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Abstract
We consider the scaling limit of linear statistics for eigenphases of a matrix
taken from one of the classical compact groups. We compute their moments and
find that the first few moments are Gaussian, whereas the limiting distribution
is not. The precise number of Gaussian moments depends upon the particular
statistic considered.

PACS number: 02.20.Hj

1. Introduction

In this paper, we investigate the scaling limit of linear statistics for eigenphases of matrices in
the classical groups. Given a unitary N × N matrix U with eigenvalues eiθn , 1 � n � N , and
a test function g which we assume is 2π-periodic, consider the linear statistic

Tr g(U) :=
N∑

n=1

g(θn).

A number of authors have studied the limiting distribution as N → ∞ of Tr g(U) as U varies
over a family G(N) of classical groups and have concluded that the distribution is Gaussian,
see [1, 2, 4].

Soshnikov [9] showed that this result remains valid in the ‘mesoscopic’ regime, that is if
one considers eigenphases θn in an interval of length about 1/L where L = LN → ∞ but
L/N → 0: for a Schwartz function f on the real line, define

FL(θ) :=
∞∑

j=−∞
f

(
L

2π
(θ + 2πj)

)
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which is 2π-periodic and localized on a scale of 1/L. Soshnikov [9] showed that as long as
L/N → 0, then the limiting distribution of Tr FL(U) as U ranges over all unitary matrices in
U(N),N → ∞ is a Gaussian with mean

N

L

∫ ∞

−∞
f (x) dx

and variance ∫ ∞

−∞
f̂ (t)2|t| dt

where the Fourier transform is defined as

f̂ (t) :=
∫ ∞

−∞
f (x) e−2π ixt dx.

There are similar formulae for the other classical groups.
Our goal is to investigate these linear statistics in the scaling limit, that is to take L = N .

Thus we set

Zf (U) := Tr FN(U) =
N∑

n=1

FN(θn).

In [3] we proved

Theorem 1. If suppf̂ ⊆ [−2/m, 2/m] then the first m moments of Zf (U) over the unitary
group U(N) converge as N → ∞ to the Gaussian moments with mean

∫ ∞
−∞f (x) dx and

variance ∫ ∞

−∞
min(|u|, 1)|f̂ (u)|2 du.

We called this a ‘mock-Gaussian’ behaviour. It is worth remarking that in [3] we find the full
distribution of Zf , and it is not Gaussian; only the first few moments are.

The purpose of this paper is to demonstrate mock-Gaussian behaviour for linear statistics
in other classical compact groups, the special orthogonal group SO(N) and the symplectic
group Sp(N) (N must be even in the symplectic group). If eiθ is an eigenvalue of a matrix U
taken from one of these groups then e−iθ is also an eigenvalue. This means 1 is always an
eigenvalue of U ∈ SO(N) if N is odd.

Due to the pairing of eigenvalues, the function f must be even. Our results are

Theorem 2. (i) If suppf̂ ⊆ [−1/m, 1/m] then the first m moments of Zf (U) over the
symplectic group Sp(N) converge to the Gaussian moments with mean

f̂ (0) −
∫ 1

0
f̂ (u) du

and variance

2
∫ 1/2

−1/2
|u|f̂ (u)2 du.

(ii) If suppf̂ ⊆ (−1/m, 1/m) then the first m moments of Zf (U) over the special orthogonal
group U ∈ SO(N) converge to the Gaussian moments with mean

f̂ (0) +
∫ 1

0
f̂ (u) du
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and variance

2
∫ 1/2

−1/2
|u|f̂ (u)2 du.

Remark. There exists f such that suppf̂ ⊆ [−1/m, 1/m] and whose (m + 1)st moment is
not Gaussian. To see this, observe that the mth cumulants can be calculated exactly, and it
ceases to vanish once the support of f̂ is no longer contained in the interval [−1/m, 1/m].

1.1. Moments and cumulants

One approach to proving such results is to use the Fourier expansion g(θ) = ∑
n gn einθ and

expand Tr g(U) as a sum

Tr g(U) =
∑

n

gn Tr (Un).

Computing moments of Tr g(U) then boils down to being able to compute integrals of products
of Tr(Un) over the classical group. Theorem 1 for the unitary group was proved in [3] using
this approach by employing a result of Diaconis and Shahshahani [1, 2], concerning moments
of traces of random unitary matrices. Their result is a consequence of Schur duality for
representations of the unitary group and the symmetric group, and the second orthogonality
relation for characters of the symmetric group.

The paper by Diaconis and Evans [1] (see also [2]) contains a corresponding result for
moments of traces of random symplectic and orthogonal3 matrices (which they deduce using
the work of Ram [7] on Brauer algebras), which can be used to prove our theorems in half the
range, that is the mth moment of Zf is Gaussian if suppf̂ lies in the interval (−1/2m, 1/2m).
We wish to have the full range so as to compare with zeros of quadratic L-functions, where
linear statistics show mock-Gaussian behaviour in the same full range (this can be deduced
from the work of Rubinstein [8]). Using a result of Özlück and Snyder [6], if one assumes the
generalized Riemann hypothesis, then the mean of a linear statistic for quadratic L-functions
can be calculated so long as suppf̂ ⊂ (−2, 2). The case of Dirichlet L-functions, which
correspond to the unitary group, was considered in [3].

To obtain the results we desire, we abandon moments and instead use the cumulants
C

G(N)
� (g) of Tr g(U). These are defined via the expansion

log EG(N)(et Tr g(U)) =
∞∑

�=1

C
G(N)

� (g)
t�

�!

where EG(N) denotes the expectation with respect to Haar measure over the group G(N). The
cumulants have previously been considered in this context by Soshnikov [9] (interestingly, his
results again only give half the required range), and it is his combinatorial approach that we
adopt.

There is a natural decomposition for the cumulants on the symplectic and special
orthogonal groups. For brevity, we will describe the situation for the symplectic group
(so N, the matrix size, is assumed to be even). The cumulants can be written as

C
Sp(N)

� (g) = 2�Ceven
�,N+1(g) − 2�Codd

�,N+1(g).

We show that the odd parts Codd
�,N+1(g) of the cumulants vanish in a certain region, and in fact

if gk = 0 for |k| > (N + 1)/� then the �th cumulant vanishes.
3 Note that Diaconis and Evans consider orthogonal matrices, whereas we are interested in the special orthogonal
group.
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For all g, the even summand equals half a unitary cumulant:

Ceven
�,N+1(g) = 1

2C
U(N+1)
� (g).

We may now employ the available results about the unitary group to deduce that Ceven
�,N+1(g)

also vanishes in a larger region. Setting g = FN we obtain theorem 2.
Since moments and cumulants give essentially equivalent information, we can now go

back to computing averages of the product of traces on classical groups and resolve a problem
raised in [1, remark 8.2], to show

Theorem 3. Let Zj be independent standard normal random variables, and let

ηj =
{

1 if j is even

0 if j is odd.

(i) If aj ∈ {0, 1, 2, . . .} for j = 1, 2, . . . are such that
∑

jaj � N + 1, where N is even, then

ESp(N)

{∏
(Tr Uj)aj

}
= E

{∏ (√
jZj − ηj

)aj

}
.

(ii) If aj ∈ {0, 1, 2, . . .} for j = 1, 2, . . . are such that
∑

jaj � N − 1 then

ESO(N)

{∏
(Tr Uj)aj

}
= E

{∏(√
jZj + ηj

)aj

}
.

Similar theorems have been proved by Diaconis and Evans [1], though only for half the range
(that is, they require

∑
jaj � N/2).

2. Cumulants of linear statistics

In order to calculate C
Sp(N)

� (g) we need to know the moment generating function. Using Weyl’s
integration formula, one can write ESp(N){et Tr g(U)} as an integral over the N/2 independent
eigenphases (recall that N must be even for a symplectic matrix to exist), see e.g. [5]. Thus,
writing N = 2M ,

ESp(N){et Tr g(U)} = ESp(N)

{
exp

(
2t

M∑
n=1

g(θn)

)}

=
∫

[0,π ]M
Det{QSp(2M)(θi, θj )}1�i,j�M

M∏
n=1

e2tg(θn) dθn

where the kernel is QSp(N)(x, y) := SN+1(x − y) − SN+1(x + y) with

SN(z) := 1

2π

sin(Nz/2)

sin(z/2)
. (1)

Now, it is a general fact that if

E

{
exp

(
M∑

n=1

tg(θn)

)}
=

∫
T

M

Det{QM(θi, θj )}1�i,j�M

M∏
n=1

etg(θn) dθn

where E denotes averaging the θn over some real interval T, then defining the �th cumulant of∑
g(θn), C�, by the expansion

log E

{
exp

(
t

M∑
n=1

g(θn)

)}
=

∞∑
�=1

t�

�!
C�
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Table 1. Kernels for Haar measure over the classical compact groups.

Group Tr g(U) Kernel QM(x, y) Range T

U(N)
∑N

n=1 g(θn) SN(x, y) (−π, π ]

Sp(N) 2
∑M

n=1 g(θn) SN+1(x − y) − SN+1(x + y) [0, π ]
N = 2M

SO(N) 2
∑M

n=1 g(θn) SN−1(x − y) + SN−1(x + y) [0, π ]
N = 2M

SO(N) g(0) + 2
∑M

n=1 g(θn) SN−1(x − y) − SN−1(x + y) [0, π ]
N = 2M + 1

then [9, 10]

C� =
�∑

m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
∫

T
m

m∏
j=1

gλj (xj )QM(xj , xj+1) dxj (2)

where we identify xm+1 with x1. Here P(�,m) is the set of all partitions of � objects into m non-
empty blocks, where the j th block has λj = λj (σ ) elements (that is λj := #{i : 1 � i � �,

σ (i) = j }).
Thus,

C
Sp(N)

� (g) = 2�

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
∫

[0,π ]m

m∏
j=1

gλj (xj )Q
Sp(N)(xj , xj+1) dxj .

Since QSp(N)(x, y) is odd in both variables,
∏m

j=1 QSp(N)(xj , xj+1) is even in all variables, and
so, since g is an even function, we may extend the integral to be over [−π, π] and thus

C
Sp(N)

� (g) = 2�

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!

× 1

2m

∫
[−π,π ]m

m∏
j=1

gλj (xj )(SN+1(xj − xj+1) − SN+1(xj + xj+1)) dxj

and on expanding out the middle product on the bottom line,

C
Sp(N)

� (g) = 2�

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
1

2m

×
∑

ε1=±1,...,εm=±1

∫
[−π,π ]m

m∏
j=1

gλj (xj )εjSN+1(xj − εjxj+1) dxj

= 2�Ceven
�,N+1(g) − 2�Codd

�,N+1(g)

where Ceven
�,N+1(g) contains terms with

∏m
j=1 εj = +1 and Codd

�,N+1(g) contains terms with∏m
j=1 εj = −1.

Similarly one can calculate the other groups, using Weyl’s calculation of Haar measure,
which is summarized in table 1.
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2.1. Summary

Put

Ceven
�,M (g) =

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
1

2m

×
∑

ε1=±1,...,εm=±1∏
εj =+1

∫
[−π,π ]m

m∏
j=1

gλj (xj )SM(xj − εjxj+1) dxj (3)

and

Codd
�,M(g) =

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
1

2m

×
∑

ε1=±1,...,εm=±1∏
εj =−1

∫
[−π,π ]m

m∏
j=1

gλj (xj )SM(xj − εjxj+1) dxj (4)

with SM defined in (1):

• For all �,

C
Sp(2M)

� (g) = 2�Ceven
�,2M+1(g) − 2�Codd

�,2M+1(g).

• For all �,

C
SO(2M)
� (g) = 2�Ceven

�,2M−1(g) + 2�Codd
�,2M−1(g).

• For � = 1,

C
SO(2M+1)
1 (g) = 2Ceven

1,2M(g) − 2Codd
1,2M(g) +

∞∑
k=−∞

gk.

• For all � � 2,

C
SO(2M+1)

� (g) = 2�Ceven
�,2M(g) − 2�Codd

�,2M(g).

In the next section, we will show that Ceven
�,M (g) = 1

2C
U(M)
� (g), and then we will calculate

Codd
�,M(g), first in the case when M is odd, and then in the case when M is even.

The results will show that

C
G(N)

� (g) =
∑
k∈Z

�

µ
G(N)

� (k1, . . . , k�)

�∏
j=1

gkj
(5)

where µ
G(N)

� (k1, . . . , k�) is invariant under permutations of its arguments.
Combining the results from the next section proves the following theorems:

Theorem 4.

C
Sp(2M)

1 (g) = 2Mg0 − 2
M∑

n=1

g2n

C
Sp(2M)

2 (g) = 4
∞∑

n=1

min(n, 2M + 1)g2
n − 4

∞∑
k=M+1

g2
k − 8

M∑
l=1

∞∑
k=M+1

gk+lgk−l

and for � � 3, µ
Sp(N)

� (k1, . . . , k�) = 0 if
∑�

j=1 |kj | � N + 1.
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Theorem 5. When averaged over the special orthogonal group, the mean of Tr g(U) is

C
SO(2M)
1 (g) = 2Mg0 + 2

M−1∑
n=1

g2n

C
SO(2M+1)

1 (g) = (2M + 1)g0 + 2
M∑

n=1

g2n + 2
∞∑

n=2M+1

gn

and the variance is

C
SO(2M)
2 (g) = 4

∞∑
n=1

min(n, 2M − 1)g2
n + 4

∞∑
k=M

g2
k + 8

M−1∑
l=1

∞∑
k=M

gk+lgk−l

C
SO(2M+1)
2 (g) = 4

∞∑
n=1

min(n, 2M)g2
n − 8

2M−1∑
n=1
n odd

∞∑
m=2M+1

m odd

g(m+n)/2g(m−n)/2

For � � 3, µ
SO(N)
� (k1, . . . , k�) = 0 if

∑�
j=1 |kj | � N − 1.

3. The combinatorial calculations

3.1. The calculation of Ceven
�,M (g)

The following lemma was stated by Soshnikov in [9]:

Lemma 6. For all �,

Ceven
�,M (g) = 1

2C
U(M)

� (g).

Proof. Symbolically, denote∫
[−π,π ]m

m∏
j=1

gλj (xj )SM(xj − εj xj+1) dxj (6)

by (ε1, ε2, . . . , εm). If ε1 = 1 do nothing, but if ε1 = −1 then change variables to x2 �→ −x2,
and note that since g and SM are even functions, and the integral over x2 is over [−π, π], then
(6) becomes (+1,−ε2, ε3, . . . , εm).

Observe that this achieves the following: if the initial situation was (−1,−1, . . .) then it
becomes (+1, +1, . . .) while if it was (−1, +1, . . .) it becomes (+1,−1, . . .). Therefore there
is either the same number of −1 in the set of ε or there are two less −1.

Now repeat for the new ε2, changing variables only if it is −1, and so on all the way up
to εm. Each time the action either leaves the number of −1 unchanged or reduces it by 2.
Since we started with an even number of −1 in the set of ε this algorithm will terminate with
(6) equalling (+1, +1, . . . , +1), which is independent of ε. There are 2m−1 possible ε with an
even number of −1, and so

Ceven
�,M (g) =

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
1

2m
2m−1

∫
[−π,π ]m

m∏
j=1

gλj (xj )SM(xj − xj+1) dxj

which we recognize as 1
2C

U(M)

� (g). �

The cumulants of a random unitary matrix have previously been calculated, essentially
by Soshnikov [9], but they can also be deduced from the work of Diaconis and Shahshahani
[2] and of Diaconis and Evans [1].
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Theorem 7 (Soshnikov). Let C
U(N)
� be the �th cumulant of Tr g(U), averaged over all N ×N

unitary matrices with Haar measure. Then

C
U(N)
1 = Ng0 C

U(N)
2 =

∞∑
n=−∞
n �=0

min(|n|, N)gng−n

and for � � 3, ∣∣CU(N)
� (g)

∣∣ � const�
∑

k1+···+k�=0
|k1|+···+|k�|>2N

|k1||gk1 | . . . |gk�
|.

Remark. The heart of the proof of this theorem is a deep combinatorial fact called the
Hunt–Dyson formula.

Remark. Actually, the error term in [9] has the sum running over all k1 + · · · + k� = 0 such
that |k1| + · · · + |k�| > N . But it is clear from equation (2.9) of [9] that there is no contribution
to C

U(N)
� for � � 3 if

∑
ki11{ki>0} � N and if

∑ −ki11{ki<0} � N . Since the ki sum to zero, it
must be that the sum over positive terms equals the sum over negative terms, and so this is the
same as the condition

∑ |ki| � 2N , as we have it in the theorem.

3.2. The calculation of Codd
�,2M+1(g)

Observe from (1) that

S2M+1(z) = 1

2π

M∑
n=−M

e−inz. (7)

Lemma 8. One can calculate Codd
1,2M+1(g) and Codd

2,2M+1(g) exactly:

Codd
1,2M+1(g) = 1

2

M∑
n=−M

g2n Codd
2,2M+1(g) = 1

2

M∑
l=−M

∑
|k|>M

gl+kgl−k.

Proof. First of all, from (4) we have that

Codd
1,2M+1(g) = 1

2

∫ π

−π

g(x)S2M+1(2x) dx

Codd
2,2M+1(g) = 1

2

∫ π

−π

g2(x)S2M+1(2x) dx

− 1

4

∫ π

−π

∫ π

−π

g(x)g(y)2S2M+1(x + y)S2M+1(x − y) dx dy

and using (7) we see that

Codd
1,2M+1(g) = 1

2

M∑
n=−M

g2n

and

Codd
2,2M+1(g) = 1

2

M∑
l=−M

∞∑
k=−∞

gkg2l−k − 1

2

M∑
l=−M

M∑
k=−M

gl+kgl−k = 1

2

M∑
l=−M

∑
|k|>M

gl+kgl−k

as required. �
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Lemma 9. For � � 2,∣∣Codd
�,2M+1(g)

∣∣ � const�
∑
k∈Z

�

|k1|+···+|k�|>2M+1

|gk1 | . . . |gk�
|.

Proof. Fix σ ∈ P(�,m), and for k = (k1, . . . , k�) ∈ Z
� set

K1 =
λ1∑
l=1

kl

K2 =
λ1+λ2∑
l=λ1+1

kl

...

Km =
�∑

l=λ1+···+λm−1+1

kl

(recall that � = λ1 + · · · + λm). Therefore

m∏
j=1

gλj (xj ) =
∑
k∈Z

�

�∏
l=1

gkl

m∏
j=1

eiKjxj .

Hence, the integral in (4)∫
[−π,π ]m

m∏
j=1

gλj (xj )S2M+1(xj − εj xj+1) dxj

=
∑

−M�n1,...,nm�M

∑
k∈Z

�

�∏
l=1

gkl

∫
[−π,π ]m

m∏
j=1

eiKjxj einj (xj−εj xj+1)
dxj

2π

=
∑
k∈Z

�

�∏
l=1

gkl

∑
−M�n1,...,nm�M

∫
[−π,π ]m

m∏
j=1

exp(ixj (Kj + nj − εj−1nj−1))
dxj

2π

where we have used (7) to express S2M+1(xj − εj xj+1) in its Fourier representation, and we
have defined ε0 = εm, n0 = nm (so all indices are cyclic).

The integral above will be 1 or 0 depending on whether nj − εj−1nj−1 = −Kj or not, so
defining

N (M, σ, k, ε) = #{−M � n1, . . . , nm � M : nj − εj−1nj−1 = −Kj, j = 1, . . . ,m} (8)

(the K1, . . . ,Km depend on both k and σ , recall) we see that

Codd
�,2M+1(g) =

∑
k∈Z

�

�∏
l=1

gkl

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!

2m

∑
ε1,...,εm=±1∏

εj =−1

N (M, σ, k, ε). (9)

Lemma 10. Let
∏m

j=1 εj = −1. Then N (M, σ, k, ε) is either 0 or 1:

• If
∑�

l=1 kl is odd then N (M, σ, k, ε) = 0.

• If
∑�

l=1 kl is even and
∑�

l=1 |kl| � 2M then N (M, σ, k, ε) = 1.
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(Proof deferred until the end of this section.) Therefore, if
∑�

l=1 |kl| � 2M + 1 then

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)!
1

2m

∑
ε1,...,εm=±1∏

εj =−1

N (M, σ, k, ε)

= 1

2
M(k)

�∑
m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)! (10)

where

M(k) =
{

1 if
∑�

l=1 kl is even
0 otherwise.

Using the fact that for � � 2
�∑

m=1

∑
σ∈P (�,m)

(−1)m+1(m − 1)! = 0

we see that (10) vanishes for
∑�

l=1 |kl| � 2M +1 if � � 2. Inserting this into (9) and estimating
the contribution from the terms with

∑�
l=1 |kl| � 2M + 2 we see that

∣∣Codd
�,2M+1(g)

∣∣ � const�
∑
k∈Z

�∑�
l=1 |kl |�2M+2

�∏
l=1

|gkl
|

where

const� =
�∑

m=1

1
2 (m − 1)!#{σ ∈ P(�,m)}

depends upon � only. This completes the proof of lemma 9. �

Proof of lemma 10. We treat all indices as cyclic modulo m. So n0 = nm and nm+1 = n1 etc.
We assume that

∏m
j=1 εj = −1. Define the m × m matrix E to be such that

Ei,j =
{
εi−1 if j = i − 1
0 otherwise

so that

(En)j = εj−1nj−1.

From the definition of N (M, σ, k, ε) (which is given in (8)) we see that it is the number of
solutions of (I − E)n = −K subject to −M � nj � M .

Now,

(Ekn)j = εj−1(E
k−1n)j−1

= εj−1εj−2 . . . εj−knj−k

and so Em = ε1 . . . εmI = −I by cyclicity of indices and the assumption that
∏m

j=1 εj = −1.
Hence 2I = I − Em. But I − Em factorizes as

I − Em = (I − E)(I + E + · · · + Em−2 + Em−1)

and therefore

(I − E)−1 = 1
2 (I + E + · · · + Em−2 + Em−1).
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If we ignore the restriction that −M � nj � M then, over the reals, there is exactly one
solution to (I − E)n = −K which is

nj = − 1
2 (Kj + εj−1Kj−1 + εj−1εj−2Kj−2 + · · · + εj−1εj−2 . . . εj−m+1Kj−m+1). (11)

This is a solution over the integers if nj is an integer, which will be the case when the term
inside the brackets is even. Since εj ≡ 1 (mod 2) for all j , the term inside the brackets is
even when

Kj + Kj−1 + · · · + Kj−m+1 =
m∑

i=1

Ki =
�∑

l=1

kl

is even. There are no solutions over the integers when this is odd. (Note that the parity is
independent of ε and the partition σ ).

Finally, one must check that the condition −M � nj � M holds. From (11) we see that

|nj | � 1

2

m∑
i=1

|Ki | � 1

2

�∑
l=1

|kl|

and so if we assume that
∑�

l=1 |kl| � 2M , then the condition holds.
Thus N (M, σ, k, ε) = 0 if

∑�
l=1 kl is odd, and N (M, σ, k, ε) = 1 if

∑�
l=1 kl is even and∑�

l=1 |kl| � 2M .
This proves lemma 10. �

3.3. The calculation of Codd
�,2M(g)

Basically, this section is like the previous, with the essential change being that

S2M(z) = 1

2π

2M−1∑
n=−(2M−1)

n odd

e−inz/2

as opposed to (7) which states

S2M+1(z) = 1

2π

2M∑
n=−2M

n even

e−inz/2.

Lemma 11. One can calculate Codd
1,2M(g) and Codd

2,2M(g) exactly:

Codd
1,2M(g) = 1

2

M∑
n=−(M−1)

g2n−1 Codd
2,2M(g) = 1

2

2M−1∑
n=−(2M−1)

n odd

∑
|m|�2M+1

m odd

g 1
2 (n+m)g 1

2 (n−m).

Lemma 12. For � � 2,∣∣Codd
�,2M(g)

∣∣ � const�
∑
k∈Z

�

|k1|+···+|k�|>2M

|gk1 | . . . |gk�
|.

The proof goes through the same steps as before, with equation (8) becoming

Nodd(M, σ, k, ε) = #
{−(2M − 1) � nj � 2M − 1,

nj odd : 1
2nj − εj−1

1
2nj−1 = −Kj, j = 1, . . . ,m

}
.
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Rewriting equation (11) we see the solution requested by Nodd(M, σ, k, ε) is

nj = −(Kj + εj−1Kj−1 + εj−1εj−2Kj−2 + · · · + εj−1εj−2 . . . εj−m+1Kj−m+1)

so long as nj is odd and −(2M − 1) � nj � 2M − 1 (and there is no solution otherwise).
Therefore lemma 10 becomes

Lemma 13. Let
∏m

j=1 εj = −1. Then Nodd(M, σ, k, ε) is either 0 or 1:

• If
∑�

l=1 kl is even then Nodd(M, σ, k, ε) = 0.
• If

∑�
l=1 kl is odd and

∑�
l=1 |kl| � 2M − 1 then Nodd(M, σ, k, ε) = 1.

4. Moments of traces

We will now use theorem 5 to prove the second part of theorem 3. (The proof of the first part
from theorem 4 being analogous.)

Recall from (5) that

C
SO(N)
� (g) =

∑
n∈Z

�

µ
SO(N)
� (n1, . . . , n�)

�∏
j=1

gnj

where µ
SO(N)

� (n1, . . . , n�) is invariant under permutations of its arguments. Assuming g0 = 0,
we have the following:

• If |n1| < N then

µ
SO(N)

1 (n1) =
{

1 if n1 �= 0 is even
0 otherwise.

• If |n1| + |n2| < N then

µ
SO(N)
2 (n1, n2) =

{|n1| if |n1| = |n2|
0 otherwise.

• If � � 3 and
∑�

j=1 |nj | < N then µ
SO(N)
� (n1, . . . , n�) = 0.

It is also true that if g0 = 0,

EG

{(
Tr g(U) − CG

1 (g)
)m}

= 2m
∑
n∈N

m

EG

{(
Tr Un1 − µG

1 (n1)
)
. . .

(
Tr Unm − µG

1 (nm)
)} m∏

j=1

gnj
(12)

=
∑ (

CG
2 (g)

2!

)k2 (
CG

3 (g)

3!

)k3

· · ·
(

CG
m(g)

m!

)km
m!

k2!k3! . . . km!
(13)

where the second sum runs over all values of kj � 0 such that
∑m

j=2 jkj = m (it is simply
writing the mth moment in terms of its cumulants, having subtracted the mean).

Let aj ∈ {0, 1, 2, . . .} for j = 1, 2, . . . such that
∑

jaj < N . Define

ηj =
{

1 for even j

0 for odd j

so that µ
SO(N)

1 (j) = ηj for |j | < N .
Putting m = ∑

aj , we will evaluate the coefficient of
∏

(gj )
aj in (12) and (13), the two

being equal to each other.
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Consider first equation (12). The coefficient of
∏

(gj )
aj in

2m
∑
n∈N

m

ESO(N)

{(
Tr Un1 − ηn1

)
. . .

(
Tr Unm − ηnm

)} m∏
j=1

gnj

equals

2mm!∏
(aj )!

ESO(N)

{∏
(Tr Uj − ηj )

aj

}
. (14)

Consider next equation (13). Note that the restriction on the aj means that there is no
contribution to the coefficient of

∏
(gj )

aj from C
SO(N)

� (g) for all � � 3. Therefore the
coefficient in (13) is 0 if m is odd and is the coefficient of

∏
(gj )

aj in

m!

2m/2(m/2)!

(
C

SO(N)
2 (g)

)m/2 = m!

2m/2(m/2)!
2m

∑
n∈N

m

m/2∏
j=1

µ
SO(N)
2 (n2j−1, n2j )

m∏
j=1

gnj

if m is even. This coefficient is zero unless all the aj are even, in which case it is

m!

(m/2)!
2m/2 (m/2)!∏

(aj/2)!

∏
jaj /2 (15)

(to see this, note that the structure of µ
SO(N)
2 means that n2j must equal n2j−1 for

j = 1, . . . ,m/2. The second pre-factor is just the number of ways of picking m/2 integers
such that a1/2 of them equal 1, a2/2 of them equal 2 etc).

Setting (14) equal to (15) and recalling that m = ∑
aj , we have

ESO(N)

{∏
(Tr Uj − ηj )

aj

}
=

{∏
jaj /2 (aj )!

2aj /2
(aj /2)!

if all the aj are even

0 otherwise

= E
{∏(√

jZj

)aj

}
where Zj are iid normal random variables with mean 0 and variance 1.

Observe that this can all be rewritten as

ESO(N)

{∏
(Tr Uj )aj

}
= E

{∏(√
jZj + ηj

)aj

}
and is valid so long as

∑
jaj < N .
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