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The number of points on a hyperelliptic curve over a field of q
elements may be expressed as q + 1 + S where S is a certain
character sum. We study fluctuations of S as the curve varies over
a large family of hyperelliptic curves of genus g. For fixed genus
and growing q, Katz and Sarnak showed that S/

√
q is distributed

as the trace of a random 2g × 2g unitary symplectic matrix.
When the finite field is fixed and the genus grows, we find that
the limiting distribution of S is that of a sum of q independent
trinomial random variables taking the values ±1 with probabilities
1/2(1 + q−1) and the value 0 with probability 1/(q + 1). When
both the genus and the finite field grow, we find that S/

√
q has

a standard Gaussian distribution.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Given a finite field Fq of odd cardinality q and a square-free monic polynomial F ∈ Fq[X] of de-
gree d � 3, we get a smooth projective hyperelliptic curve C F with affine model

C F : Y 2 = F (X)

having genus g = (d − 2)/2 when d is even and g = (d − 1)/2 when d is odd. In this note we study
the fluctuations in the number of Fq-points on C F when F is drawn at random from the set of all
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square-free monic polynomials F ∈ Fq[X] of degree d, where the probability measure is obtained by
picking the coefficients of F uniformly in F

d
q and conditioning on F being square free. Correspondingly

we get a probability measure on a family of hyperelliptic curves of genus g � 1 defined over Fq . Our
goal is to study these fluctuations in the limit of either large genus or large q, or both.

The number of Fq-points on C F can be written as3 q + S(F ) + 1 where S(F ) is the character sum

S(F ) =
∑
x∈Fq

χ
(

F (x)
)

and χ is the quadratic character of F
×
q (with the convention that χ(0) = 0). Thus the problem is

equivalent to studying the fluctuations of S(F ) as F varies over all square-free polynomials in Fq[X]
of degree d, in the limit as either d or q (or both) grow.

Our finding is that there are three distinct types of distribution results according to the way the
parameters g and q are allowed to grow:

(i) For q fixed and the genus g → ∞, we find that S(F ) is distributed asymptotically as a sum
of q independent identically distributed (i.i.d.) trinomial random variables {Xi}q

i=1, i.e., random
variables taking values in 0, ±1 with probabilities 1/(q + 1), 1/2(1 + q−1) and 1/2(1 + q−1),
respectively.

(ii) When the genus g is fixed and q → ∞, S(F )/
√

q is distributed as the trace of a random matrix
in the group U Sp(2g) of 2g × 2g unitary symplectic matrices. This is due to Katz and Sarnak [5].

(iii) When both g → ∞ and q → ∞ we find that S(F )/
√

q has a Gaussian value distribution with
mean zero and variance unity.

The case (iii) when both variables grow can be thought of as a limiting case of either the two
previous ones, when one of the two parameters is held fixed. It is thus a good consistency check
to see that the limit distributions in both cases (i) and (ii) are a standard Gaussian. Indeed, in the
case when q is fixed, (i) gives that the limit distribution of S(F )/

√
q is that of a normalized sum

(X1 + · · · + Xq)/
√

q of q i.i.d. random variables; in turn the distribution of a normalized sum of such
i.i.d.’s converges, as q → ∞, to a Gaussian distribution with mean zero and variance unity by the
Central Limit Theorem. In case the genus g is fixed, (ii) gives that the limit distribution of S(F )/

√
q is

that of the traces of random matrices in U Sp(2g). The limit distribution of traces of a random matrix
in U Sp(2g), as g → ∞, is a standard Gaussian by a theorem of Diaconis and Shahshahani [3]. Of
course this is not a proof of (iii), as it only addresses the limiting form of the limit distribution in (i)
and (ii), that is either limq→∞(limg→∞) or limg→∞(limq→∞) and not the joint limit limq→∞,g→∞ .

1.1. Some related work

1. In the unpublished manuscript [8], Larsen studied moments for a related family of hyperelliptic
curves, namely curves of the form Y 2 = ∏n

i=1(X − ai), where a1, . . . ,an ranges over all n-tuples
consisting of distinct elements of Fq , and obtained Gaussian moments.

2. Knizhnerman and Sokolinskii [6,7] computed moments of the character sum S(F ) when F ranges
over all monic non-square (rather than square-free) polynomials to investigate extreme values
taken by S(F ) (we thank Igor Shparlinski for this reference).

3. Bergström [1] used methods closely related to ours in order to obtain equivariant point counts
for families of hyperelliptic curves. These point counts were then used to determine cohomology
groups of the moduli space of stable curves of genus 2 with n marked points, for n � 7.

3 Giving the number of points of C F a spectral interpretation, it is more natural to write the number of points as
q − S ′(F ) + 1, where S ′(F ) = −S(F ) is the trace of the action induced by the Frobenius automorphism on a certain cohomology
group. However, for our purposes, studying S(F ) will lead to slightly simpler notation, and, as we shall see, the distribution of
S(F ) is symmetric, hence S(F ) and S ′(F ) have the same distribution.
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4. Finally, we refer to the recent preprint of Faifman and Rudnick [4] which studies the statistics of
the zeros of the zeta function of the curves C F over a fixed finite field in the limit of large genus.

1.2. The main results

Before giving a more quantitative statement of our main results, we will need some notation. Let
Vd ⊂ Fq[X] be the set of monic polynomials of degree d, and let Fd ⊂ Vd be the subset of square-free
polynomials of degree d. We will model S(F ) as a sum of q independent identically distributed (i.i.d.)
trinomial random variables {Xi}q

i=1, where each Xi takes values in 0,±1 with probabilities 1/(q + 1),
1/2(1 + q−1) and 1/2(1 + q−1), respectively.

For q fixed and d → ∞, we show that S(F ) behaves as
∑q

i=1 Xi in the following sense:

Theorem 1. If q is fixed and d tends to infinity then the distribution of S(F ), as F ranges over all elements
in Fd, is that of a sum of q independent trinomial random variables. More precisely, for s ∈ Z with |s| � q, we
have4

|{F ∈Fd: S(F ) = s}|
|Fd| = Prob.

( q∑
i=1

Xi = s

)
· (1 + O

(
q(3q−d)/2)).

Remark. We may also let q tend to infinity in Theorem 1, provided that d tends to infinity in such
a way that d > 3q.

By studying the moments we find that S(F )/
√

q has a Gaussian value distribution when both d,q
tend to infinity.

Theorem 2. If d,q both tend to infinity, then the moments of S(F )/
√

q are asymptotically Gaussian with
mean 0 and variance 1. In particular the limiting value distribution is a standard Gaussian.

2. Proof of Theorem 1

The idea of the proof is to make the following heuristic precise: Putting the uniform probability
measure on F , we may view f → S( f ) as a random variable on F . S( f ) can in turn be written as

S( f ) =
∑
x∈Fq

Xx,

where for each x ∈ Fq , Xx = χ( f (x)) is also a random variable on F . Then, as d grows, the vari-
ables {Xx}x∈Fq become independent and the distribution of each individual Xx is that of the earlier
mentioned trinomial random variable.

Thus, we will study the following slightly more general problem: Given a subset S ⊂ Fq and a
tuple a = (ax)x∈S , ax ∈ Fq , we wish to find the probability that for a randomly selected F ∈F we have
F (x) = ax for all x ∈ S .

Before proceeding we need to introduce some additional notation. For F ∈ Fq[X], write F =∏n
i=1 F ei

i as a product of irreducible polynomials, and let

μ(F ) :=
{

0 if ei > 1 for some i,
(−1)n if F is square free.

Further, put

4 Here, and in what follows, all constants implied by the O (·)-notation will be absolute.
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|F | := qdeg(F )

and let

ζq(s) :=
∑

F monic

|F |−s =
∏

F irreducible

(
1 − |F |−s)−1 = 1

1 − q1−s

be the (incomplete) zeta function of A
1/Fq .

We will need to know the number of square-free monic polynomials, which can easily be deduced
from the identity

ζq(s) = ζq(2s)
∑
d�0

|Fd|q−ds, 	(s) > 1.

Lemma 3. The number of square-free monic polynomials of degree d equals

|Fd| =
{

qd − qd−1 = qd/ζ(2) if d � 2,
qd if d = 0,1.

We shall also need the following simple counting lemma which is at the heart of the independence
result.

Lemma 4. For l � q let x1, x2, . . . , xl ∈ Fq be distinct elements, and let a1,a2, . . . ,al ∈ Fq. If d � l, then

∣∣{F ∈ Vd: F (x1) = a1, . . . , F (xl) = al
}∣∣ = qd−l.

Proof. Let Ṽd = {g ∈ Fq[X]: deg(g) � d − 1}. The map f (X) → g(X) := f (X) − Xd then defines a
bijection from Vd to Ṽd . Since f (xi) = ai for 1 � i � l, is equivalent to g(xi) = ai − xd

i for 1 � i � l, we
find that

∣∣{ f ∈ Vd: f (xi) = ai for 1 � i � l
}∣∣ = ∣∣{g ∈ Ṽd: g(xi) = ai − xd

i for 1 � i � l
}∣∣. (2.1)

Now, the evaluation map g → (g(x1), . . . , g(xl)) is a linear map from Ṽd to F
l
q , and its kernel consists

of all g ∈ Ṽd that are divisible by
∏l

i=1(x − xi). Hence the Fq-dimension of the kernel equals d − l,
and since dimFq (Ṽd) = d the cokernel has dimension l. In particular, the evaluation map is surjective,

and both sides of (2.1) equal qd−l for all choices of a1, . . . ,al . �
Next we determine the probability of a random polynomial in Fd taking a prescribed set of nonzero

values on l points.

Lemma 5. Let d � 2 and l � q be a positive integers, let x1, x2, . . . , xl ∈ Fq be distinct elements, and let
a1,a2, . . . ,al ∈ Fq be nonzero elements. Then

|{F ∈Fd: F (x1) = a1, F (x2) = a2, . . . , F (xl) = al}|
|Fd| = q−l

(1 − q−2)l
· (1 + O

(
ql−d/2)).



Author's personal copy

584 P. Kurlberg, Z. Rudnick / Journal of Number Theory 129 (2009) 580–587

Proof. Using inclusion–exclusion, we find that

∣∣{F ∈Fd: F (xi) = ai for 1 � i � l
}∣∣

=
∑

F∈Vd :F (xi)=ai
for 1�i�l

μ(F )2 =
∑

D:deg(D)�d/2

μ(D)
∣∣{F ∈ Vd−2 deg(D): D(xi)

2 F (xi) = ai for 1 � i � l
}∣∣.

With
∑′

denoting the sum over all polynomials such that D(x) 
= 0 for all x ∈ {x1, x2, . . . , xl}, we
find, since ai 
= 0 for all i � l, that the above equals

∑ ′

D:deg(D)�d/2

μ(D)
∣∣{F ∈ Vd−2 deg(D): F (xi) = ai D(xi)

−2 for 1 � i � l
}∣∣. (2.2)

Now, as long as deg(F ) = d − 2 deg(D) � l, by Lemma 4, we have

∣∣{F ∈ Vd−2 deg(D): F (xi) = ai D(xi)
−2 for 1 � i � l

}∣∣ = qd−2 deg(D)−l

hence (2.2) equals

qd−l
∑ ′

D:deg(D)<(d−l)/2

μ(D)q−2 deg(D) + Error (2.3)

where, since there can be at most one polynomial F of degree smaller than l that attains l prescribed
values (at l distinct points),

Error �
∑

D:(d−l)/2�deg(D)�d/2

1 = O
(
qd/2).

Our next goal is to evaluate the main term

∑ ′

D:2 deg(D)<d−l

μ(D)q−2 deg(D) =
∑ ′

D

μ(D)q−2 deg(D) + O
(
q(l−d)/2).

Noting that

∑ ′

D

μ(D)|D|−2s =
∏

F :F is irreducible,
F (xi)
=0 for i�l

(
1 − |F |−2s)

= (
1 − q−2s)q−l ·

∏
F :F is irreducible

deg(F )>1

(
1 − |F |−2s) = 1

ζ(2s)(1 − q−2s)l

we find that (2.3) equals

qd−l
(

1

ζ(2)(1 − q−2)l
+ O

(
q(l−d)/2)) + O

(
qd/2) = qd−l

ζ(2)(1 − q−2)l
+ O

(
qd/2). (2.4)

Since |Fd| = qd

ζ(2)
for d � 2, the probability that F (xi) = ai for all i � l equals
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q−l

(1 − q−2)l
+ O

(
q−d/2),

concluding the proof. �
We now easily obtain the probability of F attaining any set of prescribed values.

Proposition 6. Let x1, x2, . . . , xl, xl+1, xl+m ∈ Fq be distinct elements, let a1,a2, . . . ,al ∈ F
×
q , and let al+1 =

al+2 = · · · = al+m = 0. Then

1

|Fd|
∣∣{F ∈Fd: F (xi) = ai for 1 � i � m + l

}∣∣ = (1 − 1/q)mq−(m+l)

(1 − q−2)m+l
· (1 + O

(
q(3m+2l−d)/2)). (2.5)

Proof. Any F ∈Fd which vanishes at Z = {xl+1, xl+2, . . . , xl+m} can be written as

F (x) =
l+m∏

i=l+1

(x − xi)G(x)

where G ∈Fd−m is a square-free polynomial that is non-vanishing on Z . Moreover, the condition that
F (xi) = ai for 1 � i � l, can then be expressed as G(xi) = ai

∏l+m
j=l+1(xi − x j)

−1 for 1 � i � l, and G(x j)

is arbitrary (but nonzero) for l +1 � j � l +m. In other words, there are (q −1)m possible values for G
restricted to Z and by Lemma 5 (in particular, see (2.4)), the number of such polynomials equals

(q − 1)m
(

qd−m−(m+l)

ζ(2)(1 − q−2)m+l
+ O

(
q(d−m)/2)) = (1 − 1/q)m

(
qd−(l+m)

ζ(2)(1 − q−2)m+l
+ O

(
q(d+m)/2)).

Dividing by the number of square-free polynomials, we find that the probability of a random
F ∈Fd vanishing on Z , and taking prescribed values outside Z equals

(1 − 1/q)mq−(m+l)

(1 − q−2)m+l

(
1 + O

(
q(3m+2l−d)/2)). �

To finish the proof of Theorem 1, we argue as follows: Let x1, x2, . . . , xq be distinct elements
of Fq , let εi ∈ {−1,0,1} for 1 � i � q, and define m = |{i ∈ {1,2, . . . ,q}: εi = 0}|. Taking l = q − m in
Proposition 6 and noting that the number of nonzero squares, respectively non-squares, in Fq equals
(q − 1)/2, we find that

|{F ∈Fd: χ(F (xi)) = εi for all 1 � i � q}|
|Fd|

=
(

q − 1

2

)q−m

· (1 − 1/q)mq−q

(1 − q−2)q

(
1 + O

(
q(3q−d)/2))

= 2−(q−m) (1 − 1/q)qq−m

(1 − q−2)q

(
1 + O

(
q(3q−d)/2)) = 2−(q−m)q−m

(1 + q−1)q

(
1 + O

(
q(3q−d)/2)).

On the other hand, if X1, . . . , Xq are i.i.d. trinomial random variables as before, we have

Prob.(Xi = εi for 1 � i � q) = (q + 1)−m · 2−(q−m)
(
1 + q−1)m−q = 2−(q−m)

(
1 + q−1)−q

q−m.

Summing over all possible choices of {εi}q
i=1 such that

∑q
i=1 εi = s, the proof is concluded.
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3. Proof of Theorem 2

Let

Mk(q,d) := 1

|Fd|
∑

F∈Fd

(
S(F )√

q

)k

be the kth moment of S(F ) as F ranges over the family of square-free polynomials of degree d
in Fq[X]. As before, let X1, . . . , Xq be independent trinomial random variables, taking values −1, 0, 1

with probabilities (
q/2
q+1 , 1

q+1 ,
q/2
q+1 ). Theorem 2 is then an immediate consequence of the following

proposition.

Proposition 7. We have

Mk(q,d) = E

((
1

q1/2

q∑
i=1

Xi

)k )
+ O

(
q(3k−d)/2).

In particular, if q,d → ∞, Mk(q,d) agrees with Gaussian moments for all k.

Proof. We have

Mk(q,d) = 1

|Fd|
∑
f ∈Fd

(
1

q1/2

∑
x∈Fq

χ
(

f (x)
))k

= 1

qk/2

∑
x1,x2,...,xk∈Fq

∑
f ∈Fd

χ
(

f (x1) f (x2) · · · f (xk)
)

= 1

qk/2

k∑
l=1

c(k, l)
∑

((x1,...,xl),(ε1,...,εl))∈Pk,l

1

|Fd|
∑
f ∈Fd

χ

(
l∏

i=1

f (xi)
εi

)
(3.1)

where

Pk,l =
{(

(x1, . . . , xl), (ε1, . . . , εl)
)
: x1, . . . , xl all distinct and

l∑
i=1

εi = k

}

and c(k, l) is a certain combinatorial factor, whose exact form is unimportant. Now, by Lemma 5,

1

|Fd|
∑
f ∈Fd

χ

(
l∏

i=1

f (xi)
εi

)
= 0 + O

(
ql−d/2)

unless all εi are even, in which case

1

|Fd|
∑
f ∈Fd

χ

(
l∏

i=1

f (xi)
εi

)
= 1

(1 + 1/q)l
+ O

(
ql−d/2).

Noting that

k∑
l=1

c(k, l)
∑

((x1,...,xl),(ε1,...,εl))∈Pk,l

1 = qk
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we find that the contribution from the error terms is � q−k/2qkqk−d/2 and thus (3.1) equals

1

qk/2

k∑
l=1

c(k, l)
∑

((x1,...,xl),(ε1,...,εl))∈Pk,l
all εi even

1

(1 + 1/q)l
+ O

(
q(3k−d)/2).

On the other hand, since X1, . . . , Xq are independent trinomial random variables, we find that the
expectation of the kth moment of their normalized sum is

E

((
1

q1/2

q∑
j=1

X j

)k)
= 1

qk/2

∑
i1,i2,...,ik∈{0,1,...,q−1}

E(Xi1 · Xi2 · · · Xik )

= 1

qk/2

k∑
l=1

c(k, l)
∑

((x1,...,xl),(ε1,...,εl))∈Pk,l

E

(
l∏

j=1

Xεi
i j

)
.

As before we have E(
∏l

j=1 Xεi
i j

) = 0, unless all εi are even, in which case

E

(
l∏

j=1

Xεi
i j

)
= 1

(1 + 1/q)l

(note that E(Xε
i j
) = 0 for ε odd, and E(Xε

i j
) = 1/(1 + q−1) for ε even), concluding the proof of the

first assertion.
The final assertion follows since the moments of a sum of bounded i.i.d. random variables converge

to the Gaussian moments, cf. [2, Section 30]. �
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