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NODAL INTERSECTIONS FOR RANDOM EIGENFUNCTIONS
ON THE TORUS

By ZEÉV RUDNICK and IGOR WIGMAN

Abstract. We investigate the number of nodal intersections of random Gaussian Laplace eigenfunc-
tions on the standard two-dimensional flat torus (“arithmetic random waves”) with a fixed smooth
reference curve with nonvanishing curvature. The expected intersection number is universally propor-
tional to the length of the reference curve, times the wavenumber, independent of the geometry. Our
main result prescribes the asymptotic behavior of the nodal intersections variance for smooth curves
in the high energy limit; remarkably, it is dependent on both the angular distribution of lattice points
lying on the circle with radius corresponding to the given wavenumber, and the geometry of the given
curve. In particular, this implies that the nodal intersection number admits a universal asymptotic law
with arbitrarily high probability.

1. Introduction.

1.1. Background. A number of recent papers studied the fine structure of
nodal lines of eigenfunctions of the Laplacian, and in particular the number of
intersections of these nodal lines with a fixed reference curve. Thus let C ⊂M

be a smooth curve on a (smooth) Riemannian surface M . Let F be a real-valued
eigenfunction of the Laplacian on M with eigenvalue λ2: −ΔF = λ2F . We want
to estimate the number of nodal intersections

Z(F ) = #{x : F (x) = 0}∩C(1.1)

that is the number of zeros of F on C, as λ→ ∞.
It is expected that in many situations, there is an upper bound of the form

Z(F )�λ, and general criteria for this to happen exist [12, 26], though it is difficult
to verify these criteria in most situations. As for lower bounds, nothing seems to
be known in general, see [14] for results on Hecke eigenfunctions on hyperbolic
surfaces (and [21] for analogous results on the sphere), and [16, 17] for results on
density one subsequences for hyperbolic surfaces. Aronovich and Smilansky [2]
studied the nodal intersections of random monochromatic waves on the plane [3]
with various reference curves.

The one context where we have more information is for the standard flat torus
T

2 =R
2/Z2. Let C ⊂T

2 be a smooth curve. Bourgain and Rudnick [5] showed that
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if C is not a segment of a closed geodesic, then it is not part of the nodal line of any
eigenfunction with λ > λC sufficiently large, hence Z(F ) < ∞ for λ sufficiently
large. If the reference curve C has nowhere-zero curvature, they gave upper and
lower bounds [6] on the intersection numbers

λ1−o(1)�Z(F )� λ.(1.2)

The lower bound is strengthened in [7], and assuming a number theoretic con-
jecture takes the form Z(F )� λ and is thus optimal up to a constant multiple.
Moreover the number theoretic condition is known to hold for “generic” eigen-
values hence we know that for almost all eigenvalues, all eigenfunctions in the
eigenspace satisfy the lower bound Z(F )� λ.

In this paper we show that in this setting, for “generic” toral eigenfunctions
there is in fact an asymptotic law for these nodal intersection numbers. We will
show that for most eigenspaces, we in fact have an asymptotic result for “almost
all” eigenfunctions in that eigenspace, once we take a limit of large eigenspace
dimension.

1.2. Our setting. Let

E = {μ ∈ Z
2 : |μ|2 =m}(1.3)

be the set of lattice points on the circle of radius
√
m, and denote

Nm = #E .(1.4)

We will restrict ourselves to sequences of numbers {m} such that Nm→∞; by the
formula for Nm in terms of the prime decomposition of m, if we write m=m1m2

withm1 divisible only by primes p≡ 1 mod4, andm2 not divisible by such primes,
then Nm→ ∞ is equivalent to Nm1 → ∞. We consider the random Gaussian toral
eigenfunctions

F (x) =
1√
Nm

∑
μ∈E

aμe
2πi〈μ,x〉,(1.5)

with eigenvalue

λ2 = 4π2m,

defined on the standard torus T2 = R
2/Z2, where aμ are standard complex Gauss-

ian random variables (that is E(aμ) = 0, E(|aμ|2) = 1), independent save for the
relations a−μ= aμ. The random functions F are called “arithmetic random waves”
[18].
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We define the probability measures on the unit circle S1 ⊆ R
2

τm =
1
Nm

∑
μ∈E

δμ/
√
m,(1.6)

where δx is the Dirac delta function at x. It is well known that the lattice points
E are equidistributed on S1 along generic subsequences of energy levels (see e.g.,
[13, Proposition 6]) in the sense that

τmj =⇒
1

2π
dθ

along some density 1 sequence {mj} (relatively to the set of integers representable
as sum of two squares), and thus, in particular,

τ̂mj (4)−→ 0,

where for a measure τ on S1, we denote by τ̂(k) its k-th Fourier coefficient. Below
we will assume that |τ̂mj (4)| ≤ 1 is bounded away from 1 (see the formulation of
the main results); for a probability measure τ on S1, invariant w.r.t. rotation by
π/2, we have

τ̂(4) =±1,

if and only if τ = 1
4

(∑3
k=0 δkπ/2

)
or τ = 1

4(δ±π/4 + δ±3π/4) (thinking of the circle
as S1 ∼= R/2πZ). Hence we only exclude these two limiting probability measures
(see section 7 for more discussion on the possible limiting angular measures, and
the peculiarities of these two).

Given a curve C ⊂ T
2, we wish to study the statistics of the number of nodal

intersections Z(F ) for an arithmetic random wave F . We do this when the curve
C is smooth, with nowhere zero curvature.

THEOREM 1.1. Let C ⊂ T
2 be a smooth curve on the torus, with nowhere-zero

curvature, of total length L.
(i) The expected number of nodal intersections is precisely

E [Z] =
√

2mL=
λ

π
√

2
L.(1.7)

(ii) Let {m} be a sequence s.t. Nm→ ∞ and the Fourier coefficients {τ̂m(4)}
do not accumulate at ±1, i.e., no subsequence of {τ̂m(4)} converges to +1 or −1.
Then the variance is

Var(Z)� m

Nm
� λ2

Nm
.(1.8)
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By Chebyshev’s inequality we deduce that under the conditions of Theorem
1.1, we have with arbitrarily high probability

Z(F )∼
√

2mL(1.9)

for eigenfunctions with eigenvalue 4π2m. Our main result in fact prescribes the
asymptotic form for the variance, which depends on the distribution of the lattice
points E once projected to the unit circle.

THEOREM 1.2. Let C ⊂ T
2 be a smooth curve on the torus, with nowhere-zero

curvature, of total length L, and {m} a sequence s.t. Nm → ∞ and the Fourier
coefficients {τ̂m(4)} do not accumulate at ±1. Then

Var(Z) = (4BC(E)−L2) · m
Nm

+O

(
m

N
3/2
m

)
(1.10)

where

BC(E) :=
∫
C

∫
C

1
Nm

∑
μ∈E

〈
μ

|μ| , γ̇(t1)
〉2

·
〈
μ

|μ| , γ̇(t2)
〉2

dt1dt2(1.11)

with γ : [0,L]→C a unit speed parameterization.

Theorem 1.2 immediately implies the second part of Theorem 1.1. In Section 7
we discuss the possible partial limits of BC(E) as m→∞: there is no unique limit,
similar to what happens for the variance of the length of nodal lines in this model
[18]. The leading constant

0≤ 4BC(E)−L2 ≤ L2

is always non-negative and bounded (see Proposition 7.1); it can however vanish,
for instance when C is a full circle, see Section 7.2.

1.3. About the proof and plan of the paper. First, we may restrict F
along C; this reduces computing the nodal intersections Z to counting zeros of a
random process f defined on an interval. The Kac-Rice formula (see e.g., [11] or [1,
Theorems 11.2.1 and 11.5.1]) is a standard tool for studying the expected number
of zeros of a process and its higher moments by expressing the k-th (factorial)
moment in terms of a certain k-dimensional integral.

For the expected value of Z we do this in Section 2. For the second moment,
the Kac-Rice formula would state

E[Z2] =

∫∫
C×C

K2(t1, t2)dt1dt2 +E[Z],(1.12)

where K2 is the suitably defined “2-point correlation function”, that is, provided
that we justify its use. Unfortunately, to our best knowledge, all the available



NODAL INTERSECTIONS FOR RANDOM EIGENFUNCTIONS ON THE TORUS 1609

references impose a certain non-degeneracy condition on f and its derivative f ′,
which is far from being satisfied. In fact, it is easy to construct an example where
the Kac-Rice integral in (1.12) is off from computing the second (factorial) mo-
ment: one checks that the functions (1.5) satisfy that F (x) = 0 if and only if
F (x+ (1/2,1/2)) = 0. Hence if C is a simple closed curve, invariant w.r.t. the
translation

φ : x �−→
(

1
2
,

1
2

)
+x,

i.e., C = C1 ∪C2, where Ci are the maximal subsets of C so that φ(C1) = C2, then
the total number of nodal intersections Z is twice the number of intersections with
C1 (so that the variance is multiplied by 4); however the linear part on the RHS
of (1.12) is not invariant, and therefore the precise Kac-Rice formula as stated in
(1.12) is in general wrong.

To cope with this situation we develop an approximate form of the Kac-Rice
for the second moment of the number of zeros of a random eigenfunction along
a smooth curve, which is sufficient for our purposes. This is quite delicate and
takes up all of Sections 3, 4, and Appendix A; we believe that the developed tech-
niques are of independent interest, and could be used in a variety of situations
where Kac-Rice is not directly applicable (e.g., [9]). In our situation the result
gives the variance of Z in terms of the second moments of the covariance func-
tion (also referred to as covariance kernel) r(t1, t2) = E{F (γ(t1))F (γ(t2))} and
its derivatives rj = ∂r/∂tj , rij = ∂2r/∂ri∂tj along the curve:

PROPOSITION 1.3. Fix ε0 > 0. Then for all m such that |τ̂m(4)| < 1− ε0 one
has the following approximate Kac-Rice formula,

Var(Z) =m

∫∫ L

0

(
r2−
(

r1√
2π2m

)2

−
(

r2√
2π2m

)2

+

(
r12

2π2m

)2
)
dt1dt2

+O

(
m

N
3/2
m

)
,

(1.13)

where the implied constant depends only on ε0.

In the proof of Proposition 1.3 we also have to control the fourth moment of r
and its derivatives; this is done in Section 6.

Proposition 1.3 reduces our problem to evaluating the second moment of the
covariance function and its various derivatives along the given curve. To this end,
we eventually encounter an arithmetic problem, which is to show that

∑
μ�=μ′∈E

1
|μ−μ′| = o(Nm).(1.14)
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This is done in Section 5, appealing among other things to a theorem of Mordell
[22] about representing a binary quadratic form as a sum of two squares, in other
words counting the number of pairs of distinct vectors (μ,μ′) ∈ E ×E with a given
inner product. The 3-dimensional version of the quantity (1.14) is essentially the
electrostatic energy of point charges placed at the integer points at on the sphere of
radius

√
m and is analyzed in [8].

The term BC(E) in (1.11), which determines the leading term of the variance,
arises from the asymptotics of the second moment

∫∫
(r12)

2. In Section 7 we an-
alyze BC(E) and determine when it attains its minimum value (this is equivalent
to vanishing of the leading term in (1.10)), and study its limiting value distribution
when Nm→ ∞, as a function of the curve C.

Acknowledgments. The authors thank the Israel Institute for Advanced Studies
of Jerusalem for its hospitality during the writing of this paper. We would also like
to thank Domenico Marinucci and Valentina Cammarota for several discussions.

2. The expected number of nodal intersections.

2.1. Kac-Rice formula for computing the expected number of zeros.
Let f : I → R be a centered Gaussian random function (“process”), a.s. smooth
(e.g., C2), with the parameter space I some nice subset of R, e.g., a closed interval
or a finite collection of closed intervals, and let

r(t1, t2) = rf (t1, t2) := E[f(t1)f(t2)]

be the covariance function of f . Denote Z to be the number of zeroes of f on I .
For t ∈ I define K1(t) =K1;f (t) to be the Gaussian expectation

K1(t) = φf(t)(0) ·E[|f ′(t)|
∣∣f(t) = 0],

where φf(t) is the probability density function of the random variable f(t). The
latter involves the centered Gaussian vector (f(t),f ′(t)) with covariance matrix

Γ(t) = Γf (t) =

(
r(t, t) ∂t1r(t1, t2)|(t,t)

∂t1r(t1, t2)|(t,t) ∂t1∂t2r(t1, t2)|(t,t)

)
.

The function K1(t) is the zero density (or first intensity) of f ; it may be com-
puted explicitly in terms of the entries of the matrix Γ(t), and in our case the
expression is especially simple, as Γ(t) is diagonal and independent of t (a conse-
quence of the fact that our process is induced from an underlying 2-dimensional
stationary field restricted on a curve), see below. By the Kac-Rice formula, if for
all t ∈ I the matrix Γ(t) is nonsingular, then [11]

E[Z] =
∫
I
K1(t)dt.
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2.2. Zero density for nodal intersections. The random field F (x) is cen-
tered Gaussian with covariance function

rF (x,y) := E[F (x) ·F (y)] = 1
Nm

∑
μ∈E

cos(2π〈μ,y−x〉)

for x,y ∈ T
2; it is stationary in the sense that rF (x,y) = rF (y−x) depends on

y−x only (by the well-accepted abuse of notation). Let γ(t) : [0,L]→ T
2 be the

arc-length parameterization of C; it induces the process

f(t) = F (γ(t))(2.1)

on I := [0,L] with the covariance function

r(t1, t2) = rF (γ(t1)−γ(t2));

the process f is unit variance. Let Z be the number of zeros of f (on I); it equals
the number of nodal intersections of F with C.

LEMMA 2.1. The zero density of f is

K1(t) =K1;m(t)≡
√

2 ·√m.

In particular,

E[Z] =
√

2
√
m ·L.

To facilitate the computation of the zero density we formulate the following
lemma whose proof will be given in a moment. It is probably well known, but
nevertheless we give it here as we did not find a direct reference.

LEMMA 2.2. If f is unit variance, then for every t∈ [0,L], f(t) is independent
of f ′(t).

Proof of Lemma 2.1 assuming Lemma 2.2. We are to compute the zero density
of f(t):

K1(t) =
1√
2π

E[|f ′(t)|∣∣f(t) = 0],(2.2)

thus we are to compute the covariance matrix of (f(t),f ′(t)). Since f is unit vari-
ance, by Lemma 2.2, the covariance matrix is

Am =

(
1

α

)
,
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where

α= αm(t) =
∂2

∂t1∂t2
r|(t,t),(2.3)

and, upon computing the Gaussian expectation (2.2) explicitly (see e.g., [11]), we
obtain

K1;m(x) =
1
π

√
α.(2.4)

Now (chain rule)

∂t1r(t1, t2) = ∇rF (γ(t1)−γ(t2)) · γ̇(t1)(2.5)

and

α=−γ̇(t2)t ·HrF (γ(t1)−γ(t2)) · γ̇(t1)|(t,t),

where HrF is the Hessian of rF (thought of as rF (x) = rF (x1,x2)). The Hessian
HrF (0) was computed to be a scalar matrix [25]

HrF (0) =−2π2m · I2,

so that universally

α= 2π2m‖γ̇(t)‖2 = 2π2m,(2.6)

since we assumed that t is the arc-length parameter of C (i.e., ‖γ̇(t)‖= 1), and the
zero density is

K1(t) =
√

2 ·√m. �

Proof of Lemma 2.2. The correlation between f(t) and f ′(t) is given by

E[f(t)f ′(t)] =
∂

∂t1
r|(t,t).

Since we know that

r(t, t) = 1,

upon differentiating,

0 =

(
∂

∂t1
r+

∂

∂t2
r

)
|(t,t) = 2

∂

∂t1
r|(t,t)

by the symmetry. �

Remark 2.3. In fact, the proof above shows that the covariance of the underly-
ing stationary field F satisfies ∇rF (0) = 0, as rF (x,x)≡ 1.
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3. The 2-point correlation function.

3.1. Kac-Rice formula for computing the second moment of the number
of zero crossings. Let f and Z be as in section 2.1. We define the 2-point cor-
relation function K2 = K2;f : I× I → R (also called the second intensity) in the
following way: for t1 �= t2 we define it as the conditional Gaussian expectation

K2(t1, t2) = φt1,t2(0,0) ·E[|f ′(t1)| · |f ′(t2)||f(t1) = f(t2) = 0]

where φt1,t2 is the probability density function of the random Gaussian vector
(f(t1),f(t2)). The function K2 admits a continuation to a smooth function on
the whole of I × I (see Section 4.4), though its values at the diagonal are of no
significance for our purposes. We will find an explicit expression for K2(t1, t2) in
terms of r and its derivatives (see Lemma 3.1 below); finding such an expression
involves studying the centered Gaussian vector (f(t1),f(t2),f

′(t1),f ′(t2)) with
the covariance matrix Σ=Σ4×4(t1, t2) as in (3.6).

It is known [11] that under the assumption that for all t1 �= t2 the matrix
Σ(t1, t2) is nonsingular (i.e., the Gaussian distribution of

(f(t1),f(t2),f
′(t1),f ′(t2))

is nondegenerate), the factorial second moment of Z is

E[Z2−Z] =
∫∫

I×I
K2(t1, t2)dt1dt2,

so that accordingly

Var(Z) =
∫
I×I

(K2(t1, t2)−K1(t1) ·K1(t2))dt1dt2 +E[Z];(3.1)

note that the “extra” E[Z] manifests the degeneracy of the matrix Σ(t1, t2) on the
diagonal t2 = t1.

Moreover, if I1, I2⊆ I are disjoint nice sets (e.g., intervals), and the degeneracy
assumption holds for all (t1, t2) ∈ I1×I2, then if for J ⊆ I we denote ZJ to be the
number of zero crossing of f in J , then (either employing the proof in [11] or
using [1, Theorems 11.2.1 and 11.5.1] on I1∪I2, whence we will need to make the
non-degeneracy assumption for all (t1, t2) ∈ (I1∪ I2)

2)

E[ZI1 ·ZI2 ] =

∫
I1×I2

K2(t1, t2)dt1dt2,

so that

Cov[ZI1 ·ZI2 ] =

∫
I1×I2

(K2(t1, t2)−K1(t1)K1(t2))dt1dt2.(3.2)
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However, the non-degeneracy assumption is not satisfied in the case of f as
in (2.1), and we may construct examples of curves, where the Kac-Rice formula
as stated is wrong. However, in a situation like this we will be able to write an
approximate Kac-Rice formula, prescribing the same order of magnitude for the
fluctuations of the nodal intersections as the precise Kac-Rice (see Proposition
1.3). We will see in Section 3.3 (Proposition 3.2) that under certain conditions on
r (namely that |r| is bounded away from 1) we will be able to approximate the
2-point correlation function in terms of powers of r and its derivatives; this will
allow us to write the approximate Kac-Rice formula of Proposition 1.3 in terms of
the relevant moments of r and its derivatives rather than in terms of the integral
of 2-point correlation function. We will prove the approximate Kac-Rice formula
of Proposition 1.3 in Section 4 assuming the preparatory work in Section 3.3, and
some upper bounds for the 4-th moments of r and its derivatives along the relevant
curve in Section 6 (Lemma 6.1).

3.2. An explicit expression for the 2-point correlation function. Let
K2(t1, t2) =K2;m(t1, t2) be the 2-point correlation function of our process f as in
(2.1), i.e., for t2 �= t1

K2(t1, t2) = φt1,t2(0,0) ·E[|f ′(t1)| · |f ′(t2)||f(t1) = f(t2) = 0],

where φt1,t2 is the probability density function of the random Gaussian vector
(f(t1),f(t2)). The following lemma gives an explicit expression for K2 in terms
of rf and its derivatives; recall the definition (2.3) for α and its explicit value
α= 2π2m.

LEMMA 3.1. We have explicitly

K2 =K2;m(t1, t2) =
1

π2(1− r2)3/2
·μ · (
√

1−ρ2 +ρarcsinρ),(3.3)

where

μ= μm(t1, t2) =
√
α(1− r2)− r2

1 ·
√
α(1− r2)− r2

2,(3.4)

and

ρ= ρm(t1, t2) =
r12(1− r2)+ rr1r2√

α(1− r2)− r2
1 ·
√
α(1− r2)− r2

2

,(3.5)

is the correlation between the derivatives f ′(t1) and f ′(t2), conditioned on both
values vanishing (thus satisfying |ρ| ≤ 1).
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Proof. The covariance matrix for (fm(t1),fm(t2),f ′m(t1),f ′m(t2)) is

Σ=

(
A B
Bt C

)
,(3.6)

where

A=

(
1 r
r 1

)
, B =

⎛
⎜⎜⎝

0
∂r

∂t2
∂r

∂t1
0

⎞
⎟⎟⎠ , C =

⎛
⎜⎜⎝

α
∂2r

∂t1∂t2

∂2r

∂t1∂t2
α

⎞
⎟⎟⎠ .

We abbreviate

r1 :=
∂r

∂t1
, r2 :=

∂r

∂t2
, r12 :=

∂2r

∂t1∂t2
.

The covariance matrix for the conditional distribution of f ′m(t1),f ′m(t2) condi-
tioned on fm(t1) = fm(t2) = 0 is

Ω= Ωm(t1, t2)=C−BtA−1B=

(
α r12

r12 α

)
− 1

1− r2

(
r2

1 −rr1r2

−rr1r2 r2
2

)

=
1

1− r2

(
α(1− r2)− r2

1 r12(1− r2)+ rr1r2

r12(1− r2)+ rr1r2 α(1− r2)− r2
2

)
.

(3.7)

The two-point correlation function is then given by

K2;m(t1, t2) =
1

2π
√

detA
E[|W1W2|],

where

(W1,W2)∼N(0,Ω)

are centered Gaussian with covariance Ω. By normalizing the random variables

(W1,W2) =

⎛
⎝
√
α(1− r2)− r2

1√
1− r2

Y1,

√
α(1− r2)− r2

2√
1− r2

Y2

⎞
⎠

we write K2;m as

K2;m =
1

2π(1− r2)3/2
·μ ·E[|Y1Y2|],(3.8)
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where μ is given by (3.4), (Y1,Y2)∼N(0,Δ(ρ)) with

Δ(ρ) =

(
1 ρ
ρ 1

)
(3.9)

and ρ is given by (3.5).
It remains to evaluate

G(ρ) = E[|Y1Y2|]

with (Y1,Y2)∼N(0,Δ(ρ)). We may compute G explicitly to be equal to (see e.g.,
[4]),

G(ρ) =
2
π

(√
1−ρ2 +ρarcsinρ

)
,(3.10)

which finally yields the explicit formula (3.3) via (3.8). �

3.3. Asymptotics for the 2-point correlation function.

PROPOSITION 3.2. For every ε2 > 0, the two point correlation function satis-
fies, uniformly for |r|< 1− ε2:

K2(t1, t2) =
α

π2

(
1+

1
2
r2− 1

2
(r1/
√
α)2− 1

2
(r2/
√
α)2 +

1
2
(r12/α)

2
)

+α ·O (r4 +(r1/
√
α)4 +(r2/

√
α)4 +(r12/α)

4) .(3.11)

Bearing in mind (2.4), we may equivalently write

K2(t1, t2)−K1(t1)K1(t2) =
α

2π2

(
r2−
(
r1√
α

)2

−
(
r2√
α

)2

+

(
r12

α

)2
)

+α ·O
(
r4 +

(
r1√
α

)4

+

(
r2√
α

)4

+

(
r12

α

)4
)

with constants involved in the “O”-notation depending on ε2 only.

Proof. Note that if r, r1√
m

, r2√
m

, and r12
m are small, then ρ is small too. We may

then expand ρ and μ about r = 0, r1√
α
= 0, r2√

α
= 0, r12

α = 0:

ρ=
r12

α
· (1− (r2 +(r1/

√
α)2))−1/2 · (1− (r2 +(r2/

√
α)2))−1/2

+O
(
r3 +(r1/

√
α)3 +(r2/

√
α)3 +(r12/α)

3)
=
r12

α
+O
(
r3 +(r1/

√
α)3 +(r2/

√
α)3 +(r12/α)

3) .
(3.12)



NODAL INTERSECTIONS FOR RANDOM EIGENFUNCTIONS ON THE TORUS 1617

Next we need to Taylor expand the function G(ρ) as in (3.10) about ρ= 0:

G(ρ) =
2
π

(
1+

1
2
ρ2
)
+O
(
ρ4).

Substituting (3.12), we obtain

G(ρ) =
2
π

(
1+

1
2
(r12/α)

2
)
+O
(
r4 +(r1/

√
α)4 +(r2/

√
α)4 +(r12/α)

4) .
Next,

μ= α

√
1− (r2 +(r1/

√
α)2) ·

√
1− (r2 +(r2/

√
α)2)

= α

(
1− r2− 1

2
(r1/
√
α)2− 1

2
(r2/
√
α)2
)

+αO
(
r4 +(r1/

√
α)4 +(r2/

√
α)4 +(r12/α)

4) ,
and

1

(1− r2)3/2
= 1+

3
2
r2 +O(r4).

Finally, substituting all the estimates above into (3.3) we obtain

K2;m(t1, t2) =
1

2π
·
(

1+
3
2
r2
)
·α
(

1− r2− 1
2

(
r1√
α

)2

− 1
2

(
r2√
α

)2
)

· 2
π

(
1+

1
2
(
r12

α
)2
)
+αO

(
r4 +

(
r1√
α

)4

+

(
r2√
α

)4

+
(r12

α

)4
)

=
α

π2

(
1+

1
2
r2− 1

2

(
r1/
√
α
)2− 1

2

(
r2/
√
α
)2

+
1
2
(r12/α)

2
)

+αO
(
r4 +(r1/

√
α)4 +(r2/

√
α)4 +(r12/α)

4).
An inspection of each step reveals that all the expansions are valid under the as-
sumption that |r| is bounded away from 1. �

4. Approximate Kac-Rice for computing the variance of nodal intersec-
tions. This section is entirely dedicated to proving Proposition 1.3. Throughout
the present section we assume that ε0 > 0 is fixed, and m satisfies |τ̂m(4)|< 1−ε0.

4.1. Nodal intersections on short arcs. Let c0 > 0 be a small number (de-
pending on ε0), and divide our curve into short arcs of size roughly c0√

m
. More
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precisely, let K =Km =
⌊
L ·
√
m
c0

⌋
+1,

δ0 = δ0;m =
L

K
≤ c0√

m
,

and define the partition I =
⋃K
i=1 Ii of I = [0,L] into short intervals

Ii := [(i−1) · δ0, i · δ0],

i = 1, . . . ,K, disjoint save for the overlaps at the endpoints. We will eventually
choose c0 sufficiently small so that the Kac-Rice formula will hold on the short in-
tervals (see Lemma 4.3), and the value of r or of one of its derivatives in a “singular
cube” will be bounded away from 0 (see Definition 4.5 and Lemma 4.6).

For the future we record that, as c0 > 0 is constant,

δ0 � 1√
m
.(4.1)

For 1 ≤ i ≤K, let Zi be the number of nodal intersections of Fm with γ(Ii),
that is Zi is the number of zeros of f on Ii. We have a.s.

Z =
K∑
i=1

Zi,

so that

E[Z2] =

K∑
i=1

E[Z2
i ]+2

∑
i<j

E[Zi ·Zj];(4.2)

equivalently

Var(Z) =
K∑
i=1

Var(Zi)+2
∑
i<j

Cov (Zi,Zj) .(4.3)

Later we will apply Kac-Rice (3.1) to “most” of the summands in (4.3) (see
Section 4.3) and bound the contribution of the rest of the summands; integrating
and summing these up will eventually establish the statement of Proposition 1.3.

4.2. Nodal intersections variance on short arcs. As a first goal, we will
establish an estimate on the variance Var(Zi) of nodal intersections with a short
arc of γ; with the help of the latter we will be able to control the contribution of
any individual summand in (4.3), via Cauchy-Schwartz (Corollary 4.2).
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PROPOSITION 4.1. For every 0< ε0 < 1 we can choose c0 = c0(ε0) sufficiently
small, such that for any m with |τ̂m(4)|< 1− ε0, we have

Var(Zi) =O(1),

uniformly for i≤K, where the constant involved in the “O”-notation depends on
ε0 and c0 only.

Before proving Proposition 4.1 we draw the following corollary, as announced
above.

COROLLARY 4.2. For every 0 < ε0 < 1 we can choose c0 = c0(ε0) sufficiently
small, such that for any m with |τ̂m(4)|< 1− ε0, we have

|Cov(Zi,Zj)|=O(1),

uniformly for i,j ≤K, where the constant involved in the “O”-notation depends
on ε0 and c0 only.

Proof of Corollary 4.2. Applying Cauchy-Schwartz we have

|Cov(Zi,Zj)| ≤
√

Var(Zi) ·Var(Zj) =O(1),

by Proposition 4.1. �

To prove Proposition 4.1 we will need Lemma 4.3 and Proposition 4.4 stated
below.

LEMMA 4.3. For every 0< ε0 < 1 we can choose c0 = c0(ε0) sufficiently small,
such that for any m with |τ̂m(4)| < 1− ε0, the matrix Σ(t1, t2), defined in (3.6), is
nonsingular for all t1, t2 ∈ [0,L]2 with

0 < |t2− t1|< c0√
m
.

The proof of Lemma 4.3 is quite long and technical, and is thereupon relegated
to Appendix A.

PROPOSITION 4.4. For t1 ∈ [0,L] and |t2− t1| < c0√
m

one has the uniform
estimate

K2(t1, t2) =O(m)

with constant depending on c0 only.

The proof of Proposition 4.4 is deferred to Section 4.4.
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Proof of Proposition 4.1 assuming Lemma 4.3 and Proposition 4.4. Thanks to
Lemma 4.3 the covariance matrix Σ(t1, t2) is nonsingular for all (t1, t2) ∈ I2

i with
t2 �= t1, so, by the discussion in section 3.1 above we may apply Kac-Rice (3.1) to
Ii ⊆ I to write

Var(Zi) =
∫
Ii×Ii

(K2(t1, t2)−K1(t1)K1(t2))dt1dt2 +E[Zi].(4.4)

Applying Proposition 4.4 and the Kac-Rice formula (2.1) for computing the ex-
pected number of zeros on Ii

E[Zi] =
∫
Ii

K1(t)dt�
√
m · δ0

(see Lemma 2.1) to (4.4) yields

Var(Zi)�m · δ2
0 +
√
m · δ0� 1,

bearing in mind (4.1). This concludes the proof of the present proposition. �

4.3. Proof of Proposition 1.3. Recalling the notation from Section 4.1 we
now divide the domain of the integration, namely, the cube S := I2 = [0,L]2 into
small cubes Sij = Ii×Ij of side δ0; some of the latter will be designated as “singu-
lar” and the rest as “nonsingular”. Let ε1 > 0 be a small number that will be fixed
till the end (e.g., ε1 =

1
100 is sufficient).

Definition 4.5. (Singular and nonsingular cubes and sets.)
(i) We call a point (t1, t2) ∈ [0,L]2 singular if either |r(t1, t2)| > ε1 or

|r1(t1, t2)|> ε1 ·
√
m or |r2(t1, t2)|> ε1 ·

√
m or |r12(t1, t2)|> ε1 ·m.

(ii) Let

Sij = Ii× Ij = [iδ0,(i+1)δ0]× [jδ0,(j+1)δ0]

be a cube in [0,L]2. We say that Sij is a singular cube if it contains a singular point.
(iii) The union of all the singular cubes is the singular set

B =Bm =
⋃

Sij singular

Sij.

Note that outside the singular set Σ(t1, t2) is nonsingular (provided that ε1 is
chosen sufficiently small) by (3.4), (3.5), and (3.9); we are thereupon allowed to
apply the Kac-Rice formula on S \B; in particular for all i,j with Si,j∩ Int(B) = /0
(this implies i �= j):

E[ZiZj] =
∫
Sij

K2(t1, t2)dt1dt2.
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We plan to approximate the 2-point correlation function as the corresponding
sum of powers of r and its derivatives; by Proposition 3.2 we are allowed to do so
unless r is big, and we will bound the contribution of the domain where it is.

LEMMA 4.6. If Sij ⊆B is singular, then for all (t1, t2) ∈ Sij either r(t1, t2)>
ε1/2 or the analogous statement holds for one of the derivatives in the definition of
singular point (Definition 4.5(i)).

Proof. The statement for c0 sufficiently small follows from the fact that the
scaled covariance function rF (y/

√
m) of the ambient field F and its derivatives

are Lipschitz with a universal constant (independent of m) (as it is easy to check,
first for the individual function x �→ cos(2π〈μ,x〉), and then for their average), and
thus the same holds for r. �

LEMMA 4.7. The total area of the singular set is

meas(B) =O
(
N−3/2
m

)
.

Proof. We apply the Chebyshev-Markov inequality on the measure of B.
Lemma 4.6 shows that it is bounded from above by

meas(B)�
∫ L

0

∫ L

0

(
r(t1, t2)

4 +
1
m2 r1(t1, t2)

4

+
1
m2 r2(t1, t2)

4 +
1
m4 r12(t1, t2)

4
)
dt1dt2,

which is small by Lemma 6.1 (which is independent of the arguments of the present
section). �

Recall that B consists of cubes of side length δ � 1√
m

(see (4.1)). Lemma 4.7
implies that the number of singular cubes is � m

N
3/2
m

and, teamed with Corollary

4.2, yields the following estimate on the total contribution of the singular domain
B.

COROLLARY 4.8. The total contribution of the singular set is:

∣∣∣∣∣∣
∑

Sij singular

Cov(Zi,Zj)
∣∣∣∣∣∣=O(m ·N−3/2

m ).

Proof of Proposition 1.3. Consider the equality (4.3) and apply Kac-Rice on
every nonsingular cube (i.e., use (3.2) for those Ii and Ij such that Sij is not lying
in B, bearing in mind that for all (t1, t2) ∈ Sij , Σ(t1, t2) is nonsingular). We then
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obtain

Var(Z) =
∫
S\B

(
K2(t1, t2)−K1(t1)K1(t2)

)
dt1dt2 +

∑
Sij singular

Cov
(Zi,Zj)

=

∫
S\B

(
K2(t1, t2)−K1(t1)K1(t2)

)
dt1dt2 +O

(
m ·N−3/2

m

)
,

by Corollary 4.8. We finally use the expansion in Proposition 3.2 for K2 valid
outside of B (the latter of the two equivalent forms), and use Lemma 6.1 again for
bounding the contribution of the error term in (3.11), together with the everywhere
boundedness of the integrand on the RHS of (1.13) to conclude the proof. �

4.4. Proof of Proposition 4.4.

Proof. From Lemma 3.1, since 2
π ≤G≤ 1,

K2(t1, t2)� 1

(1− r2)3/2
·μ� 1

(1− r)3/2

√
α(1− r2)− r2

1 ·
√
α(1− r2)− r2

2.

Note that

1

(1− r2)3/2

√
α(1− r2)− r2

1 ·
√
α(1− r2)− r2

2

=
α√

1− r2

√
1− r2

1

α(1− r2)
·
√

1− r2
2

α(1− r2)

� α√
1− r

√
1− r2

1

α(1− r2)
·
√

1− r2
2

α(1− r2)
≤ α√

1− r .

(4.5)

The diagonal cube S = Sij contains a point of the form (t1, t1). We may Taylor
expand the integrand K2(t1, t2) for (t1, t2) ∈ S about (t1, t2) as a function of t2, t1
fixed, and assuming WLOG t2 > t1.

To expand r we differentiate and evaluate the derivatives at the diagonal t2 =
t1: The first derivative r2 = ∂r/∂t2 is

r2 =−∇rFm(γ(t1)−γ(t2)) · γ̇(t2),

and on the diagonal

r2(t, t) = 0.(4.6)

The second derivative r22 = ∂2r/∂t22 is

r22 = γ̇(t2)
t ·HrFm

(γ(t1)−γ(t2)) · γ̇(t2)−∇rFm(γ(t1)−γ(t2)) · γ̈(t2),
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on the diagonal r22(t, t) =−α. The third derivative is

r222 =
∂

∂t2

[
γ̇(t2)

t ·HrFm
(γ(t1)−γ(t2)) · γ̇(t2)

]
+ γ̇(t2) ·HrFm

(γ(t1)−γ(t2)) · γ̈(t2)−∇rFm(γ(t1)−γ(t2)) ·
...
γ (t2)

= γ̇(t2)
t · ∂
∂t2

[
HrFm

(γ(t1)−γ(t2))
] · γ̇(t2)

+3γ̇(t2)
t ·HrFm

(γ(t1)−γ(t2)) · γ̈(t2)−∇rtFm
(γ(t1)−γ(t2))·

...
γ (t2),

(4.7)

and on the diagonal

r222(t1, t1) =−3αγ̇(t2)
t · γ̈(t2) = 0,(4.8)

since the acceleration is always orthogonal to the velocity (t is the arc-length pa-
rameter). Moreover, the Hessian satisfies H � m and ∂H/∂t2 � m3/2 every-
where, so that we have

r222(t1, t2) =O(m3/2)

everywhere.
The expansion of r(t1, t2) around the diagonal t2 = t1, valid for 0 < t2− t1 ≤

c0√
m

with c0 sufficiently small, is

r = 1− α
2
(t2− t1)2 +O(m3/2(t2− t1)3),

and

1− r2 = (1− r)(1+ r)
=
[α

2
(t2−t1)2+O

(
m3/2(t2−t1)3)][2−α

2
(t2−t1)2+O

(
m3/2(t2−t1)3)]

= α(t2− t1)2 (1+O(
√
m(t2− t1))

)
,

r2
2 ≈ r2

1 = α2(t2− t1)2(1+O(m1/2(t2− t1)
))
,

(4.9)

thus

r2
1

α(1− r2)
= 1+O

(
m1/2(t2− t1)

)
,

and hence

0≤ 1− r2
1

α(1− r2)
=O
(
m1/2(t2− t1)

)
,
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and the same estimate holds for

1− r2
2

α(1− r2)
.

Consolidating all the estimates we conclude that (4.5) is uniformly bounded by

α√
1− r

√
1− r2

1

α(1− r2)
·
√

1− r2
2

α(1− r2)

� α

m1/2(t2− t1)
·O(m1/2(t2− t1)

)
=O(m),

recalling that α= 2π2m. �

5. Asymptotics for the second moments of the covariance function and
its derivatives. Recall that r is the covariance function restricted to the curve C:

r(t1, t2) = r(γ(t1),γ(t2))(5.1)

PROPOSITION 5.1. If C ⊂ T
2 is a (smooth) curve with nowhere vanishing cur-

vature, then for all ε > 0

∫
C

∫
C
r2 =

∫ L

0

∫ L

0
r(t1, t2)

2dt1dt2 =
L2

Nm
+O

(
1

N 2−ε
m

)
(5.2)

∫
C

∫
C

∣∣∣∣ 1
2π
√
m

∂r

∂t1

∣∣∣∣
2

=
L2

2Nm
+O

(
1

N 2−ε
m

)
(5.3)

and

∫
C

∫
C

∣∣∣∣ 1
4π2m

∂2r

∂t1∂t2

∣∣∣∣
2

=
BC(E)
Nm

+O

(
1

N 2−ε
m

)
(5.4)

where

BC(E) :=
∫
C

∫
C

1
N m

∑
μ∈E

〈
μ

|μ| , γ̇(t1)
〉2

·
〈
μ

|μ| , γ̇(t2)
〉2

dt1dt2.(5.5)

Before proceeding with the proof, we can conclude the proof of Theorem 1.2:
Use Proposition 1.3 to write an approximate integral formula for the nodal inter-
sections number variance and substitute the result of Proposition 5.1 in place of the
main term of (1.3). �
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5.1. Main terms. Squaring out, we have (on isolating the diagonal pairs
μ= μ′)

|r(t1, t2)|2 = 1
N m

+
1
N 2
m

∑
μ,μ′∈E
μ�=μ′

e2πi〈μ−μ′,γ(t1)−γ(t2)〉(5.6)

and hence integrating we find

∫∫
|r(t1, t2)|2dt1dt2 = L2

Nm
+

1
N 2
m

∑
μ,μ′∈E
μ�=μ′

∣∣∣∣
∫ L

0
e2πi〈μ−μ′,γ(t)〉dt

∣∣∣∣
2

.(5.7)

For the second moment of the derivative r1 = ∂/∂t1 we compute

1
2πi
√
m

∂r

∂t1
(t1, t2) =

1
Nm

∑
μ

〈
μ

|μ| , γ̇(t1)
〉
e2πi〈μ,γ(t1)−γ(t2)〉(5.8)

and setting

Aμ,μ′(t) =

〈
μ

|μ| , γ̇(t)
〉〈

μ′

|μ′| , γ̇(t)
〉

(5.9)

we find

∫∫ ∣∣∣∣ 1
2π
√
m

∂r

∂t1
(t1, t2)

∣∣∣∣
2

dt1dt2

=
1
N 2
m

∑
μ

∫ L

0
Aμ,μ(t1)dt1

∫ L

0
1dt2

+
1
N 2
m

∑
μ,μ′∈E
μ�=μ′

∫ L

0
Aμ,μ′(t1)e

2πi〈μ−μ′,γ(t1)〉dt1
∫ L

0
e2πi〈μ′−μ,γ(t2)〉dt2.

(5.10)

Similarly,

∫∫ ∣∣∣∣ 1
4π2m

∂2r

∂t1∂t2
(t1, t2)

∣∣∣∣
2

dt1dt2

=
1
N 2
m

∑
μ

∫∫
Aμ,μ(t1)Aμ,μ(t2)dt1dt2

+
1
N 2
m

∑
μ,μ′∈E
μ�=μ′

∣∣∣∣
∫ L

0
Aμ,μ′(t)e

2πi〈μ−μ′,γ(t)〉dt
∣∣∣∣
2

.

(5.11)
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For ∂r/∂t1 we use (see [25, Lemma 2,3]) that for any v ∈ R
2,

1
N m

∑
μ∈E
〈μ,v〉2 = m

2
||v||2(5.12)

and applying it for v = γ̇(t) which has unit length we get that

1
N m

∑
μ

Aμ,μ(t) =
1
2
||γ̇(t)||2 = 1

2
.(5.13)

Integrating over t1 and t2 shows that the diagonal term in (5.10) is L2/2Nm.
For ∂2r/∂t1∂t2 the diagonal term in (5.11) is

1
N m

∫∫
1
N m

∑
μ

〈
μ

|μ| , γ̇(t1)
〉2

·
〈
μ

|μ| , γ̇(t2)
〉2

dt1dt2 =
BC(E)
Nm

.(5.14)

5.2. Off-diagonal terms. To handle the off-diagonal terms μ �=μ′, we need
the following consequence of van der Corput’s lemma (see [7]): For each 0 �= ξ ∈
R

2 define a phase function on the curve C by

φξ(t) =

〈
ξ

|ξ| ,γ(t)
〉
.(5.15)

Let A ∈ C∞(0,L) be a smooth amplitude and for k real, set

I(k) =

∫
A(t)eikφξ(t)dt.(5.16)

LEMMA 5.2. Assume C has nowhere vanishing curvature. Then for |k| ≥ 1,

|I(k)| � 1

|k|1/2

{||A||∞ + ||A′||1
}
,(5.17)

the implied constant depending only on the curve C (independent of ξ).

Applying Lemma 5.2, we see that for μ �= μ′,∫ L

0
e2πi〈μ−μ′,γ(t)〉dt�C

1

|μ−μ′|1/2
.(5.18)

Moreover, |Aμ,μ′ | ≤ 1 and |A′μ,μ′ | ≤ 2Kmax where Kmax is the maximum value of
the curvature on C, because

A′μ,μ′ =
〈
μ

|μ| , γ̈(t)
〉〈

μ′

|μ′| , γ̇(t)
〉
+

〈
μ

|μ| , γ̇(t)
〉〈

μ′

|μ′| , γ̈(t)
〉

= κ(t)

(〈
μ

|μ| ,ν(t)
〉
·
〈
μ′

|μ′| , γ̇(t)
〉
+

〈
μ

|μ| , γ̇(t)
〉〈

μ′

|μ′| ,ν(t)
〉)

,

(5.19)
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where γ̈ = κν with κ the curvature and ν the unit normal to the curve. Therefore
we likewise find

∫ L

0
Aμ,μ′(t)e

2πi〈μ−μ′,γ(t)〉dt�C
1

|μ−μ′|1/2
.(5.20)

Hence we find that

∫∫
|r(t1, t2)|2dt1dt2 = L2

Nm
+O

⎛
⎜⎜⎝ 1
N 2
m

∑
μ,μ′∈E
μ�=μ′

1
|μ−μ′|

⎞
⎟⎟⎠(5.21)

and for j = 1,2

∫∫ ∣∣∣∣ 1
2π
√
m

∂r

∂tj
(t1, t2)

∣∣∣∣
2

dt1dt2 =
L2

2Nm
+O

⎛
⎜⎜⎝ 1
N 2
m

∑
μ,μ′∈E
μ�=μ′

1
|μ−μ′|

⎞
⎟⎟⎠ ,(5.22)

and finally

∫∫ ∣∣∣∣ 1
4π2m

∂2r

∂t1∂t2
(t1, t2)

∣∣∣∣
2

dt1dt2 =
BC(E)
Nm

+O

⎛
⎜⎜⎝ 1
N 2
m

∑
μ,μ′∈E
μ�=μ′

1
|μ−μ′|

⎞
⎟⎟⎠ .

(5.23)

Proposition 5.1 hence follows from:

PROPOSITION 5.3.

∑
μ,μ′∈E
μ�=μ′

1
|μ−μ′| �N ε

m, ∀ε > 0.(5.24)

5.3. A result of Mordell. Denote by H the set of h ≤ H for which the
system

|μ|2 =m= |μ′|2, |μ−μ′|2 = 2h(5.25)

has integer solutions, and by A(m,h) the number such solutions.
We give an arithmetic characterization of the set H. To do so, we will need

a result of Mordell [22] (see also Niven [23]) on the representation of a binary
quadratic form as a sum of two squares of integer linear forms.
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THEOREM 5.4. (Mordell [22]) LetA,B,C ∈Z. Assume that the integer binary
quadratic form

F (x,y) :=Ax2 +2Bxy+Cy2

is positive definite, i.e., that A,C > 0 and AC−B2 > 0. Then we can represent

F (x,y) = (ux+u′y)2 +(vx+ v′y)2

with integer u,v,u′,v′ if and only if

AC−B2 =� is a perfect square,(5.26)

and

gcd(A,B,C) =�+� is a sum of two integer squares.(5.27)

Pall [24] gives the exact number of solutions as r2(gcd(A,B,C)) if AC −
B2 > 0, and 2r2(gcd(A,B,C)) if AC −B2 = 0, where r2(n) is the number of
representations of n as a sum of two integer squares.

Writing μ= (u,v) and μ′ = (u′,v′) we have

(ux+u′y)2 +(vx+ v′y)2 = |xμ+yμ′|2(5.28)

so that we can interpret Mordell’s theorem as saying that given A,B,C as above,
there are integer vectors μ,μ′ ∈ Z

2 satisfying

|μ|2 =A, 〈μ,μ′〉=B, |μ′|2 = C(5.29)

if and only if (5.26) and (5.27) hold.
A consequence is the following:

COROLLARY 5.5. Let m,h ∈ Z, 0 < h < m. There are two integer vectors
μ,μ′ with |μ|2 =m= |μ′|2 and |μ−μ′|2 = 2h if and only if

(i) h(2m−h) =� is a perfect square, and
(ii) gcd(m,h) =�+� is a sum of two squares.

In this case the number of solutions is A(m,h) = r2(gcd(m,h))� ho(1).

5.4. Proof of Proposition 5.3. Let H =N 4
m. We separate the sum into that

over “distant” pairs |μ−μ′|2 >H and “close” pairs 1≤ |μ−μ′|2 ≤H . For the sum
over distant pairs, we crudely use

∑
μ,μ′∈E
|μ−μ′ |2>H

1
|μ−μ′| �

N 2
m√
H
.(5.30)
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To handle the sum over “close” pairs, we write

∑
(μ,μ′)∈E×E

0<|μ−μ′ |2<H

1
|μ−μ′| =

∑
h∈H

0<h<H

A(m,h)√
2h

�Hε
∑
h∈H

0<h<H

1√
h
.(5.31)

For h ∈ H, we write d = (h,m), which is a sum of two squares (d = �+�),
h = dh′, m = dm′ with (m′,h′) = 1. Then h ∈ H means h(2m−h) = � and so
h′(2m′ −h′) =�. Thus we find

∑
h∈H

0<h<H

1√
h
=
∑
d|m

d=�+�
d<H

1√
d

∑
h′(2m′−h′)=�

(h′,m′)=1
h′<H/d

1√
h′
.(5.32)

We claim that the inner sum over h′ is O(1). To see this, use 1/
√
h′ ≤ 1 and

separate into cases according to h′ being odd or even. If h′ is odd and (h′,m′) = 1,
then the condition h′(2m′ −h′) =� implies h′ =� and 2m′ −h′ =�, that is h′ =
u2 and 2m−h′ = v2 with v > 0, 0 < u <

√
H/d. If h′ is even, then the condition

h′(2m′ −h′) = � and (h′,m′) = 1 implies (h′/2,m′ −h′/2) = 1 and h′/2 = �,
m′ − h′/2−� so that h′/2 = u2, m′ − h′/2 = v2 with v > 0, 0 < u <

√
H/d.

Summarizing, we get lattice points on the circle u2 + v2 = 2m′ or u2 + v2 = m′

depending on the parity of h′, with 0 < u <
√
H/d, v > 0. These conditions puts

these lattice points on a “short” arc on the circle, since H �mo(1). Recall Jarnik’s
theorem [15], which states that on an arc of size < R1/3 on a circle of radius R
there can be at most two lattice points. Hence there are at most two such lattice
points in each of the two cases, and thus the number of participating h′ is at most
4. This proves that the inner sum in (5.32) is bounded.

We conclude that

∑
h∈H

0<h<H

1√
h
�
∑
d|m

d=�+�
d<H

1√
d
.(5.33)

Below in Lemma 5.6 we will show that this sum is bounded by O(N ε
m). This will

show that the contribution of close pairs is O(N ε
m). Combining with the bound

(5.30) on distant pairs we get

∑
μ,μ′∈E
μ�=μ′

1
|μ−μ′| �

N 2
m√
H

+N ε
m�N ε

m(5.34)

on recalling that H = N 4
m. This will conclude the proof of Proposition 5.3, once

we prove:
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LEMMA 5.6. Suppose that H =Nα
m for some α > 0. Then

∑
d|m

d=�+�
d<H

1√
d
�ε N

ε
m.

Proof. Writem=m2
1m2 wherem1 = 2r

∏
qk=3 mod 4 q

bk
k is a product of powers

of primes qk = 3 mod 4 and possibly a power of 2, and m2 = 2c
∏
j p

aj
j is a product

of powers of primes pj = 1 mod 4, possibly times 2 (c= 0,1). Then

Nm =
∏
j

(aj+1).

Likewise we write d = d2
1d2 in the same fashion, so that d | m is equivalent to

d1 |m1 and d2 |m2.
The sum over d’s is bounded by

∑
d|m

d=�+�
d<H

1√
d
�
∑
d1|m1

d1<
√
H

1
d1

∑
d2|m2

1√
d2
� logH

∑
d2|m2

1√
d2
� logNm

∑
d2|m2

1√
d2
,

where in the sum over d2 we have dropped the condition d < H .
It now suffices to show that for all ε > 0, there is some C(ε)> 0 so that

∑
d2|m2

1√
d2
≤C(ε)N ε

m.

Ignoring the possible factor of 2,

∑
d2|m2

1√
d2
�
∏
j

⎛
⎝1+

1√
pj

+ · · ·+ 1

p
(aj+1)/2
j

⎞
⎠≤∏

j

1

1− 1√
pj

.

Recalling that Nm =
∏
j(aj+1)≥∏j 2 we find

1
N ε
m

∑
d2|m2

1√
d2
�

∏
pj |m

pj=1 mod 4

1

(1− 1√
pj
)2ε

≤
∏
∗

1

(1− 1√
p)2

ε
=: C(ε),

(5.35)

where in the last line, the product is over all primes satisfying (1− 1√
p)2

ε < 1. This

gives
∑

d2|m2
1/
√
d2 ≤C(ε)N ε

m as claimed. �
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6. Bounds for the higher moments of r and its derivatives. The estimates
of the following lemma were used in Section 4 in the proof of Proposition 1.3.

LEMMA 6.1. We have the following estimates on the 4th moments of the co-
variance function and its various derivatives along a (smooth) reference curve γ
with nowhere vanishing curvature:

∫∫
[0,L]2

r(t1, t2)
4dt1dt2 =O

(
1

N
3/2
m

)
,

1
m2

∫∫
[0,L]2

r1(t1, t2)
4dt1dt2 =O

(
1

N
3/2
m

)
,

1
m2

∫∫
[0,L]2

r2(t1, t2)
4dt1dt2 =O

(
1

N
3/2
m

)
,

1
m4

∫∫
[0,L]2

r12(t1, t2)
4dt1dt2 =O

(
1

N
3/2
m

)
.

(6.1)

Proof. Abbreviating e(z) := e2πiz , we have

∫∫
[0,L]2

r(t1, t2)
4dt1dt2

=
1
N 4
m

∑
μ1,...,μ4∈E

∫∫
[0,L]2

e(〈μ1 +μ2 +μ3 +μ4,γ(t1)−γ(t2)〉)dt1dt2

=
1
N 4
m

∑
μ1,...,μ4∈E

|I1(μ1,μ2,μ3,μ4)|2

with

I1(μ1,μ2,μ3,μ4) =

∫
[0,L]

e(〈μ1 +μ2 +μ3 +μ4,γ(t)〉)dt.(6.2)

Now by Lemma 5.2, for μ1 +μ2 +μ3 +μ4 �= 0 we have the estimate

|I1(μ1,μ2,μ3,μ4)| � 1

|μ1 +μ2 +μ3 +μ4|1/2
.(6.3)

Hence∫∫
[0,L]2

r(t1, t2)
4dt1dt2� 1

N 2
m

+
1
N 4
m

∑
μ1,...,μ4∈E

μ1+μ2+μ3+μ4 �=0

1
‖μ1 +μ2 +μ3 +μ4‖ ,
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since for given μ1,μ2 ∈ E with μ1 �= −μ2 there exist (precisely) 2 choices for
μ3,μ4 ∈ E so that

μ1 +μ2 +μ3 +μ4 = 0,

by an elementary argument due to Zygmund [27]. The estimate (6.1) now follows
from Lemma 6.2.

For the derivative r1 we have:∫∫
[0,L]2

r1(t1, t2)
4dt1dt2

=
(2π)4

N 4
m

∑
μ1,...,μ4∈E

I2(μ1,μ2,μ3,μ4) · I1(μ1,μ2,μ3,μ4),
(6.4)

where I1 was defined in (6.2), and

I2(μ1,μ2,μ3,μ4)

=

∫ L

0
e(〈μ1 +μ2 +μ3 +μ4,γ(t)〉)μt1γ̇(t)μt2γ̇(t)μt3γ̇(t)μt4γ̇(t)dt.

(6.5)

We invoke Lemma 5.2 again to yield the bound

|I2| �m2 · 1

|μ1 +μ2 +μ3 +μ4|1/2
,(6.6)

so that combined with the estimate (6.3) and (6.4) it implies

1
m2

∫∫
[0,L]2

r1(t1, t2)
4dt1dt2� 1

N 2
m

+
1
N 4
m

∑
μ1,...,μ4∈E

μ1+μ2+μ3+μ4 �=0

1
‖μ1 +μ2 +μ3 +μ4‖ ,

yielding the statement of the present lemma in this case as before, via Lemma 6.2.
The argument for r2 is identical.

For the second mixed derivative r12 we have:

r12(t1, t2) =−(2π)2

Nm

∑
μ∈E

μtγ̇(t1)μ
tγ̇(t2)e(〈μ1 +μ2 +μ3 +μ4,γ(t1)−γ(t2)〉) ,

and

r12(t1, t2)
4 =

(2π)8

N 4
m

∑
μ1,...,μ4∈E

4∏
j=1

〈μj, γ̇(t1)〉 · 〈μj , γ̇(t2)〉

× e(〈μ1 +μ2 +μ3 +μ4,γ(t1)−γ(t2)〉)
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so that by separation of variables and upon recalling (6.5), we have

∫∫
[0,L]2

r12(t1, t2)
4dt1dt2 =

(2π)8

N 4
m

∑
μ1,...,μ4∈E

|I2(μ1,μ2,μ3,μ4)|2,

and invoking (6.6) (valid for μ1 +μ2 +μ3 +μ4 �= 0), we finally have

1
m4

∫∫
[0,L]2

r12(t1, t2)
4dt1dt2� 1

N 2
m

+
1
N 4
m

∑
μ1,...,μ4∈E

μ1+μ2+μ3+μ4 �=0

1
‖μ1 +μ2 +μ3 +μ4‖

=O

(
1

N
3/2
m

)
,

by Lemma 6.2. �

LEMMA 6.2. We have the following bound

∑
μ1,...,μ4∈E

μ1+μ2+μ3+μ4 �=0

1
‖μ1 +μ2 +μ3 +μ4‖ =O

(
N 5/2
m

)
.(6.7)

Proof. Let us denote v = μ1+μ2+μ3+μ4. We choose a big parameter A> 0
and split the summation into 3 ranges:

(i) ‖v‖ ≤A.
We invoke Zygmund’s elementary observation [27] again to deduce that, given

μ1 and μ2 and v such that

μ1 +μ2 �= v,

there are (at most) two choices for μ3,μ4 ∈ E that solve

μ1 +μ2 +μ3 +μ4 = v.

Therefore we may bound the contribution to the sum (6.7) of this range as

∑
μ1,...,μ4∈E

‖μ1+μ2+μ3+μ4‖≤A

1
‖μ1 +μ2 +μ3 +μ4‖

≤N 2
m ·
∑
‖v‖≤A

1
‖v‖ �N 2

m

∫
1≤|x‖≤A

dx

‖x‖ =N 2
m

∫ A

1
dt=A ·N 2

m,

(6.8)

by comparing the sum
∑
‖v‖≤A

1
‖v‖ to the integral

∫
1≤|x‖≤A

dx
‖x‖ .

(ii) A≤ ‖v‖ ≤N 3/2
m .



1634 ZEÉV RUDNICK AND IGOR WIGMAN

We claim that given μ1,μ2,μ3 there exist at most 2 lattice points μ4 that lie in
the relevant range so that ‖μ1+μ2+μ3+μ4‖ ≤N 3/2

m . Once established the above,
the contribution of this range is, bounding the summands point-wise,

∑
μ1,...,μ4∈E

A≤‖μ1+μ2+μ3+μ4‖≤N3/2
m

1
‖μ1 +μ2 +μ3 +μ4‖ ≤

1
A
·N 3

m.(6.9)

To see that indeed, given μ1, . . . ,μ3 there are at most two vectors μ4 that return
us to the relevant range, we consider the geometric picture. Let μ1,μ2,μ3 be fixed,
define w = μ1 + μ2 + μ3 and suppose that there exists a vector μ4 so that v =

μ1 + μ2 + μ3 + μ4 satisfies Nm/ logNm ≤ ‖v‖ ≤ N
3/2
m indeed. By the triangle

inequality, the vector w satisfies

√
m−N 3/2

m ≤ ‖w‖ ≤N 3/2
m +

√
m;

adding the vector μ4 translates it to a circle of a small radius Nm logNm around
the origin, which means that μ4 has to be on a circular arc of angle α of the order
at most

α∼ sinα≤ N
3/2
m√

m−N 3/2
m

,

with arc length ≤ √m N
3/2
m√

m−N3/2
m

, which is much smaller than m1/3, so by Jarnik

there exists at most two such lattice points, as claimed.
(iii) ‖v‖ ≥N 3/2

m .
Here it is sufficient to bound the summands in (6.7) pointwise; since the total

number of summands is N 4
m the sum is bounded as

∑
μ1,...,μ4∈E

‖μ1+μ2+μ3+μ4‖≥N3/2
m

1
‖μ1 +μ2 +μ3 +μ4‖ ≤

1

N
3/2
m

·N 4
m =N 5/2

m .(6.10)

Consolidating (6.8), (6.9), and (6.10) we find that the sum (6.7) is bounded by

A ·N 2
m+

1
A
·N 3

m+N 5/2
m ,

and the lemma follows by taking A=N
1/2
m . �



NODAL INTERSECTIONS FOR RANDOM EIGENFUNCTIONS ON THE TORUS 1635

7. Fluctuations of the leading constant.

7.1. Some basic observations. Recall that given m we denoted E to be the
set of lattice points on the circle of radius

√
m, and that we defined the probability

measures τm on S1 as in (1.6). We may then rewrite BC(E) (1.11) as

BC(E) :=
∫
C

∫
C

∫
S1
〈θ, γ̇(t1)〉2〈θ, γ̇(t2)〉2dτm(ϑ)dt1dt2.

More generally, for any probability measure τ on S1, invariant w.r.t. π2 –rotations
and the reflection (x,y) �→ (x,−y) we define the number

c(τ,γ) =

∫ L

0

∫ L

0

∫
S1
〈θ, γ̇(t1)〉2〈θ, γ̇(t2)〉2dτ(ϑ)dt1dt2

=

∫
S1
dτ(θ)

[∫ L

0
〈θ, γ̇(t)〉2dt

]2

,

(7.1)

so that, in particular,

BC(E) = c(τm,γ).(7.2)

The leading constant (7.1) is intimately related with the (weak) limiting angular
distribution of lattice points in E . As usual when we deal with convergence of
measures, weak convergence is denoted by “⇒”. Thus if {mj} is a subsequence of
energy levels such that τmj ⇒ τ for some probability measure τ on S1 then

c(τmj ,γ)−→ c(τ,γ).

Therefore the variety of limiting values of B is related to the weak partial limits
of {τm}, i.e., probability measures τ on S1 such that for some subsequence mj of
energy levels, such that τmj ⇒ τ . The classification of all such measures τ , called
attainable, was first addressed in [18], and was subsequently studied in more detail
in [20]. It is well known that the lattice points E are equidistributed on S1 along
generic subsequences of energy levels (see e.g., [13, Proposition 6]) in the sense
that τmj ⇒ 1

2πdθ along some density 1 sequence {mj}, and thus, in particular,
the normalized arc-length measure 1

2πdθ on S1 is attainable. Among other things
it was shown in [20] that for τ attainable the value of the Fourier transform τ̂(4)
attains the whole interval [−1,1], a fact that is going to be important in the example
considered in section 7.2 below.

7.2. An example: explicit computation of c(τ,γ) for circular arcs. Let C
be the circular arc

γ(t) = (r cos(t/r),r sin(t/r)),
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t ∈ [0,L]. Here we obtain after some elementary manipulations

c(τ,γ) =
1
4
L2 +

1
8
r2 sin2(L/r)+

1
8
r2 sin2(L/r)cos(2L/r) · τ̂(4),(7.3)

where we exploited the π/2–invariance of τ to write τ̂(2) = 0. Since, as it was
mentioned in Section 7.1, all the values of τ̂(4) ∈ [−1,1] are hit by attainable
measures, the leading constant 4c(τ,γ)−L2 in (1.10) takes all values between

r2 sin4(L/r) and r2 sin2(L/r)cos2(L/r).

We may also infer from (7.3) that if γ is a 1
8 -circle plus a multiple of a quarter-

circle (L/r= π
4 +kπ/2, k= 0,1,2,3), or a multiple of a semi-circle (L/r= π,2π),

then the leading constant is independent of τ . For the latter case the constant van-
ishes universally; here the nodal length fluctuations are of lower order of magnitude
than prescribed by Theorem 1.2. The only other case when the leading constant
vanishes occurs for quarter circles plus multiples of semi-circles and

τ =
1
4
(δ±π/4 + δ±3π/4)(7.4)

the “tilted Cilleruelo measure” (attainable), name inspired from the “Cilleruelo
measure” [18, 10]

τ =
1
4
(δ±1 + δ±i)(7.5)

(when thinking S1 ⊆ C); these are excluded from our discussion by bounding
|τ̂(4)| away from ±1 (see e.g., the formulation of Theorem 1.1).

7.3. Classification of the leading constants. By applying the Cauchy-
Schwartz inequality on (7.1) it is obvious that for all τ , γ, one has c(τ,γ) ≤ L2. A
stronger bound is possible, thanks to the π/2–rotation invariance of τ .

We will employ an auxiliary notation in order to rewrite the definition (7.1) of
c(τ,γ) in a more useful way for our purposes. Given a direction

θ = eiϑ ∈ S1

we denote the L2-squared energy of the projection of the tangent directions of γ in
the direction θ:

A(γ,θ) :=
∫ L

0
〈θ, γ̇(t)〉2dt,(7.6)

so that we may rewrite (7.1) as

c(τ,γ) =

∫
S1
A(γ,θ)2dτ(θ).(7.7)
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PROPOSITION 7.1. (i) For all τ measures on S1, and smooth toral curves γ
one has

L2

4
≤ c(τ,γ) ≤ L2/2.(7.8)

(ii) The minimum value

c(τ,γ) =
L2

4

is attained for a given measure τ if and only if for all θ in the support of τ ,
A(γ,θ) = L

2 .

Proof. We observe that for θ⊥ a perpendicular direction to θ (any of the two),

A(γ,θ)+A(γ,θ⊥) = L,

from which it is easy to show that

L2

2
≤A(γ,θ)2 +A(γ,θ⊥)2 ≤ L2.(7.9)

We then use the invariance properties of τ to write (7.7) as

c(τ,γ) =

∫
S1/i

2(A(γ,θ)2 +A(γ,θ⊥)2)dτ(θ),

where S1/i is a quarter of the circle identifying ϑ and ϑ+π/2 of measure

τ(S1/i) =
1
4

by the invariance. It then readily yields via (7.9) that

c(τ,γ) =

∫
S1/i

2(A(γ,θ)2 +A(γ,θ⊥)2)dτ(θ)≥ L2

4
,(7.10)

and also (7.8). This concludes the proof of the first statement of the present propo-
sition, and, in fact, this proof also yields the second one. �

The following corollary from Proposition 7.1 gives the necessary and sufficient
conditions for the leading constant to vanish (equivalently, for c(τ,γ) to attain its
theoretical minimum c(τ,γ) = L2

4 ). Define the complex number I(γ) as

I(γ) =
∫ L

0
e2iϕ(t)dt,

where γ̇(t) = eiϕ(t), i.e., ϕ(t) is the angle of γ̇(t) w.r.t. the coordinate axes.



1638 ZEÉV RUDNICK AND IGOR WIGMAN

COROLLARY 7.2. (i) The minimum value

c(τ,γ) =
L2

4

is attained universally (i.e., for all τ ), if and only if

I(γ) = 0,(7.11)

(ii) If (7.11) is not satisfied, then the only measures τ where c(τ,γ) may equal
L2

4 are the Cilleruelo measure (7.5) and the tilted Cilleruelo (7.4); it will occur if
and only if

ReI(γ) =
∫ L

0
cos(2ϕ(t))dt = 0 or ImI(γ) =

∫ L

0
sin(2ϕ(t))dt = 0

respectively.

Proof. Under the notation γ̇(t) = eiϕ(t) as above,

A(γ,θ) =

∫ L

0
cos(ϑ−ϕ(t))2dt=

L

2
+

1
2

∫ L

0
cos(2(ϑ−ϕ(t)))dt,

and therefore A(γ,θ) = L
2 if and only if

∫ L

0
cos(2(ϑ−ϕ(t)))dt= 0.

Now the latter integral is∫ L

0
cos(2(ϑ−ϕ(t)))dt= cos(2ϑ) ·

∫ L

0
cos(2ϕ(t))dt+ sin(2ϑ)

∫ L

0
sin(2ϕ(t))dt.

Thus, if the tuple (cos(2ϑ),sin(2ϑ)) attains at least two not co-linear values with
ϑ ∈ supp(τ), it implies that∫ L

0
cos(2ϕ(t))dt =

∫ L

0
sin(2ϕ(t))dt = 0,

which is equivalent to (7.11); in this case the constant c(τ,γ) vanishes universally,
i.e., for all measures τ .

The only two attainable measures that violate the condition of

(cos(2ϑ),sin(2ϑ))

attaining at least two not co-linear values with ϑ ∈ supp(τ) as above are Cilleruelo
(7.5) and tilted Cilleruelo (7.4). Here the condition for vanishing of the leading
constant is

∫ L
0 cos(2ϕ(t))dt= 0 or

∫ L
0 sin(2ϕ(t))dt= 0 respectively, as prescribed.

�
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The next proposition studies when c(τ,γ) attains the “theoretical maximum”
L2

2 .

PROPOSITION 7.3. The maximum value c(τ,γ) = L2

2 is attained for τ the
Cilleruelo measure (7.5) and C a straight line parallel to either of the axes, or
τ the tilted Cilleruelo measure (7.4) and C parallel to y = ±x. Though excluded
by Theorem 1.2, this could be approximated arbitrarily well by c(τ,γ) for length-L
smooth curves with non-vanishing curvature.

Proof. By the proof of Proposition 7.1 above the upper bound in (7.8) is at-
tained if and only if for all θ ∈ supp(τ),

A(γ,θ)2 +A(γ,θ⊥)2 = L2,(7.12)

which happens if and only if for all θ ∈ supp(τ) one has A(γ,θ) = 0 or A(γ,θ⊥) =
0. Equivalently, for all θ ∈ supp(τ) and all t ∈ [0,L], either θ ⊥ γ̇(t) or θ⊥ ⊥ γ̇(t).
Thus there is a “unique” maximizer for c(τ,γ), where τ is an attainable measure
and γ is a curve, namely the only cases prescribed in the statement of the present
proposition. Since we exclude the straight lines from our discussion, this is the
supremum rather than maximum. �

Appendix A. Non-degeneracy of the covariance matrix. In this section
we prove Lemma 4.3: given a fixed 0 < ε0 < 1 we are to find a constant c0 =

c0(ε0), so that for all m satisfying |τm|< 1−ε0 (with τm defined in (1.6)), we have
detΣ(t1, t2) > 0 (with Σ(t1, t2) given by (3.6)) is strictly positive for |t2− t1| ≤
c0√
m

. Recall that μ and ρ are given by (3.4) and (3.5) respectively (with α= 2π2m);
we have explicitly

detΣ(t1, t2) = detA ·detΩ= (1− r2) · (1− r2)−2μ2(1−ρ2)

= (1− r2)−1μ2(1−ρ2).
(A.1)

As above, γ̇(t) = eiϕ(t), i.e., the vector γ̇(t) is a unit vector in the direction
ϕ(t), and

A(t) := τ̂m(4) · cos(4ϕ(t)).

In order to establish the positivity of detΣ(t1, t2) we Taylor expand the expression
μ2 · (1− ρ)2, considered as a function of t2 and t1 constant, around t2 = t2, as in
the following lemma, with the other term (1−r2)−1 having been readily expanded
(4.9).
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LEMMA A.1. We have

μ2(1−ρ2) =
2
9
π14m7(A(t1)−1)(A(t1)

2−1)(t2− t1)10

+O
(
m13/2(t2− t1)10 +m15/2(t2− t1)11),

valid for |t2− t1| � 1√
m

.

Proof of Lemma 4.3 assuming Lemma A.1. Recall that by (A.1) we have

detΣ= (1− r2)−1 ·μ2(1−ρ2).

It is obvious from (4.9) that (1− r2) (and hence its reciprocal) is strictly positive
for |t2− t1| < c0√

m
with c0 depending on γ only. Concerning the other factor, we

use Lemma A.1 to expand

μ2(1−ρ2) =
2
9
π14m7(A(t1)−1)(A(t1)

2−1)(t2− t1)10

+O(m13/2(t2− t1)10 +m15/2(t2− t1)11).

(A.2)

Note that

|A(t1)| ≤ |τ̂m(4)|< 1− ε0

is bounded away from 1. That implies that the leading term in (A.2),

2
9
π14m7(1−A(t1))(1−A(t1)2)(t2− t1)10 ≥ 2

9
π14ε3

0 ·m7(t2− t1)10

�m7(t2− t1)10,

is bigger than the remainder term in (A.2) for |t2− t1| < c0√
m

for c0 chosen suffi-
ciently small. �

Proof of Lemma A.1. We have

μ2(1−ρ2) =
(
α(1− r2)− r2

1

)(
α(1− r2)− r2

2

)− (r12(1− r2)+ rr1r2
)2
.(A.3)

Let cm = cm(t1) := ∂4r
∂t42

(t1, t1), em = em(t1) := ∂6r
∂t62

(t1, t1). Using the identities

cos4 θ =
3
8
+

1
2

cos(2θ)+
1
8

cos(4θ),

and

cos6(θ) =
5
16

+
15
32

cos(2θ)+
3
16

cos(4θ)+
1

32
cos(6θ),
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and τ̂m(k) = 0 unless 4|k, by the π/2 rotation invariance, we may compute

cm =
(2π)4

N

∑
μ∈E

(μt · γ̇(t))4 +O(m3/2)

= (2π)4m2
(

3
8
+

1
8
τ̂m(4)cos(4φ)

)
+O(m3/2),

(A.4)

c′m =O(m2),

em :=−(2π)6

N

∑
μ∈E

(μt · γ̇(t))6 +O(m5/2)

=−(2π)6m3
(

5
16

+
3
16
τ̂m(4)cos(4φ)

)
+O(m5/2).

(A.5)

Let z := t2− t1. Bearing in mind that (4.8),

∂r

∂t2
(t1, t1) =

∂3r

∂t32
(t1, t1) = 0

(cf. (4.6) and (4.8)), and

∣∣∣∣∂5r

∂t52
(t1, t1)

∣∣∣∣=O(m2),

we may Taylor expand r = r(t1, t2) for t1 fixed as:

r = 1− α
2
z2 +

1
24
cm(t1)z

4 +
1

720
em(t1)z

6 +O
(
m2z5 +m7/2z7),

where the constant involved in the “O”-notation depends on γ only. We may dif-
ferentiate term-wise to obtain (the terms involving c′m, e′m are of smaller order and
are absorbed in the various error terms)

r2 =−αz+ 1
6
cmz

3 +
1

120
emz

5 +O
(
m2z4 +m7/2z6

)
,

r1 = αz− 1
6
cmz

3− 1
120

emz
5 +O(m2z4 +m7/2z6)

= z

(
α− 1

6
cmz

2− 1
120

emz
4
)
+O(m2z4 +m7/2z6),

r12 = α− 1
2
cmz

2− 1
24
emz

4 +O(m2z3 +m7/2z5).
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Incorporating the above, we have (using |z| � 1√
m

to consolidate the various
error terms throughout)

1− r2 = (1− r)(1+ r)

= z2
(
α2

2
− 1

24
cmz

2− 1
720

emz
4
)
·
(

2− α
2
z2 +

1
24
cmz

4
)

+O(m2z5 +m7/2z7)

= z2
(
α−
(
cm
12

+
α2

4

)
z2 +
(
− em

360
+
α

24
cm

)
z4
)
+O(m2z5 +m7/2z7),

r2
1 = z2

(
α2− α

3
cmz

2 +

(
c2
m

36
− α

60
em

)
z4
)
+O(m3z5 +m9/2z7),

and the same estimate holds for r2
2;

α(1− r2)− r2
1 = z4

(
α

4

(
cm−α2)+ 1

72

(
emα+3α2cm−2c2

m

)
z2
)

+O
(
m3z5 +m9/2z7),

and the same estimate holds for α(1− r2)− r2
2;

(α(1− r2)− r2
1) · (α(1− r2)− r2

2)

= z8
(
α2

16

(
cm−α2)2 + α2

144

(
cm−α2)(emα+3α2cm−2c2

m

)
z2
)

+O(m6z9 +m15/2z11).

(A.6)

Continuing,

r12(1− r2) = z2
(
α− 1

2
cmz

2− 1
24
emz

4
)

×
(
α−
(
cm
12

+
α2

4

)
z2+
(
− em

360
+
α

24
cm

)
z4
)
+O
(
m3z5 +m9/2z7)

= z2
(
α2−α

(
7

12
cm+

α2

4

)
z2+

(
− 2

45
αem+

1
6
α2cm+

cm(t1)
2

24

)
z4
)

+O(m3z5 +m9/2z7),

rr1r2 =−z2
(

1− α
2
z2 +

1
24
cmz

4
)
·
(
α− 1

6
cmz

2− 1
120

emz
4
)2

+O(m3z5 +m9/2z7)

=−z2
(
α2− α

6
(3α2 +2cm)z

2 +

(
5
24
α2cm− α

60
em+

1
36
c2
m

)
z4
)

+O
(
m3z5 +m9/2z7).
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Combining the last couple of estimates we obtain:

r12(1− r2)+ rr1r2 = z4
(
α

4

(
α2− cm

)
+

(
− 1

36
αem− 1

24
α2cm+

1
72
c2
m

)
z2
)

+O
(
m3z5 +m9/2z7),

and

(r12(1− r2)+ rr1r2)
2

= α(α2− cm)z8
(
α

16
(α2− cm)+ 1

144

(−2αem−3α2cm+ c2
m

) · z2
)

+O(m6z9 +m15/2z11).

Finally using the latter estimate with (A.6) we obtain (the term corresponding
to z8 cancels out precisely, and by the non-negativity the Taylor series necessarily
starts from an even power)

(
α(1− r2)− r2

1

)(
α(1− r2)− r2

2

)− (r12(1− r2)+ rr1r2
)2

=
α

144
(α2− cm)(c2

m+αem)z
10 +O

(
m6z9 +m15/2z11).(A.7)

Note that by (2.6), (A.4) and (A.5) we have

α2− cm = 2π4m2 (τ̂m(4)cos(4ϕ)−1)+O(m3/2),

and
c2
m+αem = 4π8m4(τ̂m(4)

2 cos2(4ϕ)−1)+O(m7/2),

so that, bearing in mind (A.3), (A.7) is

μ2(1−ρ2) =
2
9
π14m7(A(t1)−1)(A(t1)

2−1)(t2− t1)10

+O(m6z9 +m15/2z11);
(A.8)

this is almost identical to the statement of the present lemma, except that we have
to improve the error term. To this end we observe that since, in light of (A.1),
the expression on the l.h.s. of (A.8) is non-negative, the Taylor expansion on the
r.h.s. of (A.8) is guaranteed to begin with an even power of z. Hence the first error
term O(m6z9) is O(m13/2z10) (recall that this expansion is valid for |t2− t1| �

1√
m

). �
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