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Abstract. We study the variance of a linear statistic of the Laplace eigen-
values on a hyperbolic surface, when the surface varies over the moduli
space of all surfaces of fixed genus, sampled at random according to the
Weil-Petersson measure. The ensemble variance of the linear statistic was
recently shown to coincide with that of the corresponding statistic in the
Gaussian orthogonal ensemble (GOE) of random matrix theory, in the
double limit of first taking large genus and then shrinking size of the en-
ergy window. In this note, we show that in this same limit, the (smooth)
energy variance for a typical surface is close to the GOE result, a feature
called “ergodicity” in the random matrix theory literature.

1. Introduction

1.1. Statement of Results

Let X be a compact hyperbolic surface of genus g > 2, A\; = 1/4 + r]z the
Laplace eigenvalues on X. Let f be a test function so that its Fourier transform
f is even, smooth and compactly supported, L > 1, 7 € R, and define the
smooth linear statistic

Npo(X) =Y f(Lrj = 7)) + f(L(r; + 7)), (1.1)
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effectively counting eigenvalues in a window of size ~ 7/L around 72 (for
7> 0), as in [7,10-12]. Here we assume, by convention, that r; € R>gUiR>g.
We write Ny 1 -(X) as a sum of a smooth and fluctuating terms

Ni(X) =N+ Np.(X),

where
N:=2(g—1) / f(L(r — 7))r tanh(7r)dr,

and it can be shown [11, Sect.3] that, for L > 1 fixed, as 7 — oo,

N ~ w 7f(x)dx
7f(a:)dx £ 0.

In [11], it was shown that when averaged over the moduli space M, of
surfaces of genus g with respect to the Weil-Petersson measure, the variance of
N, -(X) matches that of the corresponding statistic in the Gaussian orthog-
onal ensemble (GOE) of random matrix theory, in the double limit, taking
g — 00, and then L — oo (with 7 fixed):

provided that

lim lim EVP (’NL,T ~EVP(N,.,)

L—o00 g—o0

) S20()  (12)

where %0 (f) =2 [, 2| f(2)%da.

We now consider the energy average of N -(X) (or ]\NILJ(X)). Let w
be a nonnegative, even weight function, normalized by ffooo w(x)dx = 1, with
Fourier transform & smooth and supported in [—1,1]. For T > 0, define an

averaging operator
1 o0
=7 [m F(r)w (%) dr (1.3)

and a corresponding variance
Varp(F) = Er {|F - ET[F]|2} . (1.4)

Denote by Vr (X), the energy variance of ZVL,T(X), thought of as a
random variable on M,:

Vr.L(X) := Varp(Ny (X)).

Following Berry [1] (see [1, Equations (23)-(24) on p. 52] for the energy fluctu-
ations, without smoothing), it is believed that for generic surfaces! X € My,

L Arithmetic surfaces are exceptional, see [2,6].
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for fixed genus? g > 2, the energy variance Vr ,(X) will converge to the GOE
variance Y% op(f) when T — oo, and L — oo but L = o(T). Our principal
result supports this if we first take the large genus limit ¢ — oo, and then the
high energy limit T — oo, while restricting to energy windows L — oo with
L = o(logT), more precisely that in this limit the random variable Vr 1,(X)
converges in distribution to the constant ¥2op(f):

Theorem 1.1. For every € > 0,

lim lim sup ProbZVP (|Vr,L — SEop(f)] >¢€) =0. (1.5)
LT o0 9—o
L =o(logT)

This may be viewed as an analogue of a feature called “ergodicity” in
random matrix theory: In the limit of large matrix size, the energy variance
equals the ensemble variance for almost all matrices, see [9].

1.2. Method of Proof

Using the Selberg trace formula, we have [11]

Np(X)=N+ Ny (X)

with
N=2(g-1) / f(L(r = 7))r tanh(7r)dr ~ %‘1) / f(x)dx

(asymptotic holding as 7 — oo, see above), and

NL,T(X):% > Zsmf(’f%os(mm (1.6)

£y€L(X) k>1
where the summation is over the primitive length spectrum
Ly(X) € (0,00),

the set of lengths of primitive non-oriented closed geodesics of X (with possible
multiplicities).

We view the primitive length spectrum as a random point set £,, param-
eterized by the random variable X € M, that is a random point process, and
the variance Vr 1 (X) is an application ¢(Ly) of a functional ¢ on L,, which
is continuous in a suitable topology. A fundamental result of Mirzakhani and
Petri [8] shows that the point processes £, converge, in distribution as g — oo,
to a Poisson point process, denoted L, on the positive reals, with intensity
measure

2sinh(t/2)?
t

dl/Mp(lf) = dt.

From the theory of point processes, it follows that Vr p(X) = ¢(L,)
converges, in distribution as g — oo to the random variable V7, = (L),
see Proposition 2.2. To show Theorem 1.1, we argue that it suffices to prove

2@Genus g = 2 requires a modification due to the presence of the hyperelliptic involution.
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that V77, converges in distribution to the constant E%’OE(f) as L, T — oo
with L = o(logT) (see Theorem 2.3). The proof of the latter result takes up
the bulk of this paper and is done in Sect. 4.

2. Outline of the Proof of the Main Result

We rewrite (1.6) as
NLJ‘(X) = Z HL,T(Z)’ (2'1)
tecL,

where

x f(’”) cos(kxT)
Hiq(@) =27 > sfnh(kx/z) (22)

k>1

that we think of as a functional of the length spectrum, that is considered as
a random point process, as in the following notation.

Notation 2.1. 1. For g > 1, let L, = Ly(X) = {{;};>1 be the (random)
primitive unoriented length spectrum ofX € Mg, considered as a random
point process on Rg.

it. Let Log = {{;};>1 be the Poisson point process on R of intensity

2sinh(t/2)?

. (2.3)

I/Mp(dt) =

It was proved by Mirzakhani-Petri [8], that £, converges, as a sequence of
point processes, to Lo, see Sect. 3. It is then natural to consider the analogue
of Ny (X), with £, replaced by L. That is, define the random variable

) (2.4)
leLo

where Hp, -(x) is given by (2.2). We recall the averaging operator Er[-], as in
(1.3), and apply the corresponding variance operator Varp(-) as in (1.4), on
SL,T:

Veep = Varg(Si.,) = Er [|SL,T(X) —Er[Spr (X)]|2] .

We aim to express V77, directly in terms of Lo
To this end, squaring (2.4), after some simple manipulations with the
resulting expression, gives

2 Hy (kg Hp (Kot
v;g() >y rlkty) L(22)UT(k1€1,k2€2) (2.5)

L kik
01,05EL o0 ki1 ka>1 1h2

with R
zf (%)

) = G 2)

(2.6)
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and

Ur(z,y) = Er [cos (1) cos (1y)] — Er [cos (72)] - Er [cos (Ty)]
1. 1. R R (2.7)
= 25(T (e —y)) + 3B (T (e +y)) ~ B (T2) B (Ty).

Note that Ur(x,y) is real-valued since w(x) is real-valued and even. Starting
from (2.1) in place of (2.4), and likewise yields

Vro(X) = (2) >y LUV, HL(kQEQ)UT(klﬁl,kg&). (2.8)

k1ko
L1 loE€LG(X) k1,ka>1

Below we will be able to deduce Theorem 1.1 from the following two
results: Proposition 2.2 proved at the end of Sect. 3, asserting that the random
variables Vr 1,(X) (indexed by g) converge, as g — oo, in distribution, to V2,
and Theorem 2.3, proved along Sect. 4, asserting that, in the regime of Theorem
1.1, V°;, converge, in distribution, to the constant g (f).

Proposition 2.2. For every T,L > 0, the random variables Vr 1 = Vr (X),
with X € My random uniform w.r.t. the WP measure, converge, in distribu-
tion as g — 00, to the random variable V7| .

Theorem 2.3. One has

L 111’_1} IEPois HV’;’?L - E%}OE(f)|] =0.

o(log T)
Theorem 2.3 with Markov’s inequality implies that the probability that
VarT(S%J) is far from X2, (f) vanishes: for every € > 0,
lim  Probpis (|V°, — S&or(f)| >¢€) =0. (2.9)

L, T—o0
L=o(logT)

3. Background on Point Processes

Let NV be the space of measures pon R>q s.t. u({0}) = 0, for every ¢t > 0, pu(t) €
Z>o, where F,(t) := p((0,t]) is the cumulative distribution function (CDF)
associated with g, that is assumed to be right-continuous at 0. A measure
1 € N has a representation

k
=> 0, (3.1)
j=1

where 0 < k < 400, and 0 < & < & < ..., and sometimes it is convenient to
regard p as a discrete multi-set
p=A{ =1 € R (32)

Given a sequence {u"} C N and u € N, we say that u™ vaguely converges to
u, denoted p™ — p, if for all t € R> so that F,(-) is continuous at ¢,

Jim Fyn(8) = F(8), (33)
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with Fj,» and F), the CDF of p™ and p respectively. Equivalently, for every
nonnegative continuous test function of compact support f : R>o — R, one
has

ff(w)u“(dw) - 7f(w)u(dx)-
0 0

A point process (in a somewhat restrictive sense, sufficient for our pur-
poses.?) is a random element u € N (w.r.t. the vague topology on A/, gener-
ating the Borel o-algebra on N). (Equivalently, it is a probability measure on
N.) We further assume that the points {&;},>1 are a.s. distinct (valid, provided
that the corresponding point process is simple).

Definition 3.1.

i. A point process 1 is Poisson with intensity measure v on R, if for every
Borel set B C R, the distribution of 7n(B) is Poisson with parameter
v(B), and the random variables n(Bi),...,n(By) are independent for
every k > 2, and any choice of disjoint Borel sets By, ..., By.

ii. A sequence of point processes 7, on R is said to converge (in distri-

bution) to a point process 1 (written 7, 4, n) if the sequence of random
vectors (0, (B1), - - -, nn(By)) converges in distribution to the random vec-
tor (n(B1),...,n(Bg)) for all £ > 1 and Borel sets B; with boundaries
satisfying n(0B;) = 0 almost surely for all i.

Alternatively, a sequence n,, of point processes, and a point process 7
could also be seen as a N-valued random wariable, and, as such, the conver-
gence, in distribution, of 7, to 7 makes sense. It is a deep and powerful result
[3, Theorem 23 on p. 521] in probability theory, that the convergence of n,
to n in the sense of Definition 3.1(ii.) implies the convergence in distribution
of the N -valued random variables 7, to n. That would allow us to employ
the continuous mapping theorem, applicable, under certain conditions, in the
context of the convergence in distribution of random variables.

For a measure u € N as in (3.1) with £ > 1 finite, and 1 < m < k, one
defines [5, p. 28] the m’th factorial measure ™) of i on R7 as

p = T Bt
i1,...0m distinct

Next, for a point process 1 we define [5, Definition 4.9] the m’th factorial
moment measure as

0n(C) = g (C) := E [ (C)]

for C C RY; measurable (Borel). Then the m’th factorial moment measure of
a Poisson point process n with intensity v is [5, Corollary 4.10] v™, the m’th
product measure

dv™ (21, .. ) = dv(z) . dy(Ty)

3In particular, we assume that all our processes are proper.



Vol. 26 (2025) Almost Sure GOE Fluctuations 2285

of v on RY,.

In what follows, we use the identification (3.2) of a measure u € N (or
a random element of a point process 1). Thus, the factorial moment measure
of a proper point process 7 (a class of point processes that includes any Pois-
son point process) computes the correlations of {{;} in the sense that for a
measurable function A : R, — R,

E Z h(€177§m) = / h(flu'~'7§m)dam(£17"'7£m)7 (34)

(€1 seeey Em)EN™ e
distinct 20

provided that the integral on the r.h.s. of (3.4) is convergent, see [5, Definition
4.9 and immediately after]. In particular, for m = 1, this is Campbell’s formula
[5, Proposition 2.7].

We conclude this section with the following observation. By comparing
(2.5) to (2.8), we may express both as

Vro(X) = or(Ly); Vi = or0(Loo),

with £, and L., (viewed as random point processes) as in Notation 2.1, and
the functional @7 1, : N'— R, defined as

_ 2 Hip (k161)Hp, (kal2)
orn(p) = <L> >y s Ur(kil1, katla),  (3.5)
L1,82€p k,k2>1

where the elements ¢; of u, taking the role of {;, are reminiscent of the ele-
ments of the length spectrum £4. Appealing to the continuity and the compact
support of H,(-), this is easily seen to be continuous (with A/ equipped with
the vague topology), see [12, Lemma 2.1].

Proof of Proposition 2.2. We interpret the result of Mirzakhani—Petri [8, The-
orem 4.1] as the convergence, as ¢ — oo, of the point processes £, to the
Poisson point process L, (Notation 2.1), in the sense of convergence of point
processes, as in Definition 3.1(ii.). We recall that it implies that the random
element £, € N converges, in distribution, to Lo, € N, see the comments im-
mediately after Definition 3.1. Hence, an application of the continuous mapping
theorem, with the continuous functional ¢ : N'— R as in (3.5), yields that, as
g — 00, the random variables

Vr,L(X) = ¢(Ly)

converge, in distribution, to

V%)L = 90(‘600)7

that is, the statement of Proposition 2.2. O
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4. GOE Fluctuations for the Poisson Model: Proof of Theorem
2.3

We need to compute the expected value of ’V%‘;L — X%og(f)] with Vi, given
by (2.5) with £1, ¢5 selected according to the Poisson point process. We write
(2.5) according to whether £; = ¢y (the diagonal) and ¢ # {5:

VEL= >, + >  =Diag+Off
b1 la€Le  £1,02€EL
L1=L2 £y1#Lo

and then we have

Epois HV%?L - EéOE(f)H < Epois HDiag _ZéOE(f)H + Epois [|Off[] .
We will show that both terms tend to zero as L,T — oo, L = o(logT).

4.1. Bounding Ep;s [|OfF|]

Lemma 4.1. There is some Cy = Cy(f) > 0 so that
02Co L
TL

the constant involved in the ‘<’-notation depending only on f,w

Epois [|Off[] < (4.1)

Proof. We apply the correlation formula (3.4) with m = 2, the function h
given by

h(£17£2) _ % Z |HL(]€1£1)| ) ‘HL(k2§2))| |UT(k1§1,k2€2)|,

kik
k1 ,ka>1 172

and intensity dvysp(z) = 2sinh?®(x/2)/z dz, to yield that

Epois [|Off]] < Bpois | Y h(l1,42)

£1,£2€ Lo
L1 #Lo

— 77h(w,y)dVMp(x)dVMP(y)

kika

w2 ) ()] S s

|UT kl;r koy)|dzdy (4.2)

4 T T |\ Hy (kva) H (k
-1z //l LR (hay ‘|UT(’€1I kay)|dvap(z)dvaip (y)
0 0

by (2.6). In what follows we show that when L = o(logT), this expression
vanishes. R

We note that f being compactly supported forces that in the range of
the integral one has 0 < z < k—Ll, so that sinh(z/2) < e“L for some Cy > 0



Vol. 26 (2025) Almost Sure GOE Fluctuations 2287

depending only on f,w, and likewise sinh(y/2) < e“0'%. Since for k > 1 and

teR
sinh(t)

1
it SOt
sinh(kt) — k’
we have
sinh(z/2)* - sinh(y/2)? _ sepp 1
smh(klx) sinh (kz‘y> a Fiks

Given z in the domain of the integration (as above, x < kL ), the compact
support of & forces that y is contained in an interval of length = (from

(2.7)). Therefore, taking into account the boundedness of both f and w (hence
of UT) we have

kix k sinh(z/2)? sinh(y/2)?
( . ) ( Zy> &/2) (yk/ ) \Ur (k12, kay)|dzdy
sinh (£42) sinh ( 2y>
1 %L 1L 20k
< -5 T = Y Tam
L2 kiky Tke Kk TL  k3k3
(4.3)
The bound (4.1) of Lemma 4.1 finally follows upon summing up (4.3) for
k2, k1 > 1 and substituting it into (4.2). O

4.2. Bounding the Diagonal Term
We now want to bound the term Epg;s HDiag —EéOE(f)H. Recall

Hy(kiO)H
Diag = — Z > Lklkl L(k2l) ) Ur (kil, kol)

[EL k1ko>1

We separate out the contribution of the pair (k1, k2) = (1,1) and the rest
and use

Epois [|Diag —S&or(f)|]

% ZHL(x)QUT(JU,x) - Z%}OE(JC)H

< Epois

4 \Ho (ky HL(k 0]
+raBrois | Y D : 20U (kb kaf) || - (4.4)
LELo k1+k2>3

4.2.1. The Sum k; + ko > 3. We set

Hy (ki 0) Hy (st
> b ”'UT(klé,kmﬂ
teLos 12

4
D(kla k2) = EPOIS

and want to show that
log L
L2

Y. Dikiks) <
ki1+ko>3
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We apply Campbell’s formula ((3.4) with m = 1)

> h(o) ] /Ooh(m)duMp(x) (4.5)

LeLoo

EPOIS

with h(z) = LB kanll 17 (2 ko) | to find

1R2

4 [ |Hp(kiz)Hp (kox
D(ky, kz) = ﬁ/o A lkzk;( 2 )||UT (kvz, ko) |dvarp(2)

/COL sinh?(Lxz/2)
< xdx
0 sinh(Lkya/2) sinh(Lkox/2)

on using boundedness of Up and fbeing supported in [—Cy, Cp]. Tt is easy to
show (see the proof of [11, Lemma 5.2]) that this last integral is bounded by

. 1 1
< min <L2(k‘1 + ko — 2)2, k‘lk‘g>
(assuming ko > k;) and from this to show that

log L
L?

> Dk, k) <
k1+ko>3

which is our claim.

4.2.2. The Term ki1 = ko = 1. We are left with showing that the first term
on the RHS of (4.4) tends to zero, and using Cauchy—Schwartz it suffices to
bound the second moment

2

Z HL(0)*Ur(6,0) = XEor(f)| | =0
eeL

lim Epois
L—oo

for T'> 1. Squaring out, we want to show

2
Epois ( Z Hp(0)*Ur(¢ 5))

LeLoo

722%}OE IEPms

Z Hy (0)*Ur (¢ f)] —(Z&or(f))?

fell

‘We have

ZHL *Ur(e,0)

ZGE

Epois

Shos(N+0 (7). (49
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Indeed, by Campbell’s formula (4.5),

Z Hy (0)2Up (¢ 4)1

ZGC

- % /Ooo Hy,(2)*Ur (@, 2)dvarp ()

40 2?f(E) 1, _ inh? (/2
= = |, sml12((xL/)2) (14 @(2Tz) — 20(T'z)?) 2SIDT($/)dx

—4/ fly ydy+4/ Fly (2T Ly) — 2w (T Ly)?) dy,

EPois

using
1 1
Ur(z,z) = 3 + 5@(2Tx) —w(Tz)>

The first term is 2 [~ J/c\(y)2 lyldy = X% 55 (f). The second term is treated
by observing that since Suppw C [—1, 1], the integral is bounded by

1/2TLA 1
| Fwrsaeripl+ 2oy a < [ Fury < g7
0

hence we obtain (4.6)
Therefore, it suffices to show

Epois ( > HL(0)*Un(t 5)) — (Z&or()*

leLo

Again square out, obtain a diagonal sum and an off-diagonal sum.
We bound the diagonal sum using Campbell’s formula (4.5)

IE‘:Pois

Z Hy(0)*Ur(¢,0) } = / Hy(2) ' Ur(z,2)*dva e (z)

ZEEOQ

16 [~ z'f (%)4 2sinh?(z/2) 2
= — U d
LY [y sinh®(z/2) x r(w,z) de

< i /CL xisdm < i
L* sinh?(x/2) L4
We evaluate the off-diagonal term using the correlation formula (3.4) with
m = 2 for the Poisson process

16

IEPois ﬁ

Z Hy(61)*Uz (b1, 61)Hy, (€2)* Uz (62, €o)
Ly, l2€L

014l
= %// HL(l')zUT(.T,Z)HL(y)zUT(y,y)dI/MP(l')dVMP(y)

_ (L42 /OOO HL(x)2UT(x,x)dep(x)>2 = (B&os(f)* +0 <T1L>
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by (4.6), so we are done. O

5. Almost Sure GOE Fluctuations: Concluding the Proof of
Theorem 1.1

Proof. Let ¢ > 0 be given, and let us consider for a moment the random
variables V1, = Vr (X)) and VL for sufficiently large, but fixed T', L within
the allowed range L = o(logT). It would follow that, as g — oo,

Prob (|Vr,L — Sgog(f)| > €) — Prob (V& — S&op(f)| =€),  (5.1)

provided that 3%, (f)=e€ are not atoms of the distribution of Vi7p,- Otherwise,
apply (5.1) with

€/2<e =€¢(T,L)<e

so that, for the given T, L, the distribution of V77, does not have an atom at
2%‘0 e (f)=£€, and use that, for sufficiently large admissible T, L, the probability

of

(VL = SEop(N| > ¢} < { V&~ SEop(D] > 5}

is arbitrarily small, by (2.9), a corollary from Theorem 2.3. Finally, the double
limit statement (1.5) follows, as

Prob (|Vr,r — Sgog(f)] > €) < Prob (VrL — S&op(f)| > €)
= Prob (V& — Sgop(f)| > ¢)

+ (Prob (Ve = S20u(£)] > €) — Prob ([Vi% — S20s(f)] > ¢) )

< Prob (V5 ~ S2os(f)] > 5)

+ (Prob (Ve = S2on(f)] > €) = Prob ([Vi% — Z20m(f)] > €) )

with the first term small by (2.9), and the difference tends to zero as g — oo
since X p(f) £ € is not an atom of V°; . O
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