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This paper deal with the analogue of the classical circle problem in the hyperbolic
plane; that is, we count the number N (s, z) of translates of a base point z by a
Fuchsian group I, which lie in a geodesic ball of radius s about z. If Z(s, z) is the
theoretical best approximation to N(s, z) (which has ne'/vol(I") as its leading term),
we set d(s, z)=N(s,z)—2X(s,z), the best known upper bound for which is
Ole®?). We get omega results for d(s, z), which in the co-compact case are
d(s. 2) = 2(e"*P(s)), where f(s) - o« as s - oc. We also show that the normalized
remainder term (s, z) = d(s. =)/e*? has finite mean, which is zero unless I is non-
compact and has null forms. Further we carry out a numerical investigation of the
Fermat groups and the results are consistent with an upper bound e(s, z) = O(e*)
for all &> 0. The problem in hyperbolic #-space is also investigated. . 1994 Academic

Press. Inc

1. INTRODUCTION

The classical circle problem, as formulated by Gauss, is concerned with
the discrepency between the number of lattice points contained in a circle
and the area of the circle. Precisely, for

N(R)=|{(m,n)eZ*: m*+n* < R*}| (L1)
and

d(R)= N(R) — nR>. (12)
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THE CIRCLE PROBLEM 79

Gauss posed the problem of determining the asymptotic behaviour of d(R).
By a simple packing argument, Gauss bounded d(R) by the area of a
boundary strip {R—$<|x| <R+ 3} and obtained the estimate

d(R) = O(R). (1.3)

Today this is considered a rather crude estimate. The first improvement
was due to Sierpinski (1906), who used Fourier analysis (Poisson summa-
tion) to show that

d(R)< R*3. (1.4)
The next major step was taken by Walfisz (1927), who proved that
d(R)< R**~°, (1.5)

for 6 =5/741. After succesive improvements by various authors, an impor-
tant breakthrough was achieved by Iwaniec and Mozzochi [9], who
obtained

d(R)< R7/11+> (1.6

for all ¢> 0. This has been refined by Huxley [7].
As for the truth, there are good reasons, as well as numerical results, for
believing that for all ¢ >0,

d(R) < RV>**. (1.7)
One cannot expect better, since Hardy and Landau showed that
d(R)=Q(R'?log'* R). (1.8)

We refer to Hafner’'s work [5] for the best results in this direction to date
and to [8] for the historical references.

In this paper, we take up an analogous problem set in the hyperbolic
plane H2 Instead of the lattice Z2, we treat the orbit of a point ze H?
under the action of a Fuchsian group I"c PSL(2, R). The hyperbolic plane
has a metric of constant negative curvature —1,

dx? + dy?
ds? = ———, (1.9)
}Y
and we measure the radius s of the circle about z in this metric. We now
set

Np(s, z)=[{ye I dist(z, yz) < 5}|. (1.10)

580/121/1-6



80 PHILLIPS AND RUDNICK

Remark. If z is an elliptic fixed-point for I, then our definition counts
the number of actual lattice points Iz with multiplicity equal to the order
of the stabilizer of z in I

The problem of estimating N(s, z) was considered by Delsarte [3], who
proved that for /" co-compact

N(s,z)zvol’:r)ei as s— . (1.11)

The case of more general Fuchsian groups was considered by Huber [6],
Selberg [17-19], Margulis [11], Patterson [12], Giinther [4], and Lax
and Phillips [10]. As in the Euclidean case, one is interested in the remain-
der term, which in this setting requires more care in its definition since the
main term may contain secondary terms in addition to that given by (1.11).
Before establishing this it is well to point out that the packing argument
used by Gauss to estimate the remainder does not work in the hyperbolic
setting, because the length of the boundary of the ball is comparable to its
area!

In order to define the main term, we have to make use of the
Laplace—Beltrami operator

»? &
2 i
A=—) (ax2+ayz>, (1.12)

which acts on [-automorphic functions in L*(M\H?). If F="\H? is
compact the spectrum of 4 is discrete; when F is non-compact but of finite
volume, there is also a continuous spectrum which fills out [1, co) with
multiplicity equal to the number of cusps of 7. If k is the number of
cusps, then for each cusp one constructs an Eisenstein series E,(z,s),
1 <j<k, and these generate the continuous spectrum. In either case, let
lo=0< i <A< .-+ be the eigenvalues, with a corresponding orthonor-
mal basis of eigenfunctions {¢,}, do=1/\/vol(F). Set i,=1/4+r;. The
eigenvalues 0 < 4, < 1/4 (r, imaginary) are called exceptional.
We set the main term to be'

N__ T s (rl) (12 + |r;1)s NE:
2rls 2 =00 ¢ +\/;0<;<1/4 M) vy e

+4(s+2(log2—1)e? ¥ |g,(2)% (1.13)

3= 174

! See the Remark following Theorem L.1.
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Next we define the remainder term for the hyperbolic circle problem to be
dr(s,z)=Np(s,z)— 2 (s, 2). (1.14)

When all non-constant eigenfunctions have eigenvalue A>1/4, X(s, z)
reduces to ne’/vol(/") as in (1.11). Finally, we define the normalized remain-
der term to be

Np(s, z)—2 (s, 2)
er(s,z)=—L )e“ o . (1.15)

It was proved by Selberg [17-19] (see also Lax and Phillips [10]) that
d(s, z) < e*?. (1.16)

The question is, What is the true asymptotic behaviour of d(s, z)? Our
interest in this problem began when Peter Sarnak asked us to check this
out numerically. We have done so for the Fermat groups &(N). Before
getting into the nature of the Fermat groups, let us state that our numerical
investigations indicate that d(s, z) =< e”?. A summary of the numerical data
along with the program are given in the appendix. In view of the Euclidean
situation (1.7), this was not unexpected. What did surprise us as the fact
that the data became strongly biased in the positive direction was the level
of the group increased from 1 (i.e., 7(2)) to 8. In order to quantify this, we
computed the mean normalized remainder

l T
MNR(T)=?I e(s, z) ds. (1.17)
0

TABLE 1. Mean Normalized Remainder

Fermat level N

T 1 2 3 4 S 6 7 8

10 —0.0139 00249 —-0.0272 00273 0.03 00789  0.1424  0.1889
11 0.0067 0.0254 0.0065 —0.0045 00193 00728 0.1353  (.1844
12 —0.0004 0.0291 0.0057 —-0.0278 0.024 0.0404 0.1262  0.1955
13 0.0097 00135 -0.018 —-00126 0.0318 00386 0.1084  0.1917
14 —0.0037 00104 —-0.0101 0.0041 0.0162 0.0491 0.0843  0.1708
15 —0.0006 00174 —-0.0069 —-0.0078 —0.0044 0.0536 00916 0.1560
16 —0.008  0.006 —0.0308 —00144 0.0189 0.0310 0.1165 0.1722
17 —0.0226 00201 —0.0074 —0.007 0.0172 0.0087 0.0999  0.1851
18 —-0.0276 0.0 —0.0112 —-00007 00159 00245 0.0731 0.1850
19 —0.0233 00031 -—00128 —-0.004 —0.0043 0.0398 00603 0.1896

20 —-00173 00139 -—-0.0139 -0.0148 -—-0.0028 0.0353 00695 0.1687




82 PHILLIPS AND RUDNICK

The result for various level with z =7 and radii incremented by steps of 0.1
are listed in Table 1.

In order to understand what is happening, it is necessary to go a bit
further into the nature of the Fermat groups. These are all subgroups of the

principal congruence subgroup /7(2):
1 0
2. 1.
<O 1) mod } (1.18)

rm:{(Z 2)GSL(2,Z):<Z Z)
|2 10
A=(0 1) and B=<_2 1). (1.19)

I'(2) is freely generated by the elements
The Fermat group &(N) of level N is given by

D(N)= {y= AP BYAPBY . APB%:Y p,=0=Y ¢, mod N}. (1.20)

These groups were studied in [ 13, 14], where it was found that for N <8,
all of the Eisenstein series E,(z, s) vanished at s = 5, while for N =8, several
of the Eisenstein series were non-zero at s= 3. What is happening is that
a pole of the scattering operator approaches s=34 from the left as N
increases to 8, where it becomes a “null vector” (a not quite square-
integrable eigenfunction), and then at N=9 it becomes an exceptional
eigenfunction. Consequently as N increases to 8, E,(z, s) tends to a non-
zero value for some j in a neighborhood of s = 1. This together with the fact
that the kernel for MNR(T) in the spectral representation approaches a

delta function at s= 4 as T— oo explains Table 1. More precisely,

THEOREM 1.1. (1} If I is co-compact, then lim, MNR(T}=0;
(2) If I' is non-compact, then

lim MNR(T, 2) =, |E(z })I% (1.21)

J

where E(z, 5) is the Eisenstein series associated with the jth cusp.

Remark. Since we include terms of size e¢¥? in the main term (1.13)

(coming from the eigenvalue 4 = j), we could add the term e”* 3, | E;(z, 3)I*
to (1.13) as well, and then the remainder term will always have mean zero
in Theorem 1.1. We have, however, decided to refrain from doing so.

The second part of our paper deals with Q-results, that is, lower bounds
for lim sup e(s, z).
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THEOREM 1.2. (1) [If I' is co-finite, then for all 6 >0,
e(s, z) = Q(e %) (1.22)

(2) If I is co-finite but not co-compact, and either has some eigen-
values 4> % or has a null-vector, then e(s, z) = 2(1).

(3)y If I is co-compact or a subgroup of finite index in [(1)=
SL(2, Z), then for all 6>0

e(s, z)=Q((log s)1*~?). (1.23)

In view of the results of Phillips and Sarnak [15] and Wolpert [20] one
might expect that the “generic” group in Teichmiiller space has no cusp
forms with eigenvalue 4> 1/4. However, at present no group is known to
have this property.

In Section 5, we sketch the extension of these results to hyperbolic
n-space. Most of them carry over, but there are differences. Although
the main term in the asymptotic distribution of the lattice points is, as
expected,

n etn =1, (1.24)

N(S, 2)22,,71(”_ l)VOI(r)

the error term can grow like e~ %", This is to be compared to the

known upper bound of O(s¥"+ De!n=2+2n+103) in [10]. For n > 4 this is
significantly larger then e "2 which one may expect from our data
when n=2.

2. THE MEAN NORMALIZED REMAINDER

The mean normalized remainder is defined by

1T N(s, z)— (s,
MNR = lim [ M&2)-252) 0 (2.1)

T—x T o e

where N(s, z) and X(s, z) are defined in (1.10) and (1.13).

THEOREM 2.1.  Denoting the Eisenstein series for the jth cusp by E(z, 5),
we have

MNR =Y |E,(z, Y2 (2.2)
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Our proof of this follows a by now classical path. We first define a
“point-pair invariant” & :

1, dist(z, z') < s
(z,z)=k(t(z,Z'))= .
k(e =ke )=y ) (23)
Here
e 2= 2220 0 cosh dist(z, 27) — 2. (2.4)
Yy
Setting
K(z,2'y=Y kJyz ') (25)
vel
we see that
N(s, z)=K,(z, 2). (2.6)

We now express K (z, z') in terms of the spectral function Ay (r), and
the eigenfunctions of the Laplacian (this is sometimes called the “pre-trace
formula”):

K(z,2')=Y h(r)¢,(z) $;(z)
+;41—nf: hy(r) E/(z, 1/2 + ir) B} (2 12 r) dr.

This expression converges in the strong operator topology. The mapping
k,— h,, called the Selberg transform, is realized as follows [17]:

= k(1)
0w)=| —E=ar
1% t - “7 (2'8)
_[2(r=w)'?, if 0<dist(z,z')<s
o, otherwise.

Replacing ¢ by 2 cosh s — 2 and w by 2 cosh u — 2, this becomes

232(cosh s — cosh u)'?, lu| <s

0, otherwise. (29)

g_v(u)={
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The spectral function /4,(r) is the Fourier transform of g (u):

5

hy(r)= fﬁ gwe™ du (2.10)

We note that g («) is even in u, and h,(r) is even in both 5 and r.
We proceed now to estimate the terms in (2.7). The main term, X(s, z),
is obtained by approximating /() at imaginary values of r.

LemMMa 2.1. For Imr>0,
I'(Irl) _
h. = (1724 |r])s (rl—1/2)s . 11
(= e +0(e ) (211)
Proof. Let p=|r|. Then A (ip) can be rewritten as

h(ip) =22 f - (cosh s — cosh u)!? cosh( pu) du. (2.12)
0

Next make the substitution X' =e¢’, Xy =e" and get

1 172 d!
) ((Xy)P+(Xy)*‘")}—f. (2.13)

1
h(ip)=2X""? f] L= (1 3%

This can be evaluated from the following two estimates, which we state
with the n-dimensional case in mind: For p >0 and n> 1,

[
1/X P

Xﬂ
=—+0(X"7"),
Yoy 14

(2.14)
[ e v OB L (1)
o VY TRz pxr C\xrF )

Substituting these relations (with n=2) into (2.13) we obtain (2.11). For
p=13%(n=2), (2.12) can be integrated directly and we get

h5<-2i->=n(e“'—2+e‘s). ] (2.15)
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The expression (2.13) with p =0 can be evaluated by first integrating by
parts to get

1
B(0) =, X"V [ (1= )02 dlog y+ O(X"~?)

X
=ch‘"~~"/’2[logy(1 PR+ fl log y (1~ )‘"3"“2dyJ
+O(X"372)
=c X‘"*”e“zsﬂ:—ljl log y (1= )"~ dy + O(X" 7 log X)
] 2 o gy b ') og ’

and then evaluating the remaining integral by differentiating

I'((n—1)/2) I'(p)
I(n—1)2+p)

1
j (1=y)" 22 yrdy=
]
with respect to p at p=0. We end up with

LEmMMa 2.2

7,(0)=4(s +2(log 2 — 1))e*2 + O(e ). (2.16)

Note that the remainder terms in Lemmas 2.1, 2.2 do not affect the
MNR and hence are omitted from the main term Z(s, z). It remains to
estimate the terms in (2.7) for real r. We begin with:

LemMma 2.3. For each z,
dr ~ cR? as R- oo, (217)

ofeio)

where ¢ = c(z) depends only on the number of elements of I fixing z.

L T j

Irjl <R

Proof. The kernel for the automorphic heat equation can be written as

1 2
E, (z,§+ z'r)

dr, (2.18)

. 1 > .
_ — At - 2 — At
Glz,z,1)=) e *' |¢;(2)| +;—~4nf¥me
where as usual, 4=+ r”. Since

Gz, z, z)~§, as 10, (2.19)
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where ¢ =c(z) depends only on the number of elements of I fixing z, it
follows from Karamata’s Tauberian theorem that

1
E, (z,§+1r>

R 2
> |¢j(3)|2+z%f dr~cR* as R- o, (220)
;AR

Irjl < R

as desired. |1

The spectral function of the mean normalized K| is

Ho ()=~ " e (r) d 221
Pr)=g [ e hdr) ds (221)
LEMMA 24,
lim [ Hp(r)dr=4n. (2.22)
T— ¥y _ oy

Proof. Interchanging the order of integration, we can rewrite (2.21) as
a Fourier transform,

He(r)= [ e (u)du (2.23)

— X
where

232/T [ e *?(cosh s —cosh u)'" ds, lu| < T

2.24
0, otherwise. ( )

D (u)= {
Thus @ ,(u) is continuous and compactly supported so that

fx‘ H o (r) dr = 2n,(0)

T
=—| e et —e ") ds
T '[(]

4
=7_§(T—1+e*r)a4n as T—-oc. B (225)

Next we give estimates on the spectral functions h,(r) and H,(r).
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C: C,
—8 0 8
FiGURE 1
LEMMa 2.5 Ifh(ry=2e 2 [ (e’+e "—e“—e “)'"*e™ du, then
oz(r)ei””+m —im+0(€—2s/r3f‘2 r>0
h(ry=<{—~— 2.26
(r) {rx(— Ye™ +a(—r)e "+ Ole =%/ |r]¥?), r<Q, ( )
where
_21 2rn o2 e
afry=——— [ (1 =) e ab, (2.27)
1—e

Proof. We first evaluate 4.(r) by deforming the path of integration from
—s to s into two vertical half-lines C, and C,, one from —s to —s+1ioc
and the other from s to s+ icc, as in Fig. 1.

For r>0 we then obtain

$
h{(r)=2f (1_+_e—2.v_efx+u_e—s—u)1;2e:rudu
-8
oL
oL
:2J (1 +e 2.\__€—— .\+l/-s+iz~)_e7,\'— (~s+iv))l;‘2 eir( —,\+1v)l-dv
0
o . . . :
_zj (l +e——2A_e—.\+1.\+u)_e~.\~(x+w])l,r2 e1r|,s+m)l~dv
(V]
:21'[ (1 —e 4 —23(1 _euv))lﬂ e "dp-e "
0

_21J (1 _eiv+e—2s(1 _e—iv))lne—rv dv-e’”
0
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and using 1 —e” = —e®(1 —e™ "), this becomes
=2 [ (1—e )R (1 —e e e e
2 [ (1) (e e e d e
Thus we see that for r >0,

hi(r)= —21J ; (1 —-e"‘)l““ze*rv dv.e™
4]

A ) ) e 2s
+2lf (l_e—w)l/Ze—rudv.€ms.+0<—3—12_>’
0 re
which is the required answer upon noting that

7 ) ) _2 2 ) ‘ .
—21'[0 (l—e“')““ze"“dv:—lje—_lz—n—rjo (1—e®)'2e " "do=ulr). (2.30)

For r <0, the computation is similar, except that we deform the original
contour of integration into the lower half-plane as in Fig 2. |

LemMMa 2.6. (1) a(r) is meromorphic, with its only poles being simple

poles at reil.
(2) a(ry=c/r*?+0(1/r*?), c= ﬁ g B34

(3) a(—r)y=ua(r) for all reC.

(4) For r real, Im(e™x(r)) is an odd function of r.

C: C,

FIGURE 2
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Proof. (1) This is clear from the integral representation (2.27).

(2} Since for 0<<v <27,

N 12
(1—e"')'2=<2 sin ‘5) ettr =4 (231)

we see that as r — o,

: ! L
alr)= rj,z +0 (N)’ c=me (2.32)

(3) Since both «(r) and «(—r) are meromorphic, it suffices to check

this for r pure imaginary. Thus we need to show that a(it) = «(ir) for ¢ real,
t¢ 7. We have

_2 27 . " .
a(in:m—%m,f (1—e™)'2 e~ gy (2.33)
1—6’ N 0

changing variables to v =2n — 1,

—2ie -2Rit Lo ) Lo
— i (] —e m)l,‘_(,uu dll
1 —e 2mir o

=a(it).

(4) Clear from (3). ||

LemMMA 2.7. (1) Hy(r)=0O(1/r);
(2) H, (r)=0(r 5“Q/T).

Proof. (1) It is clear from (2.28) that

() <f0 e " dv=- (2.34)

and so

1T
{HT(r)|=‘?fo e “h(r)ds

1
<max, [h.(r)] <-. (2.35)
.
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(2) We apply the contour-shifting idea of Lemma 2.5 to the 0 to T

integration, substituting s= +/t on one leg and s= T+ /it on the other.
We end up with

T‘I_IT(,.)=<'[(;L .[x ((1 —e fil,‘)+€2i1(1 _eiv))l“le—rrer re dU d’['
0

— “‘: f ) ((1 _e—h') +e -727‘621'1(1 _eir))leefirTefrt() -re dU (I’T)
*0

0

+ JIJ ((1—e“)+e (1—e “))'7?e e "dvdt
0 0

_J‘: J ’ ((1 _eil‘)+()727‘€—2i‘r(1 _€~—i|'))lf2 el’rTefrreﬁrr dU dT)
0 0

(2.36)

If we bound the square root expression in all the integrals by v"2, we see
that

ITH (1) < | f 0126 dy di <757, (237)

>
0 [¢]

This completes the proof of the lemma. [

We are now ready to complete the proof of Theorem 1.1, It follows from
Lemmas 2.1 and 2.2 that

| 7 |
?L (N(s, 2)~ Z(s, z)) e *2 ds (2.38)

1
E,-(:,§+ir>

where the first sum on the right is over the eigenfunctions with real non-
zero r. Let

2
dr,

o L
=Y Helr) 4,0+ 5 = | Hr(r)
¥ j —®

M(R)= ) |¢,2)) (2.39)

|rel< R
1
E, (z, §+ u‘) dr. (2.40)

1 R
MR=Tg ],
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According to Lemma 2.3, both these quantities are O(R?). We can
therefore bound the sum on the right in (2.38) by

Cr* _sn s R _ 1
TL r dMl(r)<TL r Ml(r)dr—O<T>. (2.41)

The second term in (2.38) is more interesting. If all the Eisenstein series
vanish at r=0, then 3, |E(z, 3+ ir)|> < r for small r and by Lemma 2.7(1),

3 1 2 b e
[ 100 Y |E, (z,—+ir) dr<| Srdr=0(). (2.42)
-5 7 2 or
Arguing as in (2.41) we see that
|7t amn|o(3), (243)
s T

Since 6 > 0 is arbitrary, it follows that MNR =0 in this case.
Finally, if E,(z, £) #0 for some j (i.., there is a null vector), we write the
integral as

[ HIEG il a
=" 1B Dl ar

+j H(r) (E(z, s +in2 = |E(z, D)) dr.  (244)

Since |E;(z, 3+ir)|>—|E,(z, 3)|*=O(r) for small r, it follows as above
that the second expression on the right in (2.44) tends to zero as 7 — 0.
Making use of Lemma 2.4, we obtain the stated result (2.2).

3. Lower BouNDs
3.1. Preliminaries
Let yeCP(R) with Suppy=[—1,1], ¢ even, =0, n/;?(), and

[¥(x)dx=1.For >0, set ,(x)=(1/e) Y(x/e). Then 0< <1, Y, (0)=1.
We consider a normalized smoothed remainder term

e.(s) =fj W= x) e(x) dx 3.1)
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e.(s) is a smooth average of e(s) over an interval of radius ¢ around s.
We first prove part (iii) of Theorem 1.2.

To show that lim sup |e(s)| = o, it clearly suffices to do the same for
the smooth version, since if |e(s)] <K in an e-interval about s, then
le,(s)] < y(s—x) Kdx =K. The advantage of using a smoothed remain-
der term is that we then have (in the co-compact case) a pointwise
equality

els)= ). hi.(r) B(r), (3.2)
0#rieR
where B(r)=B(r, z) is
B(r)=73 |¢,(z)* (3.3)

rp=r

the sum running over an orthonormal basis of eigenfunctions with eigen-
value = 1/4 +r? and

Halr) = [ (s — ) () dx (34)

H(r)=2"% [ (cosh(s) — cosh(u))"? " du. (3.5)

-5

3.2. Asymptotics

We begin with a lemma on the asymptotics of the spectral functions.
As in Section 2, we set for r>0

-2

) =1 "=

2n
fo (1—e)12 e~ do. (3.6)

LEMMA 3.1. For r>0, we have

- 2s

K (r)=2Realr)§(r)e” +0 (" . ) (3.7)

r

for all N> 1.
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Proof. We have from Lemma 2.5 that

K (r)=4Re ij Wo(s—x)e j (1 —e )2 (1 — e 212 o= gy g

0

—2Re j Wls—x)e TE(r) dx

.

+4 Reif w,;(s—x)e""‘f (1—e )12
0

x[(1—ee >)'2_17e " dvdx
=2 Re a(r) §,(r) e™

e

+4Re if e (1 —e )2 f V(s —x)

0
x [(1 —e®e )" — 1] e " dx dv.

We are done if we show that for all N> 1,

e 25

j (s — x)[(1 —ePe )12 _1]e " dy < (3.8)

r;'\

Indeed, setting w(x)=(1—e"e 2*)"?—1, we see that u(x) and all its
derivatives are rapidly decaying in x in the support of ¥ (s — x):

u (x) <, e (3.9)

Upon integrating by parts N times, and noting that the integration is over
an interval of radius ¢ around s, we see that

—2s

J.l,b,;(s—x)u(x)e dx«erN 1 (3.10)

3.3. The Co-compact Case

In this section we give lower bounds for the remainder term when the
group [ is co-compact.

LEMMA 3.2, Let M\(R)=Y, . |¢,(2)]%

(1Y If I is co-compact, then as R — cc,

_ 22" R2 “4+0(1), o#2
Y, —F={2-¢ (3.11)
! 2clog R+ O(1), c=2.
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(2) In the general finite volume case, the sum 3., g (B(r;)/r])
converges for o> 2.

Proof. This is an immediate application of partial summation to
Lemma 2.3. Indeed, for I” co-compact, we know that M, (R)=x cR? and so

2.7

i< 1y

0 r’

B _ " i

_M,(R>+GJRMI<r)

= dr
RO’ ra + 1

R
chz"’-Fcaf r o dr + O(1)
I

2¢
2—0 1 2
G Rrrod) ez (3.12)

2clog R+ O(1), g=2

The claim for I non-compact follows in the same manner, except that then
we only have an upper bound M ,(R)< R |

THEOREM 3.1. If the group I is co-compact, then for all § >0,
e(s)=2((log s)'* ). (3.13)
Proof. We have

els)= 3 hi.(r)B(r).

0#rieR

Using Lemmas 2.6 and 3.1, we get

es)=4Re ¥ alr) §.(r,) e B(r)) + O(e™™).
r>0

Divide the above sum into two parts, one fqr r;< R and the other for

r;> R. The latter sum can be estimated using Y(r) <, (er) % as

11 1

- v 1
alr, s B(r ) < e B(r) € ——s. (3.14
r,gR 1(’-]) l/jg(rj) ¢ B(rl) <k rlgR rl:'.2 (gr,,')k B(rl) < 8k Rkﬁ 12 (3 )

For the sum over r; < R, using Lemma 3.1 to write

¢ 1
a(r) :7’—5 +0 ( 52),

¥

580/121:1-7
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we have
Re T () d(r) ¢ Br)=Ree 3 e L0 pir)
+O< Z ‘/’ri ) (r_,)) (3.15)

and using ¥,(r)<1 we find as above that the O term in (3.15) is O(1).
Putting (3.14) and (3.15) together, we find that

~

1
efs)=4Rec Y e""'/'3,2 (r,-)+0k(W>- (3.16)

ri< R

We need a lemma in order to “line up” the phases in (3.16).

LemMa 3.3 (Dirichlet Box Principle). Given n distinct real numbers
Fisewnty,and M>0, T> 1, there is an s, M<s< MT" such that

e —1| < 1/T, j=1,..,n

Thus denoting by n(R) the number of distinct eigenvalues r; < R, we can
find for any 7> 1 and M >0 some s, M <s < MT"™® such that

b (r. 1 i (r
S e ‘”i,z’B( )= 3 Y5 bey+o (7 3 Y h0y)

r,<R ri<R J ri<R J
Az:(r') RHZ
-y lprmj B(r,)+0<———T . (3.17)
r<R J

To conclude, we have shown that given T>1, M >0, there is an s,
M<s<MT"®, such that

J.(r) RV 1
eE(S)ZReergk r;‘/,‘zj B(r;)+ O, _T—+ETW . (3.18)
We can now choose T R”, 1/e= R'~ V%) Furthermore, choose T,
0 <1 <1 such that J(x)>1if |x| <t. Then since ,(r) >0 we have
b.(r) Julr))
Y a Br)z Y 55 B(r)
ri<R J ri<t/e j
1 B(r; Y
>3 Y r3/£)zrc£ 172 (3.19)

ri<tie " J
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In particular, we see that there are arbitrarily large values of s for which
le(s)l > e~ "2 (3.20)

From (3.20) and the choice of s in Lemma 3.3, namely M <s<

MT"® < R®? we see that R*> log s/log log s, and so from 1/e=R' V20
we see

le.(s)| > (log 5)"*~° (3.21)

for all 6 > 0, and the same must then be true of the unsmoothed remainder

e(s). 1

3.4. The Non-compact Case

In the finite volume, non-compact case we have to handle, in addition to
the discrete spectrum, the contribution of the Eisenstein series. We have

1
Ej (z,§+ir)

where E;(z, s) is the Eisenstein series associated to the jth cusp. We show
that il E,(z, £)=0 the contribution of the jth cusp to the sum (3.22) is o(1).
We have seen (Lemma 3.1) that for r>0

2
dr, (3.22)

’ - 1 * ’
ed)= T )BT ] B

0#reR -

—2s

K. (r)=Ree” a(r) §.(r) + O (erN ) (3.23)

and likewise for r <0

—25
. (r)=Re e a(—r) (r)+ O (erN ) (3.24)
Set
0(r) = a(r) ,(r)| Elz, 1+ ir)|? = | E(z, })I?) (3.25)

Since both . (r) and |E(z, 1+ir)|> are even, Lemma2.6 shows that
01 —r) = 0.

LEMMA 3.4. O(r) has a meromorphic extension for all r complex, its poles
in the strip |Im(r)] <1 are those of |E(z, 5+ ir)|% and for r real, 6(r) is
regular and rapidly decreasing.
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Proof. For r real we have

|E(z, Y+ ir)|* = E(z, §—ir) E(z, 3+ ir) (3.26)

and the right-hand side of (3.26) is meromorphic in r. ¥,(r) is entire, and
«(r) is meromorphic in r, with simple poles at the points re{Z. At r =0 the
simple pole of a(r) is cancelled by the zero of |E(z, 3+ ir)* —|E(z, 3)|
To see that 6(r) is rapidly decreasing, use the fact that a(r) ¢ (r) is rapidly
decreasing, while E(z, §+ ir) grows polynomially in r [1]. |

3.5. Decay of the Continuous Contribution

We now show that the continuous spectrum contribution in (3.22) is
decaying in s if there are no null vectors. Set

c,.(s)=f% K. (1) |E (2, 4+ ir)|? dr. (3.27)

LEMMA 3.5, ¢;(s)=4n|E;(z, 1)|2+6,(s) + O(e *).
Proof. We have by Lemma 3.1

c(s)=[" Re(e"a(r) §.0r) 1Bz, b+ inlPdr+ O(e ). (328)

Since Im(e™a{r)) is an odd function while t/;E(r) and |E(z, 1 + ir)|? are even,

we see that Im(6(r)e™) is also odd, and so has mean zero. Now k), ,=§, .,
and hence (3.28) shows that

cts)=" Re(O(r)e™)dr+IEG A1 [ W () dr+O(e>)

oo

0(") em dr + 27rg_\,‘ L(O) IE(Z, %)|2 + O(e—Zs)

I
—y

—_ o0

O(s)+4m |E(z, D)2 + O(e ), (3.29)

where we have used the Fourier inversion

[" hdr)dr=2mg, .(0)

=2m [y (s —x) e "7g,(0) dx

—4n(1 +0(e™"). | (3.30)
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Now using f e L'(R), we immediately see:

CoroLLARY 3.1 (Riemann-Lebesgue). As s— oo,

j b (r) |E(z, 3+ ir) > dr = 4n | E,(z, 3)I°. (3.31)

3.6. Arithmetic Groups

We can now use Corollary 3.1 and Theorem 3.1 to deduce a lower bound
for e(s) whenever the Fuchsian group /" has as many Maass cusp forms, as
in the co-compact case, in particular when I is a subgroup of SL(2, Z).

THEOREM 3.2. If the group I’ has sufficiently many cusp forms in the
sense that | {r;< R}|> R?, then (3.13) holds.

Proof. We have seen from Theorem 3.1 that the contribution of the
cuspidal spectrum is unbounded if there are sufficiently many cusp forms,
in fact if
B(r))

32
J

)

Corollary 3.1 shows that the continuous spectrum contributes a bounded
amount. J

= 0. (3.32)

r

Remark. Subgroups of SL(2, Z) satisfy our assumption—in fact, if I" is
a congruence subgroup, then it is known [18] that

|{r, <R}~ R, R-

8

vol(I')
4

3.7. Loose Ends

If I has a null form (E,(z, 1) #0 for some ;) then the results of Section 2
show that e(s) = 2(1). To finish the proof of Theorem 1.2, we still need to
consider the (hypothetical) case when I has no null forms, and either has
no cusp forms or does have discrete spectrum above 4> 3, but not too
much of it in the sense that

y B0, (3.33)

{no such example is known). In the latter case, in (3.22) the contribution
of the discrete spectrum to e,(s) is an almost periodic function if we assume
{3.33), and so is (1), while the continuous spectrum contributes a term
which decays as s — oo. Thus we see that for such I, we get e(s)=(1).
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We now assume that I has no cusp forms with eigenvalue 4> 1/4. From
the work of Phillips and Sarnak [15] and the recent work of Wolpert
[20], it appears that there are good reasons for believing that this is the
case for generic Fuchsian groups I” which are not co-compact. We show
that in this case, assuming all Eisenstein series E(-, 3) vanish at z, the nor-
malized remainder term e(s) cannot be exponentially small. The mechanism
responsible for this is a theorem of Selberg [19], which asserts that if there
are no cusp forms then the Eisenstein series E(z, s) have poles arbitrarily
close to the “critical line” Re(s) = 3.

THEOREM 3.3.  Assume that I" has no cusp forms with r;#0 and that all
Eisenstein series vanish at s=1%: E;(z,5)=0 for all 1 <j<x. Then for all
6> 0 we have

e(s) = Qe ). (3.34)

Proof. As this is a lower bound, it suffices to prove it for the smoothed
remainder term e, (s). If there is no discrete spectrum in (3.22), then by
Lemma 3.5,

e(s)=Y 0,(s)+ 0(e~*), (3.35)
with 0,(r) given in (3.25). Suppose by contradiction that for some K> 0,
|€1;(S), g Ke*(i-Y' (336)

e,(s), defined for s<0 by e (—s)=e.s), is smooth and exponentially
decaying by assumption. We may use Fourier inversion on (3.35) to find

2 0,(r)= Jy es)e™ ds+ f(r), (3.37)

— A

where f(r) comes from the error term (e~ ') in (3.35) and so is
holomorphic for |Im(r)| <2. Likewise, assuming (3.36) shows that the
Fourier transform of e.(s) is holomorphic in the strip |{Im(r)| <. Thus
2. 0,(r) is holomorphic in the strip |Im(r)| <d.

By Lemma 3.4, the poles of 6,(r) in the strip |Im(r)| <1 are those of the
Eisenstein series E;(z, L+ir). In turn, the poles of the Eisenstein series are
the same as those of the determinant of the scattering matrix ¢(3+ ir) [18].
Recall that for any group 7', #(s) is holomorphic in Re(s)> 1 except for
poles in the real line. Let N(%, T') be the number of poles p = + iy of ¢(s)
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with <3, |yl < T, and let N(T) denote the number of Maass cusp forms
with eigenvalue ;+r;, 0 <r; < T. Then Selberg [19] shows that for all I”

i(r
N(T)+N<%, T) V°4§z ) 724 B, Tlog T+ 0O(T) (3.38)
l .
2 (——[3>=—K—TlogT+BZT+O(logT)‘ (3.39)
_ +. 2 4n

The sum in (3.39) over the poles is #(s), and as usual x is the number of
cusps of I
In our case, N(T)=0, and so (3.38) shows

1 vol(l') __,
-~ Tlay————=T", 40
N(Z’ ) Ry (3.40)

Our assumption (3.36) implied that there are no poles of 0;(r) in the strip
|Im(r)| <8, and so B<3—4 for all summands in (3.39), giving

(%—ﬂ);éN (1, T>z5VO1(r) T2 (3.41)

2 4n ’

//\+M

//\ /)

which contradicts (3.39). |}

3.8. Mean Square

It is natural to try to check moments of the remainder term e(s). For
example, the numerical data (see Section 5) indicate that e(s) has finite
non-zero second moment. We have not been able to prove finiteness;
however, from the discussion of this section one sees that the second
moment is non-zero. Indeed, we saw that the smoothed remainder term
e.(s) is almost periodic, and so

l T
V(e)= lim — | le/(s)|*ds
To

T—x

is finite and non-zero. We then see that for all ¢ > 0,

h LT 2ds= Vi 342
Tgnx?fo le(s)|2 ds > V(). (3.42)
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Indeed, we have on using Cauchy-Schwartz (and |y (x)dx=1)

2

e,(s))? —‘L e(x) Y (s—x)dx

s—x| <&

<f )2, (s —x) d (3.43)

Is— x| <

and on integrating with respect to s we find

T T
[Cleszas<[ | le(x)|2 ¥, (s — x) dx ds
0 0 Yy

s— x| <e

T+e xX+&

sfo ;e(x)PjH V(s — x) ds dx

=fm le(x)|2 dx. (3.44)
0

After dividing by T and letting T — oo, we get (3.42).

4. HYPERBOLIC n-SPACE

We again consider the lattice problem for an orbit of a discrete cofinite
group I” of motions of hyperbolic n-space H”. We take k, as in (2.3), as our
point-pair invariant. The Selberg transform in » dimensions is

Q.,(w)= J. )32 gy
2

W

Wy 1 (n - 1)/2 : ’
— (=W ‘ 0<dist(z, z') £
o) lat(z, ') < (4.1)

0 otherwise.

The spectral function 4, is now given by

h(r)=c,2(" D2 JS (cosh s —cosh u)" =12 i dy, (4.2)

5

where ¢, =, _/(n—1).
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As before, the complete asymptotic distribution X',(s, z) is computed
from the exceptional eigenvalues. However, we may now have to include
some of the lower order terms in 4 (ip). For p>0 and X =¢*,

y2 L+ 1)/2) I'(p)
I((n+1)/2+p)

e [';Z'”(—1>fr((n+1)/2)F(p—j)n—1n—3,_.n+1—21'
SN N+ D24p—j) 2 2 2

xXp+(n-+~l)s‘2—2j+0(X(n—l)/‘2). (43)

hlip)=c, X7+ 0!

To prove this, we again make the substitution X = e*, Xy = ¢" after which
h (ip) can be written as

‘ 1 1 (n—1}2
/'l,(lp) — CnX(" - 1)/2 f (1 _J,)(n~ 1):2 <] _ er)
X J

x((Xy)P+(Aiv)")5j¥. (44)

We then expand the expression (1 —X 2y~ ")~ 12 in powers of X.
The resulting terms have been evaluated in (2.14) and using this we
obtain (4.3).

The analogue of Lemma 2.2, which we derive in the same way, is

1 1 1
mo1=c,(s+2(tog2-(143+ 515 (45)

for n even, and

1 2
h(0)=c, <s—<l +3+ ;_—1» (4.6)

for n odd. Further, instead of (2.17) we now have

y ;¢_,(:)P+Z$fk |Ej(z, (n—1)/2+ir)]dr~cR" as R— .
Irjl <R J - R

(4.7)

In defining the mean normalized spectral function we found that we had
to take a smoother mean then that used for n=2. To this end, we
introduce a function e CZ(R) such that 6(s)=0, [~ 0(s)ds=1,
supp < [0, 1].
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We now set
17 s
- (n— 152 hd
Ho(r) = Tfo e h(r) 9(7") ds.
As before,
He(r)=[  emd(u) du,
where

(c,2 V2/T)

@r(u)=< x|l e " 2(cosh s —cosh u)” "2 O(s/T) ds,

0’

It follows that

fm H(r)dr =2n®,(0) - 2nc,, as T - 0.

We now define the normalized spectral function as

5

(4.8)

(4.9)

lu| <T
otherwise.
(4.10)

(4.11)

< s S M pmu\(n—1)2
h;(r):e—(n—li.v,e‘zhs(r)=cllj <é’ +e e e ) e™ du, (4.12)

e

in terms of which the analogue of Lemma 2.5 is

B(r)=2Rea(|r]) e+ O (——e——> r#£0,

1ri(n + 1)/2

where now

__ —ic, —e)n—12g=rt g
oz(r)——-—--—1 —0 (1—¢") € t.
—_e o

Likewise, Lemma 2.6 holds with part (2) replaced by

c 1
a(r)= Fla 12 +0 <r(n+ 3)r‘2>'

(4.13)

(4.14)

(4.15)

In order to prove the extended Theorem 1.1 we still need the estimates

H (r)=0 (l)
,

(4.16)
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and
¢(N)

|HT(r)|S~]T,;,—, forall N>=1. (4.17)

The first of these is clear from the n-dimensional analogue of (2.28), namely

K.(r)=2c, Im e'"f (s, v, n)e " do, (4.18)
0

where
l/I(S, v, n, m)= (1 _eiv)[n—l)/‘Z (1 _e\Zsefiv)(mer’Z. (419)

Using this we can write
1 . o0
Hy(r)y=2c,Im f 0(s) e"“Tj Y(sT,v,n,n)e "™ dvds. (4.20)
(4] 0
We now integrate by parts with respect to s to obtain

eirsT

irT

Ho(r)=2c, Imjl - {9'(;)[” W(sT, 5, m, n)e~" do
0 0

+(n—1) Te~>T4(s) J-oc y(sT,v,n,n—2)e e ™ du} ds. (4.21)
4}

Taking absolute values, it is easy to see that the v-integration is bounded
by csup, |1 —e *7e | #/r'"* 2 where u=(n—1)/2 for the first integral
and (n— 3)/2 for the second. The subsequent s-integration adds nothing to
the bound for the first term. However, in the second term the exponential
e >7 allows us to take advantage of the fact that ¢ vanishes at s=0
to infinite order. Omitting the factor of 1/7r"**?2 we can express the

remaining integral as

3
Tf e >TO(s)sup |1 —e >Te~"|# ds
(4] I
T{le *TsVNds<T ", u=0
22
<{T_f(l,e2“Ts"’(sT)“a's< TV, u<0. (4.22)

Thus after one integration by parts one finds |H(r)] € 1/Tr"+3*? We can
continue to integrate by parts indefinitely, each time gaining a factor of 1/r.
This proves the estimate in (4.17).
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The relations (4.11) and (4.17) show that H,(r) approximates a deita
function as T — oc. Arguing as in the proof of Theorem 1.1 we get

THEOREM 4.1. (1) If I' is co-compact, then lim MNR(T)=0.
(2) If I' is co-finite but not co-compact, then

n—1
E]- Z,T

Lower bounds. By repeating the arguments of Section 3, onc can get
lower bounds analogous to Theorem 3.1, in the case /" is co-compact or a
congruence subgroup. In the latter case, one needs to know Weyl’s law
holds for cusp forms. This has recently been done by A. Reznikov [16].
For such I, we have for all 4 >0,

2

lim MNR(T)=2Y
T

22 (4.23)

e(s)=Q((log s)" "2r=2), (4.24)

However, this is far from the truth in some cases, where the remainder term
may oscillate much more.

ExaMpLE. For n >4, we consider the quadratic form

2

S(Xp,ew X)) =XT4 o +x2—x2, . (4.25)

The two-sheeted hyperboloid C= {x: S(x)= —1} gives a model of hyper-
bolic n-space: If C;={x:S(x)=—-1,x,,,>0}, then the connected
component of the identity G = SO (n, 1} of the orthogonal group of § acts
transitively on C;', and the stabiliser of the point Py=(0,..,0,1)eC}
is K=S50(n). Thus C," =G/K. The metric is induced from the indefinite
metric dx]+ ---dx2—dx’,, on R"*' and restricted to C has constant
curvature — 1. The Euclidean balls By = {x:x7+ --- +x2, < T?} inter-
sect C'" in geodesic balls centered at P, of geodesic radius sxlog T.

Let I'=GnSL,, (Z)=O(S, Z); this is a lattice in G. I acts on the
integer points C;" nZ"*' with finitely many orbits. For our purposes,
there is no harm in pretending that there is only one orbit, so that counting
I'-translates of P, is equivalent to counting the number N(T) of integer
points on C}':

MT)={xeZ" ":S(x)= -1, x1+ - +x2,,<T?}.  (426)
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To understand the oscillation of N(T'), look at the integer points lying
on the boundary éB;n C", for T an odd integer. Their number is

N@B,ACy)={xeZ"*':x,,,>0,8(x)=—~1,x2+4 - +x2,,=T?}|

T -1
{er"*‘:an=./(T2+l)/2,xf+ e xl= 3 H

(4.27)

Thus the remainder term e(log T') is at least as large as N(¢B,nC;),
which is the number of integer solutions of the equation
T2—1

7

XA = (4.28)

It is known that the number of ways to represent an integer N as a sum
of n squares for n=4is [2]

r(N)~c,#(N)N"~',  as N- o, (4.29)

where ¢, > 0, the “singular series” .¥(N) depends on the divisibility proper-
ties of ¥, and P(N)=b,>0. Thus (4.28) has > T" 2» e'" 2 solutions,
and so the remainder term e(s) can get as large as e'” 2%,

Note that this kind of “jump” in the size of the remainder term is not due
to the existence of exceptional eigenvalues, as these contribute a continuous
function of s to the lattice count. It is this same feature that causes the
remainder term for the “circle problem” in R” to be large if n > 4. We point
out that for the hyperbolic plane (n = 2), the above boundary behaviour is
not noticeable, since as is well known, the number of ways of writing
N=x}+x3is O(N®), for all £>0.

5. APPENDIX: NUMERICAL RESULTS

We computed the number of lattice points N (s, z) in circles about = for
radii s starting at 6 and increasing in steps of 0.1 up to 20, for a variety of
groups /" and base points z. Tables III-X in this Appendix give the results
at integer values of the radius for N, (s, z), d(s, z) = N(s, z) — 2(s, z) and
a(s, z)=log |d(s, z)|/s when the base point is z=i and I is the Fermat
group @(N) of level N=1 through 8. Tables I and II list the mean nor-
malized remainder term and the mean square of the normalized remainder
term at integer radii (abstract from the data taken at steps of 0.1). We also
gathered data for these Fermat groups and for semi-Fermat groups ¥(N)
(ie, > p;=0 mod N in (5.2) below), both at z=1{ and at z = 0.5/,
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TABLE
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II. Mean Square Normalized Remainder

Fermat level N

T 1 2 3 4 5 6 7 8
10 03109  0.1301 00705 00455 0.0390 0.0321 0.0337  0.0423
11 02974  0.1108 00666 00414  0.0398 00292 00304 0.0418
12 02786  0.1016  0.0632  0.0401 0.0402 00279 00277 0.0464
13 02832 00922 00688 00390 00360 00262 0.0249 0.0447
14 0.2886  0.0951 0.0652 00387 00336 00258 0.0233 0.0407
15 02898  0.1170  0.0612  0.0432 0.0398 0.0256 0.0243  0.0368
16 03073 0.1109 00686  0.0421 0.0420 00316 0.0339  0.0464
17 02932 01114 00753  0.0429  0.0401 0.0334  0.033t 0.0522
18 0.2783  0.1104  0.0727 0.0414 0.0398 00355 0.0356 0.0518
19 02790 0.1094 00711 0.0415 00427 0.0371 0.0352  0.0546
20 02713 01124  0.0695 0.0444  0.0410 00350 0.0363  0.0521
TABLE L. 1(2)

K N(s) Remainder o«

10 11069 55.8 0.4021

11 30121 1839 0.4741

12 81361 —164 0.2331

13 221525 3183 0.4433

14 601909 606.9 0.4577

15 1634433 —757 0.2884

16 4441989 —1066.3 0.4357

17 12078397 920.6 0.4015

18 32831265 12804 0.3975

19 89236321 —4829.5 0.4464

20 242582909 311.3 0.287

TABLE IV. &(2)

s Nis) Remainder o

10 2761 7.7 0.204

11 7557 72.7 0.3897

12 20353 8.7 0.1798

13 55137 —164.7 0.3926

14 151137 811.5 0.4785

15 407805 —822.2 0.4475

16 1111017 253.2 0.3459

17 3016837 —2532.1 0.461

18 8207337 —159.1 0.2817

19 22307437 —2850.6 04187

20 60637297 —8352.4 04515
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TABLE V. &(3)

5 N(s) Remainder o
10 1241 17.3 0.2851
11 3353 26.7 0.2985
12 9013 —289 0.2804
13 24621 42.5 0.2884
14 67117 305.7 0.4087
5 181745 1329 0.326
16 493065 —607.8 0.4006
17 1343445 1503.2 0.4303
18 3648253 476.9 0.3426
19 9912105 —35784 0.4307
20 26956829 3207.0 0.4037
TABLE VI. &(4)
s N(s) Remainder o
10 701 12.7 0.2539
11 1845 —26.1 0.2964
12 5125 389 0.3051
13 13873 47.6 0.2971
14 37777 195.6 0.3769
15 101829 —327.8 0.3862
16 277685 —-6.0 0.1115
17 754093 —749.3 0.3894
18 2051549 —325.0 0.3213
19 5572497 —50749 0.4491
20 15156977 —44354 0.4199
TABLE VILI. ®(5)

s N(s) Remainder o
10 457 16.5 0.2802
11 1113 —84.5 0.4033
12 3329 739 0.3586
13 8845 -33 0.0911
14 24029 —23.1 0.2242
15 65621 240.7 0.3656
16 178313 590.8 0.3988
17 483945 8459 0.3965
18 1313597 397.6 0.3325
19 3565629 —4017.0 0.4368
20 9709569 6265.1 0.437t
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TABLE VIII. &(6)

K N(s) Remainder 3

10 333.0 27.1 0.329868
11 805.0 —26.6 0.298214
12 2201.0 —59.5 0.340475
13 6125.0 —19.6 0.229006
14 16969.0 266.2 0.398865
15 45465.0 62.0 0.275122
16 1223570 —1061.2 0435447
17 334713.0 —-772.5 0.391151
18 914421.0 24770 0.434155
19 2479637.0 716.2 0.345994
20 6737861.0 —544.5 0.314993

TABLE IX. &(7)

§ N(s) Remainder 2

10 265.0 40.2 0.369487
11 633.0 220 0.281166
12 1665.0 42 0.120318
13 4549.0 346 0.272554
14 12373.0 101.5 0.330024
15 339370 579.7 0.424165
16 91441.0 766.4 0415107
17 2452170 —1262.1 0.420032
18 669989.0 —10.7 0.131603
19 1822749.0 1501.0 0.384942
20 49587330 8067.7 (.449781

TABLE X. &(8)

s N(s) Remainder &

10 201.0 289 0.336447
11 489.0 21.2 0.277779
12 1421.0 149.5 0.417263
13 35770 120.6 0.368681
14 9413.0 17.7 0.205069
15 25521.0 —18.2 0.193422
16 70793.0 1370.3 0.451422
17 190161.0 14504 0428213
18 513789.0 820.5 0.372772
19 1392593.0 —1800.0 0.394502

20 3790089.0 —264.1 0.278814
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The o results were essentially the same in all cases: The exponent of
growth of the remainder never exceeded 0.5 by much, indicating that the
true upper bound for d(s, z) was probably of the order s*e*2 The bias in the
reminder for @(8) is explained in Section 2 by the presence of a null vector
at level 8. As for the mean square of the normalized remainder, Table I1
indicates that it has a limiting value, but we have not been able to prove this.

5.1. The Program

A copy of this program has also been included in this appendix. It
is written in Pascal in order to take advantage of the stack properties of
this language, which are especially suitable for tree structures. It will be
recalled (see Section 1) that I(2) is freely generated by

1 2 1 0
A=<0 1) and B=<_2 1) (5.1)

and that the Fermat group of level N consists of words of type
AP BT'APBY . .. 4P B, Y p=0=) g;mod N (5.2)

none of the p, or g; is zero excepts perhaps p, or g,.

The lattice points of 7(2) (ie.,, (5.2) acting on the base point z) are
ordered according to word length and a record is kept of their coordinates,
their distance from z, 3 p, mod N, and ¥ g, mod N. Each additional letter
to the word on the left is either a translation by 2p, p#0 (procedure
nextl ~ A) or such a translation conjugated by an inversion (procedure
next2 ~ B). Each translation takes a point in the strip —1 <x <1 out of
this strip and therefore increases the distance from z, which lies on the
imaginary axis. B then inverts the point back into this strip, translates out
of this strip, and ends up inverting back into the strip. Thus the distance
from the base point is increased at each step in the program.

In procedure nextl all the translates (power of 4) except for the iden-
tity translate which stay within the circle C of maximum radius from this
base point are found. All of these are stored except one, which is recorded
and then used as the beginning point for next2. The procedure next?2
then inverts, obtains all the translates whose inversions lie within C, inverts
again, and stores all but one of these points, which is then recorded and
used as the beginning point for nextl, and so on.

In this way the program proceeds down a branch of the tree until it
reaches the point where the brach first extends outside of C. It then backs
up one or more steps until it gets back in C and can proceed along another
direction in a part of the tree which is still inside of C. This process
continues until all of the tree in C has been exhausted.

580/121/1-8
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The purpose of calling nextl followed by next2 in the main part of
the program is first to treat all words beginning with 4 and then to treat
all words beginning with B. If the base point is i then, since / is fixed under
the inversion, it does not matter whether we start with 4 or B. We can then
eliminate one of the calls in the main program and record each ensuing
word as two; this halves the running time.

program Fermat (input, output);
{lattice count for Fermat group F(n) of level n}
type dataset = record
X, ¥y, g: real;
p, q: integer
end;
var a: array [0..500] of real;
root: dataset;
current: dataset;
d, c, j, n: integer;
f,m, r,s, t: real;

procedure info;
{determines input parameters
and initializes variables}
var index: integer;
begin
writeln(‘give the base point/i');
readln(t);
writeln(‘give fermat level, fraction of step
and max dist.’);

readln(n, d, c); {c=radius of circle C
about base point = t*i}
for index:= 6*d to c*d do a[index]:= 1;

{the 1 adjusts for root}
m:=1;r:=0; s:= 0;
end;
procedure next2 (current: dataset); forward;

procedure nextl (current: dataset);
{performs (12,01)}
varu, v, g: real;
b, i, j: integer;
temp: dataset;
begin
v:= current.y;
b:= round(sqrt(v*t*exp(c))/2);



end;
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{x 1imits in C at height y=v}
for i:= -b to b do
if 1 <>0 then {i=0 is already included

in previous procedure}
begin
u:= current.x + 2%1i;
g:= 1In((sqr(u) + sqr(v) + sqr(t))/(v*t));
{distance from (u, v) to t*i}
if g < c then

begin
m=m+ 1; {counts number of points in C}
temp.x:= u;
temp.y:= v;
temp.g:= g;

temp.p:= (current.p + i) mod n;
temp.q:= current.q;
if (temp.p =0) and (temp.q = 0) then
{selects points in F(n)}
for j:= 6*d to c*d do {counts points
of dist.<j/d}
if g¥d < j thena[j]l:=a[J] +1;
next2(temp);
end;
end;

procedure nexte;
{performs (10, -20)

=(0-1,10)(12,01)(01,-10)}

vare, 0, u, Vv, X, y, W, g: real;
b, i, j: integer;
temp: dataset;

begin
X!

o< e o0

Il

current.x;
current.y;
sqr(x) + sqgr(y); {inversion}
~-x/e;
yies;
round (sqrt(v*exp(c)/t)/2);
{max. x dist. from t*1i after inversion}

for i:= -b to b do
if i <>0 then {i=0 already included

in previous procedure}
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begin
wWi= u 4+ 2%1;

o:= sqr(w) + sqr(v);
x:= -w/o;
yi= v/o;
g:= In((sqr(x) + sqr(y) + sar(t))/(t*y));
if g < c then
begin
mi=m+ 1; {counts number of points in C}
temp.x:= x;
temp.y:i=y;
temp.g:= g;
temp.p:= current.p;

temp.q:= (current.q + i) mod n;
if (temp.p = 0) and (temp.q = 0) then
{selects points in F(n)}
for j:= 6*d to c*d do
{counts points of dist.<j/d}
if g¥d < j thena{j]l=a[]j] +1;

nextl(temp);
end;
end;
end;
begin {beginning of program}
info;

root.x:= 0; root.y:= t; root.g:= 0;
root.p:= 0; root.q:= 0;

nextl(root); {words beginning with (12, 01)}
next2(root); {words beginning with (10, -21)}
write(chr(7), chr(7), chr(7));

writeln(‘fermat level ="', n:2, ‘c=", c:3);
writeln(‘m=", m:10:0, ’ base point =",

t:d:3, ‘K1),
for j:= 6*d to c*d do

begin
write(j/d:4:2, * ', a[j]:10:0, ");
£:= a[j] - exp(3/d)/(2*sar(n));
ri=r1 + flexp(j/(2*d)); {r = mean

normalized remainder}
s:= s + sqr(f/exp(3/(2%d)));

{s = mean square normalized remainder}
write((d*1ln(abs(f))/j):5:4, ‘7,
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v/((J—-6%d) +1):5:4, * ’);
write(s/((J - 6*d) + 1):5:4);
writeln;
end;
end.

5.2. The Mean Square

We used the data generated by the program to check the mean square
normalized remainder term

1 T
-T_Jo le(s, 2)|? db. (5.3)

The mean square normalized remainder term, shown in Table II has values
around 0.27 for &(1), 0.11 for ®(2), 0.07 for &(3), and 0.04 for ®(4)
through @(8). As one would expect from this, the frequency distribution for
the normalized remainder (not shown here) was noticeably flatter for &(1)
then for the Fermat groups of higher levels. We were not able to explain
this phenomenon, nor were we able to establish the existence of the limit

N ,
lim ?J‘ le(s, )|* ds < o, (5.4)

0

which is indicated in Table II.
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