∼

⎧⎨⎩logqX − 1 + η(logqX), 1
2 logqX + 1

2 < logqK ≤ logqX,

2 logqK − 2, logqK ≤ 1
2 logqX + 1

2 .
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This is to be compared with Conjecture 5.1. Note that the range ν < κ is the

“trivial regime”, where there are more sectors than directions; in that case the

result is elementary, but of little interest.

Lemma 6.8:

Var(Ψk,ν) = qν−κ

(
1

qκ

∑
Ξ �=Ξ0

| trΘν
Ξ|2

)
· (1 +O(κq−ν/2))

the sum over all non-trivial super-even characters mod Sk.

Proof. Inserting (6.5) we find

Var(Ψk,ν) =
1

qκ

∑
u∈S1k

∣∣∣∣ 1qκ ∑
Ξ super-even mod Sk

Ξ �=Ξ0

Ξ(u)Ψ(ν; Ξ)

∣∣∣∣2

=
1

q2κ

∑
Ξ1,Ξ2 super-even mod Sk

Ξ1,Ξ2 �=Ξ0

Ψ(ν; Ξ1)Ψ(ν; Ξ2)
1

qκ

∑
u∈S1k

Ξ1(u)Ξ2(u).

We use the orthogonality relations in the group of super-even characters,

which is the character group of S1k:

1

qκ

∑
u∈S1

k

Ξ1(u) Ξ2(u) = δ(Ξ1,Ξ2).

This gives

Var(Ψk,ν) =
1

q2κ

∑
Ξ super-even mod Sk

Ξ �=Ξ0

|Ψ(ν; Ξ)|2.

Set c(u) = δ(u, 1) − 1
qκ . From Lemma 6.4 we obtain, on denoting by 〈•〉S1

the average over all u ∈ S1k, that

Var(Ψk,ν) =
qν

q2κ

∑
Ξ1 �=Ξ0

∑
Ξ2 �=Ξ0

trΘν
Ξ1
tr Θν

Ξ2
〈Ξ1(u) Ξ2(u)〉S1

+ 2
qν/2

qκ
Re

∑
Ξ �=Ξ0

tr(Θν
Ξ)〈Ξ(u)c(u)〉S1 + 〈c(u)2〉S1 .
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Using the orthogonality relations, the averages over u ∈ S1 are

〈Ξ1(u) Ξ2(u)〉S1 = δ(Ξ1,Ξ2),

〈Ξ(u)c(u)〉S1 = 〈Ξ(u)δ(u, 1)〉S1 − 1

qκ
〈Ξ(u)〉S1

=
1

qκ
Ξ(1)− 1

qκ
δ(Ξ,Ξ0) =

1

qκ
,

since Ξ �= Ξ0, and

〈c(u)2〉S1 =
1

qκ

(
1− 1

qκ

)
.

Substituting into our formula gives

Var(Ψk,ν) = qν−κ 1

qκ

∑
Ξ �=Ξ0

| trΘν
Ξ|2

+ 2
qν/2

q2κ
Re

∑
Ξ �=Ξ0

tr(Θν
Ξ) +

1

qκ

(
1− 1

qκ

)
.

Finally we use | trΘν
Ξ| ≤ 2κ− 2 for Ξ �= Ξ0 to get our claim.

Hence we get an inequality (for all κ and ν)

Corollary 6.9:

Var(Ψk,ν) � qν−κ(2κ− 2)2.

This is analogous to Theorem 3.2. To do better, we invoke an equidistribution

result for the zeros of these L-functions.

6.5. Proof of Theorem 6.7. We use Lemma 6.8. We separate the characters

according to their Swan conductor, which is necessarily an odd integer d(Ξ) < k,

whose maximal value is 2κ− 1 (recall k = 2κ or 2κ+ 1). Characters with such

maximal conductor make up all primitive super-even characters modulo S2κ. As

in [9], the contribution of characters with smaller Swan conductor d(Ξ) < 2κ−1

is negligible, and up to lower order terms one finds

(6.6) Var(Ψk,ν) ∼ qν−κ 1

#

∑
Ξ super-even mod S2κ

primitive

| trΘν
Ξ|2,

the average over all primitive super-even characters modulo S2κ.
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Katz [7, Theorem 5.1] showed that for any sequence of odd4 q → ∞, the

Frobenii

{ΘΞ : Ξ primitive super-even mod S2κ}
become uniformly distributed in the unitary symplectic group USp(2κ − 2)

provided 2κ − 2 ≥ 4, and that the same holds for 2κ − 2 = 2 if the q are co-

prime to 10 (i.e., the characteristic of Fq is not 2 or 5). Katz’s equidistribution

theorem allows us to replace the average over primitive super-even characters

in (6.6) by the corresponding continuous average over the unitary symplectic

group USp(2κ− 2), to get

Var(Ψk,ν) ∼ qν−κ

∫
USp(2κ−2)

| tr(Uν)|2dU.

The matrix integral equals, for ν > 0 [8, Lemma 2],

∫
USp(2κ−2)

| tr(Uν)|2dU =

⎧⎪⎪⎨⎪⎪⎩
ν + η(ν), 1 ≤ ν ≤ κ− 1,

ν − 1 + η(ν), κ ≤ ν ≤ 2(κ− 1),

2κ− 2, ν > 2κ− 2,

where η(ν) = 1 for ν even, and equals 0 for ν odd. This proves Theorem 6.7.

6.6. Relation between variance of Nk,ν and Ψk,ν . We can now proceed

to prove Theorem 1.3, which follows from Theorem 6.7 once we establish the

following relation between the variance of Nk,ν and of Ψk,ν :

Proposition 6.10: Under the conditions of Theorem 6.7,

Var(Nk,ν) ∼ 1

ν2
Var(Ψk,ν)

as q →∞.

Let 1Sect(u;k) be the indicator function of the sector Sect(u; k). We write

Ψk,ν(u) =
∑

deg f=ν

Λ(f)1Sect(u;k)(U(f))

= ν
∑

degP=ν
prime

1Sect(u;k)(U(P )) + Rk,ν(u)

= νNk,ν(u) +Rk,ν(u)

4 In [7, Theorem 5.1], q is allowed to be even for 2κ− 2 ≥ 6.
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with the sums over monic polynomials, where

R(u) = Rk,ν(u) =
∑

deg f=ν
f not prime

Λ(f)1Sect(u;k)(U(f)).

We subtract the expected value of Ψ, which is

〈Ψ〉 = qν − 1

qκ
,

where we write 〈•〉 for the average over all sectors u ∈ S1k. Compare this with

the expected value of N = Nk,ν , which is

〈N〉 = N

qκ
=

qν

νqκ
+O

(qν/2
νqκ

)
by the Prime Polynomial Theorem. Therefore

(6.7) Ψk,ν(u)− 〈Ψ〉 = ν · (N (u)− 〈N〉) +R(u) +O
(qν/2
qκ

)
.

We claim that the mean square of R is bounded by

Lemma 6.11:

〈R2〉 := 1

qκ

∑
u∈S1k

R(u)2 � qν−2κ + q
2
3 ν−κ.

This bound is certainly negligible compared to the variance of Ψk,ν , which

by Theorem 6.7 is of order qν−κ. Using (6.7) gives

|ν2〈|(N − 〈N〉|2〉 − 〈|Ψ − 〈Ψ〉|2〉| � 〈R2〉+O
( qν
q2κ

)
,

and we obtain

ν2 Var(N ) = Var(Ψ) +O(qν−κ(q−κ + q−ν/3)).

Hence by Theorem 6.7

Var(N ) ∼ 1

ν2
Var(Ψ)

as q →∞.
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6.7. Proof of Lemma 6.11. To prove Lemma 6.11 we write

〈R2〉 =
∑

deg f,deg g=ν
not prime

Λ(f)Λ(g)〈1Sect(u;k)(U(f))1Sect(u;k)(U(g))〉.

We compute

〈1Sect(u;k)(U(f))1Sect(u;k)(U(g))〉 = 1

qκ

∑
u∈S1k

1Sect(u;k)(U(f))1Sect(u;k)(U(g))

=

⎧⎨⎩ 1
qκ , U(f) = U(g) mod Sk,

0, otherwise.

By Proposition 6.3, the condition U(f) = U(g) mod Sk is equivalent to

Ξ(f) = Ξ(g)

for all super-even characters modulo Sk, that is

〈1Sect(u;k)(U(f))1Sect(u;k)(U(g))〉 = 1

qκ
· 1

qκ

∑
Ξ super-even mod Sk

Ξ(f) Ξ(g).

Therefore

(6.8)

〈R2〉 =
∑

deg f,deg g=ν
not prime

Λ(f)Λ(g)
1

q2κ

∑
Ξ super-even mod Sk

Ξ(f) Ξ(g)

=
1

q2κ

∑
Ξ super-even mod Sk

∣∣∣∣ ∑
deg f=ν
not prime

Λ(f)Ξ(f)

∣∣∣∣2

=
1

q2κ

∑
Ξ super-even mod Sk

|B(ν,Ξ)|2,

where

B(ν,Ξ) :=
∑

deg f=ν
not prime

Λ(f)Ξ(f).

We will show below that if Ξ = 1, then

(6.9) B(ν, 1)�ν q
ν/2,

and if Ξ �= 1, then

(6.10) |B(ν,Ξ)| �ν q
ν/3.
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Assuming (6.9) and (6.10), we use the expansion (6.8) for 〈R2〉, and insert the

bounds (6.9) for Ξ = 1, and (6.10) for Ξ �= 1 to obtain

〈R2〉 � qν−2κ + q
2
3ν−κ

proving Lemma 6.11.

It remains to prove (6.9) and (6.10). We set

A(ν,Ξ) :=
∑

degP=ν
P prime

ν Ξ(P )

so that

(6.11) B(ν,Ξ) =
∑
δ|ν
δ<ν

A(δ,Ξν/δ).

The trivial bound for A(ν,Ξ) is

|A(ν,Ξ)| ≤ A(ν, 1) = ν#{P prime, degP = ν} ≤ qν .
This gives (6.9), because

B(ν, 1) =
∑
δ|ν
δ<ν

A(δ, 1) ≤
∑
δ|ν
δ<ν

qδ �ν q
ν/2

since the largest divisor δ | ν which is smaller than ν is not larger than ν/2.

If Ξ �= 1 then we have a better bound:

(6.12) |A(ν,Ξ)| �ν q
ν/2, Ξ �= 1.

Indeed, write

A(ν,Ξ) = Ψ(ν,Ξ)−B(ν,Ξ),

and then use the trivial bound (6.9):

|B(ν,Ξ)| � qν/2

and (6.4):

|Ψ(ν,Ξ)| � qν/2,

to obtain (6.12).

Next, we use the expansion (6.11) of B(ν,Ξ) to write

|B(ν,Ξ)| ≤
∑

δ|ν, δ<ν

Ξν/δ=1

A(δ, 1) +
∑

δ|ν, δ<ν

Ξν/δ �=1

|A(δ,Ξν/δ)|.
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To bound the contribution of divisors δ with Ξν/δ = 1, note that the order

of Ξ divides #S1 = qκ, so that if Ξ �= 1 but Ξν/δ = 1 then necessarily p | ν/δ,
where q = pr with p an odd prime (since q is odd). Hence using the trivial

bound A(δ, 1) ≤ qδ gives ∑
δ|ν, δ<ν

Ξν/δ=1

A(δ, 1) ≤
∑
δ|ν
p| νδ

qδ.

Now if p | νδ , then δ | νp so δ ≤ ν
p , and we obtain∑

δ|ν, δ<ν

Ξν/δ=1

A(δ, 1)�ν q
ν/p.

We bound the contribution of divisors δ with Ξν/δ �= 1, using (6.12), by∑
δ|ν, δ<ν

Ξν/δ �=1

|A(δ,Ξν/δ)| �ν

∑
δ|ν, δ<ν

qδ/2 � qν/4,

again using that the largest divisor δ | ν which is smaller than ν is not larger

than ν/2. Thus we find that for Ξ �= 1,

|B(ν,Ξ)| �ν q
ν/p + qν/4

which proves (6.10) since p ≥ 3.
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