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by

Nir Ailon (Tel Aviv and Princeton) and Zéev Rudnick (Tel Aviv)

1. Introduction. Let a, b 6= ±1 be nonzero integers. One of our goals in
this paper is to study the common divisors of ak − 1 and bk − 1, specifically
to understand small values of gcd(ak − 1, bk − 1). If a = cu and b = cv

for some integer c then clearly ck − 1 divides gcd(ak − 1, bk − 1) and so
for the purpose of understanding small values, we will assume that a and b
are multiplicatively independent, that is, ar 6= bs for r, s ≥ 1. Further, since
gcd(a−1, b−1) always divides gcd(ak−1, bk−1), we will assume that a−1
and b− 1 are coprime.

Based on numerical experiments and other considerations, we conjecture:

Conjecture A. If a, b are multiplicatively independent non-zero inte-
gers with gcd(a− 1, b− 1) = 1, then there are infinitely many integers k ≥ 1
such that

gcd(ak − 1, bk − 1) = 1.

Note that the condition of multiplicative independence of a and b is not
necessary, as the (trivial) example b = −a shows (the gcd is 1 for odd k,
and ak − 1 for even k).

A recent result of Bugeaud, Corvaja and Zannier [BCZ] rules out large
values of gcd(ak − 1, bk − 1). They show that if a, b > 1 are multiplicatively
independent positive integers then for all ε > 0,

(1) gcd(ak − 1, bk − 1)�ε e
εk .

Their argument uses Diophantine approximation techniques and in particu-
lar Schmidt’s Subspace Theorem. They also indicate that there are arbitrar-
ily large values of k for which the upper bound (1) cannot be significantly
improved.

In the function field case, when we replace integers by polynomials, we
are able to prove a strong version of Conjecture A.
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Theorem 1. Let f, g ∈ C[t] be nonconstant polynomials. If f and g are
multiplicatively independent , then there exists a polynomial h such that

(2) gcd(fk − 1, gk − 1) |h
for any k ≥ 1. If , in addition, gcd(f − 1, g − 1) = 1, then there is a finite
union of proper arithmetic progressions

⋃
diN, di ≥ 2, such that for k outside

these progressions,

gcd(fk − 1, gk − 1) = 1.

Note that (2) is a strong form of (1). We derive Theorem 1 from a result
proposed by Lang [L1] on the finiteness of torsion points on curves—see
Section 2.

We next consider a generalization to the case of matrices. For an r × r
integer matrix A ∈ Matr(Z), A 6= I (I being the identity matrix), we define
gcd(A − I) as the greatest common divisor of the entries of A− I. Equiv-
alently, gcd(A − I) is the greatest integer N ≥ 1 such that A ≡ I mod N .
We say that A is primitive if gcd(A− I) = 1. Note that gcd(A− I) divides
gcd(Ak − I) for all k. A similar definition applies to the function field case
A ∈ Matr(C[t]). We will study the behaviour of gcd(Ak − I) as k varies for
a fixed matrix A with coefficients in Z or in C[t]. If detA = 0 then triv-
ially gcd(Ak − I) = 1 for all k ≥ 1. So we will henceforth assume that A is
nonsingular.

For the case of 2×2 matrices, we will show in Section 3 that if A ∈ SL2(Z)
is unimodular and hyperbolic, then gcd(Ak − I) grows exponentially as
k → ∞. However, numerical experiments show that for other matrices,
gcd(Ak − I) displays completely different behaviour. We formulate the fol-
lowing conjecture:

Conjecture B. Suppose r ≥ 2 and A ∈ Matr(Z) is nonsingular and
primitive. Also assume that there is a pair of eigenvalues of A that are
multiplicatively independent. Then Ak is primitive infinitely often.

Note that Conjecture B subsumes Conjecture A. It would be interesting
to prove an analogue of the upper bound (1) in this setting.

In Section 4 we give an example where we can prove Conjecture B.
To describe it, recall that one may obtain integer matrices by taking an
algebraic integer u in a number field K and letting it act by multiplication
on the ring of integers OK of K. This is a linear map and a choice of integer
basis of OK gives us an integer matrix A = A(u) whose determinant equals
the norm of u. We employ this method for the cyclotomic field Q(ζp) where
p > 3 is prime and ζp is a primitive pth root of unity, and u is a nonreal
unit. We show:
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Theorem 2. Let u be a nonreal unit in the extension Q(ζp), and A(u) ∈
SLp−1(Z) be the corresponding matrix. Then A(u)k is primitive for all k 6≡
0 mod p.

In the function field case, we have a strong form of Conjecture B, which
generalizes Theorem 1:

Theorem 3. Let A be a nonsingular matrix in Matr(C[t]). Assume that
either

(1) A is not diagonalizable over the algebraic closure of C(t), or
(2) A has two eigenvalues that are multiplicatively independent.

Then there exists a polynomial h such that gcd(Ak − I) |h for any k. If , in
addition, A is primitive, then Ak is primitive for all k outside a finite union
of proper arithmetic progressions.

Acknowledgements. We would like to thank Umberto Zannier for use-
ful discussions and the referee for suggesting several improvements. Some
of the results were part of the first named author’s M.Sc. thesis [Ai] at Tel
Aviv University. The work was partially supported by the Israel Science
Foundation, founded by the Israel Academy of Sciences and Humanities.

2. Proof of Theorem 1. To prove the theorem, we will use a result
which was conjectured by Serge Lang and proved by Ihara, Serre and Tate
(see [L1] and [L2]), which states that the intersection of an irreducible curve
in C∗ × C∗ with the roots of unity µ∞ × µ∞ is finite, unless the curve is of
the form XnY m − ζ = 0 or Xm − ζY n = 0 with ζ ∈ µ∞, that is, unless the
curve is the translate of an algebraic subgroup by a torsion point of C∗×C∗.
Applying this result to the rational curve {(f(t), g(t)) : t ∈ C}, we conclude
that only for finitely many t’s both f(t) and g(t) are roots of unity when f
and g are multiplicatively independent.

Thus by Lang’s theorem there is only a finite set of points S ⊂ C such
that for any s ∈ S both f(s) and g(s) are roots of unity. So gcd(f k−1, gk−1)
can only have linear factors from {t− s | s ∈ S}. Write

fk − 1 =
k−1∏

j=0

(f − ζjk).

Any two factors on the right side are coprime, so t − s can divide at most
one of them with multiplicity at most deg(f), and a similar statement can
be said for g. Therefore the required polynomial h can be chosen as

h(t) =
∏

s∈S
(t− s)min(deg(f),deg(g)).
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For the second part of Theorem 1, let s ∈ S and let ds be the least
positive integer such that

t− s | gcd(f(t)ds − 1, g(t)ds − 1).

Then ds > 1 because gcd(f − 1, g − 1) = 1, and clearly for k /∈ dsN,

t− s - gcd(f(t)k − 1, g(t)k − 1).

Then
⋃
s∈S dsN is the required finite union of proper arithmetic progressions

outside which gcd(fk − 1, gk − 1) = 1.

Note that Theorem 3 implies Theorem 1. We have chosen to give the
proof of Theorem 1 separately to illustrate the ideas in a simple context.

3. 2×2 matrices. Let A ∈ SL2(Z) be a 2×2 unimodular matrix which
is hyperbolic, that is, A has two distinct real eigenvalues. We show:

Proposition 4. Let A ∈ SL2(Z) be a hyperbolic matrix with eigenvalues
ε, ε−1, where |ε| > 1. Then gcd(Ak − I)� |ε|k/2.

Proof (1). Let K be the real quadratic field Q(ε) and OK its ring of
integers. We may diagonalize the matrix A over K, that is, write A =
P
(
ε
0

0
ε−1

)
P−1 with P a 2 × 2 matrix having entries in K. Since P is only

determined up to a scalar multiple, we may, after multiplying P by an
algebraic integer of OK , assume that P has entries in OK . Then P−1 =
(1/det(P ))P ad where P ad also has entries in OK . Thus we have

Ak − I =
1

det(P )
P

(
εk − 1 0

0 ε−k − 1

)
P ad.

The entries of Ak−I are thus OK-linear combinations of (εk−1)/det(P )
and of (ε−k − 1)/det(P ). We now note that

ε−k − 1 = −ε−k(εk − 1)

and thus the entries of Ak − I are all OK-multiples of (εk − 1)/det(P ). In
particular, gcd(Ak − I), which is a Z-linear combination of the entries of
Ak − I, can be written as

gcd(Ak − I) =
εk − 1

det(P )
γk

with γk ∈ OK .
Now taking norms from K to Q we see that

|gcd(Ak − I)|2 =
|N (εk − 1)|
|N (detP )| |N (γk)|.

(1) We thank the referee for suggesting this proof, which replaces our original, more
complicated, version.
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Since γk 6= 0, we have |N (γk)| ≥ 1 and thus

|gcd(Ak − I)|2 ≥ |N (εk − 1)|
|N (detP )| � εk,

which gives |gcd(Ak − I)| � εk/2.

A special case of this proposition appeared as a problem in the 54th
W. L. Putnam Mathematical Competition, 1994 (see [An, pp. 82, 242]).

4. Cyclotomic fields. A standard construction of unimodular matrices
is to take a unit u of norm one in a number field K and let it act by
multiplication on the ring of integers OK of K. This gives a linear map, and
a choice of integer basis of OK gives us an integer matrix whose determinant
equals the norm of u and is thus unimodular. We employ this method for
the case when u is a nonreal unit to give a construction of matrices A with
the property that Ak is primitive infinitely often.

We recall some basic facts on units in a cyclotomic field. Let p > 3 be
a prime, ζp a primitive pth root of unity, and K = Q(ζp) the cyclotomic
extension of the rationals. It is a field of degree p − 1. The ring of integers
OK of this field is Z[ζp]. Since K is purely imaginary, it follows that the
norm function is positive, and the norm of a unit u is always 1. Also note
that the structure of the unit group Ep of OK is

(3) Ep = WpE
+
p ,

where Wp are the roots of unity in K and E+
p is the group of the real units

in OK . A proof of this fact can be found, for example, in [L3, Theorem 4.1].

4.1. Proof of Theorem 2. We now prove Theorem 2, that is, show that if
u ∈ Ep\E+

p is a nonreal unit and k 6≡ 0 mod p then the matrix corresponding

to uk is primitive.
The method we will use is that if we choose a basis ω0 = 1, ω1, . . . , ωp−2

of Z[ζp] and take a unit U in Z[ζp], then we get a matrix A(U) = (ai,j) whose
entries are determined by

Uωi =

p−2∑

j=0

aj,iωj .

In particular if we find that in the expansion of

U = Uω0 =

p−2∑

j=0

aj,0ωj

we have an index j 6= 0 so that aj,0 = a0,0, then in the matrix A(U) − I
corresponding to U −1, the first column will contain the entries a0,0−1 and
aj,0 = a0,0 which are clearly coprime, and thus the matrix A(U) is primitive.
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Another option is to have a0,0 = 0, in which case in the matrix of U − 1,
the (0, 0) entry is −1, and thus again A(U) is primitive. We will apply
this method to the case that U = uk is a power of a nonreal unit u and
k 6≡ 0 mod p.

Let u ∈ Ep\E+
p be a nonreal unit. By (3), we can write

u = ζxpu
+,

where u+ is a real unit and x is an integer not congruent to 0 mod p.
Therefore, uk = ζxkp (u+)k and ζ−xkp uk = (u+)k is real. Hence it can be

represented as an integer combination of ζp, ζ
2
p , . . . , ζ

p−1
p as follows:

ζ−xkp uk =

p−1∑

j=1

αjζ
j
p,

where αj = αp−j for each j. For convenience we will set α0 := 0.

Multiplying by ζxkp , we find

uk =

p−1∑

j=0

αjζ
j+xk
p

and changing the summation variable,

uk =

p−1∑

i=0

αi−xkζ
i
p,

where the index of α is calculated mod p. Using the relation

ζp−1
p = −1− ζp − . . .− ζp−2

p

we find that in terms of the integer basis ωj = ζjp, j = 0, . . . , p− 2, we have

uk =

p−2∑

i=0

(αi−xk − αp−1−xk)ωi.

If k 6≡0 mod p then 2xk 6≡0 mod p since x 6≡ 0 mod p. If 2xk 6≡−1 mod p
then the coefficients of ω0 and ω2xk are equal. Therefore uk is primitive. If
2xk is congruent to −1 mod p, then the coefficient of ω0 vanishes and thus
in this case as well, uk is primitive.

Thus we have found that if k 6≡ 0 mod p, the matrix corresponding to
uk is primitive.

Note that by virtue of (3), the eigenvalues of A(u) come in complex
conjugate pairs whose ratios are pth roots of unity. This is somewhat similar
to the trivial scalar example described in the introduction, namely b = ±a.
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5. Proof of Theorem 3. We extend the idea of the proof of Theorem 1
to cover the matrix case. We first show that there is only a finite set S of
points s ∈ C such that t− s divides gcd(Ak − I) for some k.

Let M be a matrix such that MAM−1 is in Jordan form. The elements
of M are meromorphic functions on the Riemann surface R corresponding
to some finite extension of C(t). Denote by pr : R → P1 the associated
projection of R to the projective line. Let S0 be the finite collection of poles
of these functions.

Assume first that A is not diagonalizable over the algebraic closure of
C(t). Thus for any t0 ∈ R \ S0, A(t0) is not diagonalizable, and therefore
A(t0)k−I 6= 0 for all k (recall that a matrix of finite order (Am = I) is auto-
matically diagonalizable), in other words, t−t0 does not divide gcd(Ak − I).
Thus only the finitely many linear forms t− s, where s ∈ pr(S0) is the pro-
jection of some point in S0, can divide gcd(Ak − I).

We denote by λi(t) the eigenvalues of A which are multivalued functions
of t, that is, meromorphic functions on the Riemann surface. Assume now
that λ1 and λ2 are multiplicatively independent, and that A is diagonaliz-
able. Suppose that (t − t0) | gcd(Ak − I) for some k > 1 and t0 ∈ R \ S0.
Then Ak − I evaluated at t0 is the zero matrix, and also

M(t0)(A(t0)k − I)M(t0)−1 = 0,

and we deduce that

λ1(t0)k − 1 = λ2(t0)k − 1 = 0.

In particular, λ1(t0) and λ2(t0) are roots of unity. Thus, we have reduced
our task to proving that λ1 and λ2 can be simultaneous roots of unity only
at a finite set of points.

To prove this, we want to use Lang’s theorem for the curve in C2 param-
eterized by (λ1(t), λ2(t)). Denote by Y the Zariski closure of the image of the
map (λ1, λ2) : R \ S0 → C2. Then Y is an irreducible algebraic curve in C2.
If Y is of dimension 0, then it is a point, so λ1(t) and λ2(t) are constants,
and since they are multiplicatively independent none of them can be a root
of unity. Otherwise, we may apply Lang’s theorem for this curve to conclude
that unless the curve Y is of the form Fm − ζGn = 0 or FmGn = ζ with ζ
a root of unity (which is not the case when λ1 and λ2 are multiplicatively
independent), it has only finitely many torsion points. In other words, there
can only be finitely many points of the form (ζ1, ζ2) on Y , where ζ1 and ζ2

are roots of unity.
We now prove that there is a polynomial h such that gcd(Ak−I) divides

h for all k. Since there is a finite set S of possible zeros of gcd(Ak − I), it
suffices to show that the multiplicity of a zero of gcd(Ak − I) is bounded.

Write B = MAM−1, so B is in Jordan form. Denote by vt0(f) the
multiplicity of the zero of f at t0 ∈ R. So clearly, for any t0 ∈ R there exists
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c(t0) ∈ N such that

vt0(gcd(Ak − I)) ≤ c(t0) + vt0(gcd(Bk − I)),

and for all t0 outside the finite set S0 of poles of entries of M , c(t0) = 0. So
it suffices to prove that vt0(gcd(Bk − I)) is bounded. Clearly,

gcd(Bk − I) |det(Bk − I) =

k−1∏

j=0

det(B − ζjkI),

where ζk is a primitive kth root of unity. Denoting the diagonal elements of
B − I by b1, . . . , br, we see that

det(Bk − I) =

r∏

d=1

k−1∏

j=0

(bd − ζjk).

Because a meromorphic function on a Riemann surface has a finite de-
gree, reasoning as in the proof of Theorem 1 we see that for any t0 ∈ R,

vt0(
∏k
j=1(bd−ζjk)) is bounded, for all k. Therefore vt0(det(Bk−I)) is bounded

for all k.
Now assume in addition that A is primitive: gcd(A − I) = 1. For any

s ∈ S, the set of k’s such that A(s)k = I, i.e. (t−s) | gcd(Ak−I), is an arith-
metic progression dsZ which is proper since it does not contain 1. Therefore
the set of k’s with gcd(Ak − I) 6= 1 is a finite union of proper arithmetic
progressions, and hence for k outside this union, we have gcd(Ak−I) = 1.
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