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Gaussian primes in almost all narrow sectors

by

Bingrong Huang (Jinan), Jianya Liu (Jinan)
and Zeév Rudnick (Tel Aviv)

1. Introduction. Let p be a prime ideal in the ring Z[i] of Gaussian
integers. Assuming the norm N(p) = p = 1 mod 4 is a split prime, we can
write p = a2+b2 with α = a+ib a generator of p, unique up to multiplication
by one of the units ±1,±i. This gives us an angle θp such that α = a+ ib =√
p eiθp , which is unique if we fix it to lie in [0, π/2).
Hecke [6] proved that the angles θp are equidistributed in [0, π/2) as

p varies over prime ideals of Z[i]. This means that if we fix a subinterval
I ⊆ [0, π/2), then as X →∞,

(1.1) #{p ⊂ Z[i] : X < N(p) ≤ 2X, θp ∈ I} ∼
|I|
π/2

X

logX
.

Recall that by the Prime Ideal Theorem, #{p ⊂ Z[i] : X < N(p) ≤ 2X} ∼
X/logX.

Kubilius [8] and others studied the existence of prime angles in nar-
row sectors. Ricci [10] proved that (1.1) remains valid for any interval I ⊂
[0, π/2) of length |I| > X−3/10+ε. By a sieve method, Harman and Lewis [5]
proved the existence of prime angles in somewhat narrower sectors without
an asymptotic expression. Assuming the Generalized Riemann Hypothesis
(GRH), it is known that (1.1) is valid for any interval I ⊂ [0, π/2) of length
|I| > X−1/2+ε. It is important to point out that one cannot do better because
of the existence of “forbidden regions”, for instance the interval (0, 1/

√
X)

does not contain any prime angle of norm less that X (in fact angles for
any such integer ideals). This is a striking difference from the well studied
problem of (rational) primes in short intervals, where one expects that any
interval [x, x + y] will contain ∼ y/log x primes as soon as y � xε, for any
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ε > 0, while similarly to our problem, the Riemann Hypothesis only gives
the existence in intervals of length y � x1/2+o(1).

Instead of asking about all short sectors, one can ask about the existence
of prime angles in “typical” sectors, that is, in almost all short sectors. As-
suming GRH, Parzanchevski and Sarnak [9] and Rudnick and Waxman [11]
showed that almost all sectors contain a prime angle, in fact the asymptotic
formula (1.1) (at least in a smooth form) remains valid for almost all I if
|I| > X−1+ε, which is the most we can expect (up to log factors) since the
number of prime ideals with norm aboutX is roughlyX/logX, hence almost
all sectors shorter than 1/X will contain no prime angles θp with N(p) ≈ X.
Rudnick and Waxman [11] gave a precise conjecture about the asymptotic
behavior of the number variance, supported by a theorem for a function field
analogue of the problem.

In the present paper, we prove an unconditional result on Gaussian
primes in almost all narrow sectors. We will say that a property holds for
almost all narrow sectors I = (β, β + γ] (where γ ≈ X−ρ, 0 < ρ < 1, and
X < N(p) ≤ 2X with X →∞) if it holds for all β ∈ [0, π/2] apart from an
exceptional set of measure o(1).

Theorem 1. Let 0 ≤ ρ < 3/5. Then (1.1) holds for almost all short
sectors I ⊂ [0, π/2) of length |I| > X−ρ.

Our result is a consequence of an upper bound on the number variance
estimated using zero-density theorems.

We recall that under RH, Selberg [13] showed (in 1943) that almost all
intervals (x, x+φ(x) log2 x] contain primes for any function φ(x) tending to
infinity. See [12], [7], [3, Chap. 9]) for unconditional results.

The problem of Gaussian primes in small balls is similar in flavor to that
of primes in short intervals, and was studied by Coleman [1] who established
individual results, both on GRH and unconditionally (see also [4]), and a
result about almost all balls.

We briefly discuss in Section 4 the analogous problems for real quadratic
fields.

2. Preliminaries

2.1. Hecke characters and their L-functions. For a non-zero ideal
a = (α) ⊆ Z[i], with generator α, Hecke defined characters Ξk(α) = (α/ᾱ)2k,
k ∈ Z, which give well defined functions on the ideals of Z[i]. In terms of the
angles associated to ideals, we have ei4kθa = Ξk(a).

To each such character Hecke [6] associated its L-function

L(s,Ξk) :=
∑

06=a⊆Z[i]

Ξk(a)

N(a)s
=

∏
pprime

(1−Ξk(p) N(p)−s)−1, <(s) > 1.
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Note that L(s,Ξk) = L(s,Ξ−k). Hecke showed that if k 6= 0, these functions
have an analytic continuation to the entire complex plane, and satisfy a
functional equation:

(2.1) ξ(s, k) := π−(s+2|k|)Γ (s+ 2|k|)L(s,Ξk) = ξ(1− s, k).

We denote L∞(s, k) := π−(s+2|k|)Γ (s+ 2|k|).

2.2. The zero-free region. We will need a “non-standard” zero-free
region for L(s,Ξk):

Theorem 2 (Kubilius [8]). For k > 0 and V :=
√

(T + 2)2 + (2k)2, if
ρk,n = βk,n + iγk,n is a zero of L(s,Ξk), then

1− βk,n �
1

(log V log log V )3/4
, |γk,n| < T.

2.3. The zero-density estimate. We now introduce a zero-density
theorem. We set

N(σ;T,K) := #{ρk,n = βk,n + iγk,n : 0 < k ≤ K, |γk,n| < T, βk,n ≥ σ}.
In his thesis (1976), Ricci [10] showed

Theorem 3 ([10]). For σ ≥ 1/2, K,T ≥ 2, and T = o(K), we have

N(σ;T,K)� TK
10
3
(1−σ)(logK)B

for some B > 0.

3. The number variance. We wish to get an unconditional result on
angles of Gaussian primes in almost all narrow sectors. We recall some def-
initions: Pick f ∈ C∞c (R), which is even and real-valued, and for K � 1
define

(3.1) FK(θ) :=
∑
j∈Z

f

(
K

π/2

(
θ − j π

2

))
.

Let Φ ∈ C∞c (0,∞) and set

ψK,X(θ) :=
∑
a

Φ

(
N(a)

X

)
Λ(a)FK(θa − θ),

with the sum over all powers of prime ideals, where the von Mangoldt func-
tion Λ(a) is log N(p) if a = pr is a power of a prime ideal p, and is zero
otherwise.

By [11, Lemma 3.1], the expected value of ψK,X(θ) is

E(ψK,X) = 〈ψK,X〉 ∼
X

K

∞�

−∞
f(x) dx

∞�

0

Φ(u) du.
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Here for any function H of θ, we define the mean value

〈H〉 :=
1

π/2

π/2�

0

H(θ) dθ.

We wish to study the number variance

Var(ψK,X) =
1

π/2

π/2�

0

|ψK,X(θ)− E(ψK,X)|2 dθ.

Theorem 4. If K = Xτ with τ < 3/5, then for some A > 0,

Var(ψK,X)

(E(ψK,X))2
� (logX)−A as X →∞.

Consequently, in this range, for almost all θ, there is a prime ideal p with
N(p) � X such that |θ − θp| < 1/K.

3.1. The proof of Theorem 4. We have [11, Corollary 4.4] (1)

ψK,X(θ)− 〈ψK,X〉

= −
∑
k 6=0

e−i4kθ
1

K
f̂(k/K)

(∑
n

Φ̃(ρk,n)Xρk,n +O

(
X1/2 logK

(logX)100

))
,

with the inner sum over all non-trivial zeros ρk,n = βk,n + iγk,n of L(s,Ξk).
Computing the mean square over θ and dividing by the square of the

expected value, namely by (X/K)2, gives

Var(ψK,X)

(E(ψK,X))2
� 1

X2

∑
k 6=0

|f̂(k/K)|2
∣∣∣∣∑
n

Φ̃(ρk,n)Xρk,n +O

(
X1/2 logK

(logX)100

)∣∣∣∣2.
Below we will see that the contribution of the first term is O((logX)−A).

The contribution of the second term O
(X1/2 logK
(logX)100

)2 is O(X−ε) if K < X1−ε,
so that modulo this fact we have

Var(ψK,X)

(E(ψK,X))2
� 1

X2

∑
k 6=0

|f̂(k/K)|2
∣∣∣∑
n

Φ̃(ρk,n)Xρk,n
∣∣∣2 +X−ε.

Next, we note that up to a negligible error, we can truncate the sum
over k to 0 < k < K1+δ, for any fixed 0 < δ < 1, where we take δ > 0 such
that

K < X
3
5
(1−2δ).

(1) There it is formulated assuming GRH.
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Indeed, since f̂ is rapidly decaying, using the trivial bound <ρk,n ≤ 1 we see
that the tail of the sum is bounded by
1

X2

∑
k>K1+δ

|f̂(k/K)|2
∣∣∣∑
n

Φ̃(ρk,n)Xρk,n
∣∣∣2 � ∑

k>K1+δ

|f̂(k/K)|2
(∑

n

|Φ̃(ρk,n)|
)2
.

For each k 6= 0, we use the rapid decay of the Mellin transform |Φ̃(ρk,n)| �
(1 + |γk,n|)−100 and the bound

#{n : T ≤ |γk,n| < T + 1} � log(2|k|(T + 2))

to estimate the sum over the zeros by∑
n

|Φ̃(ρk,n)| ≤
∞∑
T=0

log(2|k|) log(T + 2)

(1 + T )100
� log(2|k|).

Hence the tail of the sum is bounded by

1

X2

∑
k>K1+δ

|f̂(k/K)|2
∣∣∣∑
n

Φ̃(ρk,n)Xρk,n
∣∣∣2

�
∑

k>K1+δ

|f̂(k/K)|2(log k)2 � K−100

on using |f̂(y)| � |y|−100/δ for |y| > 1. Therefore

Var(ψK,X)

(E(ψK,X))2
� 1

X2

∑
0<k<K1+δ

|f̂(k/K)|2
∣∣∣∑
n

Φ̃(ρk,n)Xρk,n
∣∣∣2 +X−ε.

We may also restrict the sum to zeros with |γk,n| < Kε, at the cost of
another negligible error, again by using the rapid decay of Φ̃. Thus we have

Var(ψK,X)

(E(ψK,X))2
�W +X−ε

where

W :=
1

X2

∑
0<k<K1+δ

|f̂(k/K)|2
∣∣∣ ∑
n:|γk,n|<Kε

Φ̃(ρk,n)Xρk,n
∣∣∣2.

By the Cauchy–Schwarz inequality,

W ≤ 1

X2

∑
0<k<K1+δ

|f̂(k/K)|2
∑

n: |γk,n|<Kε

|Φ̃(ρk,n)|
∑

n: |γk,n|<Kε

|Φ̃(ρk,n)|X2βk,n .

Using the rapid decay of Φ̃ and the logarithmic density of zeros gives∑
n: |γk,n|<Kε

|Φ̃(ρk,n)| � logK



6 B. R. Huang et al.

so that

W � logK

X2

∑
0<k<K1+δ

|f̂(k/K)|2
∑

n: |γk,n|<Kε

|Φ̃(ρk,n)|X2βk,n .

Let
M = (logK)9/10, ∆ = d2/δe,

so that for K � 1, there are no zeros of L(s,Ξk) with real part βk,n >
1−∆/M , by Theorem 2. We use a dyadic decomposition to bound W :

W � logK

X2

∑
0<k<K1+δ

M−∆∑
m=0

∑
0≤T<Kε

∑
1
2
+ m

2M
≤βk,n< 1

2
+m+1

2M
T≤|γk,n|<T+1

|Φ̃(ρk,n)|X2βk,n

� logK

X2

∑
0<k<K1+δ

M−∆∑
m=0

∑
0≤T<Kε

∑
1
2
+ m

2M
≤βk,n< 1

2
+m+1

2M
T≤|γk,n|<T+1

X1+m+1
M

1

(T + 1)100

� logK

X2

M−∆∑
m=0

X1+m+1
M

∑
0≤T<Kε

1

(T + 1)100

( ∑
0<k<K1+δ

∑
1
2
+ m

2M
≤βk,n< 1

2
+m+1

2M
T≤γk,n<T+1

1
)

≤ X1/M logK

X

M−∆∑
m=0

Xm/M
∑

0≤T<Kε

1

(T + 1)100
N

(
1

2
+

m

2M
;T,K1+δ

)
.

Now use the zero-density theorem (Theorem 3) to bound, for T < Kε,

N

(
1

2
+

m

2M
;T,K1+δ

)
� TK(1+δ) 10

3
( 1
2
− m

2M
)(logK)B.

Hence

W � X1/M (logK)B+1

X

M−∆∑
m=0

Xm/M
∑

1≤T<Kε

T

T 100
K(1+δ) 10

3
( 1
2
− m

2M
)

� X1/M (logK)B+1

X

M−∆∑
m=0

Xm/MK(1+δ) 10
3
( 1
2
− m

2M
)

� K(1+δ) 5
3

X
X1/M (logK)B+1

M−∆∑
m=0

(
X

K(1+δ) 5
3

)m/M
.

Since we assume that K < X
3
5
(1−2δ) (here δ > 0 is arbitrarily small), so that

X

K(1+δ) 5
3

> X1−(1+δ) 5
3
(1−2δ) 3

5 = Xδ+2δ2 > Xδ,
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we have
M−∆∑
m=0

(
X

K(1+δ) 5
3

)m/M
�
(

X

K(1+δ) 5
3

)1−∆/M
,

so that we obtain

W � X1/M (logK)B+1

(
X

K(1+δ) 5
3

)−∆/M
� (logK)B+1

X
δ∆−1
M

.

Since we took ∆ = d2/δe, we have δ∆−1
M ≥ 1

M , so that

W � (logK)B+1

X1/M
� (logK)B+1 exp(− logX/(logK)9/10)

� exp
(
−1

2(logX)1/10
)

= O((logX)−A).

Thus we see that if K < X
3
5
(1−2δ), then

Var(ψK,X)

(E(ψK,X))2
� (logX)−A.

This completes the proof of Theorem 4.

3.2. Primes vs. prime powers. Now set

ψprime
K,X (θ) :=

∑
p

Φ

(
N(p)

X

)
FK(θp − θ) log N(p),

with the sum over all prime ideals. Let

Var(ψprime
K,X ) =

1

π/2

π/2�

0

|ψprime
K,X (θ)− E(ψprime

K,X )|2 dθ.

Corollary 5. If K = Xτ with τ < 3/5, then

Var(ψprime
K,X )

(E(ψprime
K,X ))2

� (logX)−A as X →∞.

Proof. By [11, Lemma 3.1] again, the mean value of ψprime
K,X (θ) is

(3.2) E(ψprime
K,X ) = 〈ψprime

K,X 〉 ∼ 〈ψK,X〉 ∼
X

K

∞�

−∞
f(x) dx

∞�

0

Φ(u) du.

Moreover,
|〈ψprime

K,X 〉 − 〈ψK,X〉| � X1/2/K.

And by the prime ideal theorem, we have∑
a

Φ

(
N(a)

X

)
Ξk(a)Λ(a) =

∑
p

Φ

(
N(p)

X

)
Ξk(p) log N(p) +O(X1/2).
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Then by the same proof as in [11, Lemma 4.8], we have

〈|ψK,X − ψprime
K,X |

2〉 � X/K.

Using the triangle inequality as in [11, §4.4], together with the above esti-
mates and Theorem 4, we complete the proof of our corollary.

3.3. Proof of Theorem 1. By Chebyshev’s inequality and Corollary 5,
we find that

(3.3) ψprime
K,X (β) ∼ E(ψprime

K,X ) ∼ X

K

∞�

−∞
f(x) dx

∞�

0

Φ(u) du

for almost all β ∈ [0, π/2).
Theorem 1 follows by removing the smoothing. Let f+ε (y) be a smooth

function depending on ε and satisfying f+ε (x) = 1 if x ∈ [0, 1], f+ε (x) ∈ [0, 1]
if x ∈ [−ε, 0]∪ [1, 1 + ε], and f+ε (x) = 0 otherwise. Here ε is a small positive
constant. Define F+

K,ε(θ) as in (3.1), that is,

F+
K,ε(θ) =

∑
j∈Z

f+ε

(
K

π/2

(
θ − j π

2

))
.

Similarly, we can choose Φ+
ε to be a smooth function depending on ε and

satisfying Φ+
ε (u) = 1 if u ∈ [1, 2], Φ+

ε (u) ∈ [0, 1] if u ∈ [1 − ε, 1] ∪ [2, 2 + ε],
and Φ+

ε (u) = 0 otherwise. Let
A := {p ⊆ Z[i] : θp ∈ I := [β, β + π/(2K)], X < N(p) ≤ 2X}.

Note that for X > 21/ε,∑
p∈A

1 ≤
∑
p

Φ+
ε

(
N(p)

X

)
F+
K,ε(θp − β)

≤ 1 + ε

logX

∑
p

Φ+
ε

(
N(p)

X

)
F+
K,ε(θp − β) log N(p).

For β ∈ [0, π/2) satisfying (3.3) with f = f+ε and Φ = Φ+
ε , we have∑

p∈A
1 ≤ (1 + 2ε)4

X

K logX
= (1 + 2ε)4

|I|
π/2

X

logX

for X > X(ε) sufficiently large.
Similarly, we can obtain a lower bound of

∑
p∈A 1 by another smooth

counting, so that for β ∈ [0, π/2) satisfying (3.3) with f = f−ε and Φ = Φ−ε ,
we have ∑

p∈A
1 ≥ (1− 2ε)4

|I|
π/2

X

logX

for X > X(ε). Taking the limit ε→ 0, we obtain an asymptotic formula for∑
p∈A 1 for almost all β. This completes the proof of Theorem 1.
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4. Prime angles for real quadratic fields. One can also study ques-
tions about angles related to the representation of primes as norms in a real
quadratic field, similar to those for Gaussian primes.

Let E be a real quadratic field, and ε = εE > 1 the fundamental unit,
so that the group of units is {±εn : n ∈ Z}. For simplicity, we will assume
that the fundamental unit has negative norm, and that the (narrow) class
number of E is 1, so that all ideals are principal (Gauss conjectured that this
occurs infinitely often). Given a prime p which splits (completely) in E, to
any solution of NormE/Q(α) = p, that is, to any generator of an ideal p | (p),
we associate an angle variable

t(p) ∈ R/(2 log ε)Z ' S1

by

exp

(
iπt(p)

log ε

)
=

∣∣∣∣αα̃
∣∣∣∣iπ/log ε

(where α 7→ α̃ is the Galois involution of E), which is independent of the
choice of generator of the ideal p. Note that for the Galois conjugate ideal
we have t(p̃) = −t(p) mod 2 log ε.

For example, take E = Q(
√

2). The ring of integers is OE = Z[
√

2], the
fundamental unit ε = 1+

√
2 has negative norm, and the class number (both

wide and narrow) is 1. The split primes are those satisfying p = ±1 mod 8.
For every such prime, we can represent both ±p as a norm, that is, solve
a2−2b2 = ±p. The corresponding angle parameters describe the relative size
of the solution coordinates a and b.

Hecke [6] showed that as p varies over split primes, the corresponding
angle parameters become uniformly distributed in R/(2 log ε)Z ' S1.

Using ideas similar to those for the case of Gaussian primes, one can show
results analogous to Theorem 1. The non-standard zero-free region for the
corresponding L-functions is due to Coleman [2]. The zero-density theorem
needed can be proved along the lines of Theorem 3.
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