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ABSTRACT

We study the number of intersections of the nodal lines of an eigenfunction

of the Laplacian on the standard torus with a fixed reference curve, that

is, the number of zeros of the eigenfunction restricted to the curve. An

upper bound is the wave number k. When the curve has nowhere zero

curvature, we conjecture that, up to a constant multiple, this should also

be the correct lower bound. We give a lower bound which differs from

this by an arithmetic quantity, given in terms of the maximal number of

lattice points in arcs of size square root of the wave number k on a circle

of radius k. According to a conjecture of Cilleruelo and Granville, this

quantity is bounded, in which case we recover our conjecture. To get at

the lower bound, we reduce the problem to giving a lower bound for the

L1 norm of the restriction of the eigenfunction to the curve, and then to

an upper bound for the L4 restriction norm.

1. Introduction

1.1. Nodal intersections. Let C ⊂ T2 be a curve on the standard torus

T2 = R2/2πZ2, which has nowhere-zero curvature. Let F be a real-valued

eigenfunction of the Laplacian on T2 with eigenvalue λ2: −ΔF = λ2F . We

want to estimate the number of nodal intersections

(1.1) NF,C = #{x : F (x) = 0} ∩ C,

that is, the number of zeros of F on C .

If C is real analytic, then upper bounds of the form NF,C � λ can be ob-

tained from a result of Toth and Zelditch [13] (see also [4], [7]) once we have

an exponential restriction lower bound
∫
C |F |2 � e−cλ||F ||22 for the L2-norm of

F restricted to C, in terms of the L2-norm ||F ||22 =
∫
T2 |F (x)|2dx. In the case

of the torus, for any smooth C with non-vanishing curvature we have earlier

obtained a uniform L2-restriction bound [1]

(1.2)

∫
C
|F |2 � ||F ||22

(the implied constants depending only on the curve C), and hence by [13] we

get an upper bound for C analytic

(1.3) NF,C � λ.
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In our paper [4] we also obtained a lower bound for NF,C when the curve C has

non-vanishing curvature:

(1.4) NF,C � λ1−o(1).

We conjecture that the correct lower bound is

(1.5) NF,C � λ,

that is, the lower bound should be the same order of magnitude as the upper

bound.

In this paper we approach conjecture (1.5) by giving a lower bound for NF,C
in terms of an arithmetic quantity, the maximal number Bλ of lattice points

which lie on an arc of size
√
λ on the circle |x| = λ:

(1.6) Bλ = max
|x|=λ

#{ξ ∈ E : |x− ξ| ≤
√
λ},

where E = Eλ is the set of all lattice points on the circle |x| = λ.

Theorem 1.1: If C is smooth with non-zero curvature, then

(1.7) NF,C � λ/B
5/2
λ .

According to the conjecture of Cilleruelo and Granville [6], Bλ = O(1) is

bounded, which, in view of Theorem 1.1, implies conjecture (1.5).

The conjecture of Cilleruelo and Granville is known for “almost all” λ [2],

but individually we only know a bound of Bλ � logλ; see §2.
To contrast with these results, we show in §8 that no lower bounds for NF,C

are possible when the curvature is zero, that is, for geodesic segments, in fact

that lim infλ NF,C = 0. We also briefly discuss the situation on the sphere.

1.2. Relation with Lp
restriction theorems. To prove Theorem 1.1 we

start by giving a lower bound for NF,C(λ) in terms of a lower bound for the

restriction L1-norm: In §5 we show

Theorem 1.2: If C is smooth with non-zero curvature, then

(1.8) NF,C � λ ·
(

1

||F ||2

∫
C
|F |

)5

.

We conjecture a uniform lower bound for the restriction L1-norm, which will

imply (1.5).
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Next, in §6 we give a lower bound for ||F ||L1(C) =
∫
C |F | in terms of the

restriction L4 norm:

(1.9) ||F ||L1(C) �C
||F ||32

||F ||2L4(C)
.

Thus we find that we are reduced to giving an upper bound on the restriction

L4-norm. In §7 we show

Theorem 1.3: If C is smooth with non-zero curvature, then

(1.10) ||F ||L4(C) � B
1/4
λ ||F ||2.

Inserting Theorem 1.3 into (1.9) we obtain

(1.11)
1

||F ||2

∫
C
|F | � 1√

Bλ

and using Theorem 1.2 we obtain Theorem 1.1.

1.3. Prior results. There are very few lower bounds on the number of nodal

intersections available for other models. In the case of the modular domain

H2/SL2(Z) and C being a closed horocycle, Ghosh, Reznikov and Sarnak [8]

give a lower bound NF,C � λ1/12−o(1) for eigenfunctions F which are joint

eigenfunctions of all Hecke operators, and assuming the Generalized Riemann

Hypothesis they give a similar result when C is a sufficiently long segment of

the infinite geodesic running between two cusps,

Concerning upper bounds, El-Hajj and Toth [7] show that for a bounded,

piecewise-analytic convex domain with ergodic billiard flow and C an analytic

interior curve with strictly positive geodesic curvature, the upper bound (1.3)

holds for a density-one subsequence of eigenfunctions. For eigenfunctions on a

compact hyperbolic surface, Jung [11] has recently obtained an upper bound

analogous to (1.3) when C is a geodesic circle.

2. Lattice points and geometry

2.1. Lattice points in short arcs. We denote by E = Eλ the set of lattice

points on the circle |x| = λ. As is well known, #E � λo(1) and can grow

faster than any power of logλ. Concerning lattice points in short arcs, Jarnik

[10] showed that any arc of length λ1/3 contains at most two lattice points.

Cilleruelo and Córdoba [5] showed that for fixed δ > 0, any arc of length λ1/2−δ
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contains at most M(δ) lattice points. The natural conjecture here [6] is that

the same statement holds for arcs of length λ1−δ. However, this is still open

even for arcs of size
√
λ. That turns out to be a critical regime for us, and we

set

(2.1) Bλ = max
|x|=λ

#{μ ∈ E : |μ− x| <
√
λ}

to be the maximal number of lattice points in arcs of size
√
λ.

Lemma 2.1: Let B = Bλ(c) be the maximal number of lattice points of E in

an arc of length c
√
λ, c ≥ 1/2. Then

(2.2) B � c logλ.

Proof. To see this, we recall that Cilleruelo and Córdoba [5] showed that if

P1, . . . , Pm ∈ E are distinct lattice points on the circle of radius λ, then

(2.3)
∏

1≤i<j≤m

|Pi − Pj | ≥ λe(m), e(m) =

⎧⎨
⎩

m
2 (

m
2 − 1), m even,

1
4 (m− 1)2, m odd.

Thus if P1, . . . , Pm ∈ E lie in an arc of diameter D = max |x − y| < √
λ/2,

then by (2.3) we find

(2.4) Dm(m−1)/2 ≥ λm(m−2)/4

and hence

(2.5) m ≤ logλ

2 log 2
+ 1 � logλ.

Now for an arc of length c
√
λ, c > 1/2, divide it into ≈ 2c smaller arcs of length√

λ/2 and use (2.5) to find that it contains � c logλ lattice points.

2.2. Medians. Given a pair of points μ, ν on the circle |x| = λ, their median is

z = 1
2 (μ+ ν). This gives a map from pairs of points on the circle λS1 to points

in the disc of radius λ:

z : λS1 × λS1 → {|z| ≤ λ}.
By definition, if μ = ν then z = μ. Note that the origin is the median of all

pairs of antipodal points {μ,−μ}.
Conversely, given a nonzero point in the interior of the punctured disk

{0 < |x| < λ}, we can display it as the median of a unique (unordered) pair of



484 J. BOURGAIN AND Z. RUDNICK Isr. J. Math.

points obtained as the intersection of the circle λS1 with line through z per-

pendicular to the radial line between z and the origin; see Figure 1. In fact the

formula for these points is

(2.6) μ±(z) = z ±Δ(z)
z⊥

|z⊥| ,

where if z = (x, y) then z⊥ = (−y, x), and where we set (see Figure 1)

(2.7) Δ(z) =
√
λ2 − |z|2 =

1

2
|μ+(z)− μ−(z)|.

Μ�Μ�
z ��z�

Figure 1. The median map and its inverse

Let Z = Zλ be the set of medians of integer points with |μ| = λ. Note that

#Z ≤ (#E)2 � λo(1).

Lemma 2.2: Given vectors z, v ∈ R2, the number of w ∈ Zλ for which

(2.8) |μ+(w) − v| <
√
λ

and

(2.9) |w − z| < λ1/3

is at most O(Bλ).

Proof. The medians w satisfying (2.8) have their corresponding lattice points

μ+(w) each lying in an arc of length about
√
λ, and hence there are at most Bλ
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possibilities for μ+(w). Given μ+(w), we have at most 2 possibilities for μ−(w):
Indeed, since w = (μ+(w) + μ−(w))/2, we have

(2.10) μ−(w) = 2w − μ+(w) = 2z − μ+(w) + 2(w − z).

Since |w − z| < λ1/3, given z and μ+(w) we know μ−(w) up to an error of

O(λ1/3); by Jarnik’s theorem, which states that an arc of size λ1/3 contains

at most two lattice points, this implies there are at most two possibilities for

μ−(w).
Since w = (μ+(w) +μ−(w))/2 is determined by knowing both μ±(w), we see

that there are at most O(Bλ) possibilities for w.

3. An oscillatory integral along the curve

3.1. Phase functions on the curve. Let T2 = R2/2πZ2 be the standard

flat torus. An eigenfunction F of the Laplacian on T2 with eigenvalue λ2 has a

Fourier expansion

(3.1) F (x) =
∑
μ∈E

aμe
i〈μ,x〉.

For F to be real valued forces aμ = a−μ. The supremum of F is bounded by

(3.2) ||F ||∞ ≤
∑
μ∈E

|aμ| ≤ 1

2π
||F ||2

√
#E .

We normalize so that

(3.3) 4π2||F ||22 =
∑
μ∈E

|aμ|2 = 1.

Let γ : [0, L] → C be an arc-length parameterization of C, so that γ′(t) is the
unit tangent vector to the curve at the point γ(t). Denote by n(t) the standard

unit normal to the curve at the point γ(t), so that γ′′(t) = κ(t)n(t) with κ(t)

the curvature. Let Kmin > 0 and Kmax be the minimum and maximum values

of the curvature, so that

(3.4) 0 < Kmin ≤ κ(t) ≤ Kmax.

By shrinking the curve C, we may assume that its total curvature is < π/2.

We denote f(t) = F (γ(t)). Using the Fourier expansion of F , we write

(3.5) f(t) =
∑
μ∈E

aμe
i〈μ,γ(t)〉 =

∑
μ∈E

aμe
iλφμ(t),
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where the phase function φμ is

(3.6) φμ(t) =

〈
μ

|μ| , γ(t)
〉
.

The derivative of φμ is

(3.7) φ′
μ(t) =

〈
μ

|μ| , γ
′(t)

〉
= sinαμ(t),

where αμ(t) is the angle between the normal vector n(t) and μ. Since we assume

the total curvature of the curve is < π/2, the change in the angle αμ is less than

π/2. The second derivative is

(3.8) φ′′
μ(t) =

〈
μ

|μ| , γ
′′(t)

〉
= κ(t) cosαμ(t).

By (3.4),

(3.9) |φ′′
μ| ≤ Kmax.

The third derivative is

(3.10) φ′′′
μ =

〈
μ

|μ| , γ
′′′
〉

=

〈
μ

|μ| , κ
′n+ κn′

〉
=

〈
μ

|μ| , κ
′n− κ2γ′

〉

(since n′ = −κγ′) and hence, since n ⊥ γ′,

(3.11) |φ′′′
μ | ≤ (|κ′|2∞ +K4

max)
1/2

is bounded independent of μ.

Lemma 3.1: For 0 < σ � 1 sufficiently small, let Bμ be the set of points where

|φ′
μ(t)| < 2σ. Then Bμ is an interval and

(3.12) lengthBμ � σ

Kmin
.

Proof. We have

(3.13) |φ′
μ(t)| =

∣∣∣∣
〈

μ

|μ| , γ
′(t)

〉∣∣∣∣ = | sinαμ(t)| < 2σ.

Since we assume the total curvature is < π/2, the change in the angle αμ is less

than π/2 and hence Bμ = (c,c+) consists of at most a single interval.

Since Bμ is in particular connected and

|φ′′
μ(t)| = κ(t)| cosαμ| ≥ Kmin

√
1− 4σ2 ≥ Kmin/2
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on Bμ, we may assume that φ′′
μ ≥ Kmin/2 > 0 on Bμ so that φ′

μ is monotonically

increasing. Then φ′
μ(c−) ≥ −2σ, φ′

μ(c+) ≤ +2σ and we have

(3.14) 4σ ≥ φ′
μ(c+)− φ′

μ(c−) = (c+ − c−)φ′′
μ(c)

for some c ∈ (c−, c+) and hence

(3.15) lengthBμ = c+ − c− ≤ 4σ

φ′′
μ(c)

≤ 8σ

Kmin

as claimed.

3.2. Van der Corput’s lemma. Let [a, b] be a finite interval, φ ∈ C∞[a, b] a

smooth and real valued phase function, and A ∈ C∞[a, b] a smooth amplitude.

For λ > 0 define the oscillatory integral

(3.16) I(λ) :=

∫ b

a

A(t)eiλφ(t)dt.

We will need the following well-known result, due to van der Corput (see, e.g.,

[12])

Lemma 3.2: Assume that |φ′′| ≥ 1. Then

(3.17) |I(λ)| � 1

λ1/2
{||A||∞ + ||A′||1}.

If |φ′| ≥ 1 and moreover φ′ is monotonic, then

(3.18) |I(λ)| � 1

λ
{||A||∞ + ||A′||1},

the implied constants absolute.

3.3. An oscillatory integral along a curve. For each 0 
= ξ ∈ R2 define

a phase function on the curve C by

(3.19) φξ(t) =

〈
ξ

|ξ| , γ(t)
〉
.

Let A ∈ C∞[0, L] be a smooth amplitude, k real and

(3.20) I(k) =

∫
A(t)eikφξ(t)dt.

Lemma 3.3: For |k| ≥ 1,

(3.21) |I(k)| � 1

|k|1/2 {||A||∞ + ||A′||1},

the implied constant depending only on the curve C (independent of ξ).
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Proof. We wish to apply Lemma 3.2. Since the total curvature of C is < π/2,

each of the phase functions φξ has at most one stationary point (at a point

where ξ is normal to the curve). Moreover, φ′′
ξ (t) = κ(t) cosαξ(t) has at most

one sign change since we restrict the total curvature to be < π/2.

Near a stationary point t0, we have |φ′
ξ(t)| < 1/2 if |t − t0| < 1/(2Kmax),

since

(3.22) |φ′
ξ(t)| = |φ′

ξ(t)− φ′
ξ(t0)| = |t− t0| · |φ′′

ξ (t1)| ≤ Kmax|t− t0|.
If |φ′

ξ(t)| < 1/2, then

(3.23) |φ′′
ξ (t)| = κ(t)| cosαξ(t)| = κ(t)

√
1− φ′

ξ(t)
2 ≥ Kmin

√
3

2
.

Hence we may cut the curve, that is, the arc-length parameter interval [0, L],

into at most 4 segments on each of which either |φ′′
ξ | ≥

√
3
2 Kmin > 0 or |φ′

ξ| ≥ 1/2

and φ′′
ξ does not change sign, hence φ′

ξ is monotonic. Then we can invoke

Lemma 3.2 to deduce that either (3.18) or (3.17) hold, and since |k| ≥ 1 we

have (3.17) valid in both cases.

4. A bilinear inequality on the curve

As before let E = {μ ∈ Z2 : |μ| = λ}. For each μ ∈ E let hμ(t) ∈ C1
c (R) and

aμ ∈ C with
∑

μ∈E |aμ|2 = 1. Let

(4.1) H(t) :=
∑
μ∈E

aμhμ(t)e
i〈μ,γ(t)〉.

Lemma 4.1:

(4.2) ||H ||22≤2max
μ∈E

||hμ||22+O

(
#E
λ1/6

{max
μ∈E

||hμ||2∞+max
μ∈E

||hμ||∞ max
μ∈E

||h′
μ||1}

)
.

Proof. Multiplying out gives

(4.3) ||H ||22 =
∑
μ,ν

aμāν

∫
hμ(t)hν(t)e

i|μ−ν|φμ−ν(t)dt,

where if μ = ν we set φ0(t) ≡ 1. We separate the double sum (4.3) to a sum

over “close” pairs (μ, ν), that is, such that |μ − ν| < λ1/3, and to a sum over

the remaining “distant” pairs. We claim that the “close” pairs contribute

(4.4) close ≤ 2max
μ∈E

||hμ||22
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while the “distant” pairs contribute at most

(4.5) distant � #E
λ1/6

{max
μ∈E

||hμ||2∞ +max
μ∈E

||hμ||∞ max
μ∈E

||h′
μ||1}.

4.0.1. Close pairs. Given μ ∈ E , certainly we can take ν = μ to get a “close”

pair. By Jarnik’s theorem [10], given μ ∈ E there is at most one other element

of E at distance ≤ λ1/3 from μ, call it μ̃ (if it exists). Estimating the integral

trivially by

(4.6)

∣∣∣∣
∫

hμ(t)hν(t)e
i〈μ−ν,γ(t)〉dt

∣∣∣∣ ≤ ||hμ||2 · ||hν ||2

we find that the contribution of “close” pairs is bounded by

(4.7) max
μ

||hμ||22 ·
∑
μ∈E

|aμ|2 + |aμ||aμ̃|.

If μ does not have a close neighbor other than itself, the term aμaμ̃ is zero.

Otherwise, use |aμaμ̃| ≤ 1
2 (|aμ|2 + |aμ̃|2). Since each μ has at most one such

close neighbor μ̃, the sum over all μ ∈ E is at most

(4.8)
∑
μ∈E

|aμ||aμ̃| ≤
∑
μ∈E

1

2
(|aμ|2 + |aμ̃|2) ≤

∑
μ∈E

|aμ|2 = 1

and hence

(4.9) close ≤ 2max
μ

||hμ||22.

4.0.2. Distant pairs. We now bound the contribution of pairs μ, ν with

|μ− ν| > λ1/3 by

(4.10) distant ≤
∑

|μ−ν|>λ1/3

|aμ||aν ||I(μ, ν)|,

where

(4.11) I(μ, ν) :=

∫
hμ(t)hν(t)e

i〈μ−ν,γ(t)〉dt =
∫

Aμ,ν(t)e
i|μ−ν|φμ−ν(t)dt

with Aμ,ν = hμ(t)hν(t).

By Lemma 3.3,

(4.12)

|I(μ, ν)| � 1

|μ− ν|1/2 (||Aμ,ν ||∞ + ||A′
μ,ν ||1)

� 1

λ1/6
{max
μ∈E

||hμ||2∞ +max
μ∈E

||hμ||∞ max
μ∈E

||h′
μ||1}.
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Using (4.12) and
∑

μ,ν∈E |aμaν | ≤ #E ∑
μ |aμ|2 = #E we find that

(4.13)

distant ≤
∑
μ,ν

|aμ||aν | max
|μ−ν|>λ1/3

I(μ, ν)

� #E
λ1/6

{max
μ∈E

||hμ||2∞ +max
μ∈E

||hμ||∞ max
μ∈E

||h′
μ||1}

as claimed.

5. Proof of Theorem 1.2

5.1. Overview. We denote f(t) = F (γ(t)), which is real valued, and want to

count zeros of f on [0, L]. The idea is to detect sign changes of f by comparing∫ |f | and | ∫ f |.
Let C1 be a parameter, which we will want to satsify 1 � C1 = o(λ),

and consider a partition of unity {τj}j∈J of the interval [0, L], where τj ≥ 0,∑
j τj = 1[0,L], so that

(i) #J ≈ λ/C1,

(ii) τj supported in an interval of length ≈ C1/λ,

(iii) |∂rτj/∂t
r| � (λ/C1)

r,

(iv) for each j, there is at most O(1) values of k for which τjτk 
= 0 (in-

dependent of λ); in particular, for each point t there is at most O(1)

values of j so that τj(t) 
= 0.

Let J0 ⊆ J be the set of indices j for which f has a sign change on supp τj .

Since for each point t there is at most O(1) values of j for which t ∈ supp τj ,

we have

(5.1) # sign changes of f � #J0,

so that a lower bound for #J0 gives a lower bound for the number of sign

changes of f .

If j /∈ J0, then fτj does not change sign and hence

(5.2)

∫
|f |τj =

∣∣∣∣
∫

fτj

∣∣∣∣, j /∈ J0.

Therefore

(5.3)

∫
|f | =

∑
j

∫
|f |τj =

∑
j /∈J0

∣∣∣∣
∫

fτj

∣∣∣∣+
∫

|f |
∑
j∈J0

τj .
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We will show that

(5.4)

∫
|f |

∑
j∈J0

τj �
(
#J0C1

λ

)1/2

and that

(5.5)
∑
j /∈J0

∣∣∣∣
∫

fτj

∣∣∣∣ � C
−1/3
1 ,

so that

(5.6)

∫
|f | �

(
#J0C1

λ

)1/2

+ C
−1/3
1 .

Taking C
−1/3
1 = δ

∫ |f | with δ > 0 sufficiently small gives

(5.7) #J0 � λ

(∫
|f |

)5

,

which proves Theorem 1.2. Note that our choice of C1 indeed satisfies our

requirements, indeed 1 � C1 � λo(1) since
∫ |f | � (

∫ |f |2)1/2 � ||F ||2 ≈ 1, by

the upper bound in the uniform L2-restriction theorem [1], and
∫ |f | � λ−o(1)

from the lower bound in the uniform L2-restriction theorem, see (6.3).

5.2. Proof of (5.4). By Cauchy–Schwarz,

(5.8)

∫
|f |

∑
j∈J0

τj ≤ ||f ||2
{∫ ( ∑

j∈J0

τj

)2}1/2

= ||f ||2
{ ∑

j,k∈J0

∫
τjτk

}1/2

.

By the restriction upper bound of [1], ||f ||2 � 1. Given j, we have
∫
τjτk = 0

except for O(1) indices k (independent of j), including k = j, and for such k

we have

(5.9)

∫
τjτk ≤ 1

2

(∫
τ2j +

∫
τ2k

)
≤ max

k

∫
τ2k .

Since

(5.10)

∫
τ2k ≤

∫
supp τk

1 � C1

λ

we obtain

(5.11)

∫ ( ∑
j∈J0

τj

)2

� #J0 max
k

∫
τ2k � #J0C1

λ
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and hence

(5.12)
∑
j∈J0

∫
|f |τj �

(
#J0C1

λ

)1/2

.

5.3. Proof of (5.5). Our goal is to show that

(5.13)
∑
j /∈J0

∣∣∣∣
∫

f(t)τj(t)dt

∣∣∣∣
is small.

Let σ > 0 be a (small) parameter, λ−o(1) < σ < 1 and 0 ≤ θ(x) ≤ 1 a

smooth, even function so that θ(x) = 1 if |x| < 1, θ(x) = 0 for |x| > 2 and set

θσ(x) = θ(xσ ).

Write f = f0 + f1 where

(5.14) f0(t) =
∑
μ∈E

aμθσ(φ
′
μ(t))e

iλφμ(t)

and

(5.15) f1(t) =
∑
μ∈E

aμ(1− θσ)(φ
′
μ(t))e

iλφμ(t).

Thus in the Fourier expansion of f1, none of the phase functions φμ has a critical

point in the support of (1− θσ)φ
′
μ; in fact they satisfy |φ′

μ(t)| ≥ σ.

We have

(5.16)
∑
j /∈J0

∣∣∣∣
∫

f(t)τj(t)dt

∣∣∣∣ ≤
∑
j /∈J0

∣∣∣∣
∫

f0(t)τj(t)dt

∣∣∣∣+
∑
j /∈J0

∣∣∣∣
∫

f1(t)τj(t)dt

∣∣∣∣.
We will show that

(5.17)
∑
j /∈J0

∣∣∣∣
∫

f0(t)τj(t)dt

∣∣∣∣ � σ1/2

and

(5.18)
∑
j /∈J0

∣∣∣∣
∫

f1(t)τj(t)dt

∣∣∣∣ � 1

C1σ
,

which gives

(5.19)
∑
j /∈J0

∣∣∣∣
∫

fτj

∣∣∣∣ � σ1/2 +
1

C1σ
.
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Choosing C1 = σ−3/2 gives

(5.20)
∑
j /∈J0

∣∣∣∣
∫

fτj

∣∣∣∣ � C
−1/3
1

proving (5.5).

5.4. Proof of (5.17). We have

(5.21)
∑
j /∈J0

∣∣∣∣
∫

f0(t)τj(t)dt

∣∣∣∣ ≤
∫

|f0(t)|dt � ||f0||2

and hence (5.17) follows from:

Lemma 5.1:

(5.22) ||f0||2 � σ1/2

Proof. We wish to apply Lemma 4.1 with hμ = θ(
φ′
μ

σ ). We clearly have

||hμ||∞ ≤ 1. Moreover,

(5.23) ||hμ||22 ≤
∫

θ

(
φ′

σ

)
≤ length{t : |φ′

μ(t)| < 2σ}

and hence ||hμ||22 � σ by Lemma 3.1. Likewise

(5.24) ||h′
μ||1 =

∫ ∣∣∣∣θ′
(
φ′
μ

σ

)∣∣∣∣ |φ
′′
μ|
σ

≤ Kmax|θ′|∞
σ

length{t : |φ′
μ(t)| < 2σ}

and hence ||h′
μ||1 � 1. Inserting into Lemma 4.1 gives

(5.25) ||f0||22 � σ +
#E
λ1/6

,

which gives our claim provided σ � λ−o(1).

5.5. Proof of (5.18). We expand and integrate by parts

(5.26)

∫
f1τj =

1

iλ

∫
f2τj +

1

iλ

∫
f3τ

′
j

where

(5.27) f2 =
∑
μ∈E

aμ

(
1− θσ(φ

′
μ)

φ′
μ

)′
eiλφμ

and

(5.28) f3 =
∑
μ∈E

aμ
1− θσ(φ

′
μ)

φ′
μ

eiλφμ .
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Hence

(5.29)

∑
j /∈J0

∣∣∣∣
∫

f1τj

∣∣∣∣ ≤ 1

λ

(∫
|f2|

∑
j /∈J0

τj +

∫
|f3|

∑
j /∈J0

|τ ′j |
)

≤ 1

λ
||f2||2 + 1

λ
||f3||2

{∫ ( ∑
j /∈J0

|τ ′j |
)2}1/2

.

We have

(5.30)

∫ ( ∑
j /∈J0

|τ ′j |
)2

=
∑
j /∈J0

∑
k/∈J0

∫
|τ ′jτ ′k| �

∑
j /∈J0

∫
(τ ′j)

2,

since for each j there are only O(1) values of k for which τ ′jτ
′
k 
= 0. Hence

(5.31)

∫ ( ∑
j /∈J0

|τ ′j |
)2

�
∑
j /∈J0

∫
(τ ′j)

2 �
(

λ

C1

)2

.

Therefore

(5.32)
∑
j /∈J0

∣∣∣∣
∫

f1τj

∣∣∣∣ � 1

λ
||f2||2 + 1

C1
||f3||2.

Using Lemma 4.1 we find

(5.33) ||f2||2 � 1

σ2
, ||f3||2 � 1

σ

once we note that

(5.34)

∣∣∣∣1− θσ(φ
′
μ)

φ′
μ

∣∣∣∣ � 1

σ
,

(5.35)

∣∣∣∣
{
1− θσ(φ

′
μ)

φ′
μ

}′∣∣∣∣ � 1

σ2

and, using (3.11), that

(5.36)

∣∣∣∣
{
1− θσ(φ

′
μ)

φ′
μ

}′′∣∣∣∣ � 1

σ3

(we assume throughout that σ � λ−o(1)). This gives

(5.37)
∑
j /∈J0

∣∣∣∣
∫

f1τj

∣∣∣∣ � 1

λ

1

σ2
+

1

C1

1

σ
� 1

C1σ

proving (5.18).
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6. Relating L1 and L4 restriction theorems

We briefly explain the relation between L1 and L4 restriction theorems given

in (1.9), namely

(6.1) ||F ||L1(C) �C
||F ||32

||F ||2L4(C)
.

By Cauchy–Schwarz
∫
C |F | � ||F ||L2(C), and by the upper bound in the L2-

restriction theorem [1] we have ||F ||L2(C) � ||F ||2 so that

(6.2)

∫
C
|F | � ||F ||2.

As for lower bounds, we certainly have
∫
C |F |2 ≤ ||F ||∞

∫
C |F | and, combining

the lower bound in the L2-restriction theorem [1],
∫
C |F |2 � ||F ||22 with the

upper bound on the L∞ norm ||F ||∞ ≤ √
#E||F ||2/2π (see (3.2)) we obtain

(6.3)
1

||F ||2

∫
C
|F | � 1√

#E .

We want to improve the bound (6.3) for
∫
C |F |. To start with, we use inter-

polation (log-convexity of the Lp norm) to give a lower bound for ||F ||L1(C) =∫
C |F | in terms of the L2 and L4 norms on the curve:

(6.4) ||F ||L2(C) ≤ ||F ||1/3L1(C) · ||F ||2/3L4(C),

which improves on (6.3) as it does not contain any component which is a-priori

unbounded in λ.

Inserting the uniform L2 restriction lower bound ||F |||L2(C) � ||F ||2 of [1]

into (6.4) gives (6.1) as claimed.

7. An upper bound on the restriction L4 norm: Proof of Theorem 1.3

The aim of this section is to reduce getting a uniform upper bound for the 4-th

moment
∫
C |F |4, to counting lattice points in arcs of length

√
λ by showing that

(7.1)

∫
C
|F |4 =

∫
|f(t)|4dt � Bλ,

where, as in (1.6),

(7.2) Bλ = max
|x|=λ

#{ξ ∈ E : |x− ξ| ≤
√
λ}.
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7.1. Computing

∫ |f |4. Recall

(7.3) f(t) =
∑
μ

aμe
i〈μ,γ(t)〉.

We may break up f into O(1) terms, each the sum over frequencies μ lying in an

arc of size λ/100. By the triangle inequality, it suffices to prove the restriction

L4 bound for such f , and from now on we assume that f is of this form.

In order to compute the 4-th moment
∫ |f |4, write

(7.4) f(t)2 =
∑
μ,ν

aμaνe
i〈μ+ν,γ(t)〉 =

∑
μ

aμa−μ +
∑

0
=z∈Z
bze

2i〈z,γ(t)〉,

where for a median z = (μ + ν)/2 ∈ Z (see §2.2), we set bz = 2aμaν . The

assumption that all the frequencies μ lie in an arc of size λ/100 implies that the

medians z ∈ Z appearing in (7.4) satisfy |z| > λ/2, and that aμa−μ = 0 for all

μ. Observe that

(7.5)
∑

0
=z∈Z
|bz|2 �

(∑
μ

|aμ|2
)2

=
1

(2π)4
||F ||42.

Hence we can we write

(7.6) f(t)2 = g0(t) + g(t)

with

(7.7) g0(t) =
∑

0<Δ(z)≤√
λ

bze
2i〈z,γ(t)〉

and

(7.8) g(t) =
∑∗

z

bze
2i〈z,γ(t)〉,

where we denote

(7.9)
∑∗

z

:=
∑
z∈Z

|z|≥λ/2

|Δ(z)|>√
λ

.

Therefore

(7.10) ||f ||4 = ||f2||1/22 ≤ (||g0||2 + ||g||2)1/2,
so that it suffices to show

(7.11) ||g0||22 � Bλ||b||2, ||g||22 � Bλ||b||2
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where b = (bz) ∈ CZ .
By Lemma 3.3, if z 
= w then

(7.12)

∫
e2i〈z−w,γ(t)〉dt � 1

|z − w|1/2 ,

and since the integral is trivially bounded by � 1, we can write this for any

pair z, w ∈ Z as

(7.13)

∫
e2i〈z−w,γ(t)〉dt � 1

|z − w|1/2+

where

(7.14) |z|+ = max(1, |z|).
Therefore

(7.15)

∫
|g|2 �

∑∗

z

∑∗

w

|bz||bw|
|z − w|1/2+

.

Moreover, we may restrict the sum to |w−z|<λε at a cost of O(λ−ε/2||b||2#Z)=

o(||F ||42) since #Z � λo(1). Denoting

(7.16)
∑∗

z,w

:=
∑∗

z

∑∗

w: |z−w|<λε

we have found that

(7.17) ||g||2 �
∑∗

z,w

|bzbw|
|z − w|1/2+

and likewise

(7.18) ||g0||2 �
∑

0<Δ(z),Δ(w)≤√
λ

|z−w|<λε

|bzbw|
|z − w|1/2+

.

Thus we see that it suffices to show:

Proposition 7.1: Let b = (bz) ∈ CZ . Then

(i)
∑

0<Δ(z),Δ(w)<
√
λ

|z−w|<λε

|bzbw|
|z − w|1/2+

� Bλ||b||2

and

(ii)
∑∗

z,w

|bzbw|
|z − w|1/2+

� Bλ||b||2.
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7.2. Proof of Proposition 7.1 (i). By Schur’s test,

(7.19)
∑

0<Δ(z),Δ(w)≤√
λ

|z−w|<λε

|bzbw|
|z − w|1/2+

≤ max
0<Δ(z)≤√

λ

∑
0<Δ(w)≤√

λ
|z−w|<λε

1

|z − w|1/2+

||b||2

and so it suffices to show that

(7.20)
∑

0<Δ(w)≤√
λ

|z−w|<λε

1

|z − w|1/2+

� Bλ.

Replacing |z − w|+ by 1 we are reduced to showing that

(7.21) #{0 < Δ(w) ≤
√
λ, |z − w| < λε} � Bλ.

We have

(7.22) μ+(w) − μ+(z) = (w − z) + (Δ(w) −Δ(z))
z⊥

|z| +Δ(w)

(
w⊥

|w| −
z⊥

|z|
)
.

Since Δ(z),Δ(w) <
√
λ we have |z|, |w| ∼ λ, and hence

(7.23) |w
⊥

|w| −
z⊥

|z| | �
|z − w|

λ
� λ−1+ε.

Thus

(7.24) |μ+(w) − μ+(z)| �
√
λ.

By Lemma 2.2 we see that there are at most O(Bλ) possibilities for w. This

proves (7.21).

7.3. A dyadic subdivision. We turn to the proof of part (ii) of Proposi-

tion 7.1. For K ≥ 1, let

(7.25) SK = {z ∈ Z, K
√
λ ≤ Δ(z) < 2K

√
λ}.

We write

(7.26)
∑∗

z,w

|bzbw|
|z − w|1/2+

=
∑

K,L dyadic

〈AK,Lb
(K), b(L)〉,

the sum over K = 2k, L = 2�, with

(7.27) 〈AK,Lb
(K), b(L)〉 =

∑∗

w∈SL
z∈SK

|bzbw|
|z − w|1/2+

,
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where b(K) = (|bz|)z∈SK , b(L) = (|bw|)w∈SL , and AK,L : CSK → CSL is the

matrix

(7.28) AK,L =

(
1

|z − w|1/2+

)
z∈SK ,w∈SL

with zeros whenever one of the conditions Δ(z),Δ(w) >
√
λ, |z|, |w| > λ/2 or

|z − w| < λε is violated.

We use Schur’s test for the operator norm:

(7.29) ||AK,L||2→2 ≤ ||AK,L||1/21→1 · ||A∗
K,L||1/21→1

to bound

(7.30) |〈AK,Lb
(K), b(L)〉| ≤ ||AK,L||1/21→1 · ||A∗

K,L||1/21→1 · ||b(K)|| · ||b(L)||,

where ||b(K)|| is the �2-norm. We will show

Proposition 7.2: For K ≤ L,

(7.31) ||AK,L||1→1 � Bλ

and

(7.32) ||A∗
K,L||1→1 � K

L
Bλ.

Therefore

(7.33)

∑∗

z,w

|bzbw|
|z − w|1/2+

� Bλ

∑ ∑
K,L dyadic

(
min(K,L)

max(K,L)

)1/2

||b(K)|| · ||b(L)||

� Bλ

{
max
K

∑
L=2� dyadic

L≥K

(
K

L

)1/2}
·
∑
K

||b(K)||2.

Since
∑

K ||b(K)||2 = ||b||2 and

(7.34)
∑

L=2� dyadic
L≥K

(
K

L

)1/2

� 1

we will have proved part (ii) in Proposition 7.1.
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7.4. Proof of Proposition 7.2. By Schur’s test,

(7.35) ||AK,L||1→1 ≤ max
z∈SK

∑∗

w∈SL

|z−w|<λε

1

|z − w|1/2+

and

(7.36) ||A∗
K,L||1→1 ≤ max

w∈SL

∑∗

z∈SK

|z−w|<λε

1

|z − w|1/2+

.

Lemma 7.3: Let z ∈ SK . Then

(7.37) #{w ∈ SL : |w − z| < λε} � LBλ.

Proof. For 0 ≤ l ≤ L− 1, set

(7.38) SL,l = {w ∈ SL : (L+ l)
√
λ ≤ Δ(w) < (L + l+ 1)

√
λ}.

We show that for z ∈ SK , w ∈ SL,l and |z − w| < λε, we have

(7.39) |μ+(w) − v| �
√
λ

where

(7.40) v = μ+(z) + ((L + l)
√
λ−Δ(z))

z⊥

|z| .

By Lemma 2.2 we see that there are at most O(Bλ) possibilities for w in SL,l

subject to |w − z| < λε:

(7.41) #{w ∈ SL,l : |w − z| < λε} � Bλ.

Since

(7.42) SL =
L−1⋃
l=0

SL,l

we find

(7.43) #{w ∈ SL : |w − z| < λε} � LBλ

as claimed.

To prove (7.39), we use (2.6) to get

(7.44) μ+(w) − μ+(z) = w − z +Δ(w)
w⊥

|w| −Δ(z)
z⊥

|z| .
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Note that |w⊥| = |w|, and since |z| ≥ λ/2 and |z − w| < λε then |w| =

|z|+O(λε) � λ and so

(7.45)
w⊥

|w| =
z⊥

|z⊥| +O(λ−1+ε).

Hence

(7.46)

μ+(w) − μ+(z) = O(λε) + Δ(w)

(
z⊥

|z⊥| +O(λ−1+ε)

)
−Δ(z)

z⊥

|z⊥|

= (Δ(w) −Δ(z))
z⊥

|z⊥| +O(λε).

Writing Δ(w) = (L+ l + θ)
√
λ with 0 ≤ θ < 1 we find

(7.47) μ+(w) − μ+(z) = ((L + l)
√
λ−Δ(z))

z⊥

|z⊥| + θ
√
λ
z⊥

|z⊥| + O(λε)

proving (7.39).

We now give a lower bound for the difference of medians |z − w|:
Lemma 7.4: Let K ≤ L, w ∈ SL,l, z ∈ SK,k, 0 < |w − z| < λε. Then

(i) if 2K < L then |z − w| � L2;

(ii) if K = L/2 and l 
= 0 then |z − w| � Ll;

(iii) if K = L and l 
= k, k ± 1 then |z − w| � L|l− k|.
Proof. To bound |z − w|, the condition K ≤ L allows us to assume |z| ≥ |w|.
Then

(7.48)

|z − w| ≥ |z| − |w| = λ2 − |w|2
λ+ |w| − λ2 − |z|2

λ+ |z|

≥ Δ(w)2

λ+ |z| −
Δ(z)2

λ+ |z|

≥ Δ(w)2 −Δ(z)2

2λ

� L√
λ
|Δ(w) −Δ(z)| � L(L+ l −K − k − 1).

If K ≤ L/4 then L(L + l −K − k − 1) ≥ L(L − 2K) ≥ L2/2. If K = L/2

then L|L + l − K − k − 1| ≥ L(L + l − 2K) = Ll, useful if l 
= 0. Finally, if

K = L then L(L+ l −K − k − 1| = L|l − k − 1| ≥ 1
2L|l − k| if |l − k| ≥ 2, the

exceptional cases being l = k, k ± 1.
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7.5. Bounding ||AK,L||2→2. We want to show that, if K ≤ L, then

(7.49) ||AK,L||1→1 ≤ max
z∈SK

∑
w∈SL

|z−w|<λε

1

|z − w|1/2+

� Bλ

and

(7.50) ||A∗
K,L||1→1 ≤ max

w∈SL

∑
z∈SK

|z−w|<λε

1

|z − w|1/2+

≤ K

L
Bλ,

We assume first that 2K < L, that is, K = 2k, L = 2� with � ≥ k + 2. Let

(7.51) SL(z, λ
ε) = {w ∈ SL : |w − z| < λε}.

We have

(7.52)

||AK,L||1→1 ≤ max
z∈SK

∑
w∈SL(z,λε)

1

|z − w|1/2+

≤ max
z∈SK

#SL(z, λ
ε)

minw∈SL(z,λε) |z − w|1/2+

.

According to Lemma 7.3,

(7.53) #SL(z, λ
ε) � LBλ,

and by Lemma 7.4, if 2K < L then

(7.54) min
w∈SL(z,λε)

|z − w| � L2.

Hence we find (for 2K < L)

(7.55) ||AK,L||1→1 � Bλ.

Arguing in the same way with the roles of L andK reversed gives, for 2K < L,

that

(7.56) ||A∗
K,L||1→1 ≤ max

z∈SK

#SK(z, λε)

minw∈SK(z,λε) |z − w|1/2+

≤ KBλ

L
.
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7.6. The cases K = L/2, L. It remains to deal with the case K = L/2 and

K = L. We use the decomposition SL =
⋃L−1

l=0 SL,l in (7.38) to write

(7.57)

∑
w∈SL(z,λε)

1

|z − w|1/2+

�
L−1∑
l=0

∑
w∈SL,l(z,λε)

1

|z − w|1/2+

�
L−1∑
l=0

#SL,l(z, λ
ε)

minw∈SL,l(z,λε) |z − w|1/2+

� Bλ

L−1∑
l=0

( min
w∈SL,l(z,λε)

|z − w|1/2+ )−1,

where we have used (7.41). Applying Lemma 7.4 gives for K = L/2

(7.58)
∑

w∈SL(z,λε)

1

|z − w|1/2+

� Bλ

(
1 +

L−1∑
l=1

1

(Ll)1/2

)
� Bλ,

and if K = L and z ∈ SL,k we get

(7.59)
∑

w∈SL(z,λε)

1

|z − w|1/2+

� Bλ

( ∑
0≤l≤L−1
|l−k|≥2

1

L1/2|l − k|1/2 +O(1)

)
� Bλ.

Thus we find that ||A∗
K,L||1→1, ||A∗

K,L||1→1 � Bλ for K = L/2, L, concluding

the proof of Proposition 7.2.

8. Exceptions on the sphere and the torus

8.1. Nodal intersections with geodesics on the torus. We conclude by

pointing out that no lower bound on NF,C is possible without the assumption

on non-vanishing of the curvature of C, that is, when C is flat.

When C is a segment of a closed geodesic on the torus, there are arbitrarily

large eigenvalues λ for which there are eigenfunctions Fλ vanishing identically

on C, that is, for which C ⊂ NFλ
. Indeed, if the curve is a segment of the

rational line px + qy = c, with (0, 0) 
= (p, q) ∈ Z2, then taking Fn(x, y) =

sinn(qx − py − c), n = 1, 2, . . . , gives an eigenfunction which has eigenvalue

n2(p2 + q2) and which vanishes on the entire closed geodesic. See [3] for further

discussion of such “persistent components.”

For the case when C is a segment of an unbounded geodesic, we claim that

there are always arbitrarily large eigenvalues λ2
k for which there is an eigenfunc-

tion Fk with NFk,C = 0. To see this, take an irrational β /∈ Q, and �v0 ∈ R2 and
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let C be the irrational line segment {�v0 + t(1,−β) : |t| < 1}. Let �nk = (pk, qk)

be a sequence of good rational approximations of β:

(8.1)

∣∣∣∣β − pk
qk

∣∣∣∣ < 1

q2k

with qk → +∞. Let

(8.2) Fk(�x) = cos(�nk · (�x− �v0)),

which is an eigenfunction with eigenvalue λ2
k = p2k + q2k. Then on C we have

(8.3) Fk(�v0 + t(1,−β)) = cos(t(pk − qkβ)).

Since

(8.4) |t(pk − qkβ)| ≤ |pk − qkβ| < 1

qk

we see that

(8.5) Fk(�v0 + t(1,−β)) = 1 +O

(
1

q2k

)

and so for k � 1, Fk|C has no zeros.

8.2. The sphere. On the sphere, a basis of eigenfunctions is provided by the

spherical harmonics. Let us restrict attention to zonal spherical harmonics.

They are of the form Y 0
� = P�(cos θ), where θ is the colattitude, and P�(x) are

the Legendre polynomials

(8.6) P�(x) =
1

2�

��/2�∑
j=0

(−1)j
(
�

j

)(
2�− 2j

�− 2j

)
x�−2j

which are orthogonal polynomials on the interval [−1, 1]. The nodal set of the

zonal spherical harmonic Y 0
� is the union of the parallels θ = θ�,j, j = 1, . . . , �

where x�,j = cos θ�,j are the zeros of the Legendre polynomial P�(x).

Since P�(−x) = (−1)�P�(x), for odd � we have P�(0) = 0, and so we find that

the zonal spherical harmonics vanish on the equator C(π/2) = {θ = π/2} for

odd �, that is, NC(π/2),Y 0
�
= ∞.

For other parallels C(θ0) = {θ = θ0}, 0 < θ0 < π/2, we claim that there

are infinitely many � with NC(θ0),Y 0
�
= 0. Thus even though the parallels have

nonzero curvature, no analogue for the lower bound of Theorem 1.1 can hold

on the sphere. To see this, note that if cos θ0 is not one of the countably many

zeros of the P�(x), then all the Y 0
� never vanish there. If PL(cos θ0) = 0, then
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we claim that Pp(cos θ0) 
= 0 for all prime p > L + 1. Indeed, when p > 2 is

prime, Holt [9] showed in 1912 that Pp(x)/x are irreducible over the rationals,

and since degP� = �, we must have gcd(Pp(x)/x, PL(x)) = 1 and, in particular,

they have no common zeros.
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