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Abstract

Let T
d = R

d/Z
d be the d-dimensional flat torus. We establish for d = 2,3 uniform upper and lower bounds on the restrictions

of the eigenfunctions of the Laplacian to smooth hyper-surfaces with non-vanishing curvature. To cite this article: J. Bourgain,
Z. Rudnick, C. R. Acad. Sci. Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur la restriction de fonctions propre du tore à des hyper-surfaces. Soit T
d = R

d/Z
d le tore plat d-dimensionnel. Pour

d = 2 et d = 3, on établit des bornes supérieures et inférieures uniformes sur les restrictions des fonctions propres de l’opérateur
de Laplace–Beltrami à des surfaces lisses de courbure non nulle. Pour citer cet article : J. Bourgain, Z. Rudnick, C. R. Acad. Sci.
Paris, Ser. I 347 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans cette Note, nous étudions les restrictions de fonctions propres du tore plat T
d = R

d/Z
d à des hyper surfaces

Σ compactes, lisses et de courbure non nulle. Dans ce contexte, nous améliorons certains résultats obtenus dans [1]
(qui traite le cas général). Nous démontrons en particulier le suivant :

Théorème 1. Soit d = 2 ou d = 3. Il existe des constantes 0 < c(Σ) < C(Σ) < ∞ telles que pour toute fonction
propre de T

d de valeur propre suffisamment grande on ait les inégalités :

c(Σ)‖ϕ‖2 � ‖ϕ‖L2(Σ) � C(Σ)‖ϕ‖2

(où Σ est muni de la mesure de surface).
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Il semble raisonnable de conjecturer que cet énoncé est vrai en toute dimension. Pour la borne supérieure, l’expo-
sant 1/6 dans l’inégalité,

‖ϕ‖L2(Σ) � λ1/6‖ϕ‖2, où −�φ = λ2φ,

démontrée dans [1] pour Σ une courbe lisse de courbure positive dans une variété 2-dimensionnelle M (et restant
valable en dimension supérieure en supposant Σ une hyper surface lisse à courbure positive) peut être amélioré pour
M = T

d :

Théorème 2. Pour toute dimension d , il existe ρ(d) < 1/6 tel que si ϕ est une fonction propre de T
d , −�φ = λ2φ et

Σ ⊂ T
d comme ci-dessus, on ait :

‖ϕ‖L2(Σ) � c(Σ)λρ(d)‖ϕ‖2.

Le question si ρ(d) = 0 pour d � 4 reste ouverte.
La démonstration de ces théorèmes fait intervenir divers ingrédients arithmétiques et analytiques.

1. Introduction and statements

Let M be a smooth Riemannian surface without boundary, � the corresponding Laplace–Beltrami operator and
Σ a smooth curve in M . Burq, Gérard and Tzvetkov [1] established bounds for the L2-norm of the restriction of
eigenfunctions of � to the curve Σ , showing that if −�ϕλ = λ2ϕλ, λ > 0, then

‖ϕλ‖L2(Σ) � λ1/4‖ϕλ‖L2(M) (1)

and if Σ has non-vanishing geodesic curvature then (1) may be improved to

‖ϕλ‖L2(Σ) � λ1/6‖ϕλ‖L2(M). (2)

Both (1), (2) are saturated for the sphere S2.
In [1] it is observed that for the flat torus M = T

2, (1) can be improved to

‖ϕλ‖L2(Σ) � λε‖ϕλ‖L2(M), ∀ε > 0 (3)

due to the fact that there is a corresponding bound on the supremum of the eigenfunctions. They raise the question
whether in (3) the factor λε can be replaced by a constant, that is whether there is a uniform L2 restriction bound. As
pointed out by Sarnak [8], if we take Σ to be a geodesic segment on the torus, this particular problem is essentially
equivalent to the currently open question of whether on the circle |x| = λ, the number of lattice points on an arc of
size λ1/2 admits a uniform bound.

In [1] results similar to (1) are also established in the higher-dimensional case for restrictions of eigenfunctions to
smooth submanifolds, in particular (1) holds for codimension-one submanifolds (hypersurfaces) and is sharp for the
sphere Sd−1. Moreover, (2) remains valid for hypersurfaces with non-vanishing curvature [6].

In this Note we pursue the improvements of (2) for the standard flat d-dimensional tori T
d = R

d/Z
d , considering

the restriction to (codimension-one) hypersurfaces Σ with non-vanishing curvature.

Theorem 1.1. Let d = 2,3 and let Σ ⊂ T
d be a smooth hypersurface with non-zero curvature. There are constants

0 < c < C < ∞ and Λ > 0, all depending on Σ , so that all eigenfunctions ϕλ of the Laplacian on T
d with λ > Λ

satisfy:

c‖ϕλ‖2 � ‖ϕλ‖L2(Σ) � C‖ϕλ‖2. (4)

Observe that for the lower bound, the curvature assumption is necessary, since the eigenfunctions ϕ(x) =
sin(2πn1x1) all vanish on the hypersurface x1 = 0. In fact this lower bound implies that a curved hypersurface cannot
be contained in the nodal set of eigenfunctions with arbitrarily large eigenvalues.

The proof of Theorem 1.1 (which will be sketched in the next section for the easy case of d = 2) permits also to
introduce a notion of “relative quantum limit” for restrictions to Σ as above, but we will not discuss this further here.

It is reasonable to believe that Theorem 1.1 holds in any dimension, and one could further conjecture an upper
bound without curvature assumptions. At this point, we may only state an improvement of the exponent 1/6:
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Theorem 1.2. For all d � 4 there is ρ(d) < 1
6 so that if ϕλ is an eigenfunction of the Laplacian on T

d , and Σ ⊂ T
d

is a smooth compact hypersurface with positive curvature, then

‖ϕλ‖L2(Σ) � λρ(d)‖ϕ‖2. (5)

2. Proof of Theorem 1.1 for d = 2

Denote by σ the normalized arc-length measure on the curve Σ . Using the method of stationary phase, one sees
that if Σ has non-vanishing curvature then the Fourier transform σ̂ decays as∣∣̂σ(ξ)

∣∣ � |ξ |−1/2, ξ �= 0. (6)

Moreover |̂σ(ξ)| � σ̂ (0) = 1 with equality only for ξ = 0, hence

sup
0�=ξ∈Z2

∣∣̂σ(ξ)
∣∣ � 1 − δ, (7)

for some δ = δΣ > 0.
An eigenfunction of the Laplacian on T

2 is a trigonometric polynomial of the form:

ϕ(x) =
∑
|n|=λ

ϕ̂(n)e(n · x) (8)

(where e(z) := e2πiz), all of whose frequencies lie in the set E := Z
2 ∩ λS1. As is well known, in dimension d = 2,

#E � λε for all ε > 0. Moreover, by a result of Jarnik [7], any arc on λS1 of length at most cλ1/3 contains at most two
lattice points (Cilleruelo and Cordoba [3] showed that for any δ < 1

2 , arcs of length λδ contain at most M(δ) lattice
points and in [4] it is conjectured that this remains true for any δ < 1). Hence we may partition,

E =
∐
α

Eα, (9)

where #Eα � 2 and dist(Eα,Eβ) > cλ1/3 for α �= β . Correspondingly we may write,

ϕ =
∑
α

ϕα, ϕα(x) =
∑
n∈Eα

ϕ̂(n)e(nx), (10)

so that ‖ϕ‖2
2 = ∑

α ‖ϕα‖2
2, and∫

Σ

|ϕ|2 dσ =
∑
α

∑
β

∫
Σ

ϕαϕβ dσ. (11)

Applying (6) we see that
∫
Σ

ϕαϕβ dσ � λ−1/6 if α �= β and because #E � λε the total sum of these non-diagonal
terms is bounded by λ−1/6+ε‖ϕ‖2

2. It suffices then to show that the diagonal terms satisfy

δ
∥∥φα

∥∥2
2 �

∫
Σ

∣∣φα
∣∣2

dσ � 2
∥∥φα

∥∥2
2. (12)

This is clear if Eα = {n}, while if Eα = {m,n}, then∫
Σ

∣∣φα
∣∣2

dσ = ∣∣ϕ̂(m)
∣∣2 + ∣∣ϕ̂(n)

∣∣2 + 2 Re ϕ̂(m)ϕ̂(n)̂σ (m − n), (13)

and then (12) follows from (7). Thus we get Theorem 1.1 for d = 2.

3. The higher-dimensional case

The proof of Theorem 1.1 for dimension d = 3 is considerably more involved. Arguing along the lines of the two-
dimensional case gives an upper bound of λε . To get the uniform bound of Theorem 1.1 for d = 3 and the results of
Theorem 1.2, we need to replace the upper bound (6) for the Fourier transform of the hypersurface measure by an
asymptotic expansion, and then exploit cancellation in the resulting exponential sums over the sphere. A key ingredient
there is controlling the number of lattice points in spherical caps.



Author's personal copy

1252 J. Bourgain, Z. Rudnick / C. R. Acad. Sci. Paris, Ser. I 347 (2009) 1249–1253

3.1. Distribution of lattice points on spheres

To state some relevant results, denote as before by E = Z
d ∩λSd−1 the set of lattice points on the sphere of radius λ.

We have #E � λd−2+ε . Let Fd(λ, r) be the maximal number of lattice points in the intersection of E with a spherical
cap of size r > 1. A higher-dimensional analogue of Jarnik’s theorem implies that if r � λ1/(d+1) then all lattice
points in such a cap are co-planar, hence Fd(r, λ) � rd−3+ε in that case, for any ε > 0. For larger caps, we show:

Proposition 3.1.

(i) Let d = 3. Then for any η < 1
15 ,

F3(λ, r) � λε

(
r

(
r

λ

)η

+ 1

)
. (14)

(ii) Let d = 4. Then

F4(λ, r) � λε

(
r3

λ
+ r3/2

)
. (15)

(iii) For d � 5 we have

Fd(λ, r) � λε

(
rd−1

λ
+ rd−3

)
(16)

(the factor λε is redundant for large d).

The term rd−1/λ concerns the equidistribution of E , while the term rd−3 measures deviations related to accumu-
lation in lower-dimensional strata.

The second result expresses a mean-equidistribution property of E . Partition the sphere λS2 into sets Cα of size
λ1/2, for instance by intersecting with cubes of that size. Since #E � λ1+ε , one may expect that #Cα ∩ E � λε . Using
Siegel’s mass formula for the number of representations of an integral quadratic form by the genus of a quadratic
form, we show (in a joint work with P. Sarnak [2]) that this holds in the mean square:

Proposition 3.2.∑
α

[
#(E ∩ Cα)

]2 � λ1+ε, ∀ε > 0. (17)

3.2. Exponential sums on the sphere

Let 1 < r < λ and let C, C′ be spherical r-caps on λSd−1 of mutual distance at least 10r . Following the argument
for d = 2, we need to bound exponential sums of the form∑

n∈C

∑
n′∈C′

ϕ̂(n)ϕ̂(n′)e
(
h(n − n′)

)
, ‖ϕ‖2 = 1 (18)

where h is the support function of the hyper-surface Σ , which appears in the asymptotic expansion of the Fourier
transform of the surface measure on Σ , see [5]. For instance, in the case that Σ = {|x| = 1} is the unit sphere then
h(ξ) = |ξ |.

Consider from now on the case d = 3. For r < λ1−ε we simply estimate (18) by F3(λ, r) (see (14)). When λ1−ε <

r < λ this bound does not suffices and we need to exploit cancellation in the sum (18).

Proposition 3.3. There is δ > 0 so that (18) admits a bound of λ1−δ for λ � 1.

This statement depends essentially on the equidistribution of E in
√

λ-caps, as expressed in Proposition 3.2.
We finally formulate an example of a bilinear estimate involved in analyzing (18).
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Proposition 3.4. Let β � 1 and X,Y ⊂ [0,1] arbitrary discrete sets such that |x−x′|, |y−y′| > β−1/2 for x �= x′ ∈ X

and y �= y′ ∈ Y . Then∣∣∣∣ ∑
x∈X

∑
y∈Y

e
(
βxy + β1/3x2y2)∣∣∣∣ � β23/24+ε, (19)

for all ε > 0.

Note that the non-linear term in the phase function is crucial for a non-trivial bound to hold in this setting.
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