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Abstract
We study the spectrum of the Laplacian on the hemisphere with Robin boundary conditions.
It is found that the eigenvalues fall into small clusters close to the Neumann spectrum, and
satisfy a Szegő type limit theorem. Sharp upper and lower bounds for the gaps between the
Robin and Neumann eigenvalues are derived, showing in particular that these are unbounded.
Further, it is shown that except for a systematic double multiplicity, there are nomultiplicities
in the spectrum as soon as the Robin parameter is positive, unlike the Neumann case which is
highly degenerate. Finally, the limiting spacing distribution of the desymmetrized spectrum
is proved to be the delta function at the origin.

Keywords Robin boundary conditions · Robin–Neumann gaps · Laplacian · Hemisphere ·
Level spacing distribution
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Résumé.
Nous étudions le spectre du laplacien sur une hémisphère sous la condition de Robin à la
frontière. Nous démontrons que les valeurs propres se regroupent en grappes près des valeurs
propres de Neumann et que leur distribution dans ces grappes satisfait un théorème limite de
type Szegő. Nous obtenons des bornes supérieures et inférieures optimales pour les écarts
entre les valeurs propres de Robin et celles de Neumann, en particulier nous démontrons que
ces écarts ne sont pas bornés. De plus, nous démontrons qu’à l’exception de valeurs propres
systématiquement doubles, le spectre n’exhibe pas de multiplicité dès que le paramètre de
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Robin est strictement positif, contrairement au spectre de Neumann qui est très dégénéré.
Finalement, nous démontrons que la distribution limite des écarts du spectre désymétrisé est
la fonction delta supportée à l’origine.

1 Introduction

1.1 The Robin problem

Let � be the upper unit hemisphere (Fig. 1), with its boundary ∂� the equator. Our goal is
to study the Robin boundary problem on the hemisphere �:

�F + λF = 0,
∂F

∂n
+ σ F = 0

where ∂/∂n is the derivative in the direction of the outward pointing normal to the equator,
and σ ≥ 0 is a constant.

The cases of Neumann and Dirichlet boundary conditions (σ = 0 or σ = ∞) are classical
[2, p. 243–244]: the eigenfunctions are restrictions to � of the eigenfunctions on the sphere
(spherical harmonics), determined by the parity under reflection in the equator: the odd
spherical harmonics give the Dirichlet eigenfunctions, the even ones give the Neumann
eigenfunctions. The eigenvalues are thus of the form �(� + 1), where � ≥ 0 is an integer,
repeated with multiplicity � + 1 for the Neumann case, and � for the Dirichlet case.

The Robin spectrum is significantly less understood, and it is the main object of our
interest. So far, the main interest has been in the asymptotics of the Robin eigenvalues in the
attractive regime σ → −∞, or a few low lying eigenvalues as σ → ∞, for general domains
�. We refer the reader to the survey [4] and the references therein. Our objective is in the
statistics of the high Robin eigenvalues for fixed σ > 0 and their position relatively to the
Neumann spectrum, for the particular case of the hemisphere, a natural counterpart to [4,
Open problem 4.7].

For the hemisphere, the eigenvalue the problem admits separation of variables, and there
is a basis of eigenfunctions in the form fν,m = eimφPmν (cos θ), m ∈ Z, where Pmν (x) is an
associated Legendre function. For eachm, the admissible ν’s are determined by the boundary
condition. Both fν,m and fν,−m share the same Laplace eigenvalue ν(ν + 1). Therefore the
Robin spectrum admits a systematic double multiplicity, and we remove it beforehand by
insisting that m ≥ 0, resulting in a “desymmetrized spectrum”. Let λn(0) denote the ordered

Fig. 1 The hemisphere
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On the Robin spectrum for the hemisphere

desymmetrizedNeumann eigenvalues (repeatedwith appropriatemultiplicity), and forσ > 0
we denote by λn(σ ) the ordered desymmetrized Robin eigenvalues, and define the Robin–
Neumann (RN) gaps by

dn(σ ) := λn(σ ) − λn(0).

These were recently investigated in [10] in the case of planar domains, and will be the main
object of study here.

1.2 Clusters

In Sect. 3 (Theorem 3.1, Proposition 3.2) we will show that the desymmetrized Robin spec-
trum breaks up into small clusters E�(σ ) of size ��/2� + 1, concentrated just above the
Neumann eigenvalues �(� + 1):

For each eigenvalue ν(ν + 1), there is some m ≥ 0, and a corresponding eigenfunction
eimφPmν (cos θ), so that the “degree” ν satisfies a secular equation

Sm(ν) = σ, (1.1)

where

Sm(ν) = 2 tan

(
π(m + ν)

2

)
�

(
ν+m
2 + 1

)
�

(
ν−m
2 + 1

)
�

(
ν+m+1

2

)
�

(
ν−m+1

2

) .

For any integer � ≥ m of the same parity (� ≡ m mod 2), there is a unique solution
ν = ν�,m(σ ) in the open interval (�, � + 1), and there are no other solutions, i.e. there are
no solutions to (1.1) for ν in the same range with � 	≡ m mod 2. Denote by �,m(σ ) =
ν�,m(σ )(ν�,m(σ ) + 1) the resulting Laplace eigenvalue. Then the desymmetrized spectrum
consists of �,m(σ ), with 0 ≤ m ≤ �, and m = � mod 2, and is partitioned into disjoint
clusters of size ��/2� + 1:

E�(σ ) = {�,m(σ ) : 0 ≤ m ≤ �,m = � mod 2}.
We denote by d�,m(σ ) the Robin–Neumann (RN) gaps in each cluster:

d�,m(σ ) = �,m(σ ) − �(� + 1).

We have an asymptotic formula:

Proposition 1.1 Fix σ > 0. Let 0 ≤ m ≤ �, m = � mod 2. If � − m → ∞ then

d�,m(σ ) ∼ 2σ

π

2� + 1√
�2 − m2

. (1.2)

An effective version of Proposition 1.1 will be proved in Sect. 5.2 below, see Corollary
5.2. We display a plot of these RN gaps in Fig. 2.

1.3 A Szego type limit theorem

We show, using (1.2), that the RN gaps from each cluster have a limiting distribution, sup-
ported on the ray [4σ/π,∞):
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Fig. 2 The RN differences d�,m (σ ) in the cluster E�(σ ) for � = 150 and σ = 1. The horizontal line (red) is
their mean value 2. The solid curve (green) is the theoretical formula (1.2)

Corollary 1.2 Fix f ∈ C∞
c (0,∞). As � → ∞,

1

#E�(σ )

∑
λn(σ )∈E�(σ )

f (dn (σ )) =
∫ ∞

4σ/π

f (y)
16σ 2dy

π2y3
√
1 − ( 4σ

π y )
2
.

Similarly, we can compute the mean value of the RN gaps within each cluster (Sect. 5.3):

lim
�→∞

1

#E�(σ )

∑
λn(σ )∈E�(σ )

dn(σ ) ∼ 2σ. (1.3)

Note that 2 = 2 length(∂�)/ area(�), and the general theory1 developed in [10] leads to (1.3)
if we average over the entire spectrum. Finer than that, (1.3) asserts that for the hemisphere
the same mean result holds in each cluster.

The cluster structure that we find is similar in nature to that found for the spectrum of
operator −� + V on the unit sphere2 S2, for a smooth potential V [12,13]. The eigenvalues
of −� + V fall into clusters C� of diameter O(1), just above the eigenvalues �(� + 1) of the
sphere (in our case, the clusters are bigger, of diameter≈ √

�), and moreover the eigenvalues
in each cluster C� become equidistributed with respect to a suitable measure. We observe
that while for every σ > 0, the Robin eigenvalues interpolate between the Dirichlet and
the Neumann ones, for a fixed σ > 0, all the Robin energies approach the corresponding
Neumann energy as � → ∞, whereas it takes a large σ for the Robin energies to tend to
their Dirichlet counterparts, as asserted explicitly in Corollary 3.3.

1.4 RN gaps

We next examine the totality of the Robin–Neumann gaps dn(σ ) := λn(σ ) − λn(0).

1 Strictly speaking, the results of [10] are only for planar domains.
2 Similar results are available for the spectrum of the Laplace Beltrami operator on Zoll surfaces, which are
spheres equipped with a Riemannian metric such that every geodesic is closed, and all geodesics have the
same length.
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Theorem 1.3 There are constants 0 < c < C so that for each σ > 0,

(a) For all n,

λn(σ ) − λn(0) ≤ Cλn(0)
1/4 · σ.

(b) There are arbitrarily large n so that

λn(σ ) − λn(0) ≥ cλn(0)
1/4 · σ.

In particular the Robin–Neumann gaps for the hemisphere are unbounded. We note that at
this point, we do not know of any planar domain where the RN gaps are provably unbounded
[10]. The upper bound is better than what is known for general smooth planar domains [10],
which is dn(σ ) ≤ Cλn(0)1/3 · σ .

As a corollary to Theorem 1.3 we establish the limit level spacing distribution for the
Robin spectrum, which is the distribution P(s) (assuming it exists) of the nearest-neighbour
gaps λn+1(σ ) − λn(σ ), normalized to have mean unity (cf § 7). In the case of the Neumann
spectrum on the hemisphere, most of the nearest neighbour gaps λn+1(0) − λn(0) are zero
and P(s) is the delta function at the origin. We show that the Robin spectrum has the same
level spacing distribution;

Corollary 1.4 For every σ > 0, the level spacing distribution for the desymmetrized Robin
spectrum on the hemisphere is a delta-function at the origin.

However, unlike in the Neumann or Dirichlet case, the delta function is not a result of
multiplicities, as there are none here:

Theorem 1.5 Fix σ > 0. Then the desymmetrized Robin spectrum is simple: λm(σ ) 	= λn(σ )

for all n 	= m.

We note that there are few deterministic simplicity results available, unlike generic simplicity
which is more common, e.g. the Dirichlet spectrum of generic triangles is simple [6]. For
instance, simplicity of the desymmetrizedDirichlet spectrumon the diskwas proved bySiegel
in 1929 (Bourget’s hypothesis) [11], and the same result holds for the Neumann spectrum
[1]. However, there are arbitrarily small σ > 0 for which the Robin spectrum on the disk
has multiplicities [14]. For the square, we have a result analogous to Theorem 1.5 for σ

sufficiently small, but for rectangles with irrational squared aspect ratio, it fails for arbitrarily
small σ [9].

Finally, we note that the theory developed here for the hemisphere is quite singular when
compared to what we expect to hold for all other spherical caps. In that case we do not
expect a cluster structure and moreover, we believe that the level spacing distribution will
be Poissonian (P(s) = exp(−s)), as is expected for most integrable systems [3,8], compare
Fig. 5.

2 The Robin problem

2.1 Basics

Denote by � the upper hemisphere on the unit sphere, given in spherical coordinates as

� =
{
(sin θ cosϕ, sin θ sin ϕ, cos θ) : 0 ≤ φ < 2π, 0 ≤ θ ≤ π/2

}
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so that the north pole is at θ = 0, and the equator, which is the boundary ∂�, is at θ = π/2.
We consider the Robin boundary problem on the hemisphere �:

�F + ν(ν + 1)F = 0,
∂F

∂n
+ σ F = 0

with ν > 0, where ∂/∂n is the derivative in the direction of the outward pointing normal to
the equator, and σ > 0. We will call ν the “degree”, in keeping with the case of Dirichlet or
Neumann boundary conditions, when the eigenfunctions are spherical harmonics of degree
�, with eigenvalue �(� + 1).

For σ > 0, all eigenvalues λ = ν(ν+1) are positive, hence ν is real and ν > 0 or ν < −1.
Since the two solutions of λ = ν(ν + 1) are ν and −1 − ν, we may assume that ν > 0.

The Laplacian commutes with rotations, hence the problem admits a separation of vari-
ables, according to symmetry under rotations {Rφ} around the north-south pole, which defines
“sectors” consisting of functions transforming as F(Rφx) = eimφF(x) (here m ∈ Z). We
write such a Robin eigenfunction as

F(φ, θ) = eimφ fν,m(cos θ)

where f (x) is a solution of (x := cos θ )

(1 − x2) f ′′ − 2x f ′ +
(

ν(ν + 1) − m2

1 − x2

)
f = 0. (2.1)

The Robin boundary condition σ F + ∂F
∂n = 0 is then translated to

σ f (0) − f ′(0) = 0. (2.2)

Indeed, the equator is θ = π/2, or x = 0; and the normal derivative (outward normal) is

∂

∂n

∣∣∣
θ=π/2

= − d

dx

∣∣∣
x=0

.

2.2 Desymmetrization

Since the equation (2.1) is independent of the sign ofm, we see that the Robin spectrum has a
systematic doublemultiplicity.Wewill remove it (desymmetrization) by insisting thatm ≥ 0.
Note that this is equivalent to taking only eigenfunctions which are symmetric with respect
to the reflection (x, y, z) �→ (x,−y, z). We order the desymmetrized Neumann eigenvalues
(including multiplicities) by

λ0 = 0 < λ1 = 2 < λ2 = λ3 = 6 < · · ·

2.3 The eigenfunctions

The solutions of the differential equation (2.1) which are nonsingular in 0 ≤ x ≤ 1 form a
one-dimensional space, all multiples of the associated Legendre functions (Ferrers functions)

123



On the Robin spectrum for the hemisphere

Fig. 3 S4(ν) (dashed) and S5(ν) (solid)

of the first kind Pmν [7, 14.3.4]

Pmν (x) = (−1)m
�(ν + m + 1)

2m�(ν − m + 1)
(1 − x2)m/2F

(
ν + m + 1,m − ν;m + 1,

1 − x

2

)

= (−1)m
�(ν + m + 1)

2m�(ν − m + 1)

(
1 − x

1 + x

)m/2

F

(
ν + 1,−ν;m + 1; 1 − x

2

)
.

(2.3)
Here F (a, b; c; z) is Olver’s hypergeometric series

F (a, b; c; z) =
∞∑
s=0

(a)s(b)s
�(c + s)s! z

s, |z| < 1

with (a)s = �(a + s)/�(a), so that (2.3) converges absolutely if x ∈ (−1, 1], in particular
in the range x = cos θ ∈ [0, 1] which is relevant for the hemisphere.

3 The secular equation

For integer m ≥ 0, we set

Sm(ν) = 2 tan

(
π(m + ν)

2

)
�

(
ν+m
2 + 1

)
�

(
ν−m
2 + 1

)
�

(
ν+m+1

2

)
�

(
ν−m+1

2

) . (3.1)

Plots of S4(ν) and S5(ν) are displayed in Fig. 3.

Theorem 3.1 Let σ > 0.

(a) For each m ≥ 0, the degree ν > 0 for which the boundary value problem (2.1) and (2.2)
admits nonzero regular solutions satisfies the secular equation

Sm(ν) = σ.

(b) The secular equation has no solutions in 0 < ν < m.

Proof We saw that for all ν, there is a one-dimensional space of solutions of the ODE (2.1)
which are regular for x ∈ [−1, 1], spanned by the associated Legendre function Pmν (x). The
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boundary condition (2.2) gives the secular equation

f ′
ν,m(0)

fν,m(0)
=

(
dPmν
dx

)
(0)

Pmν (0)
= σ.

The values at x = 0 of Pmν and its derivative are [7, Sect. 14.5 (i)]

Pmν (0) = 2m
√

π

�
(

ν−m
2 + 1

)
�

( 1−ν−m
2

) = 2m√
π
cos

(
π(ν + m)

2

)
�

(
ν+m+1

2

)
�

(
ν−m
2 + 1

)
and (

dPmν
dx

)
(0) = − 2m+1√π

�
(

ν−m+1
2

)
�

(− ν+m
2

) = 2m+1

√
π

sin

(
π(m + ν)

2

)
�

(
ν+m
2 + 1

)
�

(
ν−m+1

2

)
and therefore (

dPmν
dx

)
(0)

Pmν (0)
= 2 tan

(
π(m + ν)

2

)
�

(
ν+m
2 + 1

)
�

(
ν−m
2 + 1

)
�

(
ν+m+1

2

)
�

(
ν−m+1

2

) .

Hence we obtain the secular equation in the form Sm(ν) = σ with Sm as in (3.1).
We transform Sm(ν) by using Euler’s reflection formula �(s)�(1 − s) = π/ sin(πs) to

convert

�(ν−m
2 + 1)

�( ν−m+1
2 )

=
(

π

sin( π(m−ν)
2 )�(m−ν

2 )

)
/

(
π

sin π(ν−m+1)
2 �(1 − ν−m+1

2 )

)

= �(m−ν+1
2 )

�(m−ν
2 )

· cos(π
m−ν
2 )

sin(π m−ν
2 )

= �(m−ν+1
2 )

�(m−ν
2 )

cot

(
π
m − ν

2

)
.

Moreover, for integer m,

tan

(
π(m + ν)

2

)
· cot

(
π(m − ν)

2

)
= −1.

Thus we obtain

Sm(ν) = −2
�(ν+m

2 + 1)�(m−ν+1
2 )

�(m+ν+1
2 )�(m−ν

2 )
. (3.2)

The expression (3.2) allows us to check that if m ≥ 1, there is no solution for the secular
equation if 0 < ν < m (recall σ > 0), because the arguments of all the Gamma functions on
the r.h.s. of (3.2) are positive if 0 < ν < m, hence so are the Gamma functions. Therefore
Sm(ν) is negative for ν < m. Thus for 0 < ν < m there is no solution of the secular equation
if σ > 0. ��

Proposition 3.2 Fix σ > 0. Then

(a) Sm vanishes at the points m+2k, with k ≥ 0 integer, tends to infinity as ν ↗ m+2k+1,
and Sm(ν) is negative for m+2k−1 < ν < m+2k, positive in m+2k < ν < m+2k+1
and increasing for m + 2k − 1 < ν < m + 2k + 1.

(b) Let � = m + 2k with integer k = 0, 1, 2, . . . . Then there is a unique solution ν�,m(σ ) ∈
(�, � + 1) of the secular equation.
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(c) Write ν�,m(σ ) = � + δ�,m(σ ), with δ = δ�,m(σ ) ∈ (0, 1). Then

δ <

√
2
π
σ

√
ν

. (3.3)

Proof We use Sm in the form

Sm(ν) = 2 tan

(
π(m + ν)

2

)
G(ν + m)G(ν − m)

where

G(s) := �( s2 + 1)

�( s+1
2 )

.

Note that G(s) is positive for s > 0. We have for s > 0,

G ′(s) = 1

2
G(s)

(
ψ

( s
2

+ 1
)

− ψ

(
s

2
+ 1

2

))

with ψ the digamma function [7, 5.9.16]

ψ(s) := �′(s)
�(s)

= −γ +
∫ 1

0

1 − t s−1

1 − t
dt, �(s) > 0

so that

G ′(s)
G(s)

= 1

2

∫ 1

0

(1 − t s/2) − (1 − t (s−1)/2)

1 − t
dt = 1

2

∫ 1

0

t (s−1)/2

1 + √
t
dt

is clearly positive for s > 0. Since G(s) > 0 we deduce that G ′(s) > 0 for s > 0, so that
G(s) is increasing, and

0 <
G ′(s)
G(s)

<
1

2
. (3.4)

The function Sm(ν) is positive for m + 2k < ν < m + 2k + 1 because both G(ν ± m)

are positive for ν > m, and writing ν = m + 2k + δ gives tan π
2 (m + ν) = tan π

2 δ which is
positive for δ ∈ (0, 1), and negative for δ ∈ (−1, 0).

The logarithmic derivative of Sm is

S′
m

Sm
(ν) = π

sin πδ
+ G ′

G
(ν − m) + G ′

G
(ν + m). (3.5)

Since G ′/G > 0, we find that if δ ∈ (0, 1) then S′
m/Sm(ν) > 0 and since Sm(ν) > 0 for all

v > m we obtain that S′
m(ν) > 0 for ν ∈ (m + 2k,m + 2k + 1), so that Sm is increasing

there. Otherwise, if ν ∈ (m + 2k − 1,m + 2k), then δ ∈ (−1, 0), and we already know that
here Sm(ν) < 0. Then, since in this range π

sin πδ
< −π , the inequality (3.4) shows, with the

use of the triangle inequality, that the r.h.s. of (3.5) is

π

sin πδ
+ G ′

G
(ν − m) + G ′

G
(ν + m) < −π + 1

2
+ 1

2
< 0,

and so is the l.h.s. of (3.5), and then S′
m(ν) > 0.

Since G(s) is positive and increasing, for ν > m we get

G(ν − m) ≥ G(0) = 1√
π

.
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By Stirling’s formula G(s) ∼
√

s
2 + O(1/

√
s) as s → ∞, in fact [7, 5.6.4]

√
s

2
< G(s) <

√
s

2
+ 1, s > 0. (3.6)

Also note

tan

(
π(m + ν)

2

)
= tan π

(
m + k + δ

2

)
= tan

πδ

2
≥ πδ

2
.

We obtain

σ = 2 tan

(
π(m + ν)

2

)
G(ν + m)G(ν − m) > 2

πδ

2

√
ν + m

2
G(0) ≥ δ

√
π

2

√
ν

so that δ <

√
2
π
σ/

√
ν. ��

Corollary 3.3 Fix σ > 0. For � ≥ m ≥ 0, � = m mod 2, let ν = ν�,m(σ ) be the unique
solution of the secular equation Sm(ν) = σ with ν ∈ (�, � + 1).

Write ν = � + δ, with δ ∈ (0, 1). Then

a. As σ → 0, δ → 0,
b. As σ → ∞, we have δ → 1.

Consequently, as σ → 0, ν → �, while as σ → ∞, ν → �+1. Thus, as σ varies between
0 and +∞, �,m(σ ) := ν�,m(σ ) · (ν�,m(σ )+1) interpolates between a Neumann eigenvalue
�(� + 1) with � of the same parity as m, and a Dirichlet eigenvalue (� + 1)(� + 2) with same
m and opposite parity between � and m.

Proof That δ → 0 as σ → 0 follows from (3.3). Using monotonicity of G(s) we obtain

σ = Sm(ν) ≤ 2 tan
πδ

2
G(2m + 2k + 1)G(2k + 1) �m,k tan

πδ

2

so that as σ → ∞, we have δ → 1. ��

4 Multiplicity one

We have seen (Theorem 3.1) that the desymmetrized Robin spectrum of the hemisphere is
given by the energies

�,m(σ ) = ν�,m(σ ) · (ν�,m(σ ) + 1) (4.1)

with � ≥ 0, and 0 ≤ m ≤ � satisfying m ≡ � mod 2, satisfying the secular equation
Sm(ν) = σ , with Sm given by (3.1):

Sm(ν) = 2 tan

(
π(m + ν)

2

)
�(ν+m

2 + 1)�( ν−m
2 + 1)

�( ν+m+1
2 )�( ν−m+1

2 )
.

To show that there are no degeneracies in the desymmetrized spectrum (Theorem 1.5), it
therefore suffices to prove:

Proposition 4.1 Fix σ > 0. For all � ≥ 2 and 0 ≤ m ≤ � − 2 with m ≡ � mod 2,

ν�,m+2(σ ) > ν�,m(σ ).
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Fig. 4 Plots of ν10,m ,m = 0, 2, 4, 6, 8, 10 on [0, 10]. As asserted by Proposition 4.1, higher curves correspond
to larger value of m

Thepicture emerging for ν10,m(σ )on [0, 10], with all possible 0 ≤ m ≤ 10,m ≡ � mod 2,
is displayed within Fig. 4. This clearly supports the statement of Proposition 4.1.

Proof Recall that ν�,m(σ ) ∈ (�, � + 1), and that � = m + 2k, k ≥ 0. By Proposition 3.2,
both Sm(ν) and Sm+2(ν) are increasing and positive in (�, � + 1). Using the recurrence
�(s + 1) = s�(s) we find

Sm+2(ν)

Sm(ν)
=

ν+m
2 + 1 · ν−m−1

2
ν+m+1

2 · ν−m
2

= 1 − 2(m + 1)

(ν − m)(ν + m + 1)
< 1.

Hence for ν ∈ (�, � + 1), where both Sm(ν) and Sm+2(ν) are positive, we must have
Sm+2(ν) < Sm(ν). Therefore

Sm+2(ν�,m(σ )) < Sm(ν�,m(σ )) = σ = Sm+2(ν�,m+2(σ )).

Since Sm+2 is increasing in (�, � + 1), we deduce that ν�,m(σ ) < ν�,m+2(σ ) as claimed. ��

5 Clusters and a Szegő type limit theorem

5.1 Cluster structure

Denote the cluster (a multiset) of desymmetrized multiple Neumann eigenvalues sharing a
common value of �(� + 1) by

E�(0) =
{
�(� + 1) : 0 ≤ m ≤ �,m = � mod 2

}
.
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This cluster has size #E�(0) = ��/2� + 1. We label the eigenvalues there by

E�(0) = {
λL , λL+1, . . . , λL+��/2�

}
where L = L� is given by

L = # (E0(0) ∪ E1(0) ∪ · · · ∪ E�−1(0)) =
�−1∑
�′=0

⌊
�′

2

⌋
+ 1 = �2

4
+ O(�).

The distance of the Neumann eigenvalue cluster E�(0) to the closest other Neumann
eigenvalue cluster, which for � ≥ 1 is E�−1(0) (in other words, the distance between distinct
nearby Neumann eigenvalues), is

min
�′:�′ 	=�

dist
(
E�(0), E�′(0)

)
= �(� + 1) − (� − 1)� = 2�. (5.1)

We saw that the Robin eigenvalues are ν(ν + 1) where ν = ν�,m(σ ) ∈ (�, � + 1),
� = m mod 2, is a solution of the secular equation Sm(ν) = σ . Denote by

E�(σ ) = {�,m(σ ) : � ≥ m ≥ 0, � = m mod 2} (5.2)

which is the evolution of the Neumann eigenvalue cluster E�(0). Since � < ν�,m(σ ) < �+ 1,

the spectral cluster E�(σ ) is contained in the open interval
(
�(� + 1), (� + 1)(� + 2)

)
, and

in particular the evolved eigenvalue clusters E�(σ ) do not mix with each other.

5.2 Asymptotics of the Robin–Neumann gaps

Recall that we write ν�,m(σ ) = � + δ�,m(σ ).

Lemma 5.1 For fixed σ > 0, as � → ∞, with 0 ≤ m < �, � = m mod 2,

δ�,m(σ ) = 2σ

π
√

�2 − m2

(
1 + O

(
1

� − m

))
. (5.3)

For m = �, we have
δ�,�(σ ) ∼ σ√

π�
. (5.4)

Proof For 0 < �−m = O(1), (5.3) is just the upper bound (3.3), so assume �−m → ∞. The
cluster E�(σ ) consists of ��/2�+1 eigenvalues �,m(σ ) = ν�,m(ν�,m +1) withm+2k = �,
m, k ≥ 0, and where ν�,m(σ ) is the unique solution of the secular equation Sm(ν) = σ in the
interval (�, � + 1). We write

ν = ν�,m(σ ) = � + δ = m + 2k + δ, δ = δ�,m(σ ).

Recall that the Sm of the secular equation Sm(ν) = σ is given by

Sm(ν) = 2 tan

(
π(m + ν)

2

)
G(ν + m)G(ν − m) (5.5)

where G(s) = �( s2 + 1)/�( s+1
2 ) satisfies (cf. (3.1))

G(s) =
√
s

2

(
1 + O

(
1

s

))
, s → ∞.
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Since we assume that � − m = 2k → ∞, both arguments of G in (5.5) tend to infinity,
because ν +m = 2k + 2m + δ = � +m + δ and ν −m = 2k + δ = � −m + δ. Moreover,

tan
π

2
(ν + m) = tan

π

2
δ

and we know (Proposition 3.2) that

δ � σ/
√

� → 0 (5.6)

so that

tan
π

2
(ν + m) = tan

π

2
δ = π

2
δ + O

(
1

�3/2

)
.

Therefore we can write

Sm(ν) = 2
π

2
δ

(
1 + O

(
1

�

))
·
√

ν − m

2

(
1 + O

(
1

� − m

))

·
√

ν + m

2

(
1 + O

(
1

� + m

))

= πδ ·
√
k + δ

2

√
k + m + δ

2

(
1 + O

(
1

� − m

))
.

(5.7)

Furthermore, since 2k = � − m,√
k + δ

2
= √

k

(
1 + O

(
δ

� − m

))
=

√
� − m

2

(
1 + O

(
1√

�(� − m)

))

and likewise since k + m = (� + m)/2√
k + m + δ

2
=

√
� + m

2

(
1 + O

(
1

�3/2

))
.

Inserting (5.7) into the secular equation Sm(ν) = σ gives, when � − m → ∞, that

δ�,m(σ ) = 2σ

π
√

�2 − m2

(
1 + O

(
1

� − m

))
.

When m = �, we use δ = δ�,�(σ ) � 1/
√

� → 0 and G(0) = 1/
√

π to obtain

σ = S�(σ ) = 2 tan
(π

2
δ
)
G(2� + δ)G(δ) ∼ πδG(2�)G(0) ∼ πδ

√
�

1√
π

as � → ∞, which gives (5.4). ��
We derive an asymptotic for the RN gaps d�,m(σ ) = �,m(σ ) − �(�(+1) in each cluster,

an effective version of Proposition 1.1:

Corollary 5.2 For fixed σ > 0, as � → ∞, for all 0 ≤ m < � with m = � mod 2, the
Robin–Neumann gaps satisfy

d�,m(σ ) = 2σ

π
· 2� + 1√

�2 − m2
+ O

( √
�

(� − m)3/2

)
. (5.8)

For m = � we have

d�,�(σ ) ∼ 2σ√
π

√
�. (5.9)
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Proof We have

d�,m(σ ) = �,m(σ ) − �,m(0) = (ν − �)(ν + � + 1) = δ�,m(2� + 1 + δ�,m)

= (2� + 1)δ�,m + δ2�,m = (2� + 1)δ�,m + O

(
1

�

)

where we have used (5.6). Moreover, for m < � we have the asymptotic formula (5.3) for
δ�,m , and hence

d�,m(σ ) = 2(2� + 1)σ

π
√

�2 − m2

(
1 + O

(
1

� − m

))
+ O

(
1

�

)

= 2(2� + 1)σ

π
√

�2 − m2
+ O

( √
�

(� − m)3/2
+ 1

�

)

= 2(2� + 1)σ

π
√

�2 − m2
+ O

( √
�

(� − m)3/2

)
.

For the case m = �, (5.9) similarly follows from (5.4). ��

5.3 Equidistribution of gaps in the cluster

We can now deduce the equidistribution of gaps in each cluster (Corollary 1.2) and compute
the average gap in a cluster as asserted in (1.3). The average gap formally corresponds to the
test function f (x) = x , which is unbounded. In both cases the arguments are similar, except
that for the case of Corollary 1.2, where we use a compactly supported smooth test function
f , the derivatives of f are invoked to control the error terms. In what follows we only give
the detailed proof for the average gap.

Corollary 5.3 For fixed σ > 0, as � → ∞,

1

#E�(σ )

∑
λn(σ )∈E�(σ )

dn(σ ) ∼ 2σ.

Proof Using d�,m = (2� + 1)δ�,m + δ2�,m � √
� by (3.3), we see that we may restrict the

average to m ≤ � − 1 with an error of O(�−1/2):

1

#E�(σ )

∑
λn(σ )∈E�(σ )

dn(σ ) = 1

�/2 + O(1)

∑
0≤m≤�−1

m=� mod 2

d�,m + O(�−1/2).

Then we use (5.8) to obtain

1

�/2 + O(1)

∑
0≤m≤�−1
m=� mod 2

d�,m = 1

�/2

∑
0≤m≤�−1
m=� mod 2

2(2� + 1)σ

π
√

�2 − m2
+ O

(
1

�1/2

)
.

Moreover, using standard bounds for the rate of convergence of Riemann sums gives

1

�/2

∑
0≤m≤�−1
m=� mod 2

2(2� + 1)σ

π
√

�2 − m2
=

(
4σ

π
+ O

(
1

�

)) (∫ 1

0

dx√
1 − x2

+ O

(
1

�1/2

))

= 2σ + O

(
1

�1/2

)
.
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Altogether, we obtain

1

#E�(σ )

∑
λn(σ )∈E�(σ )

dn(σ ) = 2σ + O

(
1

�1/2

)
∼ 2σ

as claimed. ��

6 Bounds for the RN gaps: Proof of Theorem 1.3

Proof Using (3.3) shows that for � � 1 and 0 ≤ m ≤ � with m ≡ � mod 2,

�,m(σ ) − �(� + 1) = (νl,m(σ ) − �)(ν�,m(σ ) + � + 1) � σ
√

�

so that

max
{
|λ − �(� + 1)| : λ ∈ E�(σ )

}
� σ

√
�.

Therefore, for all n, we have

λn(σ ) − λn(0) � σλn(0)
1/4. (6.1)

This proves Theorem 1.3(a).
To show that we can actually attain the upper bound in (6.1), note that Proposition 4.1

demonstrates that to get the largest possible Robin–Neumann gaps, it is worth, given � ≥ 0,
to take m = �. We then use (5.9) to obtain

d�,�(σ ) ∼ 2σ√
π

√
� ∼ 2√

π
�,�(0)

1/4σ,

which proves Theorem 1.3(b). ��
We note that �,�(0) ∈ E�(0), and therefore for each � � 1, we have found n = �2/4 +

O(�) for which

λn(σ ) − λn(0) � λn(0)
1/4 · σ,

and in particular that the Robin–Neumann gaps are unbounded.

7 Level spacings

In this section, we show that the level spacing distribution of the desymmetrized Robin spec-
trum on the hemisphere is a delta function at the origin, as is the case with Neumann or
Dirichlet boundary conditions. We note that for other spherical caps (cf [5] for background),
we expect that the level spacing distribution is Poissonian. A numerical plot for the desym-
metrized Dirichlet spectrum on the cap with opening angle θ0 = π/3 (the hemisphere has
θ0 = π/2) is displayed in Fig. 5.

Proof of Corollary 1.4 The statement of Corollary 1.4 is equivalent to the fact that for every
y > 0,

lim
N→∞

1

N
#{n ≤ N : λσ

n+1 − λσ
n > y} = 0. (7.1)
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Fig. 5 The level spacing distribution P(s) for all 1258 desymmetrized Dirichlet eigenvalues ν(ν + 1) with
ν < 100 for the spherical cap with opening angle θ0 = π/3. The solid curve is the Poisson result exp(−s)

Recall that we divided the ordered desymmetrizedRobin eigenvalues {λσ
n }n≥0 into disjoint

clusters E�(σ ) (see (5.2)), each at distance O(
√

�) from the Neumann eigenvalues �(� + 1),
so diam E�(σ ) � √

� (Theorem 1.3(a)), and hence of distance 2� + O(
√

�) from the closest
other cluster, and of size #E�(σ ) = ��/2� + 1 = �/2 + O(1).

For N � 1, denote by L the index of the cluster to which λN (σ ) belongs, so that
⋃

�≤L−1

E�(σ ) ⊂ {λn(σ ) : n ≤ N } ⊆
⋃
�≤L

E�(σ )

and therefore

N =
∑

�≤L−1

#E�(σ ) + O(L) = L2

4
+ O(L)

so that L = O(
√
N ). Then

#{n ≤ N : λσ
n+1 − λσ

n > y} ≤
L∑

�=0

∑
λσ
n+1−λσ

n >y
λσ
n ∈E�(σ )

1. (7.2)

Denote by n+ the maximal index of an eigenvalue in E�(σ ), and by n− the minimal index.
Then the gaps corresponding to the cluster E�(σ ) are firstly those with λn+1(σ )−λn(σ )with
n− ≤ n ≤ n+ − 1 and secondly, the last gap λn++1(σ ) − λn+(σ ). The number of those gaps
of the second kind is at most L + 1 = O(

√
N ).

For the gaps > y of the first kind, we have in each cluster

∑
λσ
n+1−λσ

n >y
λσ
n ∈E�(σ )
n<n+

1 <
∑

λσ
n+1−λσ

n >y
n−≤n<n+

λn+1(σ ) − λn(σ )

y

≤
∑

n−≤n<n+

λn+1(σ ) − λn(σ )

y
= λn+ − λn−

y
.
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Now λn+ − λn− = diam E�(σ ) � √
�, and so we find that

∑
λσ
n+1−λσ

n >y
λσ
n ∈E�(σ )
n<n+

1 �
√

�

y
. (7.3)

Summing the inequality (7.3) over � ≤ L = O(
√
N ) gives

L∑
�=0

∑
λσ
n+1−λσ

n >y
λσ
n ∈E�(σ )
n<n+

1 �
∑
�≤L

√
�

y
� L3/2

y
� N 3/4

y
.

Altogether, substituting this into (7.2), and upon taking into account the gaps of the second
kind, we find that for N �y 1,

#{n ≤ N : λσ
n+1 − λσ

n > y} � N 3/4

y
+ √

N ,

which proves (7.1). ��
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