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Abstract

We prove a function field version of Chowla’s conjecture on the autocorrelation of the Möbius
function in the limit of a large finite field.

1. Introduction

There is a well-known equivalence between the Riemann hypothesis (RH) and square-root cancella-
tion in sums of the Möbius function μ(n), namely, RH is equivalent to

∑
n≤N μ(n) = O(N1/2+o(1)).

This sum measures the correlation between μ(n) and the constant function. Recent studies have
explored the correlation between μ(n) and other sequences; see [1, 2, 5]. Sarnak [8] showed that
μ(n) does not correlate with any ‘deterministic’ (i.e. zero entropy) sequence, assuming an old con-
jecture of Chowla [3] on the auto-correlation of the Möbius function, which asserts that given an
r-tuple of distinct integers α1, . . . , αr and εi ∈ {1, 2}, not all even, then

lim
N→∞

1

N

∑
n≤N

μ(n + α1)
ε1 · · · μ(n + αr)

εr = 0. (1.1)

Note that the number of non-zero summands here, that is, the number of n ≤ N for which
n + α1, . . . , n + αr are all square-free, is asymptotically c(α)N , where c(α) > 0 if the numbers
α1, . . . , αr do not contain a complete system of residues modulo p2 for every prime p [6], so that
(1.1) is about non-trivial cancellation in the sum.

Chowla’s conjecture (1.1) seems intractable at this time, the only known case being r = 1 where
it is equivalent with the Prime Number Theorem. Our goal in this note is to prove a function field
version of Chowla’s conjecture.

Let Fq be a finite field of q elements and Fq[x] be the polynomial ring over Fq . The Möbius
function of a non-zero polynomial F ∈ Fq[x] is defined to be μ(F) = (−1)r if F = cP1 · · · Pr with
0 �= c ∈ Fq and P1, . . . , Pr are distinct monic irreducible polynomials, and μ(F) = 0 otherwise.

Let Mn ⊂ Fq[x] be the set of monic polynomials of degree n over Fq , which is of size #Mn = qn.
The number of square-free polynomials in Mn is, for n > 1, equal to qn − qn−1 [7, Chapter 2]. Hence,
given r distinct polynomials α1, . . . , αr ∈ Fq[x], with deg αj < n, the number of F ∈ Mn for which
all of F(x) + αj (x) are square-free is qn + O(rqn−1) as q → ∞.
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For r > 0, distinct polynomials α1, . . . , αr ∈ Fq[x], with deg αj < n and εi ∈ {1, 2}, not all even,
set

C(α1, . . . , αr; n) :=
∑

F∈Mn

μ(F + α1)
ε1 · · · μ(F + αr)

εr . (1.2)

For r = 1 and n > 1, we have
∑

F∈Mn
μ(F ) = 0 [7, Chapter 2]. For n = 1, we have μ(F) ≡ −1 and

the sum equals (−1)
∑

εj qn. For n > 1, r > 1, we show the following theorem.

Theorem 1.1. Fix r > 1 and assume that n > 1 and q is odd. Then for any choice of distinct
polynomials α1, . . . , αr ∈ Fq[x], with max deg αj < n, and εi ∈ {1, 2}, not all even

|C(α1, . . . , αr; n)| ≤ 2rnqn−1/2 + 3rn2qn−1. (1.3)

Thus, for fixed n > 1,

lim
q→∞

1

#Mn

∑
F∈Mn

μ(F + α1)
ε1 · · · μ(F + αr)

εr = 0, (1.4)

under the assumption of Theorem 1.1, giving an analogue of Chowla’s conjecture (1.1).
Our starting point is Pellet’s formula, see, for example, [4, Lemma 4.1], which asserts that for

the polynomial ring Fq[x] with q odd (hence the restriction on the parity of q in Theorem 1.1), the
Möbius function μ(F) can be computed in terms of the discriminant disc(F ) of F(x) as

μ(F) = (−1)deg F χ2(disc(F )), (1.5)

where χ2 is the quadratic character of Fq . That will allow us to express C(α1, . . . , αr; n) as a character
sum and to estimate it.

2. Reduction to a counting problem

2.1. Character sums

We use Pellet’s formula (1.5) to write

C(α1, . . . , αr; n) = (−1)nr
∑

F∈Mn

χ2(disc(F + α1)
ε1 · · · disc(F + αr)

εr ). (2.1)

Since disc(F ) is polynomial in the coefficients of F , (2.1) is an n-dimensional character sum; we
will estimate it by trivially bounding all but one variable. We single out the constant term t := F(0)

of F ∈ Mn and write F(x) = f (x) + t , with

f (x) = xn + an−1x
n−1 + · · · + a1x, (2.2)
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and set
Df (t) := disc(f (x) + t), (2.3)

which is a polynomial of degree n − 1 in t . Therefore, we have

|C(α1, . . . , αr; n)| ≤
∑

a∈F
n−1
q

∣∣∣∣∣∣
∑
t∈Fq

χ2(Df +α1(t)
ε1 · · · Df +αr

(t)εr )

∣∣∣∣∣∣
. (2.4)

We use Weil’s theorem (the RH for curves over a finite field), which implies that for a polynomial
P(t) ∈ Fq[t] of positive degree, which is not proportional to a square of another polynomial, we have
[9, Section 2] ∣∣∣∣∣∣

∑
t∈Fq

χ2(P (t))

∣∣∣∣∣∣
≤ (deg P − 1)q1/2, P (t) �= cH 2(t). (2.5)

For us, the relevant polynomial is P(t) = Df +α1(t)
ε1 · · · Df +αr

(t)εr , which has degree ≤ 2r(n − 1).
Instead of requiring that it not be proportional to a square, we impose the stronger requirement that
for some i with εi odd, Df +αi

(t) has positive degree and is square-free and that for all j such that
j �= i, Df +αi

(t) and Df +αj
(t) are coprime. We denote the set of coefficients a satisfying the stronger

condition by Gn (the ‘good’as, where we can apply (2.5)), and let Gc
n = Fn−1

q \Gn be the complement
of Gn, where we use the trivial bound q on the character sum. Thus, we deduce that we can bound

|C(α1, . . . , αr; n)| ≤
∑
a∈Gn

(2r(n − 1) − 1)
√

q +
∑
a /∈Gn

q

≤ (2r(n − 1) − 1)qn−1/2 + q#Gc
n, (2.6)

where we have used the trivial bound #Gn ≤ qn−1 for the first part of the sum. Theorem 1.1 will
follow from the following proposition.

Proposition 2.1. Assume that n > 1 and max deg αj < n. Then

#Gc
n ≤ 3rn2qn−2.

2.2. Bounding #Gc
n

We can write Gc
n ⊂ An ∪ Bn where:

(1) An = An,i is the set of those a ∈ Fn−1
q for which Df +αi

(t) is either a constant or is not square-
free, that is,

An = {a ∈ Fn−1
q : Df +αi

(t) is constant or disc(Df +αi
) = 0}. (2.7)

(2) Bn = ⋃
j �=i B(j), where B(j) are those as for which Df +αi

(t) and Df +αj
(t) have a common

zero, which can be written as the vanishing of their resultant

B(j) = {a ∈ Fn−1
q : Res(Df +αi

(t), Df +αj
(t)) = 0}. (2.8)
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What is crucial is that An and each B(j) are the zero sets of a polynomial equation in the coefficients
a; this is a key property of the discriminant and the resultant.

We will need the following elementary but useful uniform upper bound on the number of zeros of
polynomials (cf. [9, Section 4, Lemma 3.1]).

Lemma 2.2. Let h(X1, . . . , Xm) ∈ Fq[X1, . . . , Xm] be a non-zero polynomial of total degree at
most d. Then the number of zeros of h(X1, . . . , Xm) in Fm

q is at most

#{x ∈ Fm
q : h(x) = 0} ≤ dqm−1. (2.9)

As we will see below (see Section 2.3), the equation defining An has total degree 3(n − 1)(n − 2) in
the coefficients a1, . . . , an−1, and the equation defining B(j) has total degree ≤ 3(n − 1)2. Therefore,
by Lemma 2.2, if we show that the equations defining An, B(j) are not identically zero, then we will
have proved

#An ≤ 3n2qn−2 (2.10)

and
#Bn ≤ 3(r − 1)n2qn−2. (2.11)

This immediately gives Proposition 2.1.
In order to show that a polynomial h ∈ Fq[X1, . . . , Xm] is not identically zero, we may instead

consider it as a polynomial defined over F̄q , the algebraic closure of Fq . In this context, we can
investigate the zero set Zh = {a ∈ F̄m

q : h(a) = 0}, which is a subvariety of the affine space Am. The
polynomial h is not identically zero if and only if Z �= Am. This shall be our main tool in the following
sections.

2.3. Resultant and discriminant formulas

The discriminant disc(F ) of a polynomial F(x) = anx
n + an−1x

n−1 + · · · + a0, an �= 0, is given
in term of its roots r1, . . . , rn in the algebraic closure F̄q as disc F = a2n−2

n

∏
i<j (ri − rj )

2, and
is a homogeneous polynomial with integer coefficients in a0, . . . , an, with degree of homogeneity
2n − 2, has total degree 2n − 2, and has degree n − 1 as a polynomial in a0. Moreover, if ai is regarded
as having degree i, then disc(F ) is homogeneous of degree n(n − 1), that is, for every monomial
cr

∏
i a

ri

i in disc(F ), ∑
i

iri = n(n − 1). (2.12)

The resultant of two polynomials F(x) = anx
n + · · · , G = bmxm + · · · , of degrees n and m, is

Res(F, G) = am
n bn

m

∏
F(ρ)=0

∏
G(η)=0

(ρ − η). (2.13)

It is a homogeneous polynomial of degree m + n in the coefficients of F and G, in fact it is
homogeneous of degree m in a0, . . . , an and of degree n in b0, . . . , bm. Moreover, if ai, bi are regarded
as having degree i, then Res(F, G) is homogeneous of degree mn. We have

Res(F, G) = am
n

∏
F(ρ)=0

G(ρ) = (−1)mnbn
m

∏
G(η)=0

F(η). (2.14)
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Furthermore, the discriminant of a polynomial F(x) = anx
n + · · · + a0 of degree n may be

computed in terms of the resultant as

disc F = (−1)n(n−1)/2an−deg(F ′)−2
n Res(F, F ′). (2.15)

We apply this to compute the discriminant of Df (t) = disc(f (x) + t), f (x) = xn + an−1x
n1 +

· · · + a1x. The discriminant disc(Df (t)) is a polynomial in the coefficients a1, . . . , an−1 of f (x). We
claim that the total degree of disc Df (t) is 3(n − 1)(n − 2). Indeed, Df (t) = ∑n−1

j=0 bj t
j is a polyno-

mial of degree n − 1 in t , and since it is homogeneous of degree 2(n − 1) in t, a1, . . . , an−1 we find
that bj are polynomials of total degree 2(n − 1) − j in the aj s. Now disc Df (t) = ∑

cr

∏
j b

rj

j

has total degree 2(n − 1) − 2 = 2(n − 2) in the bj s, that is,
∑

rj = 2(n − 2), and by (2.12),∑
j jrj = (n − 1)(n − 2). Thus, the total degree of disc Df (t) in a1, . . . , an−1 is

∑
j

rj deg bj =
∑

rj (2(n − 1) − j) = 2(n − 1)
∑

rj −
∑

jrj

= 2(n − 1) · 2(n − 2) − (n − 1)(n − 2) = 3(n − 1)(n − 2),

as claimed.
Arguing similarly, one sees that the resultant Res(Df (t), Df +α(t)) has total degree 3(n − 1)2 in

the coefficients a1, . . . , an−1.
Assume gcd(q, n) = 1. Then f ′(t) = nxn−1 + (n − 1)an−1x

n−2 + · · · has degree n − 1 and by
(2.14) and (2.15) we find

Df (t) = discx(f (x) + t) = (−1)n(n−1)/2nn
∏

f ′(ρ)=0

(t + f (ρ)) (2.16)

has degree n − 1, with roots −f (ρ) as ρ runs over the n − 1 roots of f ′(x).
In the case where gcd(q, n) > 1, f ′(t) = − an−1x

n−2 + · · · has degree n − 2 provided that
an−1 �= 0, in which case by (2.14) and (2.15) we have

Df (t) = discx(f (x) + t) = (−1)n(n−1)/2an
n−1

∏
f ′(ρ)=0

(t + f (ρ)), (2.17)

which has degree n − 2 and again has roots −f (ρ) as ρ runs over the n − 2 roots of f ′(x).

3. Non-vanishing of the resultant

Proposition 3.1. Given a non-zero polynomial α ∈ Fq[x], with deg α < n, then a �→
Res(Df (t), Df +α(t)) is not the zero polynomial, that is, the polynomial function

R(a) := Rest (Df (t), Df +α(t)) ∈ Z[
a] (3.1)

is not identically zero.

Applying this to α = αj − αi for each j �= i will show that (2.11) holds.



Page 6 of 9 D. CARMON AND Z. RUDNICK

Proof . Write α(x) = An−1x
n−1 + · · · + A0 ∈ Fq[x] with deg α < n.

Let p be the characteristic of Fq . Assume first that p � n. Then, by (2.14) and (2.16), we find

Res(Df , Df +α) = n2n(n−1)
∏

f ′(ρ1)=0
f ′(ρ2)+α′(ρ2)=0

(f (ρ2) + α(ρ2) − f (ρ1)). (3.2)

If p | n, but an−1 �= 0 and an−1 + An−1 �= 0, then by (2.14) and (2.17), we find

Res(Df , Df +α) = a
n(n−2)
n−1 (an−1 + An−1)

n(n−2)

×
∏

f ′(ρ1)=0
f ′(ρ2)+α′(ρ2)=0

(f (ρ2) + α(ρ2) − f (ρ1)). (3.3)

Note that when an−1 = 0 or an−1 + An−1 = 0, the resultant Res(Df , Df +α) is given by different
polynomials than in the above case. However, this might affect at most 2qn−2 ‘bad’ 
as, which is a
negligible amount, and the conclusion of (2.11) remains valid.

In both cases above, the ‘bad’ 
as are those for which there are ρ1, ρ2 ∈ F̄q such that

f ′(ρ1) = 0, f ′(ρ2) = −α′(ρ2), f (ρ2) − f (ρ1) = −α(ρ2). (3.4)

This is a linear system of equations for 
a ∈ An−1, which has the form

M(ρ)a = b(ρ), ρ = (ρ1, ρ2), (3.5)

for a suitable 3 × (n − 1) matrix M(ρ) and vector b(ρ) ∈ A3. Thus, over F̄q , the solutions of R(
a) = 0
are precisely those 
a ∈ F̄n−1

q which satisfy the system (3.5) for some ρ ∈ F̄2
q .

We consider the affine variety (possibly reducible) defined by these equations

Z = {(ρ, a) ∈ A2 × An−1 : M(ρ)a = b(ρ)} ⊂ A2 × An−1. (3.6)

Let φ : Z → An−1 be the restriction to Z of the projection A2 × An−1 → An−1 and π : Z → A2 be
the restriction to Z of the projection A2 × An−1 → A2.

Z ⊂ A2 × An−1

π

������������� φ

�������������

A2 An−1

(3.7)

From the above, the solution set of R(
a) = 0 is precisely φ(Z).
We will show that Z has dimension n − 2, and hence the dimension of {R = 0} = φ(Z) can-

not exceed n − 2 and hence is not all of An−1. Thus, R is not the zero polynomial, proving
Proposition 3.1.

To do so, we study the dimensions of the fibres π−1(ρ), which are affine linear subspaces. We
first assume that n > 3. In this case, we will show that π(Z) is dense in A2 and generically, that is,
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if ρ1 �= ρ2, the fibres π−1(ρ) have dimension n − 4. Moreover, there are at most deg α non-generic
fibres, each of dimension n − 2. This will show that dim Z = n − 2.

We rewrite the system (3.5) as

· · · + 3a3ρ
2
1 + 2a2ρ1 + a1 = −nρn−1

1 ,

· · · + 3a3ρ
2
2 + 2a2ρ2 + a1 = −α′(ρ2) − nρn−1

2 ,

· · · + a3(ρ
3
2 − ρ3

1) + a2(ρ
2
2 − ρ2

1 ) + a1(ρ2 − ρ1) = −α(ρ2) − (ρn
2 − ρn

1 ).

(3.8)

To find the rank of the matrix M(ρ), we compute that

det

⎛
⎝

3ρ2
1 2ρ1 1

3ρ2
2 2ρ2 1

ρ3
2 − ρ3

1 ρ2
2 − ρ2

1 ρ2 − ρ1

⎞
⎠ = (ρ1 − ρ2)

4, (3.9)

and thus M(ρ) has full rank 3 unless ρ1 = ρ2, and so the generic fibres π−1(ρ) have dimension
n − 1 − 3 = n − 4.

In the non-generic case ρ1 = ρ2, the matrix has rank 1 and we need α′(ρ2) = 0 = α(ρ2), which
constrains us to have at most finitely many fibres (the number bounded by deg α/2), each of which
has dimension n − 1 − 1 = n − 2.

Finally, the cases n = 2, 3 are handled similarly, except that the image of the map π : Z → A2 is
no longer dense, due to algebraic conditions constraining ρ1, ρ2. We omit the (tedious) details. �

4. Non-vanishing of the discriminant

We wish to show that the condition for being in An is not always satisfied. Without loss of generality,
we can assume αi = 0. We first study a couple of small degree cases.

For n = 2, disc(x2 + ax + t) = a2 − 4t is linear and hence has no repeated roots (recall q is odd),
hence An is empty. When n = 3, we have

Df (t) = discx(x
3 + ax2 + bx + t) = (a2b2 − 4b3) + (18ab − 4a3)t − 27t2. (4.1)

If 3 | q, then Df (t) = (a2b2 − 4b3) − 4a3t has degree 1 for a �= 0; if 3 � q, then D(t) has degree 2
and we compute that

disct discx(x
3 + ax2 + bx + t) = −16(a2 − 3b)3, (4.2)

which is clearly not identically zero. So we may assume n ≥ 4.

4.1.

Similarly to our approach in the previous section, it suffices to show that outside a set of 
as of
codimension at least 1 in the parameter space An−1, Df (t) is of positive degree, and is square-free,
that is, with non-zero discriminant.
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We conclude from (2.16) and (2.17) that if n ≥ 4 and 
a is in the ‘bad’ set (but an−1 �= 0 if
gcd(n, q) �= 1), then at least one of the following occurs:

(1) There is some ρ ∈ F̄q for which f ′(x) has a double zero at x = ρ, that is, there is some ρ ∈ F̄q

for which
f ′(ρ) = 0, f ′′(ρ) = 0. (4.3)

(2) There are two distinct ρ1 �= ρ2 so that f (ρ1) = f (ρ2) and so that f ′(x) vanishes at both x = ρ1

and x = ρ2, that is,

f ′(ρ1) = 0, f ′(ρ2) = 0, f (ρ1) = f (ρ2). (4.4)

We want to show that the set of 
a ∈ F̄n−1
q , which solves at least one of (4.3) and (4.4), has dimension

at most n − 2.

4.2.

We first look at f for which (4.3) happens. This gives a pair of equations for 
a ∈ F̄n−1
q :

· · · + 2ρa2 + a1 = −nρn−1,

· · · + 2a2 + 0 = −n(n − 1)ρn−2.
(4.5)

Defining
W = {(ρ, 
a) ∈ A1 × An−1 : (4.3) holds}, (4.6)

we have a fibration of W over the ρ line A1 and a map φ : W → An−1, the restriction of the projection
A1 × An−1 → An−1,

W ⊂ A1 × An−1

π

������������� φ

�������������

A1 An−1

(4.7)

and the solutions of (4.3) are precisely φ(W).
The system (4.5) is non-singular (rank 2) and hence π : W → A1 is surjective and for each ρ

the dimension of the solution set is n − 1 − 2 = n − 3. We find that dim W = n − 2 and hence
dim φ(W) ≤ n − 2.

4.3.

Next we consider the system (4.4) which given ρ1 �= ρ2 is a linear system for 
a ∈ F̄n−1
q of the form

· · · + 3ρ2
1a3 + 2ρ1a2 + a1 = −nρn−1

1 ,

· · · + 3ρ2
2a3 + 2ρ2a2 + a1 = −nρn−1

2 ,

· · · + (ρ3
2 − ρ3

1)a3 + (ρ2
2 − ρ2

1 )a2 + (ρ2 − ρ1)a1 = −ρn
2 + ρn

1 .

(4.8)
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This system shares the matrix part of (3.8), and hence has rank 3 for every ρ1 �= ρ2. Thus, the
arguments of the previous section show that

{
a ∈ An−1 : ∃ρ1 �= ρ2 s.t. (4.4) holds} (4.9)

is of dimension at most n − 2. This shows that (2.10) holds, thus concluding the proof of
Proposition 2.1.

Funding

The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no.
320755.

References

1. J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Möbius from horocycle flows, preprint,
2011, arXiv:1110.0992v1.

2. F. Cellarosi and Ya. G. Sinai, The Möbius function and statistical mechanics, Bull. Math. Sci. 1
(2011), 245–275.

3. S. Chowla, The Riemann Hypothesis and Hilbert’s Tenth Problem, Gordon & Breach, NY, 1965.
4. K. Conrad, Irreducible values of polynomials: a non-analogy, Number Fields and Function Fields:

Two Parallel Worlds, Progress in Mathematics 239, Birkhäuser, Basel, 2005, 71–85.
5. B. Green and T. Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math.

(2) 175 (2012), 541–566.
6. L. Mirsky, Note on an asymptotic formula connected with r-free integers, Quart. J. Math. Oxford

Ser. 18 (1947), 178–182.
7. M. Rosen, Number Theory in Function Fields, Graduate Texts in Mathematics 210, Springer,

New York, 2002.
8. P. Sarnak, Three lectures on Möbius randomness, 2011, http://www.math.ias.edu/files/wam/2011/

PSMobius.pdf.
9. W. M. Schmidt, Equations over Finite Fields: An Elementary Approach, 2nd edn, Kendrick Press,

Heber City, UT, 2004.

http://www.math.ias.edu/files/wam/2011/PSMobius.pdf
http://www.math.ias.edu/files/wam/2011/PSMobius.pdf

