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Summary.  We are interested in counting integer and rational points in affine 
algebraic varieties, also under congruence conditions. We introduce the no- 
tions of  a strongly Hardy-Littlewood variety and a relatively Hardy-Littlewood 
variety, in terms of counting rational points satisfying congruence conditions. 
The definition of a strongly Hardy-Littlewood variety is given in such a way 
that varieties for which the Hardy-Littlewood circle method is applicable are 
strongly Hardy-Littlewood. 

We prove that certain affine homogeneous spaces of semisimple groups 
are strongly Hardy-Littlewood varieties. Moreover, we prove that many ho- 
mogeneous spaces are relatively Hardy-Littlewood, but not strongly Hardy- 
Littlewood. This yields a new class of varieties for with the asymptotic density 
of integer points can be computed in terms of a product of local densities. 

Introduction 

Let X be an affine variety defined by polynomials with integer coefficients: 

X = { x E C " : f i ( x ) = 0 ,  i =  1 . . . . .  r} (0.0.1) 

where fi E Z[XI . . . . .  X,]. For a euclidean norm [. [ on R ' ,  set 

N(T,X) = I{x E x ( z )  : Ixl _- T}I 

where X ( Z )  = X ( C )  n Z". A basic problem of Diophantine analysis is to in- 
vestigate the distribution of integer points in X, that is, the asymptotic behavior 
of N(T,X) as T ~ ec. 

In certain cases one can approximate N(T,X) by a product of local densi- 
ties. For simplicity, assume that 
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r a n k ~  = r (0.0.2) 

everywhere on X (hence X is non-singular and d imX = n - r). For a prime 
number p, set 

#p(X) = lim ]{x c ( Z / p k Z ) " : f i ( x )  ~ 0 mod pk}l (0.0.3) 
k~oo pk dim X 

We define the product ~ (X) = l i p  #p(X), assuming that it is at least condi- 
tionally convergent; in the classical theory it is called the singular series. We 
also define the Hardy-Littlewood density at infinity h la Siegel, by 

~ ( X , T ) = l i m V O l { x ~ R ' : l x l  <= T, [fi(x)l < ~/2, i =  1 . . . . .  r} (0.0.4) 
r E r 

In the classical theory poo(X, T) is called the singular integral. In certain cases 
it is possible to prove that the counting function N(T,X)  behaves as the product 
of the singular series and the singular integral, i.e. 

N(T ,X)  ,'~ ~ (X)poo(X, T) as T ~ co ,  (0.0.5) 

where ~ means that N(T ,X)  is identically zero if the right hand side of (0.0.5) 
is identically zero, otherwise l imr~oo N ( T,X ) /~  (X )poo(X, T) = 1. 

In the adelic setting, let X be a non-singular geometrically irreducible affine 
variety over Q embedded into a vector space W over Q with a norm I. I. We 
assume that there exists a gauge form on X,  i.e. a nowhere zero regular differ- 
ential form co of maximal degree. With ~o one can associate p-adic measures 
mp on X ( Q p )  for any p, and a measure at infinity moo on X(R),  cf. [We2]. 
Then one defines the Tamagawa measure m = moo x 1-Ipntp on the set X(A)  
of adelic points of X (convergence factors are necessary when the product is 
not absolutely convergent). We have m = moo • mf, where mj is a measure 
on the set of  finite-adelic points X(A.! ). 

We wish to consider the density of integer points, or, more generally, 
rational points on X, subject to congruence conditions. We assume that all 
the connected components of X ( R )  are non-compact. Choose an open com- 
pact subset B.I C X ( A f )  and a connected component Boo of X(R).  Write 
B ~  = {x C Boo : Ixl _<-- T}. We regard the product B = Boo x B/ as a kind of 
congruence condition on the Q-points of X, and are interested in the counting 
function 

N(X, T;B) = IX(Q) o (B T • Bf)  I . 

In certain cases one can expect that this counting function grows approxi- 
mately as the Tamagawa measure of B ~  • Bf. We will say that X is a strongly 
Hardy-Littlewood variety if  for any B = Boo x Bf  as above, 

N(T,X;B)  ,~ m(B~ • B / )  as T ~ oo. 

Thus we regard rn(B~ x B f )  as the Hardy-Littlewood expectation of the number 
of rational points in B r • Bf.  Note that m(B r • B/ )  = m! (B! )moo(B~), and 
that m f ( B f )  does not depend on T. 
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The property of being a strongly Hardy-Littlewood variety is strong indeed. 
In particular it implies that X has strong approximation property, i.e X(Q)  is 
dense in X(Aj  ). It follows that for strongly Hardy-Littlewood varieties the 
following local-to-global principle holds: if X ( Z p ) +  ~2~ for all primes p, then 
X ( Z )  is non-empty. The term "strongly Hardy-Littlewood variety" is chosen, 
because such results are usually proven by the Hardy-Littlewood circle method. 

We say that X is a (relatively) Hardy-Littlewood variety if there exists 
a locally constant non-negative function 6 : X(A) --+ R, constant on connected 
components Boo of X(R)  and not identically zero, such that for any B = 
Boo • By as above, 

N(T,X;B)  ~ f 6(x)dm as T--~ oe. 
BroaXBl 

We call O(x) the (relative) density function. 
For a variety X as in (0.0.2), we have mr(X(Z))  = ~ (X), see 1.8.3. We 

show in section 2 that if X is strongly Hardy-Littlewood, then (0.0.5) holds. If 
X is relatively Hardy Littlewood with relative density (5, then for any connected 
component Boo of X(R)  we have 

I{xcX(Z)nB~: Ixl < r } l ~  f ~(Booxx)dx'moo(~r). (0.0.6) 
x(Z~ 

Our definitions seem to depend on the choice of the gauge form co. ttowever 
in Section 2 we prove 

Proposition 0.1. I ra  variety X is Hardy-Littlewood with respect to a ffauge 
Jorm o), then X is simply connected and any gauge ,/brm on X is of  the form 
2co where 2 r QX. 

Now it follows from the product formula [We2] that lhe Hardy-Littlewood 
expectation (i.e. the Tamagawa measure) is defined uniquely, and so the prop- 
erty to be a strongly or relatively Hardy-Littlewood variety does not depend 
on the choice of a gauge form co. 

By the circle method, certain varieties as in (0.0.2) were proved to be 
strongly Hardy-Littlewood or at least to satisfy (0.0.5), see [Bi], [Sch], and 
also [Ig], [Pa], [FMT] and references therein. In most cases, the circle method 
can be applied when there are many variables relative to the number and 
degrees of the equations (the title of [Bi] is indicative). See also [HB] for a 
heuristic investigation of  the density of integer points in a case that is beyond 
the range of the circle method. 

Our goal in this paper is to investigate the distribution of integer points 
in affine homogeneous spaces of  semisimple groups. For a large family of 
homogeneous varieties we prove that they are relatively Hardy-Littlewood and 
compute the relative density function. Some of these varieties are strongly 
Hardy-Littlewood (and therefore the density function is identically 1 ). The 
others are not strongly Hardy-Littlewood, and the density function turns out to 
take exactly two values, zero and a positive integer. Examples are the variety 
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of all n • n matrices with given detenninant, the variety of all n x n symmetric 
matrices with given determinant, or the variety of all n • n matrices with 
given irreducible characteristic polynomial (see Section 6 for details and other 
examples). It seems that Hardy-Littlewood varieties which are not strongly 
Hardy-Littlewood are beyond the range of the circle method. 

We prove our results under following assumptions: 
(0.2.1) Let G be a simply connected semisimple linear algebraic group, 

defined over Q, without Q-factors which are compact over R. Assume that we 
are given a Q-rational linear action (not necessarily effective) of G on a finite 
dimensional vector space W defined over Q. Let X be a Zariski-closed orbit 
of G in W, defined over Q. Assume that X has a Q-rational point x0, and that 
the stabilizer H of x0 is connected and has no non-trivial Q-characters. 

(0.2.2). We assume that for any congruence subgroup F C G(Q) and any 
rational point x E X(Q) the following asymptotic count holds: 

v ~  as T ~  oo 
I{Y c xF : lyl  ~ T}I '-~ vol(F \ G(R)) 

where Hx is the stabilizer ofx in G, Boo is the G(R)-orbit of x, and the volumes 
are computed with respect to a compatible choice of measures in G(R), X(R) 
and Hx(R). 

T h e o r e m  0.3. Let X, G,H be as in (0.2.1) and (0.2.2). l f  H is simply connected, 
then X is strongly Hardy-Littlewood. 

Remark 0.3.1. Here we assume that X has a Q-rational point x0 (see [Bo4], 
[Bo5] for a Hasse principle for X which can be used to prove the existence of 
a rational point in X). We show in section 2 that if H is non-connected, then X 
cannot be Hardy-Littlewood, and therefore we assume in Theorem 0.3 that H 
is connected. If H is connected and has non-trivial Q-characters, the "singular 
series" diverges, and so we assume that H has no non-trivial Q-characters. 

Remark 0.3.2. Assumption (0.2.2) was proved in [DRS] and [EM] for certain 
cases, in particular when X is a symmetric space, i.e. H is the fixed point set 
of an involution of G. In [EMS] significant progress is made in extending the 
range of cases where (0.2.2) is known to hold. 

Corollory 0.3.3. I f  X & a symmetric space of G and H & simply connected, 
then X is strongly Hardy-Littlewood. 

If H is connected but not necessarily simply connected, we prove that X 
is relatively Hardy-Littlewood. We will describe the density function below, 
after we introduce some notation and outline the proof. 

The idea of the proof is the following. For a connected component Boo 
of X and an open subset B r of X(A), choose an open compact subgroup 
Kf C G(Af) stabilizing Bf. Set F = G ( Q ) n  (G(R) x K/) '  Then F is a 
congruence subgroup of G(Q), and by [B-HC], 6.9, the number of orbits of F 
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in X ( Q )  n (Boo x Bf)  is finite. Let xl . . . .  ,xh E X ( Q ) n B  be representatives of 
these orbits, and Hi . . . .  ,Hh their stabilizers. Using Assumption (0.2.2), we can 
count separately the number of points in each F-orbit. After summing over the 
orbits, we obtain 

~ , v o l ( F  N/7i \ Hi(R)) m ,B r , 
N ( T , X ; B )  ,-~ ~ . . . . .  oot ooJ as T ---+ oo. (0.3.4) 

i=l vol(F \ G(R)) 

The sum in the right hand side above is a weighted sum of the same kind as 
that appearing in Siegel's weight formula [Sil], [Si2]. Our task is to compute 
this sum. 

Here a finite group C(H)  comes into play. It is the the dual group to 
the Picard group P icH of H. Kottwitz [Ko2] denotes it A(H)  and defines in 
terms of the Langlands dual group to H. We prefer to define it in terms of 
the algebraic fundamental group ~I(H),  which is a finitely generated abelian 
group with an action of the Galois group Gal(l~/Q), see Section 3 for details. 
We set 

C(H ) = (~l (H)Gal )t . . . .  

the torsion subgroup of the group of coinvariants of Gal (Q/Q)  in 7z1(H). 
Assume that B = Boo • B/ is contained in one orbit g0A of G(A) in X(A).  

If (gA contains no rational points, then the sum in (0.3.4) is zero. So we 
need a criterion to determine whether (ga contains rational points. In section 
3 we contruct the Kottwitz invaHant K((OA) E C(H)  of an adelic orbit (gA = 
Boo • 1-[ gTp in terms of  local invariants of orbits Boo and s It generalizes the 
product of the local Hasse-Minkowski invariants of an adelic quadratic form 
[Ca], and the Kottwitz invariant of an adelic conjugacy class in a reductive 
group [Ko2]. As in those cases, we have 

Theorem 0.4. (gA has a rational point i f  and only i f  K((gA) = O. 

Now assume that B = Boo • Bf  is contained in an orbit (gA containing 
rational points. In Section 4 we calculate the sum in (0.3.4), using the method 
of Tamagawa and Weil [Wel] and calculations of the Tamagawa number of 
an algebraic group due to Ono, Sansuc and Kottwitz. We prove 

Theorem 0.5. I f  B = Boo x Bj  is contained in an orbit CgA o f  G(A) which 
contains rational points, then 

~ v o i ( r  = IC(H)I " m l ( B f )  " r3 Hi(R) _~ H__Li(R)) 
vol(F \ G(R))  

In section 5 we put all this together and prove 

Theorem 0.6. Let X,G, and H be as in (0.2.1) amt (0.2.2). Then X is a 
Hardy-Littlewood variety with relative density J~xnction 

c$(x) = ~" IC(H)I,  K(x) = 0 
0, ~(x):b0 k 
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where we regard the Kottwitz invariant tc((gA) o f  an adelic orbit as a locally 
constant function on X(A).  

We discuss several examples in Section 6. 

1. Gauge forms and Tamagawa measures 

1.1. Notation. We will use the following notation throughout the paper. 
If  not otherwise stated, k is a field of  characteristic zero. We write/~ for a 

fixed algebraic closure of  k. When k is a number field, we write ~U :- U(k) ,  
~//'/., ~f/~ for the sets of  all the places of  k, the finite (non-archimedean) places, 
the infinite (archimedean) places, respectively. For v c "U, let kv denote the 
completion of  k at v c "U(k). Let ov denote the ring of  integers of  k,~, and p~ 
denote the maximal ideal in or. We write k(v) for the residue field o,~/p,~ and 
qv for its order. 

Let A, A f  denote the ring of adeles of k and the ring of  finite adeles (i.e. 
without archimedean components), respectively. Set koo = I ]~kv  (here and in 
the sequel we write l-Ioo for Five ~ ). We have A = k~  • A/ .  Note that i f  
k = Q t h e n k ~ = R .  

By an algebraic variety we mean a geometrically irreducible variety. If not 
otherwise stated, all varieties are assumed to be non-singular. 

For any k-group G we write X*(G) = Hom(G/~,~m~), where G,~ is the 
multiplicative group. For a k-torus T we set X . ( T ) :  Hom(~m~, T~). 

1.2. Let X be a geometrically irreducible non-singular algebraic variety over 
a field k of  characteristic 0. A gauge form on X is a nowhere zero regular 
differential form of  degree dim X. 

In general, on an algebraic variety there may be no gauge forms. For exam- 
ple, there are no gauge forms on the projective line ~,1. Moreover, there exist 
a{fine varieties without gauge forms. For example, on a curve of  genus .q > 2 
with a puncture at a non-Weierstrass point, there are no gauge forms, though 
such a curve can be embedded into an affine space A" as a closed subvariety. 

The following two subsections show that a gauge form exists when X is a 
homogeneous space or a generic level set of  an algebra of  polynomials on A".  

!.3. Fibers and level sets. Let X be a non-singular algebraic variety with a 
gauge form co, all defined over k. Let f : X ~ S be a smooth k-morphism of  
varieties, where S is non-singular. We will define gauge forms on fibers X,. of  
f .  This construction is well known; see [Se2] for a similar construction with 

measures. 
For a k-point So of  S, there is a gauge form l~ in a neighborhood U of So. 

One can define gauge forms o~.~ on the fibers by "dividing" oJ by/~. Namely, 
there exists a form ~I on X of  degree d i m X -  d i m S  such that ~ A f * / t  = co. 
Let co,. be the restriction of  J7 to X, for s E U. One can check that though ~7 
is not unique, the forms ~o,. on X~. are defined uniquely by co and i l, and are 
gauge forms. I f / t '  is another gauge form in another neighborhood U '  of  So, 
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then on the intersection U n U ~ we have ll' = (Plt where cp is a regular function 
without zeros, so instead of  co,. we get another gauge form co~. = cp(s)-~co.,.. We 
see that the gauge form co~. on X~. is defined by co uniquely up to a constant 
factor from k • . 

The above construction may be applied to the family of affine varieties 
defined by an algebra of  polynomials. Let X = Z~ ~ with the gauge form 
co = dXl A . . .  A dx,,. Let ~r C k[x l , . . . , x , ]  be a finitely generated algebra 
of polynomials on A".  Set S = Spec d .  The embedding ~r ~ k [ x l , . . . , x , ]  
defines a map f : d n ~ S, and this map is dominant, i.e. the image is dense. 
It follows that S is irreducible. There exists a Zariski open subset U C S such 
that f is smooth on f - l ( U ) .  Since S is irreducible, U is dense in S. The 
above construction defines gauge forms on fibers X~ = f - l ( s )  for k-points 
s ~ U .  

Let f ~ , . . . ,  f r  be a system of  generators of  d ;  it defines a map f : A" --~ 
M', and we can identify S with the image of f .  If  we write s l , . . . , s  r for the 
coordinates of  the point s E S (k )  in A r, then Xs is defined by the equations 

f i ( x ) = s  i ( i =  1 , . . . r ) .  

All the polynomials in d are constant on X~. For a k-point s E U we say that 
X~ is a generic level set of  the algebra d .  We have defined a gauge form co,. 
on a generic level set X~ of  d .  

1.4. Homogeneous spaces. Let G be a k-group. Then G admits a left-invariant 
gauge form. A group G is called unimodular if  G admits an invariant (i.e. left- 
and right-invariant) gauge form. If  G is unipotent, or connected reductive, or 
has no k-characters, then G is unimodular. 

Let X be a homogeneous space of  a connected reductive k-group G. We 
assume that X has a k-point xo. Let H denote the stabilizer of  x0. Then X 
admits a G-invariant gauge form if  and only i f  H is unimodular ([We2], Thin. 
2.4.1 ). In particular, i f  H is a connected reductive group, then X admits an 
invariant gauge form. 

We say that gauge forms co on X,  coo on G and co,v on H match together 

algebraically i f  coo = co �9 coil in the sense of  [We2], 2.4, p. 24. 

1.5. When a gauge form ca on X exists, a natural question arises, whether co is 
unique up to constant factor. In general co may be not unique. For example, for 
any integer n the form x"dx is a gauge form on Gin. We will show however  
that i f  X is a homogenous space of  a semisimple algebraic group, or, more 
general, an algebraic variety with a finite fundamental group, then a gauge 
form on X is unique up to a constant factor. 

Let co be a gauge form on X,  and let co' be another gauge form. Then 
co' = ~pco where ~o c k[X] x, i.e. ~p is a regular function without zeros on X. 
We show that i f  ~p is non-constant,  then X must  have an infinite fundamental 

group. 

Lemma 1.5.1. Let  X be a homogeneous space o f  a k-group G without non- 
trivial k-characters. Assume that X has a k-point Xo. Then k[X] x = k x. 
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ProoJ? Consider the map v : G --~ X defined by v(g) = xog. For any function 
q9 without zeros on X,  its pullback v'q) is a function without zeros on G. 
By Rosenl icht ' s  theorem (cf. [Ro] Thm. 3, or [We2], Thm. 2.2.2, p. 15), any 
function without zeros on G is a product of  a k-character of  G and a constant. 
By hypothesis, G has no k-characters, hence v'q0 is constant, and therefore qo 
is constant. []  

The following lemma must be well-known. We include a proof  for the 
reader 's  convenience. 

L e m m a  1.5.2. Let X be an algebraic variety over an algebraically closed fieM 
k o f  characteristic zero. I f  k[X] x +-k x, then Jor any n > 1 the variety X 
admits an unramified Galois covering o f  degree n. 

Proo S Assume that k[X] x + k  x . First we prove that there exists a function 
f C k[X] x such that f is not of  the form f T  for any f l  E k[X] • and any 
m > 1. Choose a non-constant function f C k[X] • . It suffices to find a natural 
number  N such that i f  f is an n-th power then nlN. We can assume that X is 
affine, and embed X as a Zariski-dense subset in the normalization )? of  the 
projective closure of  X.  We may write 2( - X  = D~ U . . .  U D~. We regard 
a function f~ c k[X] x as a rational function on A?. With f '  we associate its 
divisor d i v ( f  ~) = ~iniDi.  We obtain a map div : k[X] x --~ Z r, f~ ~ (ni), 
whose kernel is k[X] x = k x. Since our f is non-constant,  div ( f )4=0 .  For 
the non-zero element d i v ( f )  C Z r there exists a natural number  N such that 
i f  d i v ( f )  is divisible by a natural number  n, then nlN. Hence i f  f is an n-th 
power then nlN, which was to be proved. 

t !  
For any natural n, the Kummer  exact sequence 1 --* #,, --* 113m---~l13m ~ 1 

induces the cohomology exact sequence 

k [ X ] •  x ~ H~,(X,~,,). 

A function f E k[X] x which is not an m-th power for any m > 1, defines an 
element of  order n of  Hit(X,/~n), which corresponds to a Galois covering of  X 
with Galois group #,, ~- Z/nZ.  [] 

Corol lory 1.5.3. Let X be a variety with a .finite fundamental group over an 
algebraically closed field k o f  characteristic O. Then a non-constant regular 
Junction f on X takes any value a c k. [] 

Corol lory 1.5.4. Let X be a variety over a fieM k o f  characteristic 0 with a 
finite geometric fundamental group. I f  X has a gauge form ~o, then any other 
gauge Jorm differs from e) by a constant factor. 

1.6. Let k be an algebraic number  field. Let X be a non-singular k-variety, 
and o) a gauge form on X.  With o9 one can associate a Tamagawa measure 
m on the set X(A)  of  adelic points of  X,  see [We2], Ch. II. For any place 
v E ~//'(k) one associates a measure my on X(kv), cf. [We2], 2.2. 
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For a finite set S C ~U(k), let o(S) denote the ring of S-integers in k (i.e. 
the elements of k, which are integer outside S). Fix a model of X over o(S) 
for some finite S. For v outside S, set 

u,,(x)= f m,,. 
Y(ov) 

Then for almost all v we have it~,(X) = q~,di"aclX(k(v))l, cf. [We2], Thin. 
2.2.5. 

If ]-L~it~(x) converges absolutely, one defines the Tamagawa measure m on 
X(A)  by 

m = [Ak[--ldimXI]mv (1.6.0) 

where Ak is the discriminant of k (see [We2], 2.3 for details). By the product 
formula, the measure m does not change if ~o is multiplied by a constant. 

When I],,p~(X) does not converge absolutely, one needs convergence fac- 
tors, cf. [We2], 2.3. A family (2t,) of strictly positive numbers is called a family 
of convergence factors for X if I],2~-Ipv(X) converges absolutely. Then one 
defines the Tamagawa measure by 

- • -1 m = [Ak] 2 I]2,, m~,. 
i 

The Tamagawa measure m depends on the choice of convergence factors; a 
different choice will multiply the measure by a constant. 

In case H p v ( x )  is conditionally convergent, we can normalize the Yama- 
gawa measure by setting 

m = IAkl-lai'~VA[I2~,lm,, 

where 

a = I-IL, xlimoo H I-I2,, �9 (1.6.0.1) 
v[oo ~ p<x vlp 

Note that the convergence of  (1.6.0.1) is equivalent to convergence of I~,,it,~, 
and furthermore this normalization is independent of the choice of convergence 
factors. 

We will recall the definition of the Tamagawa measure for connected uni- 
modular groups and define the Tamagawa measure for homogeneous spaces. 

1.6.1. Let G be a connected unimodular k-group G, and r an invariant gauge 
form on G. Let Pc denote the representation of Gal(k/k) in the space X * ( G ) |  
Q, and let tc be the the rank of the group of k-characters of G (i.e. the 
multiplicity of the trivial representation in Pc). The Tamagawa measure on 
G(A) is defined by 
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m~ = r a-' zJk" -• I-I(2G)-'m~, 

G 
moo = I] my 

too 

m G = moomf (1.6.1.1) 

where 
Ak is the discriminant of  k; 
2] = Lv(1,pa)  -I for v E ~//~, where L~(s, po)  is the local factor of  the Artin 
L-function associated with Pc; 
rG = l i m s ~ l ( s -  1)tGL(s, pG), where L(s, p c )  is the corresponding Artin L- 

function, L(s, Pc)  = I~ ~ I L~(s, Po). 

I f  G is connected, the product in (1.6.1.1) converges absolutely, cf. [O], 1.1.1. 
For an idele a E A • its norm is defined by ]a[ = 1-I~la,,[. Let G(A) 1 denote 

the set of  all (4 E G(A) such that [z(g)[ = 1 for any k-character X : G -+ ~m. 
The Tamagawa number of  G is defined by ~(G) = m(G(A) l /G(k) ) .  

1.6.2. Let G be a unimodular k-group, H C G a unimodular k-subgroup, 
X = H \ G. By 1.4 there exists an invariant gauge form cox on X. We define 
the Tamagawa measure m --- mx on X(A)  by 

m r =  rxllAkl- �89 dimx I ] (2x)- lmt , .  
vr 

moo = I~ my 
~-oo 

m = mooml. (1.6.2.1) 

where 

rv(1,pc) ~ 

rx = lim(s - 1)tG-tH L(s, PG) _ rc 
.~.~ l L(s ,  PH ) rH 

We will need two well-known lemmas. 

Lemma 1.6.3. Let  k be any fieM, G a k-group and H C G a k-subgroup. Set 
X = H \ G. Then there is a canonical exact sequence 

1 --* X ( k ) / G ( k )  ---+ H l ( k , H )  ---+ HI(k,  G). 

Proo f  See [Sel],  Ch. I, 5.4, Prop. 36. [] 

Lemma 1.6.4. Let  k be a number.field, G a connected k-group, H a connected 
k-subgroup, and X = H \ G. For any point XA E X(A),  the map g H xag : 
G(A) --~ X ( A )  is open. In particular, the orbits o f  G(A) in X ( A )  are open. 

Idea o f  p roo f  We use Lang's  theorem [La] and Hensel 's lemma. See [Se2], 
p. 654, for a more general statement. [] 
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Now assume that G and H are connected unimodular and that gauge forms 
o2 on X, o9c on G and oJH on H match together algebraically. One can check 

. c G(k~,) and m~ on H(kv) match that the local measures m,~ on X(k~),m~ on H 
G H together topologically in the sense of  [We2], 2.4, p. 25, i.e. m v = m,,. m~. 

Let m c and m g be the Tamagawa measures on G(A) and H(A),  respec- 
tively. 

Lemma 1.6.5. When H is connected, the product m (1.6.2.1) converges 
absohttely, and any o.[1 the triples of  measures (mC, mH,m) and (nl~,mf, mf  ) 
match together topologically. 

The lemma is a version of [We2], Thin. 2.4.2, without the hypothesis that 
the map g ~ xog : G ~ X admits a local section. 

htea of  proof It suffices to prove that (1.6.2.1) converges absolutely. This 
means that I] , , (2{)-I l t , , (X ) converges absolutely, cf. [We2], 2.3. The products 
l-I , , (2])-l l l , , (G) and H -1 [L,(2,~ ) B~(H) converge absolutely by [O], 1.1.1, and 

H --1 G by definition 2~ x = (2~)  2~,. Since H is connected, by Lang's theorem H~ x 
G H - 1  lt,~ (It~) for almost all v, and the lemma follows. [] 

Remark 1.6.6. The product in (1.6.2.1) converges absolutely even when H is 
non-connected (see 1.7 below). However in this case (1.6.1.1) does not con- 
verge for H. It can be shown that i f  G and H have no k-characters, the singular 
series is conditionally convergent and the normalization (1.6.0.1) coincides with 
(1.6.2.1). 

1.7. Non-connected stabilizer. We show that the product (1.6.0) is absolutely 
convergent for X = H \ G when G is connected semisimple and the stabilizer 
H is semisimple, even if  we do not assume that H is connected. It suffices to 
prove that 1-Ijt,,(X) is absolutely convergent. Since for almost all primes we 
have It~)(X)= qv dimx ]X(k(v))], the convergence of  (1.6.0) follows from 

Proposition 1.7.1. Let X = H \ G be a homogenous space defined over a 
.finite .fieM Fq, where G is connected semisimple, and H is semisbw~le, but 
not necessarily connected Then 

lX(Fq)~ - I - [ - O ( q - 2 )  . 
qdin~u 

We will need: 

Lemma 1.7.2. Let E be a.finite group over the.finite Jiehl Fq. For a cohomol- 
ogy class ~ 6 HI(Fq,E) and a coo'cle ~b representing 3, set e(~) = ]~E(Fq)], 
where ~E denotes the correspondin{l twisted (lroup. Then 

1 
E e ~ - l .  [] 

CEHI(Fq,E)  ( q )  

1.7.3. Idea o f  Proof o f  Proposition 1.7.1. To count points in X(Fq),  we de- 
compose it into orbits under G(Fq). For one orbit xG(Fq) with stabilizer Hx, 
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we have 

IG(Fq)] ]a(Fq)[ 1 (1.7.3.1) 
[xa(Fq) I = iHx(Fq)-------~l = i/t~,(Fq)------ ~ ITco(Hx)(Fq)l " 

Set E = rc0(H). Using Lemma 1.6.3 and Lang's theorem, we can show 
that the orbits of G(Fq) in X(Fq) are in one-to-one correspondence with the 
set H1(Fq,E), and under this correspondence I~0(H~)(Fq) l  = e(~) .  

For a connected semisimple group G over Fq, it follows from [St, 11.16] 
that 

(1 _q-2)rankG < IG(Fq)] < (1 +q-2)rankG 
= qdimG = 

Applying this inequality to G and Hx ~ in (1.7.3.1), we find 

(1 _q-2)rankG 1 < [xG(Fq)[ < (1 +q-2)rankG 1 
(1.7.3.2) (1 + q-2)rankH e(~)  = qdinO: = (1 -- q--2)rankH " e(~)  ' 

for the orbit corresponding to a cohomology class 4. By summing (1.7.3.2) 
over ~ E HI (Fq ,E)  and applying Lemma 1.7.2, we obtain Proposition 1.7.1. 
[] 

We refer the reader to [Sp] for a treatment of the situation when G and H 
are not assumed to be semisimple. 

1.8. We show that when X is as in (0.0.2), our Hardy-Littlewood expectation, 
i.e the Tamagawa measure of Boo x BI,  coincides with the classical Hardy- 
Littlewood expectation, i.e. the product of the singular integral and the singular 
series. 

Let X be as in (0.0.2). Consider the map f = ( f l  . . . . . .  fr) : &" ~ &r. Set 
V~ = f - l ( s )  for s E &r. Then X = V0. 

Since rank(c~fi/?~xj) = r on X, the map f is smooth on f - l ( U )  for some 
Zariski-open set U in &r, and the construction of 1.3 defines gauge forms 
oJ s on the fibers V~ for s E U. Set b/~, = U(Q~,) c Q~. Let m~ denote the 
corresponding local measures on V~(Q~) for s E b/v. 

From the construction of the forms oJ" it follows that for any compactly 
supported functions q5 on Uv and ~p on f - l ( / gv )  c Q~I, which are piecewise 
continuous when v = cx~ and locally constant when v = p < cx~, we have 

f$( f (x))O(x)dx~. . .dx, ,=f$(s)( fv , (Qv)~bdm';)  dst . . .dsr 

This equality defines the measures m s uniquely for almost all s .  

Lemma 1.8.1. For any prime p, 

mp(X(Zp)) = lim ]{x E (Z/ptZ)" : f i (x)  - 0 mod pt}] 
l-,oo pldimX 

(l.s.o) 
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Lemma 1.8.2. 

moo({x ~ X ( R )  : [xl < T}) 

= lim vol{x E R" : Ix[ < T, Ifi(x)l < e/2, i = 1 . . . . .  r} 
&--+0 ~-r 

Proof  o f  Lemmas 1.8.1 anti 1.8.2. For v =  p < ec, set ~: = p- l ,  

r = p 'Z;  c Q~, ~ = z 7, c Q ; .  

Then vol(($~) = ~:r = p--Zr For l sufficiently big, ~,. C U(Qp).  Take for ff the 
n characteristic function of  the compact open subset ~3 n f - I ( U )  C Qp, and for 

r q5 the characteristic function of  ~,: n U C Qp. Then (1.8.0) yields 

p- 'a l{x  E (Z /p lZ)n  : f i ( x )  =- 0 mod pl}[ = fmp(V~(Zp))dSl . . .ds , .  
fs 

After dividing by vol((~,:)= p-tr  and passing to limit, we get Lemma 1.8.1. 
For v = oo, for any t: > 0 set 

g , , = { s E R  r :[sil < ,:/2, i =  1 . . . . .  r}, ~ = { x E R " : l x l  < V } .  

For sufficiently small ~,(g,: E U(R).  Take for ~ the characteristic function of  
the set ~ N f - J ( U ) ,  and for q5 the characteristic function of  the cube ~:. The 
equality (1.8.0) yields 

vo l ( f - I ( (g~)  n ~ )  = J'm~(V~.(R) n ~3) dsl ... dsr �9 
g~ 

After dividing by vol(g~) = tf and passing to limit, we obtain Lemma 1.8.2. 
[] 

Corollory 1.8.3. Let X be as in (0.0.2), and assume that the singuktr series 
( X )  converges at least conditionally. Then 

m / ( X ( Z ) )  = ~ (X) and ~ m o o ( B  r )  = l,oo(X, T ) .  [] 
Boo 

2. Hardy-Litt lewood varieties 

2.1. In this section k = Q. Let X be an algebraic variety over Q, and co 
a gauge form on X. We assume that either the product (1.6.0) is absolutely 
convergent, or that we are given a canonical set 2,, of  convergence factors. In 
any case we can define the Tamagawa measure m on X ( A )  and measures m! 
on X ( A  t ) and m ~  on Xoo. 

We assume that X is affine and is embedded into a vector space W as a 
closed subvariety. Suppose that all the connected components Boo of X ( R )  are 
non-compact. Let Boo be a connected component of  X(R) ,  and Bf  C G ( A ! )  
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be any open compact subset. Set B = Boo • Bj. For a positive number T, set 
B~ = {x E Boo :lxl < T}. We want to compare the counting function 

N(T,X;B)  = [{x E X ( Q )  n B  : ]x I < V}[ 

with its Hardy-Littlewood expectation m(B r x B / ) =  my(B/)moo(B~).  

Definition 2.2. A variety X is called strongly Hardy-Littlewood with respect 
to a gauge Jorm co, if Jbr an}' Boo and any B/ as above, 

N(T ,X;B)  ,.~ m(B~ x B j )  as T -~ (xz. 

Definition 2.3. Let & be a locally constant non-negative function on X(A), 
which is constant on connected components o f  X ( R  ) amt not zero identically. 

A variety X is called (relatively) Hardy-Littlewood with density (~, with 
respect to a gauge Jbrm o), if Jor an-}" Boo and an-}' B/ as above, 

N(T,X;Boo •  f fi(x)dm as T - - ~ .  
B T x B/ 

Thus a strongly Hardy-Littlewood variety is a Hardy-Littlewood variety 
with constant density 1. 

Proposition 2.4. l f  X is strongly Hardy-Littlewood, then X has the strong 
approximation property." the image oJ'X(Q) in X(Aj)  is dense. 

Proof Let B/ C X ( A / )  be an open subset. We must prove that X(R) • B/ 
contains a rational point. We will prove a stronger assertion: for any connected 
component Bo~ of X(R), the set Boo • B/ contains a rational point. We may 
assume that B/ is compact. Since X is strongly Hardy-Littlewood, the number 
of Q-rational points in BY • Bj grows asymptotically as moo(B~),  m / (B / )  
as T --* cx~, and in particular since moo(Br) �9 m/(B j ) > 0 (and is increasing), 
X(R) x B/ contains a rational point. [] 

We may assume that X is defined by polynomials with integer coefficients. 
Then X(o(S ) )  makes sense for any finite set S C ~ containing oo. 

Proposition 2.5. I f  X is Hardy-Littlewood, then there exists a .finite set S 
containing oo such that the #nage oJX(o(S ) )  in l~v~sX(o~,) is dense. 

Proof Choose a point y = (yoo,y/)  c X(A) such that 6(y)+O. Set A = 
6(y). Let U! be an open compact neighborhood of y!  such that 6(x) = A on 
Boo x U!, where Boo is the connected component of yoo in X(R). We can 
choose U/ of the form U! = [[Up. There exists a finite subset S of ~ 
containing oo, such that Up = X(Zp) for p ~ S. 

Now let B s be any open subset of  l~p(~sX(Zp). We IYlUSt prove that the 

set yLesX(Qv)  • B s contains rational points. Set Bf  = 1-Ipesn~ t Up • B s. The 

density 6 is constant and positive on Boo x Bj. An argument similar to that in 
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the proof of Proposition 2.4 shows that Boo x B/ contains a rational point. We 
conclude that I-I,,EsX(Q,,) x B s contains a rational point. [] 

We say that an algebraic variety X over a field k is geometrically simply 
connected if X% has no non-trivial unramified coverings. 

Proposition 2.6. lJ'a variety X over Q is Hardy-Littlewood with some density 
5, then X is geometrically simply connected. 

Proof Minchev [Min] proved that if X is a non-singular algebraic variety over 
a number field k, and for some S C ~U(k) the image of X (e (S ) )  in l~,~r 
is dense, then X is geometrically simply connected. The proposition follows 
therefore from Proposition 2.5. [] 

Proposition 2.7. I f  X is an q~ne homogeneous space e ra  connected group G, 
with non-connected stabilizer H, then X is not Hardy-Littlewood with respect 
to any ~lauge Jbrm. 

Proof Indeed, then H ~  is an unramified covering of X = H\G,  hence X 
is not simply connected. [] 

Remark 2.7.1. The fact that the image of X(o(S)) in l]~,ftsX(o~,) is not dense 
for a homogeneous space X with non-connected stabilizer, was also proved in 
[Bol]. It can also be easily proved by Kneser's method [Kn2], using a theorem 
on the finiteness of the number of orbits of an S-arithmetic group ([Brl], 8.10). 

Corollory 2.8. I f  X is a Hardy-Littlen'ood variety with respect to a gauge 
Jorm (o, then the Tamagawa measure m ~ on X(A) defined by an)" gauge jorm 
e~ on X, coincides with the Tamagawa measure m defined by ~o. 

Proof Indeed, by Proposition 2.6, X is geometrically simply connected. It 
follows from Corollary 1.5.4 that co' = 209 for some 2 E k • . By the product 
formula, m ' =  m, cf. [We2], Thm. 2.3.1. [] 

We see that for a Hardy-Littlewood variety X, the Hardy-Littlewood ex- 
pectation depends only on X, and not on the choice of a gauge form. 

Proposition 2.9. Let X be a strongly Hardy-Littlewood variety as in (0.0.2). 
Then 

N(T ,X)  ,,~ ~ (X)tLoo(X, T) .  

Proof Since X is strongly Hardy-Littlewood, for any connected component 
Boo of X(R) we have 

N(T,X;BOO x X ( Z ) )  ~ m(B~ • X ( s  

Summation over the connected components yields 
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N(T,X),',~ ~ moo(B~)mf (X(Z ) )  . 
B~cx(R) 

By Corollary 1.8.3 the right hand side of the above equality equals ~ (X)ll ~ 
(X, T), which proves the proposition. [] 

3. Rational points in adelic orbits 

3.1. Let k be a number field, G a semisimple simply connected group over 
k, X a right homogeneous space of G defined over k. We assume that X has 
a k-point. Let H be the stabilizer of a k-point xo c X(k) .  Hereafter we assume 
that H is connected. 

Let CA be an orbit of G(A) in X(A). In this section we are interested 
whether (gA contains rational points. Our methods are those of [Ko2] and [Bo3]. 
We use cohomological techniques of [Kol], [Ko2] in the form of [Bo2]. 

Recall that a connected algebraic group is simply connected if it is an 
extension of a simply connected semisimple group by a unipotent group. In 
the case when the stabilizer H is simply connected, we have 

Theorem 3.2. Let G,X and H be as in 3.1. Assume that H is simply con- 
nected Then the embeddings X ( k )  ~ X ( k ~ )  ~ X(A) induce bijections o f  
the orbit spaces 

X(k ) /G(k )  ~,  X ( k ~ ) / G ( k ~ )  ~ X(A) /G(A) .  

This result is stated in Jig, p 138]. It follows from Corollary 3.7 below. 
We provide however an 'elementary' proof. 

Proof Consider the commutative diagram 

1 ~ X(k ) /G(k )  ~ H~(k,H) 

l l 
1 - -~  X(koo)/G(koo) ~ H I ( k ~ , H )  

---+ Hl (k ,G)  

1 
- - ~  H~(k~o,C) 

where the rows are exact sequences of Lemma 1.6.3. By the Hasse principle 
for the simply connected groups H and G (Kneser-Harder-Chernousov, see 
[Ha], [PR, Ch. 6]) the right and middle vertical arrows are bijections, hence 
the left one is a bijection. 

By Kneser's theorem [Knl], Hl(k~,H) = 0 for any finite v, hence G(k,,) 
acts on X(k~) transitively for these v. Using Lemma 1.6.4 we obtain that G(Aj ) 
acts on X(Af)  transitively. It follows that the map 

X(koo)/G(ko~) --* X (A) /G(A)  

is a bijection. [] 

In order to describe the obstruction to the existence of a rational point in 
an adelic orbit in the case when H is not simply connected, we need the notion 
of the algebraic fundamental group. 
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3.3. Algebraic Jundamental group. (cf. [Bo2], or the exposition in [Mi] App. 
B). Let /~ be a connected group over an algebraically closed field F. First 
assume that /~ is reductive. Consider the homomorphism p : / ) ,  
where /~sc is the universal covering of the derived group /~ss o f / t .  Let 7 ~ be 

a maximal toms o f / ) ;  set ~(sc) = p_l(7~). We define 

~,(/4, T) = X.(f)/p.X.(f (~)) 

where X.( . )  denotes the cocharacter group. If ~t C /~ is another toms, then 
there is an element h E / f (k)  such that the inner automorphism int(h) o f / ~  

takes T' to 7 ~. One can easily check that int(h) induces a canonical isomorphism 
~l(/ t ,  7 ~t) ~ nl(/~, T). We can therefore write ~l(/~) for ~1(/t, 7~). Now i f / t  is 
any connected group, not necessarily reductive, then we set zt~ (/4) = ~l (/~//f") 
where /)~ is the unipotent radical o f /~ .  

The algebraic fundamental group ztl(H) is a functor from the category 
of connected F-groups to finitely generated abelian groups. Moreover, for a 
connected group H defined over any field F of characteristic 0, the Galois 
group GaI(/?/F) acts on Ztl(Hp), so we get a functor H ~ ~l(Hp) from the 
category of connected F-groups to Galois modules, finitely generated over Z. 
We will write ~ j (H)  for the corresponding Galois module. One can check that 
an inner twisting does not change the algebraic fundamental group. 

Examples. If H is unipotent, then h i (H)  = 0. If H is a toms, then n t (H)  = 
X.(H). If H is a reductive group such that H ~ is simply connected, then 
~zl(H) = X.(H/H~).  If H is semisimple, then ~I(H)  is a twisted form of the 
finite group ker[p : H sc --~ H] (i.e. they are isomorphic as abelian groups but 
not as Galois modules); namely, 

~ l (H)  = Hom(X*(ker p), Q/Z) .  

In particular, ~I(PGL,,) = Z/nZ, while ker[SL,, --~ PGL,,] = ll,,. It is worth 
mentioning that for any connected group H defined over C, the algebraic fun- 
damefftal group of H is just the usual topological fundamental group of H(C).  

3.4. Coinvariants. For a connected algebraic group H over a field F,  we set, 
following Kottwitz ([Ko2], Introduction) 

C(H) = (~ l (H)Gal(ff/F) )t  . . . .  

where ~I(H)GaI(~/F) denote the group of coinvariants of the Galois group, and 
(')to~ denotes the torsion subgroup. (Kottwitz writes A(H) instead of C(H).) 
For a connected group H over a number field k we set 

C,,(H) :=  C(Hk~ ) = (x~ (H)Ga~(L,/k,,))to~s 

for any place v of k. We have a canonical map i,, : C~,(H) ~ C(H) induced 
by an inclusion Gal(/~/k~) ~ Gal(k/k). 

Kottwitz relates the groups C(H) and C~(H) to the first Galois cohomology 
of H. For a place v of k he defines a local map 
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[iv : Hl(kv, H) --* Cv(H) 

taking the neutral element of  HI(kL,,H) to zero (cf. [Ko2], Thin. 1.2; our [i~, 
is eH,, in the notation of  Kottwitz). For finite v, the map [iv is bijective. 

3.5. Kottwitz invariant. We can now define the Kottwitz invariant o f  an adelic 
! 

orbit (gA. Write (gA = 1-[ (9~,, where (9,, is an orbit of  G(k~) in X(kt,) for a place 
v of  k, and 11' denotes the restricted product. By Lemma 1.6.3 an orbit (~ 
defines a cohomology class ~ c HI(k,,,H). We define local invariants by 

tcv((9,~) = flv(~,,) c Cv(H). 

For a point x~, C X(k~) we set t<(x~) = tr Then l<(x,~) is a locally 
constant map X(kv) ~ C,,(H). 

Applying Lang's  theorem and Hensel 's  lemma, we see that for almost all v 
we have (.0~ = xoG(kv) and therefore tr = O. We now define the Kottwitz 
invariant of  (9,~ by 

K ( ~ 0 A )  = ~ i t , ( l % ( ( ~ v )  ) ~ C(H) . 
v 

For a point XA E X ( A )  we set Ir = K(XAG(A)); it is a locally constant 
map X ( A )  -+ C(H). 

Theorem 3.6. Let G,X and H be as in 3.1. An orbit (gA of G(A) in X ( A )  
contains a k-rational point if and only t f  1r = 0. 

In the case when the group H is either semisimple or a torus, the result 
is known to experts: it is a standard application of the Tate duality for finite 
groups and tori. Kottwitz ([Ko2], Lemma 6.3) proved Theorem 3.6 in the case 
when X is a conjugacy class in G. 

Proof By construction if  (_gA contains a k-point then 1r = 0. We must 
prove that i f  t<((-gA) = 0 then (9A contains a k-point. 

For v C ~/  consider the localization maps loc,, : HI(k,H) --+ Hl(kv, H). 
The family (loc~) defines a map 

loc : H1(k,H) --+ @H1(k~,H) 
v 

where Q~ denotes the subset in the direct product consisting of ({,,) such that 
{, = 1 for almost all v. Consider the map 

I ~)[Iv ~ i v  
[1: ~]~H (k~,H)--~]~C~(H)---~C(H). 

Kottwitz proved that im loc = ker/~ ([Ko2], 2.5, 2.6). 
An adelic orbit OA defines a class ~A := (~v) E | see 3.5. 

By definition, I<(~A) = fl(~A). Since 1r = 0, we have fl(~A) = 0. Hence 
~A = Ioc(~) for some ~ C Hl(k,H). 
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Let ~7 denote the image of  ~ in HI(k,G). Then loc~,01 ) : 1 for any place 
v of  k. By the Hasse principle for the simply connected group G, ~7 = 1. By 
Lemma 1.6.3, ~ defines a G(k)-orbit Cgk in X(k) ,  and we see that (gk C CA. 
[] 

Corollory 3.7. I f  C ( H )  = O, then any adelie orbit C A contains a rational 
point. 

Proof Indeed, then It(CA) = 0 for any adelic orbit CA. [] 

3.8. Remarks. (i) Conversely, if  H has no k,,-characters for some place v of  
k (e.g. i f  H is semisimple) and C(H)4=O, then there exists an adelic orbit CA 
without rational points. 

(ii) ~[heorem 3.2 follows from Corollary 3.7. Indeed, if  H is simply connected, 
then z h ( H ) =  0, hence C ( H ) =  O. 

3.9. Remark. If we do not know in advance whether X has a rational point, let 
.f E X(/~) be a/7-point, and H its stabilizer which we assume to be connected. 
The Galois group acts on 7q(H), and one can define C(/~). Then one can 
define the Kottwitz invariant ~C((gA)E C( / t )  of  an adelic orbit and prove that 
(gA contains a rational point i f  and only if t,'((gA) = 0. This generalizes [Ko2], 
6.3. 

4. Weight formula 

4.1. Let G be a simply connected semisimple group over a number field k ,X a 
right homogeneous space of G. We assume that X has a k-point x0 and that the 
stabilizer H of x0 is connected, unimodular and has no non-trivial k-characters. 

Let (ga be an orbit of  G(A)  in X ( A )  containing a rational point x0. Let B 
be an open subset in CA of  the form B = (9~ x Bt,  where (_9~ is an orbit of  
G(kee) in X ( k ~ )  and B/ is an open compact subset in X(A t ) .  There exists 
an open compact subgroup K t C G(Aj  ) of the form K! = I-IK,, such that 
BtK i = B t. We fix Kf and set K = G(ko~) x Kj.  Set F = G(k)fqK; it is an 
arithmetic subgroup of  G(k). For x C X(k )  we write /~, for the stabilizer of  x 
in G, and set Fx = FAHx(k) ,Kx = KNHx(A) .  We are interested in the orbits 
of the arithmetic group F in the 'arithmetic set' X ( k ) N  B. 

Fix a G-invafiant gauge form cox on X. Choose an invariant gauge form 
coc on G. For any orbit (9 of  F in X ( k ) n  B we define its wei~,lht w(C) as 
follows. Choose x C C. We can normalize a gauge form coil on/r so that the 
gauge forms cote, cog and cox match together algebraically. We obtain measures 
mr/ on H~(A), mH.o~ on Hx(ko~) etc. We define the weight w((9) by 

mu,e~(H(koe )/Fx ) 
w ( O )  = 

mc,o~( G(ko~ ) / F )  " 
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It is clear that w(C) does not depend on the choice of  x c (9 and ~oc on G. 

Theorem 4.2. Let G,X,(gA, B,K,F be as in 4.1. Assume that G has no k- 
Jactors G' such that G'(k~)  is compact. Let H be the stabilizer o f  a point 
Xo E X(k). Then 

w((9) = [C(H)Imx,/(B j ). 
t~cX(k)NB 

Theorem 4.2 is inspired by [We 1]. Our methods are those of [We l] com- 
bined with the calculation of  the Tamagawa number of a connected group due 
to Ono, Sansuc and Kottwitz. 

4.3. The weight w((9) depends on the choice of  the gauge form o-~x. In order 
to prove Theorem 4.2 we define another, canonical weight W~an((9). Since Hx 
has no non-trivial k-characters, we have Hx(A) 1 = H~(A), hence z ( /~ )  = 
mH(Hx(A)/Hx(k)). We set 

mH(K~Hx(k)/Hx(k)) 
wr (9 ) : 

T(H~) 

Clearly Wca~((9) < 1. 
We want to compute ~W~an((9) where (9 runs over the orbits of  F in 

X ( k )  n B. 

Proposition 4.4. I f  B! is an orbit of  Kj in X ( A  ! ) and B = B~  • B!, then 

Wean((9) = I(X(k) n (gA)/G(k)I 
(o cX(k  )riB 

Proof It suffices to prove that ~-~Wcan((9), (9 running over the F-orbits in 
xG(k) n B, equals 1 for any x E X(k )  n (gA. 

Let xoG(k) be any orbit o f  G(k) in X ( k ) ~  CA. First we wish to prove that 
xoG(k)NB+(25. Since G is semisimple simply connected and has no k-factors 
G t such that Gt(koo) is compact, by the strong approximation theorem ([Kn2], 
[P1]) G(k)K = G(A). Hence xoG(k)K = x0G(A) = (gA. Choose XA C B and 
write XA = XogA where .qA E G(A). We can write gA = ,qk,qx where gk E G(k), 
,qK E K. We have x0gk = XA,q~ l, where x0gk C X(k)  and xA,q~ L C B. Hence 
xoG(k) N B contains the rational point x0gk and thus is non-empty. 

Now let Xo E X ( k )  n B. To prove the Proposition it suffices to prove that 
Wean((9) over the F-orbits (9 in xoG(k)NxoK equals 1. 
Write K ,  = K N H(A),  where H = Stab(x0) (then K ,  = Kx0 in the 

notation of  4.1). With any F-orbit (9 C xoG(k)AxoK we associate a double 
coset D( (9 ) C KH \ H ( A )/H ( k ) as follows. Choose x c xoG( k ) N xoK and write 
x = xogk = xo,qr where gk E G(k), gX E K. Set h = gkgx I. Then h C H(A).  
We write D((9) for the double coset KHh-IH(k)  of h in K ,  \H(A) /H(k ) ;  it 
does not depend on the choice of  x E (9. 

Lemma 4.4.1. [Wel].  (i) The map D is a bijection of  the set of  orbits o f F  
in xoG(k)N xoK onto the set of  double cosets KH \ H(A) /H(k )  
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(ii) Wca,((9) = z(H )- l  mH(D((9)/H(k)). 

Proof (i) is straightforward. To prove (ii) we consider the isomorphism h' ~-~ 
,qkh',q~ l : Hx ~ H. This isomorphism takes the double coset K~Iq~(k) to the 

set (.qkK,q~ ~ N H)H(k  ) = hKHh-l H(k ) (because gk = hgx ). Hence 

mH(KxHx(k )/Hx(k )) = m~(hKHh-J H(k )/H(k )). 

Since the Tamagawa measure mH on H ( A )  is invariant, 

mH (hKHh- 1H(k )/H(k )) = mH( KHh- l H(k )/H(k ) ). 

Thus 

Wean((9) = r(Hx) -1 mH(K~Hs(k )/Hx(k )) = v(H) -I mH(KHh-I H(k )/H(k )) 

= "c(H) -1 mH(D((9)/H(k)) 

which proves the lemma. [] 

To complete the proof of  Proposition 4.4 we note that by Lemma 4.4.1(i) 
the double cosets D((9) for (9 c xoG(k)nxoK are pairwise distinct and together 
constitute all of  the group H(A),  so 

Wcan((9) = ~mH(D(O) /H(k ) )  = mH(H(A)/H(k))  = 1 
~Cxoe(k)nxoK ~(H ) T(H) 

which proves the proposition. [] 

4.5. Proof of  Theorem 4.2. We wish to compare the weights w(C) and 
Wca,((9). Write K~ = K fq Hx(A),Fx = Hx(k) A K = F A Hx(k). We have 
Kx = / / x (k~)  • Kx,/, where Kx,! C Hx(A/) .  There is an evident map 
Kx/Fx ~ t(~(k~)/Fx with fiber Kx.t, whence 

mH(Kx/Fx) = mH,~(Hx(k~)/Fx) mH, t(K~,t ) .  

Thus 

Wcan(C) = r(Hx) - I  mH,~(Hx(k~)/r~) mHj(K~, I). 

On the other hand, by the strong approximation theorem KG(k) = G(A), so 
we find as above that 

z(G) = mc(KG(k )/G(k )) = mc,oo(G(ko~)/F) mc, l(Kt ).  

Since the gauge forms on G,X and Hx match together algebraically, we have 

mG, l (Kl  ) = mHj(Kx, l ) mx, f(xK! ).  

We see that 

mH, oo(Hx(koo )/Vx ) r ~ m x , !  (xK!) Wean((9) �9 
w(C) :=  mG,oo(G(koo)/r) - 



58 M. Borovoi, Z. Rudnick 

By results of [O], [Sa], [Kol] (5.1.1), [Ko3], 

r(G) = 1, r(Hx) : [I(Hx)1-1 IC(Hx)I 

where for any connected k-group H ~, I (H')  denotes the Tate-Shafarevich 
group, 

I (H' )  = ker[Hl(k,H ') ~ HH'(k,,,H')] . 
v 

Kottwitz has shown ([Kol], (4.2.2)) that I(H ~) can he computed in terms of 
the Galois module n~(H), hence it does not change under inner twisting. Since 
the group/:(, is an inner form of H, we obtain 

w(C) = II(H)I -I  IC(H)lmx, t(x/Kt,) Wca,(O). (4.5.1) 

Note that 

I(X(k) N (gA)/G(k)I = II(H)I. (4.5.2) 

Now assuming that B] is an orbit of/(]  in X(At ), we find from Proposition 
4.4 and formulas (4.5.1), (4.5.2) that 

w((9) = ~II(H)I- ']C(H)Imx, /(xyK/ ) wca,(C) 
dJQX(k )NB 

= I / ( H ) l - ~ l C ( g ) l m x j  (x /Kf ) I I (H )1 

= IC(H)[mx#(xjKl ). 

We have proved Theorem 4.2 under the assumption that B consists of only 
one orbit of K. In the general case we obtain the assertion of the theorem by 
summation over the orbits of K in B. [] 

Corollory 4.6. • in addition H • semisimple simply connected and has no 
k-Jactors H ~ such that Hr(k~)  is compact, then any orbit of  K in B contains 
exactly one orbit o f  F in X (k )  N B. 

Proof Assume that B consists of one orbit of K. We have already proven that 
there is a point x in X(k)NB.  By the Hasse principle for the simply connected 
group H, we have I (H)  = 1, and therefore X(k)  n CA = xG(k). By Well's 
Lemma 4.4.1(i), the set of orbits of F in X ( k ) n  B = xG(k)N xK is in a one- 
to-one correspondence with the set of double cosets (K n Hx) \ Hx(A)/Hx(k). 
Since H is simply connected and has no direct factors H ~ defined over k 
such that Ht(koo) is compact, by the strong approximation theorem the set 
(K n Hx) \ Hx(A)/H~(k) consists of one element. Hence the set X(k)  n B 
contains exactly one orbit of F. [] 

Corollory 4.7. With the assumptions of  Corollary 4.6, i l K  = [IK~ and B = 
]-IBv, then I(X(k) n B)lr l  = [[IB,,IK~I [] 
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5 Counting integer points in homogeneous spaces 

5.1. Let G be a semisimple group defined over Q, acting on a Q-vector space 
W. Consider a Zariski-closed G-orbit X of G in W, defined over Q. We 
assume that X(Q)4= ~:~. Let H be the stabilizer of some rational point in X(Q). 
We suppose that G is connected, semisimple and simply connected, without 
compact factors defined over Q, and that H is connected and has no non-trivial 
characters defined over Q. Note that H is reductive (cf. [B-HC], 3.5). We fix 
a G-invariant gauge form co on X; it defines a measure moo on X(R). Choose 
a euclidean norm in WR. 

5.2. We assume throughout this section that the following asymptotic count 
holds: For any arithmetic group F C G, and point x C X(Q) with stabilizer 
Hx, 

I{Y 6 xF :lYl --< T}[ v o l ( F N H x  \Hx(R))  
vol(r \G(R)) 

x mo~(xG(R) n {tYl --< T}) as T ~ oo, 

where the invariant measures mG,oo on G(R),m~.ec on Hx(R), and mo~ on 
X(R) are compatible. 

This assumption is proved (for certain norms) in [DRS] and [EM] when 
H \ G is symmetric, i.e. H is the group of fixed points of an involution of 
G, and in [EMS] in a more general setting. However, results of [Esk], [EMS] 
indicate that (5.2.1) is probably not valid in general. 

Theorem 5.3. For G,X,H as above, X is Hardy-Littlewood, n,ith density 
Junction 

&(x) = ~ IC(H)[, t r  0 
[ 0, l~(x) 4= 0 " 

Proof Let Bf C X(A! ) be a non-empty compact open subset. Let Bo~ C X(R) 
be an 6rbit of G(R). Set B = B/ x Boo,Br~ = {x E Boo :Ix] < T}. 

Recall that 
N(T,X;B)  := IX(Q)N(B~ x Bt ) 1. 

By Lemma 1.6.4 the orbits of G(A!) in X(A!)  are open. We may theretbre 
assume that B C (gA for some orbit (gA of G(A). If 1r then by Theorem 
3.6 there are no Q-points in CgA, and hence in B, which proves that 6(x) = 0 
when to(x) 4= 0. 

Now assume that 1C((9A) = 0. By Theorem 3.6 there are Q-points in (9A. 
We must show that as T ~ e~, 

N(T ,X;B)  ~-, IC(H)Im(B T x B t ) .  (5.3.1) 

Pick a compact open subgroup K/ C G(Af) such that BfK/  = Bj.  Set 
K = K/ x G(R). Set F = G(Q) A K; this is an arithmetic subgroup of G(Q). 
We will use F to count points in X(Q) N B. 
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It is clear that the set X(Q) n B is F-invariant. Let (9 be an orbit of F in 
X(Q). By (5.2.l), 

where 

1(9 n (B T x B! )[ ~ m ~ ( B ~ )  w((9) 

w((9) = mH, o~(F O Hx \ Hx(R)) 
mG.o~(F \ G(R)) 

By [B-HC], 6.9, the number of orbits (9 C X(Q) A B is finite. Summing over 
all the orbits (9 C X ( Q ) n  B, we see that 

N(T ,X;B)  ~ m ~ ( B ~ )  ~ w((9). 
~cx(q)nB 

By Theorem 4.2 the sum in the right hand side equals IC(H)I �9 mj(B! ) .  Thus 

N ( T , X ; B )  ~ [C(H)lrn~(Br~)ml(B/ ) =  IC(H)lm(Br~ x B f  ) .  [] 

Theorem 5.4. Let G,X,H be as in 5.1 and 5.2. I f  C(H) = 0 then X is strongly 
Hardy-Littlewood. 

Proof Indeed, then by Theorem 5.3 X is Hardy-Littlewood with constant den- 
sity l, hence strongly Hardy-Littlewood. [] 

Remark 5.4.1. If X,G,H are as in 5.1 and 5.2, and C(H)+0,  then X is 
not strongly Hardy-Littlewood. Indeed, by Theorem 5.3 X is Hardy-Littlewood 
with density 6 taking values 0 and [C(H)[, and since we assume that X has a 
rational point, there exists B = Boo x Bj  such that the density 6 on B equals 
JC(H)[ + 1. 

Corollory 5.5. Let G,X,H be as in 5.1. Assume that X is a symmetric space 
o f  G and H is semisimple and simply connected. Then X is strongly Hardy- 
Littlewood. 

Proof Since H is simply connected, C(H) = 0. Since X is symmetric, the 
asymptotics (5.2.1) hold forX, cf. [DRS], [EM]. By Theorem 5.4, X is strongly 
Hardy-Littlewood. [] 

6. Examples  

6.1. W = M. (n >-- 2), the space of n x n matrices with the Hilbert-Schmidt 
n o r r n  

IFXll 2 = t r ( x t x )  = ~ x~i . 
i , l  

G = SLn x SL,, acting on W by left and fight multiplication: X H gl-Iyg2, 
where X E M,,(gl, .qz) E G x G. 
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For an integer q4:0, take Vq = {X c Mn : det X = q}. Then Vq is a closed 
orbit of  G, with stabilizer H isomorphic to SLn. Both G and H are semisimple 
simply connected, and the homogeneous space Vq is symmetric. Clearly V u has 
a Z-point. By Corollary 5.5, Vq is a strongly Hardy-Littlewood variety. 

This example is discussed in detail in [DRS], where it is shown that for 
all e > 0, 

N(T, 1/,t) ~ EHL(Vq, T)  + O~(T ''2 . . . .  l/(n+l)+e,) 
where EnL ( Vq, T)  = ~ (I/,t)/1o~( Vq, T)  is the Hardy-Littlewood expectation, and 
that 

EHr( Vk, T)  ~ c,,.k T n2-'' , 

where 

~n 2/2 
c,,,k = ~(2) . . . . .  ~(n) -1 ~ d21d32.. .d]l  ", 

6.2. W = {X 6 M2,, : X t = - X } ( n  > 2), the space of skew-symmetric 
matrices, with the Hilbert-Schmidt norm. Let G = SL2,,, with the action X 

For q + 0 ,  set V = {X ~ W : Pff(X) = q} where Pff(X) is the Pfaffian 
of a skew-symmetric matrix X, so that Pff(X) 2 = det(X). The variety V is a 
symmetric homogeneous space of G, with stabilizer Hx ~- Sp2, ,. Both G and 
H are connected, semisimple and simply connected. Clearly V has a Z-point. 
By Corollary 5.5, the variety V is strongly Hardy-Littlewood. 

6.3. W = {X E M,, : X t = X } ( n  > 3), the space of symmetric matrices, with 
the Hilbert-Schmidt norm. Let G = SLn, with the action X H ~ltXr 

For q4:0, set Vq = {)5 E W : det(X) = q}. It is a symmetric homogeneous 
space of G with stabilizer Hx = SO(W,X), the special orthogonal group of the 
quadratic form defined by a symmetric matrix X. The variety Vq has a Z-point 
X0 = Diag(q, l . . . . .  1 ). 

Sin~'e n > 3 ,H is connected semisimple, but not simply connected. We 
have =I (H)  = Z/2Z,  whence C(H)  = Z/2Z  ~_ { - 1 ,  I}. By Theorem 5.3, V 
is Hardy-Littlewood with density function taking values 0 and 2. 

In this case the local invariants to,,((_9,,) of an adelic orbit (0A = Hv(9,, can 
be related to the classic Hasse-Minkowski invariants c,,(X,,) (cf. [Ca]) where 
(X,,) C (ga, X,, E (9~,. Namely, 

toy((9,,) = c,,(X,,)c,,(Xo) 

We have 

,<(OA) := H'<~,((~) = Hc , , (x , , ) ,  

because H s v ( x 0 )  = 1 by the product fon~ula. 

6.4. Let F = ( f l / )  be an indefinite integral quadratic fon~ in n variables, 
t~ > 3. We take W = Q", G = Spin(W,F);  it is a simply connected semisimple 
group. 
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For q4=0 set V = {x E W : F(x)  = q}, it is a symmetric homogeneous 
space of G. Assume that V has a Q-point. The stabilizer H is isomorphic to 
Spin,t_l, hence connected. 

If n > 4, then H is semisimple and simply connected. By Corollary 5.5, V 
is strongly Hardy-Littlewood. This was earlier proved by the circle method, cf. 
[Da]. For n = 4 the proof requires Kloosterman's method of "levelling" lest]. 

For n = 3, the stabilizer H is a 1-dimensional torus. If H is split over Q, 
which happens when F is isotropic over Q and - q d e t ( F )  is a square, then the 
singular series diverges, and N(T,  V)  ~ cTlog T, while Ft~( Vq, T)  ~ cT. Thus 
N(T, V)  differs from the Hardy-Littlewood expectation by a factor of order 
log T [DRS]. We always assume that H has no Q-characters, in this case it 
means that H is anisotropic, i.e. - q  det(F) is not a square. The asymptotics 
(5.2.1) hold, cf. [DRS], and C ( H )  = Z/2Z.  By Theorem 5.3 Vq is Hardy- 
Littlewood with density taking values 2 and 0. 

Note that by Proposition 2.4, for a strongly Hardy-I_ittlewood variety V 
strong approximation holds. In particular, if V ( R ) 4 : ~  and for all p, V(Zp) 
4= ~ ,  then V(Z)4:  ~ .  However for a non-strongly Hardy-Littlewood variety, 
strong approximation may not hold. We provide two specific examples. 

6.4.1 Take F(x , , x2 ,x3)  = -9x l  2 + 2xtx2 + 7x 2 + 2x~, and consider the quadric 
V = {x E Q3 : F(x)  = 1}. It turns out that V(Z) has Zp-points for any prime 

l p, but has no integer points. Indeed, F ( -  1, 7, 1 ) = 1, hence F represents 1 over 
Zp for p > 2. In addition, F(4,  1, 1) = -127 ,  and using Hensel's lemma, one 
can easily check that F represents 1 over Z2. We are grateful to J.H. Conway, 
R. Schultze-Pillot and D. Zagier (personal communications) for different proofs 
of the following 

Claim 6.4.1.1. F does not  represent 1 over Z. 

"Elementary" p r o o f  (after D. Zagier). Assume that there exist integer numbers 
Xl,X2,X3 such that F(xl ,x2 ,x3)  = 1. We may write the equation as 

2X 2 - -  l = (X I - -  X2) 2 ~- 8(X I - -  Xz) (X 1 + X 2 ) .  

Easy calculations modulo 16 show that Xl - x 2  -- +3 rood 8. It follows that 
xl - x 2  and also 2x32 - 1 must have a prime factor p congruent to +3 mod 8. 
On the other hand, if  a prime p divides 2x32 - 1, then 2x 2 = 1 rood p, and 
2 is a square mod p. Then by the quadratic reciprocity law p - + l m o d  8. 
Contradiction. [] 

Note that this phenomenon (non-representability of an integer by an integral 
form F when there is no congruence obstruction) cannot occur when the genus 
of F contains only one class (see [Ca, Ch. 9 Thin. 1.3]). The example above 
is a "minimal" one: here the discriminant D(F)  = -128 ,  and any indefinite 
integral ternary quadratic form of discriminant IDI < 128 has only one class 
in its genus, cf. [CS, Ch. 15, 9.7]. 

6.4.2. Take F(x  ) 2 2 2 = x 1 +x  2 - x 3 ,  and consider the quadric V = {x : F ( x )  = - 1 }. 
There is an integer point x0 = (0, 0, l )  E V(Z). We try to find integer points 
x = (x l , xz ,x3)  in V such that x - x 0  rood 8 and x3 < 0. Set: 
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B 2 = { x E V ( Z z ) : x = - - x o m o d 8 } ,  B/ =B2•  1-IX(Zp), 
p>2 

B + : {x  ~ V ( R )  : x3 > 0} ,  BL = {~ c v ( r )  : x3 < o )  

Claim 6.4.2.1. 
V ( Q ) N ( B ~  •  

N(T, V;B + • BI)  ~ 2EHL(T, V ;B+) ,  

where EHL( T, V; B + ) = 2m((B + )7" • B/)  is the Hardy-Littlewood expectation. 

ldea of  proof We compute local invariants to,, with respect to the base point 

X0. 

By Lang's  theorem and Hensel 's  lemma, Bp C xoG(Zp) for any finite 
prime p, hence, in multiplicative notation, tCp equals 1 on Bp. At infinity, 
B + = x0G(R) and B ~  NxoG(R)  : ~ ,  hence tc~ equals +1 on B + and 
equals - 1  on B ~  (again in multiplicative notation). We see that the product 
over all the places, It(x), equals + l  on B + x Bj and equals - 1  on B ~  • Bf.  
Now the Claim follow from Theorem 5.3. [] 

In other words, Claim 6.4.2.1 means that 

{x E Z3 : Ix[ < T, F ( x ) = - l , x ~ ( O , O , l ) m o d  8, x3 < 0} = ~:~5 

I{x E Z3 : Ixl < T, F ( x ) :  - 1 , x  ~ ( 0 , 0 , 1 ) m o d  8, x 3 > 0}[ 

"~ 2EHL(T, V ; B ~ ) .  

One can also prove the first assertion of  Claim 6.4.2.1 by an 'elementary' 
argument similar to that of  6.4.1.1. 

6.5. G : SL2, and W is the space 

n -  t W : { f (x ,  y )  : aox" + alx y + . . .  + a,,y'} 

of binary forms of  degree n ("binary n-ics", see [Di]), on which G = SL2 acts 
by linear substitutions. We assume that n > 3. As a norm we take 

= l a , I  ~ 

t=0 

Let ~t  = Q[W]St2 be the algebra of  invariants of  binary n-ics. For ~ E 
Spec ~ ' ,  we denote by V~ the corresponding level set. For generic ~ the level 
set V~ is a single G-orbit with finite stabilizer H. 

If n > 4 is even, then the generic stabilizer is Z / 2 Z  • Z / 2 Z  for n = 4, 
and {•  for n ~ 6, and is thus disconnected. By Proposition 2.7, V~ is not 
t-lardy-Littlewood. For n = 3, the generic stabilizer H is isomorphic to Z /3Z;  
again V~ is not Hardy-Littlewood. 

If n is odd, n > 5, then the generic stabilizer is trivial.The asymptotic 
count (5.2.1) is proved in [DRS (for all n > 3). By Theorem 5.4, a generic 
level set V~ is strongly Hardy-Littlewood. 

6.6. W = M, (n >- 2), the space of  n • n matrices, with the Hilbert-Schmidt 
norm. Take G = SL,,, with the action (X,g) ~ X ~1 = g-IXg f o r X  E M,,, g E G. 
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For a given monic polynomial with integer coefficients f ( t )  = t"+ a l t"-~ + 
�9 .. + a ,  C Z[t], we consider the variety of  n • n matrices having f ( t )  as 
characteristic polynomial: 

V! = {X E M,, : d e t ( t / - X )  = f ( t ) }  . 

We assume that f is irreducible over Q. Then f has no multiple roots, 
and therefore V] is a homogeneous space of  G. The variety V! has an integer 

x o  = 

point a) 0 �9 �9 �9 - - a n - I  

�9 . . | - - a  I 

The stabilizer H of  X0 is an (n - 1 )-dimensional toms, isomorphic to ker [Nm : 
K • --~ Q•  where K = Q(~) ,~  is a root of  f .  The group H is connected 
and has no non-trivial Q-characters. The asymptotic count (5.2.1) is proved 
in [EMS]. By Theorem 5.3, Vf is a Hardy-Littlewood variety with density 
function taking values 0 and IC(H)I. 

Let L be a normal closure of  K. To describe C(H), let us fix an ordering of  
the roots of  f ( t ) .  We can now identify GaI(L/Q) with a subgroup F C S,, and 
its subgroup Gal(L/K) with the stabilizer FI of  1 in F. The Galois group F 
acts on ~zl(H) = X . ( H )  _~ {a c Z n : ~gaz = 0} by permuting the coordinates�9 
The group C(H) can be computed as follows: 

Claim 6.6.1. C(H) ~- coker [Gal(L/K) ab -~ Gal(L/Q)ab]. 

Proof The short exact sequence of  Gal(L/Q)-modules 

0 ~ X . ( H )  ~ l n d r z - - *  Z ~ 0 

gives rise to a cohomology exact sequence 

�9 .. --+ H - 2 ( F b  Z)  -~ H - 2 ( F ,  Z)  --~ H - I ( F , X . ( H ) )  -~ O. 

We can identify H - I ( F , X . ( H ) )  with C(H). Further, H-2(F, Z)  = HffF, Z)  = 
F ab = GaI(L/Q)  ab, and similarly, H - 2 ( F I , Z )  : F~ b : GaI(L/K) ab. Thus 
C(H) ~- coker [Gal(L/K) ab -~ Gal(L/Q)ab]. [] 

Specific examples 

(1) GaI(L/Q)  = 5,,: We have C(H) ~- coker [S~b_l " -~S  ab] = 0, and so V/ is 
strongly Hardy-Littlewood for n > 3. 

(2) GaI(L/Q) = A,: In this case C(H) ~- coker [Aab_, --" A,~b]. One can check 
that for n > 4, C(H) = 0, while for n = 2, C(H) ~- Z/2Z,  and for n = 3, 
C(H) ~- Z/3Z.  We find that in this case, V t. is strongly Hardy-Littlewood 
if  and only i f  n > 4. 

(3) K/Q is a Galois extension: Then L = K, and C(H) = Gal(K/Q) ab. 
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