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Abstract: Let �⊂R
2 be a bounded planar domain, with piecewise smooth boundary

∂�. For σ > 0, we consider the Robin boundary value problem

−� f = λ f,
∂ f

∂n
+ σ f = 0 on ∂�

where ∂ f
∂n is the derivative in the direction of the outward pointing normal to ∂�. Let

0 < λσ
0 ≤ λσ

1 ≤ . . . be the corresponding eigenvalues. The purpose of this paper is to
study the Robin–Neumann gaps

dn(σ ) := λσ
n − λ0n .

For a wide class of planar domains we show that there is a limiting mean value,
equal to 2 length(∂�)/ area(�) · σ and in the smooth case, give an upper bound of
dn(σ ) ≤ C(�)n1/3σ and a uniform lower bound. For ergodic billiards we show that
along a density-one subsequence, the gaps converge to themean value.We obtain further
properties for rectangles, where we have a uniform upper bound, and for disks, where
we improve the general upper bound.
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1. Statement of Results

Let�⊂R
2 be a bounded planar domain,with piecewise smooth boundary ∂�. Forσ ≥ 0,

we consider the Robin boundary value problem

−� f = λ f on �,
∂ f

∂n
+ σ f = 0 on ∂�

where ∂ f
∂n is the derivative in the direction of the outward pointing normal to ∂�. The

case σ = 0 is the Neumann boundary condition, and we use σ = ∞ as a shorthand for
the Dirichlet boundary condition f |∂� = 0.

Robin boundary conditions are used in heat conductance theory to interpolate between
a perfectly insulating boundary, described by Neumann boundary conditions σ = 0, and
a temperature fixing boundary, described by Dirichlet boundary conditions correspond-
ing to σ = +∞. To date, most studies concentrated on the first few Robin eigenvalues,
with applications in shape optimization and related isoperimetric inequalities and asymp-
totics of the first eigenvalues (see [5]). Our goal is very different, aiming to study the
difference between high-lying Robin and Neumann eigenvalues. There are very few
studies addressing this in the literature, except for [4,32] which aim at different goals.
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We will take the Robin condition for a fixed and positive σ > 0, when all eigenvalues
are positive, one excuse being that a negativeRobin parameter gives non-physical bound-
ary conditions for the heat equation, with heat flowing from cold to hot; see however
[17] for a model where negative σ is of interest, in particular σ → −∞ [10,15,21,22].
Let 0 < λσ

0 ≤ λσ
1 ≤ . . . be the corresponding eigenvalues. The Robin spectrum always

lies between the Neumann and Dirichlet spectra (Dirichlet–Neumann bracketing) [5] :

λ0n < λσ
n < λ∞

n . (1.1)

We define the Robin–Neumann difference (RN gaps) as

dn(σ ) := λσ
n − λ0n

and study several of their properties. See Sect. 2 for some numerical experiments. This
seems to be a novel subject, and the only related study that we are aware of is the very
recent work of Rivière and Royer [28], which addresses the RN gaps for quantum star
graphs.

1.1. The mean value. The first result concerns the mean value of the gaps:

Theorem 1.1. Let�⊂R
2 be a bounded, piecewise smooth domain. Then the mean value

of the RN gaps exists, and equals

lim
N→∞

1

N

N∑

n=1

dn(σ ) = 2 length(∂�)

area(�)
· σ.

Since the differences dn(σ ) > 0 are positive, we deduce by Chebyshev’s inequality:

Corollary 1.2. Let � be a bounded, piecewise smooth domain. Fix σ > 0. Let �(n) →
∞ be a function tending to infinity (arbitrarily slowly). Then for almost all n’s, dn(σ ) ≤
�(n) in the sense that

#{n ≤ N : dn(σ ) > �(n)} � N

�(N )
.

1.2. A lower bound. Recall that a domain � is “star-shaped with respect to a point
x ∈ �" if the segment between x and every other point of � lies inside the domain; so
convex means star-shaped with respect to any point; “star-shaped" just means that there
is some x so that it is star-shaped with respect to x .

Theorem 1.3. Let �⊂R
2 be a bounded star-shaped planar domain with smooth bound-

ary. Then the Robin–Neumann differences are uniformly bounded below: For all σ > 0,
∃C = C(�, σ ) > 0 so that

dn(σ ) ≥ C.

Note that for quantum star graphs, this lower bound fails [28].
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1.3. A general upper bound. We give a quantitative upper bound:

Theorem 1.4. Assume that � has a smooth boundary. Then ∃C = C(�) > 0 so that
for all σ > 0,

dn(σ ) ≤ C(λ∞
n )1/3σ.

While quite poor, it is the best individual bound that we have in general. Below, we will
indicate how to improve it in special cases.

Question 1.5. Are there planar domains where the differences dn(σ ) are unbounded?

We believe that this happens in several cases, e.g. the disk, but at present can only show
this for the hemisphere [30], which is not a planar domain.

1.4. Ergodic billiards. To a piecewise smooth planar domain one associates a billiard
dynamics. When this dynamics is ergodic, as for the stadium billiard (see Fig. 2), we
can improve on Corollary 1.2:

Theorem 1.6. Let �⊂R
2 be a bounded, piecewise smooth domain. Assume that the

billiard dynamics associated to � is ergodic. Then for every σ > 0, there is a sub-
sequence N = Nσ ⊂N of density one so that along that subsequence,

lim
n→∞
n∈N

dn(σ ) = 2 length(∂�)

area(�)
· σ.

If the billiard dynamics is uniformly hyperbolic, we expect that more is true, that all
the gaps converge to the mean.

A key ingredient in the proofs of the above results is that they can be connected to
L2 restriction estimates for eigenfunctions on the boundary via a variational formula for
the gaps (Lemma 3.1)

dn(σ ) =
∫ σ

0

(∫

∂�

|un,τ |2ds
)
dτ

where un,τ is any L2(�)-normalized eigenfunction associated with λτ
n .

1.5. Generalizations. Most of the above results easily extend to higher dimensions: The
upper bound (Theorem 1.4), the mean value result (Theorem 1.1), and the almost sure
convergence for ergodic billiards (Theorem 1.6). At this stage our proof of the lower
bound (Theorem 1.3) is restricted to dimension 2.

In Sect. 7 we discuss extensions of the above results to the case of variable boundary
conditions σ : ∂� → R.

1.6. Rectangles. For the special case of rectangles, we show that the RN gaps are
bounded:

Theorem 1.7. Let � be a rectangle. Then for every σ > 0 there is some C�(σ) > 0 so
that for all n,

dn(σ ) ≤ C�(σ).
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We use Theorem 1.7 to draw a consequence for the level spacing distribution of the
Robin eigenvalues on a rectangle: Let x0 ≤ x1 ≤ x2 ≤ . . . be a sequence of levels,
and δn = xn+1 − xn be the nearest neighbour gaps. We assume that xN = N + o(N ) so
that the average gap is unity. The level spacing distribution P(s) of the sequence is then
defined as

∫ y

0
P(s)ds = lim

N→∞
1

N
#{n ≤ N : δn ≤ y}

(assuming that the limit exists).
It is well known that the level spacing distribution for the Neumann (or Dirichlet)

eigenvalues on the square is a delta-function at the origin, due to large arithmetic multi-
plicities in the spectrum.Oncewe put a Robin boundary condition, we can show [31] that
the multiplicities disappear for σ > 0 sufficiently small, except for systematic doubling
due to symmetry. Nonetheless, even after desymmetrizing (removing the systematic
multiplicities) we show that the level spacing does not change:

Theorem 1.8. The level spacing distribution for the desymmetrized Robin spectrum on
the square is a delta-function at the origin.

1.7. The disk. As we will explain, upper bounds for the gaps dn can be obtained from
upper bounds for the remainder term in Weyl’s law for the Robin/Neumann problem.
While this method will usually fall short of Theorem 1.4, for the disk it gives a better
bound. In that case, Kuznetsov and Fedosov [16] (see also Colin de Verdiére [8]) gave an
improved remainder term inWeyl’s law forDirichlet boundary conditions, by relating the
problem to counting (shifted) lattice points in a certain cusped domain.With some work,
the argument can also be adapted to the Robin case (see Sect. 10.2 and “Appendix A”),
which recovers Theorem 1.4 in this special case. The remainder term for the lattice count
was improved by Guo, Wang and Wang [13], from which we obtain:

Theorem 1.9. For the unit disk, for any fixed σ > 0, we have

dn(σ ) = O(n1/3−δ), δ = 1/990.

2. Numerics

We present some numerical experiments on the fluctuation of the RN gaps. In all cases,
we took the Robin constant to be σ = 1. Displayed are the run sequence plots of the RN
gaps. The solid (green) curve is the cumulative mean. The solid (red) horizontal line is
the limiting mean value 2 length(∂�)/ area(�) obtained in Theorem 1.1.

In Fig. 1 we present numerics for two domains where the Neumann and Dirichlet
problems are solvable, by means of separation of variables, the square and the disk.
These were generated usingMathematica [35]. For the square, we are reduced to finding
Robin eigenvalues on an interval as (numerical) solutions to a secular equation, see
Sect. 8, and have used Mathematica to find these.

The disk admits separation of variables, and as iswell known theDirichlet eigenvalues
on the unit disk are the squares of the positive zeros of the Bessel functions Jn(x). The
positive Neumann eigenvalues are squares of the positive zeros of the derivatives J ′

n(x),
and the Robin eigenvalues are the squares of the positive zeros of x J ′

n(x) + σ Jn(x). We
generated these using Mathematica, see Fig. 1B.
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Fig. 1. The first 2000 RN gaps for the unit square (A) and for the unit disk (B)

Fig. 2. The first 200 RN gaps for the ergodic quarter-stadium billiard (A), a quarter of the shape formed by
gluing two half-disks to a square of sidelength 2, and for the uniformly hyperbolic billiard consisting of a
quarter of the shape formed by the intersection of the exteriors of four disks (B)

For the remaining cases we used the finite elements package FreeFem [11,20]. In
Fig. 2 we display two ergodic examples, the quarter-stadium billiard and a uniformly
hyperbolic, Sinai-type dispersing billiard whichwas investigated numerically by Barnett
[2].

It is also of interest to understand rational polygons, that is simple plane polygons all
of whose vertex angles are rational multiples of π (Fig. 3), when we expect an analogue
of Theorem 1.6 to hold, compare [23].

The case of dynamics with a mixed phase space, such as the mushroom billiard
investigated by Bunimovich [6] (see also the survey [26]) also deserves study, see Fig. 4.

3. Generalities About the RN Gaps

3.1. Robin–Neumann bracketing and positivity of the RN gaps. We recall the min-max
characterization of the Robin eigenvalues

λσ
n = inf

M⊂H1(�)
dim M=n

sup
0 �=u∈M

∫
�

|∇u|2dx +
∫
∂�

σu2ds∫
�
u2dx

where H1(�) is the Sobolev space. This shows that λσ
n ≥ λ0n if σ > 0. Likewise, there

is a min-max characterization of the Dirichlet eigenvalues with H1(�) replaced by the
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Fig. 3. The first 200 RN gaps for two examples of rational polygons: An L-shaped billiard (A) made of 4
squares of sidelength 1/2, and a right triangle with an angle π/5 and a long side of length unity (B)

Fig. 4. The first 200 RN gaps for the mushroom billiard, with a half-disk of diameter 3 on top of a unit square,
which has mixed (chaotic and regular) billiard dynamics

subspace H1
0 (�), the closure of functions vanishing near the boundary:

λ∞
n = inf

M⊂H1
0 (�)

dim M=n

sup
0 �=u∈M

∫
�

|∇u|2dx∫
�
u2dx

.

This shows that λσ
n ≤ λ∞

n .
In fact, we have strict inequality,

λ0n < λσ
n < λ∞

n .

This is proved (in greater generality) in [29] using a unique continuation principle.

3.2. A variational formula for the gaps.

Lemma 3.1. Let �⊂R
d be a bounded Lipschitz domain. Then

dn(σ ) := λσ
n − λ0n =

∫ σ

0

(∫

∂�

|un,τ |2ds
)
dτ (3.1)

where un,τ is any L2(�)-normalized eigenfunction associated with λτ
n.
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Proof. According to [1, Lemma 2.11] (who attribute it as folklore), for any bounded
Lipschitz domain �⊂R

d , and n ≥ 1, the function σ → λσ
n is strictly increasing for

σ ∈ [0,∞), is differentiable almost everywhere in (0,∞), is piecewise analytic, and the
non-smooth points are locally finite (i.e. finite in each bounded interval). It is absolutely
continuous, and in particular its derivative dλσ

n /dσ (which exists almost everywhere) is
locally integrable, and for any 0 ≤ α < β,

λβ
n − λα

n =
∫ β

α

dλσ
n

dσ
dσ.

Moreover, there is a variational formula valid at any point where the derivative exists:

dλσ
n

dσ
=
∫

∂�

|un,σ |2ds (3.2)

where un,σ is any normalized eigenfunction associated with λσ
n . Therefore

dn(σ ) = λσ
n − λ0n =

∫ σ

0

dλτ
n

dτ
dτ =

∫ σ

0

(∫

∂�

|un,τ |2ds
)
dτ.

We can ignore the finitely many points τ where (3.2) fails, as the derivative is
integrable. 
�

3.3. A general upper bound: Proof of Theorem 1.4. As a corollary, we can show that
for the case of smooth boundary, we have an upper bound1

dn(σ ) ��,σ (λ∞
n )1/3.

Indeed, for the case of smooth boundary, [3, Proposition 2.4]2 give an upper bound on
the boundary integrals of eigenfunctions

∫

∂�

u2n,σds �� (λσ
n )1/3 ≤ (λ∞

n )1/3,

uniformly in σ ≥ 0.
As a consequence of the variational formula (3.1), we deduce

dn(σ ) �� (λ∞
n )1/3 · σ

and in particular for planar domains, using Weyl’s law, we obtain for n ≥ 1

dn(σ ) �� n1/3 · σ.

1 Here and in the sequel we use A � B as an alternative to A = O(B).
2 Their Proposition 2.4 is stated only for the Neumann case, but as is pointed out in Remark 2.7, the proof

applies to Robin case as well, uniformly in σ ≥ 0; and they attribute it to Tataru [34, Theorem 3]. Note that
their convention for the normal derivative is different than ours.
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4. The Mean Value

In this section we give a proof of Theorem 1.1, that

lim
N→∞

1

N

∑

n≤N

dn(σ ) = 2 length(∂�)

area(�)
σ.

Denote

WN (σ ) := 1

N

∑

n≤N

∫

∂�

u2n,σds.

Using Lemma 3.1 gives

1

N

N∑

n=1

dn(σ ) =
∫ σ

0

⎛

⎝ 1

N

∑

n≤N

∫

∂�

u2n,τds

⎞

⎠ dτ =
∫ σ

0
WN (τ )dτ.

The local Weyl law [14] (valid for any piecewise smooth �) shows that for any fixed σ ,

lim
N→∞ WN (σ ) = 2 length(∂�)

area(�)

so if we know that WN (τ ) ≤ C is uniformly bounded for all τ ≤ σ , then by the
Dominated Convergence Theorem we deduce that

lim
N→∞

1

N

N∑

n=1

dn(σ ) =
∫ σ

0
lim

N→∞ WN (τ )dτ

=
∫ σ

0

2 length(∂�)

area(�)
dτ = 2 length(∂�)

area(�)
· σ

as claimed.
It remains to prove a uniform upper bound for WN (σ ).

Lemma 4.1. There is a constant C = C(�) so that for all σ > 0 and all N ≥ 1,

1

N

∑

n≤N

∫

∂�

u2n,σds ≤ C.

Proof. Whatweuse is anupper boundon theheat kernelon theboundary. Let Kσ (x, y; t)
be the heat kernel for the Robin problem. Then [14, Lemma 12.1],

Kσ (x, y; t) ≤ Ct− dim�/2 exp(−δ|x − y|2/t) (4.1)

where C, δ > 0 depend only on the domain �. Moreover, on the regular part of the
boundary,

Kσ (x, y; t) =
∑

n≥0

e−tλσ
n un,σ (x)un,σ (y).
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We have for n ≤ N that λσ
n ≤ λσ

N ≤ λ∞
N , so for 
 = λ∞

N ,

∑

n≤N

∫

∂�

u2n,σds ≤ e
∑

n≤N

e−λσ
n /


∫

∂�

u2n,σds ≤ e
∫

∂�

Kσ

(
x, x; 1




)
ds.

By (4.1),
∫

∂�

Kσ

(
x, x; 1




)
ds �� 
dim�/2.

Thus we find a uniform upper bound

∑

λσ
n ≤


∫

∂�

u2n,σds �� 
dim�/2 ≈ N

on using Weyl’s law, that is for all σ > 0

1

N

∑

n≤N

∫

∂�

u2n,σds ≤ C(�).


�
We note that the mean value result is valid in any dimension d ≥ 2 for piecewise

smooth domains �⊂R
d as in [14], in the form

lim
N→∞

1

N

∑

n≤N

dn(σ ) = 2 vold−1(∂�)

vold(�)
σ.

Indeed [14] prove the local Weyl law in that context, and Lemma 4.1 is also valid in any
dimension.

5. A Uniform Lower Bound for the Gaps

To obtain the lower bound of Theorem 1.3 for the gaps, we use the variational formula
(3.1) to relate the derivative dλσ

n /dσ to the boundary integrals
∫
∂�

u2n,σds, where un,σ

is any eigenfunction with eigenvalue λσ
n , and for that will require a lower bound on these

boundary integrals.

5.1. A lower bound for the boundary integral. The goal here is to prove a uniform lower
bound for the boundary data of Robin eigenfunctions on a star-shaped, smooth planar
domain �.

Theorem 5.1. Let �⊂R
2 be a star-shaped bounded planar domain with smooth bound-

ary. Let f be an L2(�) normalized Robin eigenfunction associated with the n-th eigen-
value λσ

n . Then there are constants C > 0, A, B ≥ 0 depending on � so that for all
n ≥ 1,

∫

∂�

f 2ds ≥ 1

Aσ 2 + Bσ + C
> 0. (5.1)

For σ = 0 (Neumann problem), this is related to the L2 restriction bound of Barnett–
Hassell–Tacy [3, Proposition 6.1].
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5.2. TheNeumann case σ = 0. Wefirst show the corresponding statement for Neumann
eigenfunctions (which are Robin case with σ = 0), which is much simpler. Let f be a
Neumann eigenfunction, that is (� + λ) f = 0 in �, ∂ f

∂n = 0 in ∂�. We may assume
that λ > 0, the result being obvious for λ = 0 when f is a constant function. After
translation, we may assume that the domain is star-shaped with respect to the origin.

We start with a Rellich identity ([27, Eq 2]): Assume that �⊂R
d is a Lipschitz

domain. Let L = � + λ, and A = ∑d
j=1 x j

∂
∂x j

. For every function f on �

∫

�

(L f )(A f )dx =
∫

∂�

∂ f

∂n
A f − 1

2

∫

∂�

||∇ f ||2
⎛

⎝
d∑

j=1

x j
∂x j
∂n

⎞

⎠

+
λ

2

∫

∂�

f 2

⎛

⎝
d∑

j=1

x j
∂x j
∂n

⎞

⎠− d

2
λ

∫

�

f 2dx +

(
d

2
− 1

)∫

�

||∇ f ||2dx . (5.2)

Using (5.2) in dimension d = 2 for a normalized eigenfunction, so that L f = 0 and∫
�

f 2 = 1, and recalling that for Neumann eigenfunctions ∂ f
∂n = 0 on ∂�, gives

0 = −1

2

∫

∂�

||∇ f ||2
(
x
∂x

∂n
+ y

∂y

∂n

)
+

λ

2

∫

∂�

f 2
(
x
∂x

∂n
+ y

∂y

∂n

)
− λ

or

∫

∂�

(
f 2 − 1

λ
||∇ f ||2

)(
x
∂x

∂n
+ y

∂y

∂n

)
ds = 2.

The term x ∂x
∂n + y ∂y

∂n is the inner product n(x) · x between the outward unit normal

n(x) = ( ∂x
∂n ,

∂y
∂n ) at the point x ∈ ∂� and the radius vector x = (x, y) joining x and the

origin. Since the domain is star-shaped w.r.t. the origin, we have on the boundary ∂�

x
∂x

∂n
+ y

∂y

∂n
= n(x) · x ≥ 0

so that we can drop3 the term with ||∇ f ||2 and get an inequality

∫

∂�

(n(x) · x) f 2ds ≥ 2.

Replacing (n(x) · x) ≤ 2C� on ∂� gives Theorem 5.1 for σ = 0:

∫

∂�

f 2 ≥ 1

C�

.

3 If we also allow negative Robin constant σ < 0, we may have a finite number of negative eigenvalues
and this part of the argument would not work for these.
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5.3. The Robin case. Using the Rellich identity (5.2) in dimension d = 2 for a normal-
ized eigenfunction, so that L f = 0 and

∫
�

f 2 = 1, gives

0 =
∫

∂�

∂ f

∂n
A f − 1

2

∫

∂�

||∇ f ||2(n(x) · x) +
λ

2

∫

∂�

f 2(n(x) · x) − λ.

Now n(x) · x ≥ 0 on the boundary ∂� since � is star-shaped with respect to the
origin, and λ > 0, so we may drop the term with ||∇ f ||2 and get an inequality

∫

∂�

f 2(x)(n(x) · x)ds +
2

λ

∫

∂�

∂ f

∂n
A f ≥ 2.

Due to the boundary condition, we may replace the normal derivative ∂ f
∂n by −σ f ,

and obtain, after using 0 ≤ n(x) · x ≤ 2C = 2C� (we may take 2C to be the diameter
of �), that

C
∫

∂�

f 2 − σ

λ

∫

∂�

f (A f ) ≥ 1. (5.3)

To proceed further, we need:

Lemma 5.2. Assume that ∂� is smooth. There are numbers P, Q ≥ 0, not both zero,
depending only on ∂�, so that for any normalized σ -Robin eigenfunction f ,

∣∣∣∣
∫

∂�

f (A f )ds

∣∣∣∣ ≤ (P + σQ)

∫

∂�

f 2ds. (5.4)

Proof. Decompose the vector field A = x ∂
∂x + y ∂

∂y into its normal and tangential com-
ponents along the boundary:

A = p
∂

∂n
+ q

∂

∂τ

where p, q are functions on the boundary �. For example, for the circle x2 + y2 = ρ2,
we have A = ρ ∂

∂n and the normal derivative is just the radial derivative ∂
∂n = ∂

∂r , so that
p ≡ ρ, and q ≡ 0.

Then using the Robin condition ∂ f
∂n = −σ f on ∂� gives

∫

∂�

f (A f )ds =
∫

∂�

f

(
p
∂ f

∂n
+ q

∂ f

∂τ

)
ds = −σ

∫

∂�

p f 2ds +
∫

∂�

q f
∂ f

∂τ
ds.

Setting P := max∂� |p|, we have
∣∣∣∣−σ

∫

∂�

p f 2ds

∣∣∣∣ ≤ σ P
∫

∂�

f 2ds

so it remains to bound
∣∣∣
∫
∂�

q f ∂ f
∂τ
ds
∣∣∣.

Let γ : [0, L] → ∂� be an arclength parameterization with γ (0) = γ (L). Then note
that the tangential derivative of f at x0 = γ (s0) is

∂ f

∂τ
(x0) = d

ds
f (γ (s))

∣∣∣
s=s0
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and hence

f
∂ f

∂τ
= 1

2

∂( f 2)

∂τ
= 1

2

d

ds

{
f (γ (s))2

}

so that abbreviating q(s) = q(γ (s)) and integrating by parts
∫

∂�

q f
∂ f

∂τ
ds = 1

2

∫ L

0
q(s)

d

ds

{
f (γ (s))2

}
ds

= 1

2
q(s) f (γ (s))2

∣∣∣
L

0
− 1

2

∫ L

0
q ′(s) f (γ (s))2ds.

Because the curve is closed: γ (L) = γ (0), the boundary terms cancel out:

q(s) f (γ (s))2
∣∣∣
L

0
= q(γ (L)) f (γ (L))2 − q(γ (0)) f (γ (0))2 = 0

and so
∣∣∣∣
∫

∂�

q f
∂ f

∂τ
ds

∣∣∣∣ =
∣∣∣∣
1

2

∫ L

0
q ′(s) f (γ (s))2ds

∣∣∣∣ ≤ Q
∫

∂�

f 2ds

where Q = max∂� | dqdτ
|. Altogether we found that
∣∣∣∣
∫

∂�

f (A f )ds

∣∣∣∣ ≤ (σ P + Q)

∫

∂�

f 2ds.


�
We may now conclude the proof of Theorem 5.1 for σ > 0: Take f = un,σ the n-th

eigenfunction, with n ≥ 1. Inserting (5.4) into (5.3) we find

1 ≤ C
∫

∂�

f 2 − σ

λ

∫

∂�

f (A f ) ≤
(
C +

σ(P + Qσ)

λσ
n

)∫

∂�

f 2ds.

Hence we find, on replacing λσ
n ≥ λσ

1 ≥ λ01 > 0, that
∫

∂�

f 2ds ≥ 1

C + σ(P + Qσ)/λ01
> 0

which is of the desired form. 
�

5.4. Proof of Theorem 1.3. We use the variational formula (3.1) for n ≥ 1 with the
lower bound (5.1) of Theorem 5.1

dn(σ ) =
∫ σ

0

(∮

∂�

u2n,τds

)
dτ ≥

∫ σ

0

dτ

Aτ 2 + Bτ + C
=: c1(�, σ ) > 0.

For n = 0, we just use positivity of the RN gap d0(σ ) > 0, and finally deduce that
for all n ≥ 0, and σ > 0,

dn(σ ) ≥ c(�, σ ) := min (c1(�, σ ), d0(σ )) > 0.


�
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6. Ergodic Billiards

In this section we give a proof of Theorem 1.6. By Chebyshev’s inequality, it suffices to
show:

Proposition 6.1. Let �⊂R
2 be a bounded, piecewise smooth domain. Assume that the

billiard map for � is ergodic. Then for every σ > 0,

lim
N→∞

1

N

∑

n≤N

∣∣∣∣dn(σ ) − 2 length(∂�)

area(�)
· σ

∣∣∣∣ = 0. (6.1)

Proof. We again use the variational formula (3.1)

dn(σ ) =
∫ σ

0

(∫

∂�

u2n,τds

)
dτ.

We have∣∣∣∣dn(σ ) − 2 length(∂�)

area(�)
σ

∣∣∣∣ =
∣∣∣∣
∫ σ

0

( ∫

∂�

u2n,τds
)
dτ − 2 length(∂�)

area(�)
σ

∣∣∣∣

=
∣∣∣∣
∫ σ

0

( ∫

∂�

u2n,τds − 2 length(∂�)

area(�)

)
dτ

∣∣∣∣

≤
∫ σ

0

∣∣∣∣
∫

∂�

u2n,τds − 2 length(∂�)

area(�)

∣∣∣∣ dτ.

Therefore

1

N

∑

n≤N

∣∣∣∣dn(σ ) − 2 length(∂�)

area(�)
σ

∣∣∣∣ ≤
∫ σ

0

1

N

∑

n≤N

∣∣∣∣
∫

∂�

u2n,τds − 2 length(∂�)

area(�)

∣∣∣∣ dτ

=:
∫ σ

0
SN (τ )dτ

where

SN (τ ) := 1

N

∑

n≤N

∣∣∣∣
∫

∂�

u2n,τds − 2 length(∂�)

area(�)

∣∣∣∣ .

Hassell and Zelditch [14, eq 7.1] (see also Burq [7]) show that if the billiard map is
ergodic then for each σ ≥ 0,

lim
N→∞

1

N

∑

n≤N

∣∣∣∣
∫

∂�

u2n,σds − 2 length(∂�)

area(�)

∣∣∣∣
2

= 0. (6.2)

Therefore, byCauchy–Schwarz, SN (τ ) tends to zero for all τ ≥ 0, by (6.2); byLemma4.1
we know that SN (τ ) ≤ C is uniformly bounded for all τ ≤ σ , so that by the Dominated
Convergence Theorem we deduce that the limit of the integrals tends to zero, hence that

lim
N→∞

1

N

∑

n≤N

∣∣∣∣dn(σ ) − 2 length(∂�)

area(�)
σ

∣∣∣∣ = 0.


�
We note that Theorem 1.6 is valid in any dimension d ≥ 2 for piecewise smooth

domains �⊂R
d with ergodic billiard map as in [14], with the mean value interpreted as

2 vold−1(∂�)
vold (�)

σ .
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7. Variable Robin Function

In this section, we indicate extensions of our general results to the case of variable
boundary conditions.

7.1. Variable boundary conditions. The general Robin boundary condition is obtained
by taking a function on the boundary σ : ∂� → R which we assume is always non-
negative: σ(x) ≥ 0 for all x ∈ ∂�. Thus we look for solutions of

�u + λu = 0 on �,

∂u

∂n
(x) + σ(x)u(x) = 0, x ∈ ∂�

which is interpreted in weak form as saying that
∫

�

∇un · ∇v +
∮

∂�

σunv = λn

∫

�

unv

for all v ∈ H1(�). We will assume that σ is continuous. Then we obtain positive Robin
eigenvalues

0 < λσ
0 ≤ λσ

1 ≤ . . .

except that in the Neumann case σ ≡ 0 we also have zero as an eigenvalue.
Robin to Neumann bracketing is still valid here, in the following form: if σ1, σ2 ∈

C(∂�) are two continuous functions with 0 ≤ σ1 ≤ σ2 and such that there is some point
x0 ∈ ∂� such that there is strict inequality σ1(x0) < σ2(x0) (by continuity this therefore
holds on a neighborhood of x0), then we have a strict inequality [29]

λσ1
n < λσ2

n , ∀n ≥ 1. (7.1)

Fix such a Robin function σ ∈ C(∂�), which is positive: σ(x) > 0 for all x ∈ ∂�.
We are interested in the Robin–Neumann gaps

dn(σ ) := λσ
n − λ0n

which are positive by (7.1).

7.2. Extension of general results. The lower and upper bounds of Theorems 1.3 and 1.4
remain valid for variable σ by an easy reduction to the constant case: Let

σmin = min
x∈∂�

σ(x), σmax = max
x∈∂�

σ(x)

so that 0 < σmin ≤ σmax (with equality only if σ is constant). Using (7.1) gives

λ0n < λσmin
n ≤ λσ

n ≤ λσmax
n

so that

dn(σmin) ≤ dn(σ ) ≤ dn(σmax).
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For instance, the universal lower bound for star-shaped domains (Theorem 1.3) fol-
lows because dn(σ ) ≥ dn(σmin) ≥ C(σmin) > 0, etcetera.

The existence of mean values (Theorem 1.1) and the almost sure convergence of the
gaps to the mean value in the ergodic case (Theorem 1.6) require an adjustment of the
variational formula (Lemma 3.1) which is provided in Sect. 7.3. Once that is in place,
the result is

lim
N→∞

1

N

N∑

n=1

dn(σ ) = 2
∮
∂�

σ(s)ds

area(�)
. (7.2)

Given the mean value formula (7.2), Theorem 1.6 (almost sure convergence of the
RN gaps to the mean in the ergodic case) also follows.

7.3. A variational formula. Let �⊂R
d be a bounded Lipschitz domain. Fix a continu-

ous, positive Robin function σ : ∂� → R>0. We consider a one-parameter deformation
of the boundary value problem �u + λu = 0,

∂u

∂n
(x) + ασ(x)u(x) = 0, x ∈ ∂� (7.3)

with a real parameter α ≥ 0. Denote the corresponding eigenvalues by

λ1(α) ≤ λ2(α) ≤ · · · ≤ λn(α) ≤ · · ·
By Robin–Neumann bracketing, if 0 ≤ α1 < α2 then

λn(α1) < λn(α2), ∀n ≥ 1.

The previous RN gaps dn(σ ) are precisely λn(1) − λn(0). The variational formula for
the RN gaps is:

Lemma 7.1. Let �⊂R
d be a bounded Lipschitz domain. Then

dn(σ ) =
∫ 1

0

(∫

∂�

|un,α|2ds
)
dα

where un,α is any L2(�)-normalized eigenfunction associated with λn(α).

The proof is identical to that of Lemma 3.1, except that we need a reformulation of
[1, Lemma 2.11] to this context4:

Lemma 7.2. Let �⊂R
d be a bounded Lipschitz domain and σ a continuous function on

the boundary ∂� which is positive: σ(x) > 0 for all x ∈ ∂�. For α ≥ 0, let λn(α) be
the eigenvalues of the Robin eigenvalue problem (7.3)

Then for n ≥ 1, λn(α) is an absolutely continuous and strictly increasing function
of α ∈ [0,∞), which is differentiable almost everywhere in (0,∞). Where it exists, its
derivative is given by

d

dα
λn(α) =

∮
∂�

σu2n,α∫
�
u2n,α

(7.4)

where un,α ∈ H1(�) is any eigenfunction associated with λn(α).

4 [1, Lemma 2.11] allows �⊂R
N to be any bounded Lipschitz domain and takes σ ≡ 1.
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Proof. The proof is verbatim that of [1, Lemma 2.11] where σ ≡ 1. As is explained
there, each eigenvalue depends locally analytically on α, with at most a locally finite set
of splitting points. We just repeat the computation of the derivative at any α which is not
a splitting point for λn(α): We use the weak formulation of the boundary condition, as
saying that for all v ∈ H1(�),

∫

�

∇un,α · ∇v +
∮

∂�

ασ(s)un,α(s)v(s)ds = λn(α)

∫

�

un,αv. (7.5)

In particular, applying (7.5) with v = un,β gives
∫

�

∇un,α · ∇un,β +
∮

∂�

ασun,αun,βds = λn(α)

∫

�

un,αun,β . (7.6)

Changing the roles of α and β gives
∫

�

∇un,α · ∇un,β +
∮

∂�

βσun,αun,βds = λn(β)

∫

�

un,αun,β . (7.7)

Subtracting (7.6) from (7.7) gives

λn(β) − λn(α)

β − α
=
∮
∂�

σ(s)un,α(s)un,β(s)ds∫
�
un,αun,β

.

Taking the limit β → α and assuming that un,β → un,α in H1(�) as β → α, as verified
in [1, Lemma 2.11] so that in particular the denominator is eventually nonzero, gives
(7.4). 
�

8. Boundedness of RN Gaps for Rectangles

We consider the rectangle QL = [0, 1] × [0, L], with L ∈ (0, 1] the aspect ratio. We
denote by λσ

0 ≤ λσ
1 ≤ . . . the ordered Robin eigenvalues. We will prove Theorem 1.7,

that

0 < λσ
n − λ0n < CL(σ ).

8.1. The one-dimensional case. Letσ > 0 be theRobin constant. TheRobin problemon
the unit interval is −u′′

n = k2nun , with the one-dimensional Robin boundary conditions

−u′(0) + σu(0) = 0, u′(1) + σu(1) = 0.

The eigenvalues of the Laplacian on the unit interval are the numbers −k2n where the
frequencies kn = kn(σ ) are the solutions of the secular equation (k2 − σ 2) sin k =
2kσ cos k, or

tan(k) = 2σk

k2 − σ 2 (8.1)

(see Fig. 5) and the corresponding eigenfunctions are

un(x) = kn cos(knx) + σ sin(knx).
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Fig. 5. The secular equation (8.1) for σ = 4. Displayed are plots of tan k versus 2σk
k2−σ2

As a special case5 ofDirichlet–Neumann bracketing (1.1), we know that given σ > 0,
for each n ≥ 0 there is a unique solution kn = kn(σ ) of the secular equation (8.1) with

kn ∈ (nπ, (n + 1)π), n ≥ 0.

Note that kn(0) = nπ .
From (8.1), we have as n → ∞,

kn(σ ) = nπ + arctan

⎛

⎝ 2σ

kn(σ )

1

1 − σ 2

kn(σ )2

⎞

⎠ = nπ +
2σ

kn(σ )
+ O

(
kn(σ )−3

)

so that

kn(σ )2 − kn(0)
2 ∼ 4σ, n → ∞. (8.2)

We can interpret, for � being the unit interval, 4 = 2#∂�/ length� so that we find
convergence of the RN gaps to their mean value in this case.

From (8.2) we deduce:

Lemma 8.1. For every σ > 0, there is some C(σ ) > 0 so that

kn(σ )2 − kn(0)
2 ≤ C(σ ), ∀n ≥ 0. (8.3)

8.2. Proof of Theorem 1.7. The frequencies for the interval [0, L] are 1
L · km(σ · L).

Hence the Robin energy levels of QL are the numbers


n,m(σ ) = kn(σ )2 +
1

L2 · km(σ · L)2, n,m ≥ 0. (8.4)

We have

0 ≤ 
n,m(σ ) − 
n,m(0) = (kn(σ )2 − kn(0)
2) +

1

L2 ·
(
km(σ · L)2 − km(0)2

)
.

5 Of course, in this case it directly follows from the secular equation (8.1).
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From the one-dimensional result (8.3), we deduce that


n,m(σ ) − 
n,m(0) ≤ C(σ ) +
1

L2C(Lσ) = CL(σ ).

We now pass from the 
m,n(σ ) to the ordered eigenvalues {λσ
k : k = 0, 1, . . .}. We

know that λσ
k ≥ λ0k , and want to show that λσ

k ≤ λ0k +CL(σ ). For this it suffices to show
that the interval Ik := [0, λ0k + CL(σ )] contains at least k + 1 Robin eigenvalues, since
then it will contain λσ

0 , . . . , λσ
k and hence we will find λσ

k ≤ λ0k + CL(σ ).
The interval Ik contains the interval [0, λ0k] and so certainly contains the first k + 1

Neumann eigenvalues λ00, . . . , λ
0
k , which are of the form 
m,n(0) with (m, n) lying in

a set Sk . Since 
m,n(σ ) ≤ 
m,n(0) + CL(σ ), the interval Ik must contain the k + 1
eigenvalues {
m,n(σ ) : (m, n) ∈ Sk}, and we are done. 
�

9. Application of Boundedness of the RN Gaps to Level Spacings

In this section, we show that the level spacing distribution of the Robin eigenvalues for
the desymmetrized square is a delta function at the origin, as is the case with Neumann
or Dirichlet boundary conditions.

Recall the definition of the level spacing distribution: We are given a sequence of
levels x0 ≤ x1 ≤ x2 ≤ . . .. We assume that xN = cN + o(N ), as is the case of the
eigenvalues of a planar domain. Let δn = (xn+1 − xn)/c be the normalized nearest
neighbour gaps. so that the average gap is unity. The level spacing distribution P(s) of
the sequence is then defined as

∫ y

0
P(s)ds = lim

N→∞
1

N
#{n ≤ N : δn ≤ y}

(assuming that the limit exists).
Recall that the Robin spectrum has systematic double multiplicities 
m,n(σ ) =


n,m(σ ) (see (8.4) with L = 1), which forces half the gaps to vanish for a trivial reason.
To avoid this issue, one takes only the levels 
m,n(σ ) with m ≤ n, which we call the
desymmetrized Robin spectrum.

Theorem 9.1. For every σ ≥ 0, the level spacing distribution for the desymmetrized
Robin spectrum on the square is a delta-function at the origin.

In other words, if we denote by λσ
0 ≤ λσ

1 ≤ . . . the ordered (desymmetrized) Robin
eigenvalues, then the cumulant of the level spacing distribution satisfies: For all y > 0,

∫ y

0
P(s)ds = lim

N→∞
1

N
#

{
n ≤ N : 1

2

area(�)

4π
(λσ

n+1 − λσ
n ) ≤ y

}
= 1.

Proof. The Neumann spectrum for the square consists of the numbers m2 + n2 (up to a
multiple), with m, n ≥ 0. There is a systematic double multiplicity, manifested by the
symmetry (m, n) �→ (n,m). We remove it by requiring m ≤ n. Denote the integers
which are sums of two squares by

s1 = 0 < s2 = 1 < s3 = 2 < s4 = 4 < s5 = 5 < · · · < s14 = 25 < · · ·
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We define index clustersNi as the set of all indices of desymmetrized Neumann eigen-
values which coincide with si :

Ni = {n : λ0n = si }
For instance, s0 = 0 = 02 + 02 has multiplicity one, and gives the index set N1 = {1};
s1 = 1 = 02 + 12 has multiplicity 1 (after desymmetrization) and gives N2 = {2};
s3 = 2 = 12 + 12 giving N3 = {3}, . . . s14 = 25 = 02 + 52 = 32 + 42, N14 = {14, 15},
etcetera. Then these are sets of consecutive integers which form a partition of the natural
numbers {1, 2, 3, . . .}, and if i < j then the largest integer in Ni is smaller than the
smallest integer in N j .

Denote by λσ
n the ordered desymmetrized Robin eigenvalues: λσ

0 ≤ λσ
1 ≤ . . ., so for

σ = 0 these are just the integers si repeated with multiplicity #Ni . For each σ ≥ 0, we
define clustersCi (σ ) as the set of all desymmetrized Robin eigenvalues λσ

n with n ∈ Ni :

Ci (σ ) = {λσ
n : n ∈ Ni }.

Now use the boundedness of the RN gaps (Theorem 1.7): 0 ≤ λσ
n − λ0n ≤ C(σ ), to

deduce that the clusters have bounded diameter:

diamCi (σ ) ≤ C(σ ).

If #Ni = 1 then diamCi (σ ) = 0, so we may assume that #Ni ≥ 2 and write

Ni = {n−, n− + 1, . . . , n+}, n+ = maxNi , n− = minNi .

Then

diamCi (σ ) = λσ
n+ − λσ

n−
= (λσ

n+ − si ) + (si − λσ
n−)

= (λσ
n+ − λ0n+) − (λσ

n− − λ0n−) ≤ C(σ ) − 0 = C(σ ).

For the first N eigenvalues, the number I of clusters containing them is the number
of the si involved, which is at most the number of si ≤ λσ

N ≈ N . A classical result of
Landau [18] states that the number of integers ≤ N which are sums of two squares is
about N/

√
log N , in particular6 is o(N ). Hence

I ≤ #{i : si � N } = o(N ).

We count the number of nearest neighbour7 gaps δσ
n = λσ

n+1 −λσ
n of size bigger than

y. Of these, there are at most I such that λσ
n+1 and λσ

n belong to different clusters, and
since I = o(N ) their contribution is negligible. For the remaining ones, we group them
by cluster to which they belong:

#{n ≤ N : δσ
n > y} =

I∑

i=1

#
{
n : λσ

n+1, λ
σ
n ∈ Ci (σ ) & δσ

n > y
}
+ o(N ).

6 This is much easier to show using a sieve.
7 For simplicity we replace 1

2
area(�)

4π by 1, that is we don’t bother normalizing so as to have mean gap
unity; the result is independent of this normalization.
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We have

#
{
n : λσ

n+1, λ
σ
n ∈ Ci (σ ) & δσ

n > y
} = #

{
n ∈ Ni , n < maxNi , δσ

n > y
}

=
∑

n∈Ni
n<maxNi

δσ
n >y

y

y
<

∑

n∈Ni
n<maxNi

δσ
n >y

δσ
n

y
≤ 1

y

∑

n∈Ni
n<maxNi

δσ
n .

The sum of nearest neighbour gaps in each cluster is
∑

n∈Ni
n<maxNi

δσ
n =

∑

n∈Ni
n<maxNi

(λσ
n+1 − λσ

n ) = λσ
maxNi

− λσ
minNi

= diamCi (σ ) ≤ C(σ ).

Thus we find

#{n : λσ
n+1, λ

σ
n ∈ Ci (σ ) & δσ

n > y} ≤ C(σ )

y

so that

#{n ≤ N : δσ
n > y} ≤

I∑

i=1

C(σ )

y
+ o(N ) = C(σ )

y
I + o(N ).

Since I = o(N ), and C , y are fixed, we conclude that

1

N
#{n ≤ N : δσ

n > y} = o(1).

Thus the cumulant of the level spacing distribution satisfies: For all y > 0,
∫ y

0
P(s)ds = lim

N→∞
1

N
#{n ≤ N : δσ

n ≤ y} = 1

so that P(s) is a delta function at the origin. 
�
Note that the claim is not that all gaps λσ

n+1 − λσ
n tend to zero. On the contrary, it is

possible to produce thin sequences {n} so that λσ
n+1 − λσ

n tend to infinity. Looking at the
proof of Theorem 9.1, these correspond to the rare cases when λσ

n and λσ
n+1 belong to

neighboring “clusters” which are far apart from each other.

10. The Unit Disk

10.1. Upper bounds for dn via Weyl’s law. In this section we prove Theorem 1.9. We
first show how to obtain upper bounds for the gaps dn from upper bounds in Weyl’s law
for the Robin/Neumann problem. The result is that

Lemma 10.1. Let�beaboundedplanar domain.Assume that there is some θ ∈ (0, 1/2)
so that

Nσ (x) := #{λσ
n ≤ x} = area(�)

4π
x +

length(∂�)

4π

√
x + Oσ (xθ ). (10.1)

and the same result holds for σ = 0. Then we have

dn(σ ) �σ nθ .
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Proof. We first note that (10.1) gives

N0(λ
0
n) = n + O(nθ ), (10.2)

and likewise for the Robin counting function, as will be explained below. Now compare
the counting functions Nσ (λσ

n ) and N0(λ
0
n) for the Robin and Neumann spectrum using

(10.1) and (10.2):

n + O(nθ ) = Nσ (λσ
n ) = area(�)

4π
λσ
n +

length(∂�)

4π

√
λσ
n + Oσ (nθ )

and

n + O(nθ ) = N0(λ
0
n) = area(�)

4π
λ0n +

length(∂�)

4π

√
λ0n + O(nθ ).

Subtracting the two gives

(
λσ
n − λ0n

)
·
(
area(�) +

length(∂�)
√

λσ
n +

√
λ0n

)
= Oσ (nθ ),

and therefore

dn(σ ) = λσ
n − λ0n = Oσ (nθ ).

To show (10.2), denote λ = λ0n , and pick ε ∈ (0, 1) sufficiently small so that in the
interval [λ − ε

2 , λ + ε
2 ] there are no eigenvalues other than λ, which is repeated with

multiplicity K ≥ 1. Then

N
(
λ +

ε

2

)
− N

(
λ − ε

2

)
= K .

On the other hand, by Weyl’s law (with A = area(�)/4π , B = length(∂�)/4π )

K = N
(
λ +

ε

2

)
− N

(
λ − ε

2

)

= A
(
λ +

ε

2

)
+ B

√
λ +

ε

2
+ O

((
λ +

ε

2

)θ
)

−
(
A
(
λ − ε

2

)
+ B

√
λ − ε

2
+ O

((
λ − ε

2

)θ
))

= Aε + O

(
ε√
λ

)
+ O(λθ ).

Now use |N (λ0n) − n| ≤ K � λθ � nθ which gives (10.2). 
�
Below we implement this strategy for the disk to obtain Theorem 1.9.
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Fig. 6. The domain D

10.2. RelatingWeyl’s law and a lattice point count. The eigenvalues of the Laplacian on
the disk are squares of zeros of Bessel functions and understanding Weyl’s law leads to
requiring knowledge of the semiclassical asymptotics of these Bessel zeros; the nature of
these asymptotics leads to an exotic lattice point problem, as was exploited byKuznetsov
and Fedosov [16] and Colin De Verdière [8].

Define the domain

D = {(x, y) : x ∈ [−1, 1] ,max (0,−x) ≤ y ≤ g (x)}
where

g (x) = 1

π

(√
1 − x2 − x arccos x

)
. (10.3)

Let

ND (μ) := #

{
(n, k) :

(
n, k + max(0,−n) − 3

4

)
∈ μD

}

and

Ndisk,σ (x) := #
{
λσ
n ≤ x

}
.

Proposition 10.2. Fix σ ≥ 0. Then

ND

(
μ − C

μ3/7

)
− Cμ4/7 ≤ Ndisk,σ

(
μ2
)

≤ ND

(
μ +

C

μ3/7

)
+ Cμ4/7.

The argument extends [8, Theorem 3.1], [12] (who fix a flaw in the argument of [8]) to
Robin boundary conditions.

We can now prove Theorem 1.9. We use the result of [13] 8

ND (μ) = area(D)μ2 +
μ

2
+ O

(
μ2(1/3−δ)

)

8 They treat the shifted latticeZ2− (0, 1
4 ) but as they say [13, Remark 6.5], the arguments also work for the

shift by (0, 3
4 ). See [12] for an a further improvement in the Dirichlet case to 131/416 = 1/3 − 23/1248 =

0.314904.
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where δ = 1/990. Noting that

area(D) = area(�)

4π
= 1

4
,

length(∂�)

4π
= 1

2

we obtain from Proposition 10.2 that

Ndisk,σ (x) = area(�)

4π
x +

length(∂�)

4π

√
x + O

(
x1/3−δ

)
.

Applying Lemma 10.1 gives

dn(σ ) = O
(
n1/3−δ

)

which proves Theorem 1.9. 
�

10.3. Proof of Proposition 10.2. Fix a Robin parameter σ ≥ 0. Separating variables
in polar coordinates (r, θ) and inserting the boundary conditions, we find a basis of
eigenfunctions of the form

fn,k(r, θ) = Jn(κn,kr)e
inθ , n ∈ Z, k = 1, 2, . . .

with eigenvalues κ2
n,k , where κn,k is the k-th positive zero of x J ′

n (x) + σ Jn (x). In
particular, for the Neumann case (σ = 0), we get zeros of the derivative J ′

n(x), denoted
by j ′n,k ; since zero is a Neumann eigenvalue we use the standard convention that x = 0
is counted as the first zero of J ′

0(x).
Let

S = {(x, y) : y ≥ max (0,−x)} ,

and let F : S → R be the degree 1 homogeneous function satisfying F ≡ 1 on the
graph of g. Obviously,

F

(
n, k + max (0,−n) − 3

4

)
≤ μ ⇐⇒

(
n, k + max (0,−n) − 3

4

)
∈ μD;

on the other hand, as will be shown in Lemma 10.3 below, the numbers κn,k are well
approximated by F

(
n, k + max (0,−n) − 3

4

)
. This will give the desired connection be-

tween Weyl’s law on the disk and the lattice count problem in dilations of D.

Lemma 10.3. Fix σ ≥ 0, and let c > 0 be a constant.
1. As n → ∞, uniformly for k ≤ n/c, we have

κn,k = F(n, k − 3

4
) + Oc,σ

(
n1/3

k4/3

)
. (10.4)

2. As k → ∞, uniformly for |n| ≤ c · k, we have

κn,k = F

(
n, k + max (0,−n) − 3

4

)
+ Oc,σ

(
1

k

)
. (10.5)
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The proof of Lemma 10.3 will be given in “Appendix A”.
It will be handy to derive an explicit formula for the function F , which we will now

do. Let ζ = ζ (z) be the solution to the differential equation
(
dζ

dz

)2

= 1 − z2

ζ z2
(10.6)

which for z ≥ 1 is given by

2

3
(−ζ )3/2 =

√
z2 − 1 − arccos

(
1

z

)
(10.7)

(see [24, Eq. 10.20.3]). The interval z ≥ 1 is bijectively mapped to the interval ζ ≤ 0;
denote by z = z (ζ ) the inverse function.

Lemma 10.4. For x > 0, we have

F(x, y) = xz
(

− x−2/3
(
3π

2
y

)2/3 )
. (10.8)

Additionally, for y ≥ 0 we have F (0, y) = πy, and for (−x, y) ∈ S we have

F (−x, y) = F(x, y − x). (10.9)

Proof. Let x > 0, and denote t = F(x,y)
x . Then F

( 1
t ,

y
tx

) = 1 so that the point
( 1
t ,

y
tx

)

lies on the graph of g, and therefore

y

x
= 1

π

(√
t2 − 1 − arccos

(
1

t

))
= 1

π

2

3
(−ζ (t))3/2

so that

t = z
(

− x−2/3
(
3π

2
y

)2/3 )
.

The other claims are also straightforward from the definitions. 
�
We proceed towards the proof of Proposition 10.2 by following the ideas of [8, Sec. 3].
Let

N 1
D (μ) = #

{
(n, k) :

(
n, k + max (0,−n) − 3

4

)
∈ μD, |n| < c · k

}
,

N 2
D (μ) = #

{
(n, k) :

(
n, k − 3

4

)
∈ μD, n ≥ c · k

}
,

and

N 1
disk,σ

(
μ2
)

= #
{
(n, k) : κn,k ≤ μ, |n| < c · k} ,

N 2
disk,σ

(
μ2
)

= #
{
(n, k) : κn,k ≤ μ, n ≥ c · k} ,

so that

ND (μ) = N 1
D (μ) + 2N 2

D (μ)
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and

Ndisk,σ

(
μ2
)

= N 1
disk,σ

(
μ2
)
+ 2N 2

disk,σ

(
μ2
)

,

where we used (10.9) and the relation κ−n,k = κn,k . We first compare N 1
D (μ) and

N 1
disk,σ

(
μ2
)
:

Lemma 10.5. There exists a constant C = Cc,σ > 0 such that

N 1
D

(
μ − C

μ

)
≤ N 1

disk,σ

(
μ2
)

≤ N 1
D

(
μ +

C

μ

)
.

Proof. Assume that |n| < c · k. By (10.9) and the homogeneity of F we have

F

(
n, k + max(0,−n) − 3

4

)
= F

(
|n|, k − 3

4

)
= kF

( |n|
k

, 1 − 3

4k

)
,

and since 1 � F
( |n|

k , 1 − 3
4k

)
�c 1, we conclude that

k � F

(
n, k + max(0,−n) − 3

4

)
�c k.

Hence, if F
(
n, k + max(0,−n) − 3

4

) ≥ μ, then k �c μ. Combining thiswithLemma10.3,
we see that

N 1
disk,σ

(
μ2
)

≤ #

{
(n, k) : F(n, k + max(0,−n) − 3

4
) ≤ μ +

C ′

k
, |n| < c · k

}

= #

{
(n, k) : F(n, k + max (0,−n) − 3

4
) ≤ μ, |n| < c · k

}

+ #

{
(n, k) : μ < F(n, k + max (0,−n) − 3

4
) ≤ μ +

C ′

k
, |n| < c · k

}

≤ #

{
(n, k) : F(n, k + max (0,−n) − 3

4
) ≤ μ +

C

μ
, |n| < c · k

}

= N 1
D

(
μ +

C

μ

)
.

The proof of the other inequality is similar. 
�
We will now compare between N 2

D (μ) and N 2
disk,σ

(
μ2
)
. To this end, for fixed k ≥ 1,

we denote

Nk (μ) = #

{
n :
(
n, k − 3

4

)
∈ μD, n ≥ c · k

}

N ′
k (μ) = #

{
n : κn,k ≤ μ, n ≥ c · k} .

Lemma 10.6. Given a sufficiently large c > 0, there exists a constant C = Cc,σ > 0
such that

Nk (μ) − C
μ1/3

k4/3
− 1 ≤ N ′

k (μ) ≤ Nk (μ) + C
μ1/3

k4/3
+ 1.
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Proof. Let

Ak (μ) := #

{
n : μ < F

(
n, k − 3

4

)
≤ μ + C ′ μ1/3

k4/3
, n ≥ c · k

}
,

and recall the inequality (see (A.1)) n ≤ j ′n,k ≤ κn,k , so in particular if κn,k ≤ μ, then
n ≤ μ. Thus, Lemma 10.3 gives

N ′
k (μ) ≤ #

{
n : F

(
n, k − 3

4

)
≤ μ + C ′ n1/3

k4/3
, μ ≥ n ≥ c · k

}

≤ #

{
n : F

(
n, k − 3

4

)
≤ μ, n ≥ c · k

}
+ Ak (μ)

= Nk (μ) + Ak (μ) .

When x ≥ c · k, we have F

(
x, k − 3

4

)
= xF

(
1,

k − 3/4

x

)
, and therefore (note that

F(1, y) ≥ 1 for all y ≥ 0)

Fx

(
x, k − 3

4

)
= F

(
1,

k − 3/4

x

)
− k − 3/4

x
Fy

(
1,

k − 3/4

x

)
� 1

when c is taken sufficiently large. In particular, F̃(x) := F(x, k− 3

4
) is strictly increasing

for x ≥ c · k, and so Ak(μ) is bounded above by the number of integer points in the
interval

I :=
[
F̃−1

(
max(μ, F̃(c · k))

)
, F̃−1

(
μ + C ′ μ1/3

k4/3

)]
,

which in turn is bounded above by length(I ) + 1; by the mean value theorem, keeping
in mind that (F̃−1)x = F̃−1

x , we conclude that

length(I ) ≤ C ′ μ1/3

k4/3
· max
x∈I

1

F̃x (x)
≤ C

μ1/3

k4/3
.

The proof of the other inequality is similar. 
�
Remark 10.7. The +1 factor was missing in [8].

For large values of k we will use the following estimate:

Lemma 10.8. There exists a constant C = Cc,σ > 0 such that for k > μ4/7, we have

Nk

(
μ − C

μ3/7

)
≤ N ′

k (μ) ≤ Nk

(
μ +

C

μ3/7

)
.

Proof. By Lemma 10.3,

N ′
k (μ) ≤ #

{
n : F

(
n, k − 3

4

)
≤ μ +

C

μ3/7 , n ≥ c · k
}

= Nk

(
μ +

C

μ3/7

)

and likewise

N ′
k (μ) ≥ Nk

(
μ − C

μ3/7

)
.


�
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Proof of Proposition 10.2. By Lemma 10.6 (applied for k ≤ μ4/7) and Lemma 10.8
(applied for k > μ4/7), we get that

N 2
disk,σ

(
μ2
)

=
∑

k≥1

N ′
k (μ)

≤
∑

k≥1

Nk

(
μ +

C

μ3/7

)
+ Cμ4/7 = N 2

D

(
μ +

C

μ3/7

)
+ Cμ4/7

and likewise

N 2
disk,σ

(
μ2
)

≥ N 2
D

(
μ − C

μ3/7

)
− Cμ4/7.

This, together with Lemma 10.5 gives the claim. 
�
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Appendix A. Proof of Lemma 10.3

The goal of this appendix is to prove the asymptotic formulas (10.5) and (10.5) for the
zeros κn,k of x J ′

n (x) + σ Jn (x) where σ ≥ 0. More generally, we will work with Bessel
functions Jν (x) of real order ν. Many properties of the zeros κν,k are well-known, e.g.
for all σ > 0, ν ≥ 0 and k ≥ 1 we have (see e.g. [33, Eq. (III.6)])

ν ≤ j ′ν,k < κν,k < jν,k (A.1)

where jν,k (resp. j ′ν,k) is the k-th positive zero of Jν (x) (resp. J ′
ν (x), with the convention

that x = 0 is counted as the first zero of J ′
0(x)); for σ ≥ 0 and fixed ν ≥ 0 we have the

asymptotic formula [33, Eq. (IV.9)]

κν,k = j ′ν,k +
σ

j ′ν,k
+

− 1
3σ

3 − 1
2σ

2 + ν2σ
(
j ′ν,k

)3 + Oσ

((
j ′ν,k

)−5
)

(k → ∞) .

Recall the function ζ (z) defined above by (10.6) which satisfies (10.7) for z ≥ 1, with an

inverse z (ζ ). Denote h (ζ ) =
(

4ζ
1−z2

)1/4
. We have the following asymptotic expansion

for Jν (νz) as ν → ∞ [24, Eq. 10.20.4]

Jν (νz) ∼ h (ζ )

⎡

⎣Ai
(
ν2/3ζ

)

ν1/3

∞∑

j=0

A j (ζ )

ν2 j
+
Ai′
(
ν2/3ζ

)

ν5/3

∞∑

j=0

Bj (ζ )

ν2 j

⎤

⎦ (A.2)

http://creativecommons.org/licenses/by/4.0/
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which holds uniformly for z > 0,where Ai (z) is the Airy function, and the coefficients
A j (ζ ) and Bj (ζ ) are given by [24, Eq. 10.2.10, 10.20.11] and the remark following
these equations. Likewise, we have the asymptotic expansion [24, Eq. 10.20.7]

J ′
ν (νz) ∼ − 2

zh (ζ )

⎡

⎣Ai
(
ν2/3ζ

)

ν4/3

∞∑

j=0

C j (ζ )

ν2 j
+
Ai′
(
ν2/3ζ

)

ν2/3

∞∑

j=0

Dj (ζ )

ν2 j

⎤

⎦ (A.3)

uniformly for z > 0, where the coefficients C j (ζ ) and Dj (ζ ) are given by [24,
Eq. 10.2.12, 10.20.13] and the remark which follows them. Each of the coefficients
A j (ζ ) , Bj (ζ ) ,C j (ζ ) , Dj (ζ ), j = 0, 1, 2, . . . is bounded near ζ = 0; we have
A0 (ζ ) = D0 (ζ ) = 1.
For the Robin parameter σ ≥ 0, if we denote B−1 (ζ ) = 0 and let

ασ
j (ζ ) := C j (ζ ) − σ A j (ζ ) h2 (ζ )

2

βσ
j (ζ ) := Dj (ζ ) − σ Bj−1 (ζ ) h2 (ζ )

2
,

then (A.2) and (A.3) give

φν (νz) := J ′
ν (νz) +

σ

νz
Jν (νz)

∼ −2

zh (ζ )

⎡

⎣Ai′
(
ν2/3ζ

)

ν2/3

∞∑

j=0

βσ
j (z)

ν2 j
+
Ai
(
ν2/3ζ

)

ν4/3

∞∑

j=0

ασ
j (z)

ν2 j

⎤

⎦

uniformly for z > 0. Note that ασ
0 (ζ ) = C0 (ζ ) − σh2(ζ )

2 . Using the derivation of
[25, p. 345] with ασ

j , βσ
j instead of C j (ζ ), Dj (ζ ) (the latter were used to establish

the asymptotic expansion of the zeros of J ′
ν (z) corresponding to σ = 0), we get the

following uniform asymptotic formula for κν,k as ν → ∞ :

Lemma A.1. Fix σ ≥ 0, let a′
k be the k-th zero of Ai

′ (z) (all of these zeros are real and
negative), and let ζ = ζν,k = ν−2/3a′

k . Then in the above notation, uniformly for k ≥ 1,
we have

κν,k = νz (ζ ) −
z′ (ζ )

(
C0 (ζ ) − σh2(ζ )

2

)

ζν
+ Oσ

(
1

ν

)
. (A.4)

In particular, for σ = 0 we reconstructed the formula [24, Eq. 10.21.43]

j ′ν,k = νz (ζ ) − z′ (ζ )C0 (ζ )

ζν
+ O

(
1

ν

)

uniformly for k ≥ 1 (note the identity z′ (ζ ) = − z(ζ )h2(ζ )
2 ).We remark that the secondary

term in (A.4) is necessary because of the ζ factor in the denominator which may be as
small as ν−2/3 when k is small. This phenomenon does not occur for the zeros of Jν (z)
(see [25, Sec. 7]), which satisfy the more compact uniform expansion

jν,k = νz (ζ ) + O

(
1

ν

)
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where ζ = ν−2/3ak and ak is the k-th zero of Ai (z) [24, Eq. 10.21.41].
Recall that the zeros a′

k of Ai
′ (z) satisfy the asymptotic formula [24, Eq. 9.9.8]

a′
k = −

[
3π

2

(
k − 3

4

)]2/3
+ O

(
k−4/3

)
. (A.5)

Proof of Lemma 10.3, first part. Assume that k ≤ ν/c, where ν → ∞. The functions
z′ (ζ ) and h (ζ ) are bounded near ζ = 0, and therefore inserting (A.5) into (A.4) gives

νz (ζ ) = νz

(
−ν−2/3

[
3π

2

(
k − 3

4

)]2/3)
+ Oc,σ

(
ν1/3

k4/3

)

and

z′ (ζ )
(
C0 (ζ ) − σh2(ζ )

2

)

ζν
�c,σ

1

ν1/3k2/3
�c

ν1/3

k4/3
.

Also note that 1
ν

�c
ν1/3

k4/3
when k ≤ ν/c. By (10.8) we have

z

(
−ν−2/3

[
3π

2

(
k − 3

4

)]2/3)
= F

(
ν, k − 3

4

)
,

and therefore the above estimates yield

κν,k = F

(
ν, k − 3

4

)
+ Oc,σ

(
ν1/3

k4/3

)
(A.6)

which gives (10.5). 
�
In order to prove the second part of Lemma 10.3, we require the following lemma. Recall
the function g (x) defined in (10.3).

Lemma A.2. Fix σ ≥ 0, and let C > 0 be a constant. Let φν (x) := J ′
ν (x) + σ

x Jν (x).
As x → ∞, uniformly for 0 ≤ ν ≤ x/ (1 + C), we have

φν (x) = −
(
2

π

)1/2 (
x2 − ν2

)1/4
x−1

(
sin
(
πxg (ν/x) − π

4

)
+ OC,σ

(
x−1

))
.

(A.7)

Proof. We use the standard integral representation [24, Eq. 10.9.6]

Jν (x) = 1

π

∫ π

0
cos (x sin t − νt) dt − sin (νπ)

π

∫ ∞

0
e−x sinh t−νt dt (A.8)

(for integer ν the second integral in (A.8) vanishes). Assume that x ≥ (1 + C) ν ≥ 0,
and denote r = ν/x ≤ 1

1+C < 1. The first integral in (A.8) is equal to the real part of

I1
r (x) := 1

π

∫ π

0
eix(sin t−r t) dt.
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By the method of stationary phase [24, Eq. 2.3.23], we have the asymptotics:

I1
r (x) = e

π i
(
xg(r)− 1

4

) (
2

π
√
1 − r2x

)1/2

+ e−irπx i

π (1 + r) x
+

i

π (1 − r) x
+ OC

(
x−3/2

)
.

Hence

Re
(
I1
r (x)

)
= cos

(
πxg (r) − π

4

)( 2

π
√
1 − r2x

)1/2

+
sin (πr x)

π (1 + r) x
+ OC

(
x−3/2

)
.

The second integral in (A.8) is equal to

I2
r (x) := sin (πr x)

π

∫ ∞

0
e−x(sinh t+r t) dt

and can be evaluated by the Laplace method [24, Eq. 2.3.15]:

I2
r (x) = sin (πr x)

π (1 + r) x
+ OC

(
x−2

)
.

We obtain

Jν (x) =
(
2

π

)1/2 (
x2 − ν2

)−1/4 (
cos

(
πxg (ν/x) − π

4

)
+ OC

(
x−1

))
; (A.9)

a similar procedure gives

J ′
ν (x) = −

(
2

π

)1/2 (
x2 − ν2

)1/4
x−1

(
sin
(
πxg (ν/x) − π

4

)
+ OC

(
x−1

))
.

(A.10)

The formula (A.7) now follows upon combining (A.9) and (A.10). 
�
Proof of Lemma 10.3, second part. Let 0 ≤ ν ≤ c · k, where k → ∞. Clearly, the
condition 0 ≤ ν ≤ c · k implies that κν,k ≥ (1 + C) ν ≥ 0 for some constant C =
C (c) > 0 and that κν,k �c k (e.g. by the analogous well-known inequalities for the
Bessel zeros jν,k , see (5.3) in [9], together with (A.1)). By Lemma A.2, we have

sin
(
πκν,kg

(
ν/κν,k

)− π

4

)
= Oc,σ

(
k−1

)

so there exists an integer m such that

κν,kg
(
ν/κν,k

) = m − 3

4
+ Oc,σ

(
k−1

)
. (A.11)

This in particular gives m �c,σ κν,k . We have 1 � Fy �c,σ 1 when y �c,σ x , as
can be seen by differentiating (10.8) and combining with (10.6). This, together with the
equality κν,k = F(ν, κν,kg(ν/κν,k)) and (A.11) gives

κν,k = F

(
ν,m − 3

4
+ Oc,σ

(
k−1

))
= F

(
ν,m − 3

4

)
+ Oc,σ

(
k−1

)
.
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We will now show that m = k: indeed, fix k, ν and the corresponding m, and assume
that ν′ is close to ν, so there exists an integer m′ such that

κν′,k = F

(
ν′,m′ − 3

4

)
+ Oc,σ

(
k−1

)
.

By the mean value theorem

|m − m′| �
∣∣∣∣F
(

ν′,m − 3

4

)
− F

(
ν′,m′ − 3

4

)∣∣∣∣

≤
∣∣∣∣F
(

ν′,m − 3

4

)
− F

(
ν,m − 3

4

)∣∣∣∣ + |κν′,k − κν,k |

+ Oc,σ

(
k−1

)
. (A.12)

Note that κν′,k is a continuous function of ν′ ≥ 0 (in fact, it is differentiable in ν′ in
this regime, see e.g. [19]), and so is F

(
ν′,m − 3

4

)
as a function of ν′. Therefore the

right-hand-side of (A.12) can be made arbitrarily small when k is sufficiently large and
ν′ is sufficiently close to ν, and hence m′ = m. We see that map ν �→ κν,k �→ m is
well-defined and it is locally constant and hence constant for 0 ≤ ν ≤ c · k. But we
know by (A.6) that for ν � k we have m = k; hence m = k for any 0 ≤ ν ≤ c · k. This
gives (10.5) when n ≥ 0; for n < 0, (10.5) follows from the relations κ−n,k = κn,k and
(10.9). 
�
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