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Almost Sure GOE Fluctuations of Energy
Levels for Hyperbolic Surfaces of High
Genus

Zeév Rudnick and Igor Wigman

Abstract. We study the variance of a linear statistic of the Laplace eigen-
values on a hyperbolic surface, when the surface varies over the moduli
space of all surfaces of fixed genus, sampled at random according to the
Weil–Petersson measure. The ensemble variance of the linear statistic was
recently shown to coincide with that of the corresponding statistic in the
Gaussian orthogonal ensemble (GOE) of random matrix theory, in the
double limit of first taking large genus and then shrinking size of the en-
ergy window. In this note, we show that in this same limit, the (smooth)
energy variance for a typical surface is close to the GOE result, a feature
called “ergodicity” in the random matrix theory literature.

1. Introduction

1.1. Statement of Results

Let X be a compact hyperbolic surface of genus g ≥ 2, λj = 1/4 + r2j the
Laplace eigenvalues on X. Let f be a test function so that its Fourier transform
̂f is even, smooth and compactly supported, L ≥ 1, τ ∈ R, and define the
smooth linear statistic

NL,τ (X) :=
∑

j≥0

f(L(rj − τ)) + f(L(rj + τ)), (1.1)
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effectively counting eigenvalues in a window of size ≈ τ/L around τ2 (for
τ > 0), as in [7,10–12]. Here we assume, by convention, that rj ∈ R≥0 ∪ iR≥0.
We write Nf,L,τ (X) as a sum of a smooth and fluctuating terms

NL,τ (X) = N + ˜NL,τ (X),

where

N := 2(g − 1)

∞
∫

−∞
f(L(r − τ))r tanh(πr)dr,

and it can be shown [11, Sect.3] that, for L > 1 fixed, as τ → ∞,

N ∼ 2τ(g − 1)
L

∞
∫

−∞
f(x)dx,

provided that
∞
∫

−∞
f(x)dx 	= 0.

In [11], it was shown that when averaged over the moduli space Mg of
surfaces of genus g with respect to the Weil–Petersson measure, the variance of
˜NL,τ (X) matches that of the corresponding statistic in the Gaussian orthog-
onal ensemble (GOE) of random matrix theory, in the double limit, taking
g → ∞, and then L → ∞ (with τ fixed):

lim
L→∞

lim
g→∞E

WP
g

(

∣

∣

∣

˜NL,τ − E
WP
g ( ˜NL,τ )

∣

∣

∣

2
)

= Σ2
GOE(f) (1.2)

where Σ2
GOE(f) = 2

∫ ∞
−∞ |x| ̂f(x)2dx.

We now consider the energy average of NL,τ (X) (or ˜NL,τ (X)). Let ω
be a nonnegative, even weight function, normalized by

∫ ∞
−∞ ω(x)dx = 1, with

Fourier transform ω̂ smooth and supported in [−1, 1]. For T > 0, define an
averaging operator

ET [F ] :=
1
T

∫ ∞

−∞
F (τ)ω

( τ

T

)

dτ (1.3)

and a corresponding variance

VarT (F ) = ET

[

|F − ET [F ]|2
]

. (1.4)

Denote by VT,L(X), the energy variance of ˜NL,τ (X), thought of as a
random variable on Mg:

VT,L(X) := VarT ( ˜NL,τ (X)).

Following Berry [1] (see [1, Equations (23)-(24) on p. 52] for the energy fluctu-
ations, without smoothing), it is believed that for generic surfaces1 X ∈ Mg,

1Arithmetic surfaces are exceptional, see [2,6].
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for fixed genus2 g > 2, the energy variance VT,L(X) will converge to the GOE
variance Σ2

GOE(f) when T → ∞, and L → ∞ but L = o(T ). Our principal
result supports this if we first take the large genus limit g → ∞, and then the
high energy limit T → ∞, while restricting to energy windows L → ∞ with
L = o(log T ), more precisely that in this limit the random variable VT,L(X)
converges in distribution to the constant Σ2

GOE(f):

Theorem 1.1. For every ε > 0,

lim
L, T → ∞

L = o(log T )

lim sup
g→∞

ProbWP
g

(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε
)

= 0. (1.5)

This may be viewed as an analogue of a feature called “ergodicity” in
random matrix theory: In the limit of large matrix size, the energy variance
equals the ensemble variance for almost all matrices, see [9].

1.2. Method of Proof

Using the Selberg trace formula, we have [11]

NL,τ (X) = N + ˜NL,τ (X)

with

N = 2(g − 1)

∞
∫

−∞
f(L(r − τ))r tanh(πr)dr ∼ 2τ(g − 1)

L

∞
∫

−∞
f(x)dx

(asymptotic holding as τ → ∞, see above), and

˜NL,τ (X) =
2
L

∑

�γ∈Lg(X)

∑

k≥1

�γ

sinh(k�γ/2)
̂f

(

k�γ

L

)

cos(τk�γ) (1.6)

where the summation is over the primitive length spectrum

Lg(X) ⊂ (0,∞),

the set of lengths of primitive non-oriented closed geodesics of X (with possible
multiplicities).

We view the primitive length spectrum as a random point set Lg, param-
eterized by the random variable X ∈ Mg, that is a random point process, and
the variance VT,L(X) is an application ϕ(Lg) of a functional ϕ on Lg, which
is continuous in a suitable topology. A fundamental result of Mirzakhani and
Petri [8] shows that the point processes Lg converge, in distribution as g → ∞,
to a Poisson point process, denoted L∞ on the positive reals, with intensity
measure

dνMP (t) =
2 sinh(t/2)2

t
dt.

From the theory of point processes, it follows that VT,L(X) = ϕ(Lg)
converges, in distribution as g → ∞ to the random variable V∞

T,L = ϕ(L∞),
see Proposition 2.2. To show Theorem 1.1, we argue that it suffices to prove

2Genus g = 2 requires a modification due to the presence of the hyperelliptic involution.
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that V∞
T,L, converges in distribution to the constant Σ2

GOE(f) as L, T → ∞
with L = o(log T ) (see Theorem 2.3). The proof of the latter result takes up
the bulk of this paper and is done in Sect. 4.

2. Outline of the Proof of the Main Result

We rewrite (1.6) as
˜NL,τ (X) =

∑

�∈Lg

HL,τ (�), (2.1)

where

HL,τ (x) = 2
x

L

∑

k≥1

̂f(kx
L ) cos(kxτ)

sinh(kx/2)
(2.2)

that we think of as a functional of the length spectrum, that is considered as
a random point process, as in the following notation.

Notation 2.1. 1. For g ≥ 1, let Lg = Lg(X) = {�j}j≥1 be the (random)
primitive unoriented length spectrum of X ∈ Mg, considered as a random
point process on R>0.

ii. Let L∞ = {�j}j≥1 be the Poisson point process on R>0 of intensity

νMP (dt) :=
2 sinh(t/2)2

t
dt. (2.3)

It was proved by Mirzakhani–Petri [8], that Lg converges, as a sequence of
point processes, to L∞, see Sect. 3. It is then natural to consider the analogue
of ˜NL,τ (X), with Lg replaced by L∞. That is, define the random variable

SL,τ =
∑

�∈L∞

HL,τ (�), (2.4)

where HL,τ (x) is given by (2.2). We recall the averaging operator ET [·], as in
(1.3), and apply the corresponding variance operator VarT (·) as in (1.4), on
SL,τ :

V∞
T,L := VarT (SL,τ ) = ET

[

|SL,τ (X) − ET [SL,τ (X)]|2
]

.

We aim to express V∞
T,L directly in terms of L∞.

To this end, squaring (2.4), after some simple manipulations with the
resulting expression, gives

V∞
T,L =

(

2
L

)2
∑

�1,�2∈L∞

∑

k1,k2≥1

HL(k1�1)HL(k2�2)
k1k2

UT (k1�1, k2�2) (2.5)

with

HL(x) =
x ̂f

(

x
L

)

sinh(x/2)
(2.6)
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and
UT (x, y) = ET [cos (τx) cos (τy)] − ET [cos (τx)] · ET [cos (τy)]

=
1
2
ω̂ (T (x − y)) +

1
2
ω̂ (T (x + y)) − ω̂ (Tx) · ω̂ (Ty) .

(2.7)

Note that UT (x, y) is real-valued since ω(x) is real-valued and even. Starting
from (2.1) in place of (2.4), and likewise yields

VT,L(X) =
(

2
L

)2
∑

�1,�2∈Lg(X)

∑

k1,k2≥1

HL(k1�1)HL(k2�2)
k1k2

UT (k1�1, k2�2). (2.8)

Below we will be able to deduce Theorem 1.1 from the following two
results: Proposition 2.2 proved at the end of Sect. 3, asserting that the random
variables VT,L(X) (indexed by g) converge, as g → ∞, in distribution, to V∞

T,L,
and Theorem 2.3, proved along Sect. 4, asserting that, in the regime of Theorem
1.1, V∞

T,L converge, in distribution, to the constant Σ2
GOE(f).

Proposition 2.2. For every T,L > 0, the random variables VT,L = VT,L(X),
with X ∈ Mg random uniform w.r.t. the WP measure, converge, in distribu-
tion as g → ∞, to the random variable V∞

T,L.

Theorem 2.3. One has

lim
L,T→∞

L=o(log T )

EPois

[∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣

]

= 0.

Theorem 2.3 with Markov’s inequality implies that the probability that
VarT (S2

L,τ ) is far from Σ2
GOE(f) vanishes: for every ε > 0,

lim
L,T→∞

L=o(log T )

ProbPois

(∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε
)

= 0. (2.9)

3. Background on Point Processes

Let N be the space of measures μ on R≥0 s.t. μ({0}) = 0, for every t ≥ 0, μ(t) ∈
Z≥0, where Fμ(t) := μ((0, t]) is the cumulative distribution function (CDF)
associated with μ, that is assumed to be right-continuous at 0. A measure
μ ∈ N has a representation

μ =
k

∑

j=1

δξj
, (3.1)

where 0 ≤ k ≤ +∞, and 0 < ξ1 ≤ ξ2 ≤ . . ., and sometimes it is convenient to
regard μ as a discrete multi-set

μ = {ξj}j≥1 ⊆ R. (3.2)

Given a sequence {μn} ⊆ N and μ ∈ N , we say that μn vaguely converges to
μ, denoted μn → μ, if for all t ∈ R≥0 so that Fμ(·) is continuous at t,

lim
n→∞ Fμn(t) = Fμ(t), (3.3)
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with Fμn and Fμ the CDF of μn and μ respectively. Equivalently, for every
nonnegative continuous test function of compact support f : R≥0 → R, one
has

∞
∫

0

f(x)μn(dx) →
∞
∫

0

f(x)μ(dx).

A point process (in a somewhat restrictive sense, sufficient for our pur-
poses.3) is a random element μ ∈ N (w.r.t. the vague topology on N , gener-
ating the Borel σ-algebra on N ). (Equivalently, it is a probability measure on
N .) We further assume that the points {ξj}j≥1 are a.s. distinct (valid, provided
that the corresponding point process is simple).

Definition 3.1.

i. A point process η is Poisson with intensity measure ν on R>0, if for every
Borel set B ⊆ R, the distribution of η(B) is Poisson with parameter
ν(B), and the random variables η(B1), . . . , η(Bk) are independent for
every k ≥ 2, and any choice of disjoint Borel sets B1, . . . , Bk.

ii. A sequence of point processes ηn on R>0 is said to converge (in distri-
bution) to a point process η (written ηn

d→ η) if the sequence of random
vectors (ηn(B1), . . . , ηn(Bk)) converges in distribution to the random vec-
tor (η(B1), . . . , η(Bk)) for all k ≥ 1 and Borel sets Bi with boundaries
satisfying η(∂Bi) = 0 almost surely for all i.

Alternatively, a sequence ηn of point processes, and a point process η
could also be seen as a N -valued random variable, and, as such, the conver-
gence, in distribution, of ηn to η makes sense. It is a deep and powerful result
[3, Theorem 23 on p. 521] in probability theory, that the convergence of ηn

to η in the sense of Definition 3.1(ii.) implies the convergence in distribution
of the N -valued random variables ηn to η. That would allow us to employ
the continuous mapping theorem, applicable, under certain conditions, in the
context of the convergence in distribution of random variables.

For a measure μ ∈ N as in (3.1) with k ≥ 1 finite, and 1 ≤ m ≤ k, one
defines [5, p. 28] the m’th factorial measure μ(m) of μ on R

m
≥0 as

μ(m) =
∑

i1,...im distinct

δ(ξi1 ,...ξim ).

Next, for a point process η we define [5, Definition 4.9] the m’th factorial
moment measure as

αm(C) = αη;m(C) := E

[

η(m)(C)
]

for C ⊆ R
m
≥0 measurable (Borel). Then the m’th factorial moment measure of

a Poisson point process η with intensity ν is [5, Corollary 4.10] νm, the m’th
product measure

dνm(x1, . . . , xm) = dν(x1) · . . . dν(xm)

3In particular, we assume that all our processes are proper.
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of ν on R
m
≥0.

In what follows, we use the identification (3.2) of a measure μ ∈ N (or
a random element of a point process η). Thus, the factorial moment measure
of a proper point process η (a class of point processes that includes any Pois-
son point process) computes the correlations of {ξj} in the sense that for a
measurable function h : Rm

≥0 → R,

E

⎡

⎢

⎢

⎣

∑

(ξ1,..., ξm)∈ηm

distinct

h(ξ1, . . . , ξm)

⎤

⎥

⎥

⎦

=
∫

R
m
≥0

h(ξ1, . . . , ξm)dαm(ξ1, . . . , ξm), (3.4)

provided that the integral on the r.h.s. of (3.4) is convergent, see [5, Definition
4.9 and immediately after]. In particular, for m = 1, this is Campbell’s formula
[5, Proposition 2.7].

We conclude this section with the following observation. By comparing
(2.5) to (2.8), we may express both as

VT,L(X) = ϕT,L(Lg); V∞
T,L = ϕT,L(L∞),

with Lg and L∞ (viewed as random point processes) as in Notation 2.1, and
the functional ϕT,L : N → R, defined as

ϕT,L(μ) :=
(

2
L

)2
∑

�1,�2∈μ

∑

k1,k2≥1

HL(k1�1)HL(k2�2)
k1k2

UT (k1�1, k2�2), (3.5)

where the elements �j of μ, taking the role of ξj , are reminiscent of the ele-
ments of the length spectrum Lg. Appealing to the continuity and the compact
support of HL(·), this is easily seen to be continuous (with N equipped with
the vague topology), see [12, Lemma 2.1].

Proof of Proposition 2.2. We interpret the result of Mirzakhani–Petri [8, The-
orem 4.1] as the convergence, as g → ∞, of the point processes Lg to the
Poisson point process L∞ (Notation 2.1), in the sense of convergence of point
processes, as in Definition 3.1(ii.). We recall that it implies that the random
element Lg ∈ N converges, in distribution, to L∞ ∈ N , see the comments im-
mediately after Definition 3.1. Hence, an application of the continuous mapping
theorem, with the continuous functional ϕ : N → R as in (3.5), yields that, as
g → ∞, the random variables

VT,L(X) = ϕ(Lg)

converge, in distribution, to

V∞
T,L = ϕ(L∞),

that is, the statement of Proposition 2.2. �
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4. GOE Fluctuations for the Poisson Model: Proof of Theorem
2.3

We need to compute the expected value of
∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ with V∞
T,L given

by (2.5) with �1, �2 selected according to the Poisson point process. We write
(2.5) according to whether �1 = �2 (the diagonal) and �1 	= �2:

V∞
T,L =

∑

�1,�2∈L∞
�1=�2

+
∑

�1,�2∈L∞
�1 �=�2

= Diag + Off

and then we have

EPois

[∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣

] ≤ EPois

[∣

∣Diag −Σ2
GOE(f)

∣

∣

]

+ EPois [|Off|] .
We will show that both terms tend to zero as L, T → ∞, L = o(log T ).

4.1. Bounding EPois [|Off |]
Lemma 4.1. There is some C0 = C0(f) > 0 so that

EPois [|Off|] 
 e2C0L

TL
, (4.1)

the constant involved in the ‘
’-notation depending only on f, ω.

Proof. We apply the correlation formula (3.4) with m = 2, the function h
given by

h(ξ1, ξ2) =
4
L2

∑

k1,k2≥1

|HL(k1ξ1)| · |HL(k2ξ2))|
k1k2

|UT (k1ξ1, k2ξ2)|,

and intensity dνMP (x) = 2 sinh2(x/2)/x dx, to yield that

EPois [|Off|] ≤ EPois

⎡

⎢

⎢

⎣

∑

�1,�2∈L∞
�1 �=�2

h(�1, �2)

⎤

⎥

⎥

⎦

=

∞
∫

0

∞
∫

0

h(x, y)dνMP (x)dνMP (y)

=
4

L2

∑

k1,k2≥1

∞
∫

0

∞
∫

0

|HL(k1x)HL(k2y)|
k1k2

|UT (k1x, k2y)|dνMP (x)dνMP (y)

=
16

L2

∑

k1,k2≥1

∞
∫

0

∞
∫

0

∣

∣

∣

∣

̂f

(

k1x

L

)

· ̂f

(

k2y

L

)∣

∣

∣

∣

· sinh(x/2)2 · sinh(y/2)2

sinh
(

k1x
2

) · sinh
(

k2y
2

)

× |UT (k1x, k2y)|dxdy (4.2)

by (2.6). In what follows we show that when L = o(log T ), this expression
vanishes.

We note that ̂f being compactly supported forces that in the range of
the integral one has 0 < x 
 L

k1
, so that sinh(x/2) ≤ eC0·L for some C0 > 0
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depending only on f, ω, and likewise sinh(y/2) ≤ eC0·L. Since for k ≥ 1 and
t ∈ R

sinh(t)
sinh(kt)

≤ 1
k

,

we have
sinh(x/2)2 · sinh(y/2)2

sinh
(

k1x
2

) · sinh
(

k2y
2

) ≤ e2C0·L · 1
k1k2

.

Given x in the domain of the integration (as above, x 
 L
k1

), the compact
support of ω̂ forces that y is contained in an interval of length 1

k2T (from

(2.7)). Therefore, taking into account the boundedness of both ̂f and ŵ (hence
of UT ), we have

1
L2

∞
∫

0

∞
∫

0

∣

∣

∣

∣

̂f

(

k1x

L

)

· ̂f

(

k2y

L

)∣

∣

∣

∣

sinh(x/2)2 sinh(y/2)2

sinh
(

k1x
2

)

sinh
(

k2y
2

) |UT (k1x, k2y)|dxdy


 1
L2

· e2C0L

k1k2
· 1
Tk2

· L

k1
=

e2C0L

TL
· 1
k2
1k

2
2

.

(4.3)

The bound (4.1) of Lemma 4.1 finally follows upon summing up (4.3) for
k2, k1 ≥ 1 and substituting it into (4.2). �

4.2. Bounding the Diagonal Term

We now want to bound the term EPois

[∣

∣Diag −Σ2
GOE(f)

∣

∣

]

. Recall

Diag =
4
L2

∑

�∈L∞

∑

k1,k2≥1

HL(k1�)HL(k2�)
k1k2

UT (k1�, k2�)

We separate out the contribution of the pair (k1, k2) = (1, 1) and the rest
and use

EPois

[∣

∣Diag −Σ2
GOE(f)

∣

∣

]

≤ EPois

[∣

∣

∣

∣

∣

4
L2

∑

x

HL(x)2UT (x, x) − Σ2
GOE(f)

∣

∣

∣

∣

∣

]

+
4
L2

EPois

⎡

⎣

∑

�∈L∞

∑

k1+k2≥3

|HL(k1�)HL(k2�)|
k1k2

|UT (k1�, k2�) |
⎤

⎦ . (4.4)

4.2.1. The Sum k1 + k2 ≥ 3. We set

D(k1, k2) :=
4
L2

EPois

[

∑

�∈L∞

|HL(k1�)HL(k2�)|
k1k2

|UT (k1�, k2�) |
]

and want to show that
∑

k1+k2≥3

D(k1, k2) 
 log L

L2
.
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We apply Campbell’s formula ((3.4) with m = 1)

EPois

[

∑

�∈L∞

h(�)

]

=
∫ ∞

0

h(x)dνMP (x) (4.5)

with h(x) = |HL(k1x)HL(k2x)|
k1k2

|UT (k1x, k2x) | to find

D(k1, k2) =
4
L2

∫ ∞

0

|HL(k1x)HL(k2x)|
k1k2

|UT (k1x, k2x) |dνMP (x)



∫ C0L

0

sinh2(Lx/2)
sinh(Lk1x/2) sinh(Lk2x/2)

xdx

on using boundedness of UT and ̂f being supported in [−C0, C0]. It is easy to
show (see the proof of [11, Lemma 5.2]) that this last integral is bounded by


 min
(

1
L2(k1 + k2 − 2)2

,
1

k1k3
2

)

(assuming k2 ≥ k1) and from this to show that

∑

k1+k2≥3

D(k1, k2) 
 log L

L2

which is our claim.

4.2.2. The Term k1 = k2 = 1. We are left with showing that the first term
on the RHS of (4.4) tends to zero, and using Cauchy–Schwartz it suffices to
bound the second moment

lim
L→∞

EPois

⎡

⎣

∣

∣

∣

∣

∣

4
L2

∑

�∈L∞

HL(�)2UT (�, �) − Σ2
GOE(f)

∣

∣

∣

∣

∣

2
⎤

⎦ = 0

for T ≥ 1. Squaring out, we want to show

EPois

⎡

⎣

(

4
L2

∑

�∈L∞

HL(�)2UT (�, �)

)2
⎤

⎦

−2Σ2
GOE(f)EPois

[

4
L2

∑

�∈L∞

HL(�)2UT (�, �)

]

→ −(Σ2
GOE(f))2.

We have

EPois

[

4
L2

∑

�∈L∞

HL(�)2UT (�, �)

]

= Σ2
GOE(f) + O

(

1
TL

)

. (4.6)
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Indeed, by Campbell’s formula (4.5),

EPois

[

4
L2

∑

�∈L∞

HL(�)2UT (�, �)

]

=
4
L2

∫ ∞

0

HL(x)2UT (x, x)dνMP (x)

=
4
L2

∫ ∞

0

x2
̂f
(

x
L

)

sinh2(x/2)
1
2

(

1 + ŵ(2Tx) − 2ŵ(Tx)2
)

2
sinh2(x/2)

x
dx

= 4
∫ ∞

0

̂f(y)2ydy + 4
∫ ∞

0

̂f(y)2y
(

ŵ(2TLy) − 2ŵ(TLy)2
)

dy,

using

UT (x, x) =
1
2

+
1
2
ŵ(2Tx) − ŵ(Tx)2.

The first term is 2
∫ ∞

−∞
̂f(y)2|y|dy = Σ2

GOE(f). The second term is treated
by observing that since Supp ŵ ⊆ [−1, 1], the integral is bounded by

∫ ∞

0

̂f(y)2y
(|ŵ(2TLy)| + 2|ŵ(TLy)2|) dy 


∫ 1/2TL

0

̂f(y)2ydy 
 1
TL

,

hence we obtain (4.6)
Therefore, it suffices to show

EPois

⎡

⎣

(

4
L2

∑

�∈L∞

HL(�)2UT (�, �)

)2
⎤

⎦ → (Σ2
GOE(f))2.

Again square out, obtain a diagonal sum and an off-diagonal sum.
We bound the diagonal sum using Campbell’s formula (4.5)

EPois

[

16

L4

∑

�∈L∞

HL(�)4UT (�, �)2
]

=
16

L4

∫ ∞

0

HL(x)4UT (x, x)2dνMP (x)

=
16

L4

∫ ∞

0

x4
̂f
(

x
L

)4

sinh4(x/2)

2 sinh2(x/2)

x
UT (x, x)2dx

� 1

L4

∫ cL

0

x3

sinh2(x/2)
dx � 1

L4
.

We evaluate the off-diagonal term using the correlation formula (3.4) with
m = 2 for the Poisson process

EPois

⎡

⎢

⎢

⎣

16
L4

∑

�1,�2∈L∞
�1 �=�2

HL(�1)2UT (�1, �1)HL(�2)2UT (�2, �2)

⎤

⎥

⎥

⎦

=
16
L4

∫∫

HL(x)2UT (x, x)HL(y)2UT (y, y)dνMP (x)dνMP (y)

=
(

4
L2

∫ ∞

0

HL(x)2UT (x, x)dνMP (x)
)2

=
(

Σ2
GOE(f)

)2
+ O

(

1
TL

)
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by (4.6), so we are done. �

5. Almost Sure GOE Fluctuations: Concluding the Proof of
Theorem 1.1

Proof. Let ε > 0 be given, and let us consider for a moment the random
variables VT,L = VT,L(X) and V∞

T,L for sufficiently large, but fixed T,L within
the allowed range L = o(log T ). It would follow that, as g → ∞,

Prob
(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε
) → Prob

(∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε
)

, (5.1)

provided that Σ2
GOE(f)±ε are not atoms of the distribution of V∞

T,L. Otherwise,
apply (5.1) with

ε/2 < ε′ = ε′(T,L) < ε

so that, for the given T,L, the distribution of V∞
T,L does not have an atom at

Σ2
GOE(f)±ε′, and use that, for sufficiently large admissible T,L, the probability

of
{∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε′} ⊆
{

∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ >
ε

2

}

is arbitrarily small, by (2.9), a corollary from Theorem 2.3. Finally, the double
limit statement (1.5) follows, as

Prob
(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε
) ≤ Prob

(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε′)

= Prob
(∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε′)

+
(

Prob
(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε′) − Prob
(∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε′)
)

≤ Prob
(

∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ >
ε

2

)

+
(

Prob
(∣

∣VT,L − Σ2
GOE(f)

∣

∣ > ε′) − Prob
(∣

∣V∞
T,L − Σ2

GOE(f)
∣

∣ > ε′)
)

,

with the first term small by (2.9), and the difference tends to zero as g → ∞
since Σ2

GOE(f) ± ε′ is not an atom of V∞
T,L. �
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