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ABSTRACT 

Conjugacy classes in the free group on two generators which have the 

same trace for all two-dimensional representations form a trace class. 

The number  of classes in a trace class is called the stable multiplicity of 

the trace class. We prove a condition for the stable multiplicity to be 

minimal, and suggest a necessary and sufficient condition. 

1. I n t r o d u c t i o n  

One of the most important  invariants associated to a Riemann surface is the 

l e n g t h  s p e c t r u m :  it is the set of lengths of the closed (unoriented) geodesics of 

the surface, including multiplicities (the metric is always taken to be of constant 

curvature K = - 1). Unlike what happens for a generic metric of variable negative 

curvature, where all lengths have multiplicity one [1], it has been observed some 

t ime ago that  in the constant curvature case, for any surface the multiplicities 

are u n b o u n d e d .  Our purpose in this note is to t ry to understand the reasons 

for this phenomenon. 

The  main reason for our interest lies in fine structure of the spectrum of the 

Laplacian on the surface: A few years ago it was discovered that  the eigen- 

values of the Laplacian appear  to obey two distinct statistical laws depending on 
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the surface being arithmetic or not. In the generic non-arithmetic case numeri- 

cal evidence and the heuristic arguments of M. Berry [3] suggest that  the local 

statistics are GOE statistics. However, in the arithmetic case they appear  to be 

Poissonian, as was first discovered numerically by physicists working in the field 

of "Quantum Chaos" [2], [4]. This was recently given some theoretical corrobo- 

ration by work of Luo and Sarnak [10], who showed that  the number variance of 

the spectrum of compact  arithmetic surfaces was consistent with Poisson behav- 

ior, and by Bogomolny, Leyvraz and Schmit [5] who gave an argument for the 

pair correlation to be that  of the Poisson distribution in the case of the modular  

surface. 

One of the keys to understanding this anomaly (as already understood by 

Selberg several years ago [8]!) lies in the high multiplicity of lengths of closed 

geodesics for arithmetic surfaces. Recall that  if we uniformize the surface as 

the quotient of the hyperbolic plane by a lattice F C SL(2,R),  then the closed 

geodesics are parameterized by the (primitive, hyperbolic) conjugacy classes of 

F, and the length ~ of the closed geodesic corresponding to the conjugacy class 

{-y} is given in terms of the trace of y by 2cosh(g~/2) = I tr(~,)l. The class of 

~,-1 corresl:onds to the same geodesic as 7 but with reversed orientation. If we 

denote by m ( t )  the number of conjugacy classes with trace t, then the Prime 

Geodesic Theorem asserts that  ~t<_x re(t)  N x 2 / l o g ( x 2 ) .  However, there is a 

dichotomy between the arithmetic and non-arithmetic cases: In the ari thmetic 

case one has very high multiplicities (e.g. in the modular group the traces t range 

over integers so the number of possible values of the trace grows linearly* with x. 

This forces at least the mean multiplicity to be large, and in fact for the modular  

group one can show rn(t)  >> tl-~).  In the non-arithmetic case the multiplicities 

are smaller, though their size is far from being understood. 

Tha t  the multiplicities are unbounded even in the generic case was deduced 

by B. Randol [11] as a consequence of a construction of R. Horowitz [9] in the 

free group. To explain the connection, we look at the set of traces of elements 

of F. If we fix a set of generators ~'1,... ,3'N of F, then the trace of any word 

w(~/1, - . .  , 3'Y) is a polynomial in the traces of the products tr(Ti17i 2 ' "'Tik), 1 _< 

i l  < ' "  < ik <_ n. The polynomial depends only on the F-conjugacy class of 

w, and not on the embedding F L+ SL(2, R). One defines the t r a c e  c lass  of w 

* The linear growth of the number of distinct traces is known to be a characteri~ 
zation of arithmetic groups, at least in the non-compact case, see Schmutz [12]. 
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to be all elements w' of F such that  t rp(w ' )  = t rp(w) for all two-dimensional 

complex representations p : F -4 SL(2, C). The number of conjugacy classes in 

the trace class of w is called the s t a b l e  m u l t i p l i c i t y  of the conjugacy class w. 

The stable multiplicities give a lower bound on the multiplicities of the length 

spectrum throughout the moduli space of F. 

In this note we investigate stable multiplicities in the length spectrum by 

studying multiplicities of the trace classes in the free group on two generators 

F2 = (A, B). Recall that  given a surface group of genus g > 2 with canonical 

presentation 
g 

Fg = (at, b t , . . ,  ag, bg : [-[ aibia-[lb~ 1 = 1) 
i=1 

we can embed F2 ~ Fg by taking A ~ al ,  B ~-~ a2, and it is a consequence of 

Dehn's solution of the word problem for surface groups [7], [13] that  elements of 

F2 are conjugate in F2 if and only if they are conjugate in Fg. 

Any conjugacy class has a representative wn (r, m)  = A ~1B ml . . .  A ~ B m~ with 

all r i , m j  7 £ 0 (other than in the case of the classes A ~, Bin), which is unique up 

to cyclic permutations: 

A r l B m l  . . .  A r ~ B ~  ~ Ar2B m2 . . .  Ar~Bm~ArlBrnl  . . . .  

(~  denoting conjugacy). Any trace class contains both w and its inverse w -1, 

which are not conjugate if w ¢ 1. Another member of the same trace class is 

gotten by "reading w backwards", that  is, define 

O ( w ( A , B ) )  := w ( A - 1 , B - 1 )  -1 = B ~ A  . . . . .  B '~lArl.  

It  is easily seen that  t r0(w) = t r w  (Lemma 2.1) and so the trace class of w 

contains the conjugacy classes of w =kl and 0(w) ~=1. In case the trace class contains 

no other conjugacy classes, we will say that  {w} is s imple .  

By using the involution 0, one can construct examples of conjugacy classes 

which are not simple as follows: Given words U = U(A,  B) ,  Y = V ( A ,  B)  C F2, 

take any word g = w(U, V), and set h = w(U -1, V - l )  -~. The trace class of g 

will then contain the 8 conjugacy classes of g+~, h +1, 0(g) +1 and 0(h) +1. In this 

way each non-trivial decomposition of wn e {A, B)  as wn = ws(U, V)  gives extra 

conjugacy classes in the same trace class (these are not always distinct, e.g. as 

in the case of w = A 4 which is a simple class). We believe that  this is the only 
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way to get non-simple trace classes (the examples of Horowitz [9] and Buser [6] 

are constructed in this fashion): 

CONJECTURE 1: If  w(d, B) admits no non-trivial decomposition as w(A, B) = 

w'(U, V) then the trace class of w contains only the classes w +1 and O(w) =kl. 

Our main result gives a sufficient condition for the class of wn(r, m) to be 

simple: We will say that r = ( r l , . . . , r ~ )  ~ (Z×) n is n o n - s i n g u l a r  if rk ¢ 

~-~jeS r j  for all k and S C_ {X, . . . ,n} ,  S ¢ {k}. In particular, all the vj are 

distinct, and ~-~jes rj  ¢ 0 if S is non-empty. 

THEOREM 1.1: I f  r, m are non-singular then the trace class o fw = wn(r ,m)  

contains only the conjugacy c/asses {w, w -1, O(w), O(w)-I }. 

The proof of Theorem 1.1 hinges on a formula for the first variation of 

tr wn(r, m) as one moves from the boundary of the moduli space of representa- 

tions. The point is that when p:F2 -+ SL(2, C) is reduc ib le ,  then trw~(r ,  m) 

is easy to compute. In general, we will see that we may assume 

P ( A ) : (  a ) ( ) ( 1 1 )  a- 1 , p(B) = Z b x b_ 1 Z -1 w i t h Z =  x + l  ' 

so that  x = 0 are reducible representations. In Section 4 we give a relatively 

simple formula (Theorem 4.1) for the derivative d/dx of trw~ at x = 0 which we 

use in Section 5 to prove Theorem 1.1. 

2. A t r a c e - p r e s e r v i n g  invo lu t ion  

Let F2 = (A, B) be the free group on two generators; we think of A, B as matrices 

in SL(2, C). Every conjugacy class except classes of the identity, A ~ and B m, 

have a cyclically reduced representative of the form 

(2.1) wn(r ,m)  = ArlBml . . . .  . ArnB m'~ 

where all exponents are non-zero. We will call n the syl lable  l e n g t h  of the class. 

The representation (2.1) is unique up to simultaneous cyclic permutation of the 

indices r, m. 

Let 0 be the unique anti-involution of F2 = (A, B) fixing the generators A, B: 

O(w(A, B)) = w(A -1, B - l )  -1, so that  for wn : wn(r, m) given by (2.1), 

O(wn) = Bm"A~"Bm~-I A ~"-~ "..." Bml A ~.  

Note that  0 preserves conjugacy classes. 
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LEMMA 2.1: t rwn = trO(wn). 

Proof." We first note that in the case that both A and B are s y m m e t r i c ,  we 

have O(wn) = w ntr is the transpose of Wn and so t rwn = tr0(Wn). However, we 

may reduce to the symmetric case as follows: Firstly, it suffices to prove the 

equality on the Zariski-dense open subset of (A, B) where A is diagonalizable. 

There, we may assume that 

A = (  a a - i )  

is diagonal by conjugating the word. Next, if we write 

then simultaneously conjugating by a diagonal matrix 

/~--1 , 

we preserve the trace, keep A unchanged and B changes to 

ABA-1 = ( x YA2) 
z / ~  2 w " 

Now choose A so that z/A 2 = yA 2 to get both A and B symmetric. 1 

Remark: See Buser [6] for a geometric description of this involution. 

3. T r a c e  p o l y n o m i a l s  

Our goal in this section is to give a tractable expression for the trace of the word 

w( r ,m )  = A r l B  m l . . . A r ~ B  m~. We denote by R2 = SL(2, C) x SL(2, C), the 

set of ordered pairs of matrices (A, B), on which SL(2, C) acts by simultaneous 

conjugation. Since the trace of a word w( r ,m)  depends only on the orbit of 

(A, B) under this action, we will find a convenient transversal to the orbits of 

SL(2, C) on which we will compute the trace tr w(r, m). 

PROPOSITION 3.1: The subset S of R2 consisting of pairs (A ,B) ,  with A -- 

a -  1 diagonal, and B = Z b 1 Z -1, Z = 1 x + l 

transversal to the orbits of SL(2, C) on a Zariski-dense open subset of R2. In 

particular the locally defined functions a, b, x on R2 are algebraically independent. 



134 D. GINZBURG AND Z. RUDNICK Isr. J. Math. 

We first prove that  S intersects almost all orbits: We take the open dense subset 

of R2 consisting of (A, B) which are both diagonalizable, and have no common 

invariant line (these give the irreducible two-dimensional representations of F2). 

Then we can conjugate A to be diagonal: 

( 0  a-0 ) 1  ~ ~- ( ~  01 ) A = and write B Z b- Z -  1. 

Changing Z by right multiplication by a diagonal matrix does not change B. We 

may further simultaneously conjugate A and B by a diagonal matrix D. This 

leaves (0 0) A -~ a_ 1 

unchanged and replaces B by D B D  -1 = ( D Z ) B ( D Z )  -1 ,  and so changing Z 

to D Z D '  with D, D '  diagonal keeps us in the same orbit. To classify possible 

choices of Z, we use: 

LEMMA 3.1: For 

set x (Z)  = z2z3. Then  for any diagonat matrices D, D'  E SL(2, C) we have 

x ( D Z D ' )  = x ( Z )  and conversely, i f  Z ,  Z '  are two matr ices  such tha t  x ( Z )  = 

x ( Z ' )  ¢ O , - 1  then Z '  = D Z D ' ,  and every Z with  x ( Z )  =/= 0 , - 1  lies in a unique 

double coset represented by 1 x +  1 , x = x ( Z ) .  

Proof: If D = t 1 , 0 S -1 and Z = then the Z3 Z4 
computat ion 

( 8tZ1 tz2 I 
D Z D '  = ~ z 

7 3  ~ /  

shows that if Z' = DZD' Iz~ z~'~ then z2z3, and moreover that if = t z l  4 4  = 

Z1, Z3 ~ 0 we can choose s, t so that  z~ = 1 = z~. II 

Since generic orbits are 3-dimensional while dim R2 = 6, the functions a, b, x, 

defined locally on R2, are algebraically independent. This concludes the proof of 

Proposition 3.1. | 

Using the coordinate a, b, x on the orbits we give a preliminary expression for 

tr  w(r, m):  
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PROPOSITION 3.2: Let 

For a word wn(r,  m) = AT' Bml . . . AT- Bmn, we have 

1. t r  w, ( r ,  m) is a polynomial in x of degree n: 

2. The constant term is given by 

where R = Crj ,  M = Ernj. 

3. The leading term is given by 

Proof: Clearly the trace is a polynomial in x ,  so we can compute the zeroth 

coefficient co(r, m) by setting x = 0. But then 

B = (: ) ( b") (11 ;) 
is lower triangular, and then 

which shows that co(r, m) = aRbM + aPRbKM. 

To see that t r  wn(r,  m) is a polynomial of degree n in x ,  we will show that the 

n-th derivative dnw/dxn is a constant. We first write 

where 

Then 
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and therefore d 2 L j / d x  2 = 0. Hence on using the Leibnitz rule, we find tha t  

n 

d n w n ( r ' m )  - n ! L i . . . L ~  = I I ( b  "~j - b - '~ ' )  \ a _ r j  _a_r j  
dxn j=l j= l  

and in part icular  dnwn(r,  m ) / d x  n is constant.  Now we use the identity 

, - v  - - ( v - < i )  u - 1  _ u - 1  U--1 __~--1 V--1 _V--1 

to see tha t  

, n n ( a ~  1 _ a ~ l  

L1. . .L~n = H ( b  m~ - b - m s ) 1 - I ( a ~ J - a - ~ J ) \  a . . . .  a-r1 
/ 

j = l  j=2 

and so cn (r, m)  = tr  L i " "  L~n = 1-I~=1 ( arj - a-~J)(b mj - b - m  j).  | 

Remark:  Instead of expanding in powers of x as in 1, one can expand in the 

basis x n - k ( x  + 1) k, 0 < k < n: 

t r  w(r,  m)  = ~ dk (r, rn)x ~-k (x + 1) k. 
k=0 

It  turns  out  tha t  this expansion has some extra symmet ry  properties: Each of 
n the 4 '~ monomials  1-Ii=la .... b n~m~, ei,~/j = +1,  appears in exactly one of the 

n 
coefficients dk, and the coefficient with which it appears is 1-Ij=l £j?]J" Since we 

make no use of this fact we will omit the proof. 

Definition 3.1: We say r = ( r l , . . .  , rn) E Z n in n o n - s i n g u l a r  if rk • ~ 3 e s r j  

for all k and S C_ { 1 , . . . , n } ,  S ¢ {k}. 

In particular,  all the rj  are distinct, and Y~jes rj  ¢ 0 if S is non-empty.  

COaOLLAaY 3.1: I f  r, m are non-singular then t rw~(r ,  rn) = t r w n , ( r ' , m ' )  

r / implies that  n ~ = n, and either r ~ = ( r~ , . . . ,  ~) is a permutat ion  of  r and m ~ 

a permuta t ion  of  m,  or else r ~ is a permutat ion  of  - r  and m ~ a permuta t ion  

o f  - m .  

Remark:  It  was already known [9] tha t  without  assuming r, m are non-singular 

have to be a permuta t ion  of the we need n = n t and the absolute values of rj  

Irjl, and likewise for m ~. The  above goes further in the case of r, m non-singular 

since it excludes any sign changes other  than  replacing (r, m)  by ( - r , - m ) .  
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Proof: If t r  wn(r ,  m )  = t r  w,~, (r ' ,  m ' )  then by compar ing  the  degree in x we see 

t h a t  we need n '  = n and Cn(r, m)  = Cn(r', m ' ) ,  i.e. 

n n 

17i( 1]( . . . .  

,r~ _ a -T, ) (bmj  _ b - m j )  = a r ,  _ a - ~ ) ( b m j  _ b - m , ) .  

j = l  j = l  

I ! This  forces rj = e j r j ,  mj = rljmj with ei,rlj = +1 (this much is to  be found in [9] 

and  does  not  a s sume r ,  m non-s ingular) .  Now we fur ther  know t h a t  c0(r, m )  -- 

co(/", m ' ) ,  i.e. 
aRb M + a-Rb -M --_ aR'b M' + a-R'b -M'. 

This  forces (R', M') to  equal  e i ther  (R, M )  or ( - R , - M ) .  

Suppose  first t h a t  R ~ -- ~ ejrj = R -- ~ rj, or equivalent ly  

E rj =O. 
j : e j = - - I  

Since r is gener ic  th is  forces the  set of j such t ha t  ej = - 1  to be empty,  i.e. r ~ 

is a p e r m u t a t i o n  of r.  Also, in the  case R ~ = R we need M ~ = M and the same 

a rgumen t  shows t h a t  m ~ is a p e r m u t a t i o n  of m.  

Next ,  suppose  t h a t  R '  = - R .  Then  arguing  as above  we find 

E rj = 0  
j:ej=-t-1 

and  since r is non-s ingular ,  all ej = - 1 ,  which means  t ha t  r ~ is a p e r m u t a t i o n  of 

- r ,  and  as above  m ~ is a p e r m u t a t i o n  of - m .  | 

4. T h e  f i r s t  v a r i a t i o n  o f  t h e  t r a c e  

T h e  ma in  resul t  of this  sect ion is a formula  for the  coefficient c l ( r , m )  of 1, 

which we can th ink  of as the  first var ia t ion  of t r  w(r ,  m )  as we move in from the  

sub-var ie ty  of reducib le  represen ta t ions  (x = 0). 

THEOREM 4.1 : The first variation of t r  w(r ,  m )  is given by 

= cl  (r, m )  -- cl c l ( r , m )  i~v ' ( r , m )  

with c]nV(r, m )  invariant under a11 permutations, and  

c ~ ( r , m )  = E u i , j ( r , m )  + u i , j ( - r , - m )  
l<__i<j<_n 
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where for i < j, 

ui,j(r, m) = (1 - b2mi)(1 - b 2mJ )a R-2(ri+l+'''+r~)bM-2(mi+mi+l+''+m~). 

Proof of Theorem 4.1: We begin by writing w,(r ,  m) = Ll(x)L2(x) . . .  L , (x) ,  

with Lj(x) given by (3.2). Then 

dwn 
cl(r, m) ---- tr - ~ x  I~=o ---- LI(0) . . -  Lj-I(O)L~j(O)Lj+I(O) "'" L~(O) 

j=1 

with 

and as in (3.3) 

ar j bmJ ) 
Lj(O) = ~ a_~j (b,~j _ b_mJ) a_rj b_mj 

Lt j (O)=(bm~_b-m~)(  a~ -arJ ) a-rJ _a-r j  • 

LEMMA 4.1 : 

( : i  a l l ) ( : ~  a 2 1 ) ' " (  an a n l )  = (a la2" ' ' an  ) 
- - C n  - \ tn alia21" "'an I 

w h e r e  t n - -  E ; = I  a71"'" ak-l-1 ckak+' ' ' 'a~" 

Proo£" By induction: Denoting the product by Tn, we have 

l(a" ) Cn ag 1 

and so 
tn ---- antn-1 + a l  l ' ' ' an l l cn  

n--1 

= an  E a l l ' "  " a k l l C k a k + l ' "  " a n - 1  + a l  l ' "  " a n l l C n  

k-~l 

-= ~ a i  l ' ' "  ak-l_lCkak+l . . .an 
k=l  

as required. | 

In our case aj = a rjb mj , aj = a -rj (b m~ - b -mj ), and so for j > 2 we have 

Ll(O). .. Lj_l(O) = ( art+"'+rJ-lbml+'"+m~ -1 0 ) 
Sj  a - r l  + . . . .  r~_ ~ b - m 1 +  . . . .  m~_ ~ 
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w i t h  

(4.1) 
j - 1  

k= l  
j--1 

= E (  1 _ b-2mk)a-~l . . . .  ~k+~k+l+.- .+~-~b--ml--  . . . . .  k-~+(--~k+-'-+mj 1) 

k= l  

a n d  l ikewise  for j _< n - 1 

Lj+I(O) . . .  L~(O) = ( a~+l+'''+~nbm¢+l+''+m~ 
tj 

o ) 
a-r  j+l+ .... rnb-mJ+l+ .... mn 

w i t h  

(4.2) 

tj -- 
k=j+l 

~-~, (b2mk _ 1 ) a - r J + l  . . . . .  rk+rk+l+...+r~b-mJ+l . . . . . . .  k+mk+l+"'+m~. 

k = j + l  

T h u s  

L1 (0 ) . . .  L j_I  (0)L~j (0)Lj+I (0) . . .  Ln (0) 
=(arl+'"+~J-lb  m l + + m j - 1  0 ) 

\ sj a - r 1 +  .... r~-i b-m~+ .... m j-1 

X (b ml - b -m~) \~, a_rJ _a_r~ 0 

..... o ) 
X tj a -r~+l + .... rn b-m~+l . . . . .  mn 

[" aRb M-m~ 0 ) 
=(bm~ - b-m~) ~ * --a-Rb-M+m~ 

- (bm~ - b-m" ) ( O 0 a rl+'''+~jbml+ . . . .  j_~ 
a rj Sj ) 

a r~+l+'''+r~ b m~+l+'''+m~ 0 ) 
× ~, tj a-rJ+l+ .... r~b-mJ+l . . . . .  m~ 

=(bin ~ __ b_mj ) ( aRb: -m~  0 
- -a-Rb -M+mj ) 

_(bmJ _b-m~)(arl+"'+r~bml+'"+mJ-~tj  , ) 
. . . . . . . .  rnb-mJ+l . . . . .  m~ . • 8ja r~ r3+1 
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T h e r e f o r e  

t r  L1 (0) • . .  Lj -1  (O)L~j (O)Lj+I (0) . . .  Ln (0) 

=(bmJ _ b-mJ )(aRbM-m.~ -- a -Rb-M+mj  ) 

_ (bmJ _ b-mJ) (arl+...+rJbm]+...+mJ_ltj + sjar,-rj+l . . . . . . . .  b-,~j+~ . . . . .  m . ) .  

I n s e r t i n g  the  exp res s ions  (4.1), (4.2) for sj, tj we find t h a t  

t r  L1 (0) - - - Lj -1  (O)L} (O)Lj+I (0 ) . . .  L~(O) 

=aRbM (1 _ b-2mj)  + a-Rb--M (1 _ b2mj) 

- (b 2"~¢ - 1) ~ a ~ ,+ ' ' ' +~ j - ' j+~  . . . . . .  ~+~*+~+"+~" 
k = j + l  

× bml+. . .+mj-l-mj  . . . . . .  nk+mk+l+...m~ (b2r~k _ 1) 

j--1 
- (1 - b -2m~ ) E a  -r '  . . . . . .  k + r k + l + ' " r j - - r j + l  . . . . .  rn 

k--1 

x b - ' ~  . . . . .  -~k_~+,~+ . . .+mj - -~ j+ ,  . . . . . . .  (1 - b -2ink) 

(w i th  obv ious  m o d i f i c a t i o n s  for j = 1 and  j = n) .  T h u s  

i 'n.1) I 
C 1 ~-- C 1 - -  C 1 

w i t h  
n n 

inv ~ aRb M a - R b - M  c I E ( 1  -- b-2mJ)  -t- E ( 1  -- b2m3) 
j = l  /=1  

is i n v a r i a n t  u n d e r  al l  p e r m u t a t i o n s ,  and  

, =EaR--2(r~+]+...+r~)bM--2(mj+.-.+mk)(1 _ b2m~)(1 - b2m~) c1 
j<k 

-}- E a--R+2(rj+l+'"+rk)b--M+2(mj+'"+mk)(1 -- b - 2 m J ) ( 1  - b-2mk ) 

j<k 

= E uj,k(r, m )  + u j , k ( - r , - m )  
j<k 

as r equ i red .  T h i s  p roves  T h e o r e m  4.1. I 
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5. T h e  m a i n  t h e o r e m  

We now t ry  to classify, for given (r, m ) ,  all words w(r ' ,  m ' )  with tr  w( r ' ,  m ' )  = 

t r w ( r , m ) .  From [9] (see r emark  after Corollary 3.1) we know tha t  necessarily 

n '  -- n and Ir}t are a pe rmuta t ion  of the tril, and likewise for m ' .  Assume 

now tha t  r, m are non-singular.  Then  by Corollary 3.1, ei ther r '  = ( r ~ , . . . ,  r~) 

is a permutat ior~ of r and m ~ a pe rmuta t ion  of m ,  or else r ~ is a pe rmu ta t i on  

of - r  and m ~ a pe rmuta t ion  of - m ;  by replacing w( r  ~, m p) by w ( - r  t, - m ' )  = 

0(w(r ' ,m ' ) )  -1 we m a y  assume the former. In order to prove Theorem 1.1, it 

remains  to de te rmine  which pe rmuta t ions  (a, a ~) E Sn × S~ preserve the t race  of 

w(r,m). 
As examples  we have conjugations in the group, which correspond to simul- 

taneous  cyclic pe rmuta t ions  of the exponents:  Thus  if we set w = (1, 2 , . . . ,  n) 

then  &k ___ (wk,wk) : 0 ~ k < n preserve the trace. In addition, the involution 

induces a pe rmu ta t i on  of the indices (which we denote by the same letter) t ha t  

also preserves traces. Let G~ denote the subgroup of Sn × Sn generated by 

and 0. Our  main  result is: 

THEOREM 5.1: f i r ,  m are non-singular then the only permutations preserving 

the trace o fw~(r ,  m )  are the group Gn = {&k, ~&k : k = 0 , . . . ,  n - 1}. 

Proof of Theorem 5.1: We show tha t  if r and m are non-singular  and if 

t rw(ar ,  a 'm)  = t r w ( r , m )  then (a,a') e Gn. Now if (a,a')  preserves the 

trace,  then  since a, b, x are algebraically independent ,  then also c l ( a r ,  a ' m )  = 

c l ( r ,  m )  and since Cl = c~ nv - c~ with c~ nv invariant under all pe rmuta t ions ,  we 

' = ~ i < j  u i , j ( r ,m)  + is also preserved. Now by Theorem 4.1, c 1 need tha t  c 1 

u i , j ( - r , - m ) .  We single out in this the sum of the te rms  u i#+l ( r ,  m )  and also 

the  t e rm  U l , ~ ( - r , - m ) :  

n - - 1  

S(r ,  m )  = U l , ~ ( - r , - m )  + E u i#+l( r ,  m )  
i = 1  

n 

= aRb M E ( 1  - b-2m~-~)(1 - b-2m~)a-2~ 

(with the convention m0 = m~).  

We first c laim tha t  for r non-singular,  if c~ ( r ,m)  = C~l(ar, a 'm)  then  

S ( a r ,  a r m )  = S(r ,  m ) .  To see this, we must  show tha t  the powers of a, ap- 

pear ing in S(ar,  a ' m )  cannot  occur in c~(r, m )  - S(r ,  m) .  This  is done in the  
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following Lemma:  

L E M M A  5.1: For r non-singular, i f  i < j is such that ( i, j ) ¢ ( k, k + l )  and ( i, j ) ¢ 

(1, n) then for any  permutat ion  ~ ~ S,~ the exponents  R - 2rt:, k = 1 , . . . ,  n a re  

distinct from any  of  the  exponents  ± ( R  - 2(r~(~+~) + ro(~+2) + ' "  + r~(j))) with 

j ¢ i + l .  

Proof." Suppose  first t ha t  for some l < k < n - 1  and l < i < j < n w e h a v e  

R - 2rk = R - 2(ro(i+1) + . . .  + rot(j)). 

Then  r k ---- r ( r ( i + t )  + • • " -P r a ( j )  and since r is non-s ingular  we need t h a t  j = i + 1 

(and also k = or(i)). The  o ther  poss ib i l i ty  to check is 

R -  2rk = - R  + 2(ra( i+l)  + " "  + to( j ) ) ,  

t ha t  is 

or t ha t  

R - rk = r'~,(i+l) + " "  + r a ( j )  

rk = ~ ft. 
t#~(i+~) ..... o(j) 

The  a s sumpt ion  t ha t  r is non-s ingular  means  precisely tha t  this  canno t  h a p p e n  

unless i = 1, j = n (and also a(1)  = k) as required.  | 

We can now conclude t ha t  for r non-singular ,  if t r  w(ar ,  a ' m )  = t r  w(r ,  m )  

then  

(5.1) S n ( a r ,  a ' m )  = Sn(r ,  m) .  

Now assume tha t  m is such tha t  mj  are dis t inct ,  and  ( a , o ' )  E Sn × S,~ is 

such t ha t  Sn(ar ,  a ' m )  = S,~(r ,m) .  We want  to show tha t  ( a , a ' )  C Gn. By 

conjuga t ing ,  we can assume tha t  w ( a r ,  a ' m )  ends in b *~*, i.e. t ha t  a ' ( n )  = n. A 

fur ther  reduc t ion  is tha t ,  if necessary, app ly ing  0 we may  assume tha t  a(n)  ~ 1. 

We will now show tha t  in fact (0, a ' )  = (id, id). This  will prove T he o re m 5.1. 

Now (5.1) means  tha t  (wi th  the  convent ion m o =  ran)  

(5.2) 
n 

E ( 1  - b-2rn~-,)(1 _ b-2m~)a-2~ = E ( 1  - b-2m~'(~-,))(1 - b-2m~,'(O)a-2~(~). 
i = 1  i = I  

Set t ing  y = b -2 ,  z = a -2 ,  we will show: 
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LEMMA 5.2:  I f r  = ( r l , . . .  , r n )  a re  distinct and  m = ( m l , . . .  , r an )  a re  distinct, 

and (0, 0') E S~ x S~ is such that ~'(n)  = n, ~r(n) ~ 1, and satisl~es 
n 

(5.3) E (  1 _ y ,~ ,_ l ) (  1 _ ym~)zr, = E (  1 _ ym,,(~ 1))( 1 _ y ,~ , ( , ) )zro( , ) ,  
i = 1  i = 1  

t hen  (0, 0 ' )  = (id, id).  

Proof: We focus  on t h e  two s u m m a n d s  con t a in ing  (1 - ym~) = (1 - ym.,(n)). 

Since  y, z are  a lgeb ra i ca l l y  i n d e p e n d e n t ,  t he  s u m  of t he  two t e r m s  on each  side 

of  (5.3) has  to  co inc ide ,  i.e. 

( 1  - -  y ~ n - - 1 ) ( 1  - -  y131'~)zTn -~- ( 1  - -  y m n ) ( 1  -- yml)ZT1 
(5.4) 

= ( 1  - - + ( 1  - y m ° ) ( 1  - -  

Since  r j  a re  d i s t i nc t  and  a ( n )  ~ 1, we m u s t  have  or(l) = 1 and,  c o m p a r i n g  powers  

of  y, we also see t h a t  o- '(n - 1) = n - 1, c¢(1) = 1. 

Nex t ,  we o m i t  t h e  two t e r m s  (5.4) in (5.3) to ge t  an  equa l i t y  of s u m s  of n - 2 

t e rms :  

n - - 1  n - - 1  

(5.5) E ( 1  - y m j - l ) ( 1  - y m i ) z r J  = Z ( 1  -ym"'(~-~))(1-y '~" ' (~))z~ ' (~)  
j = 2  j = 2  

a n d  a ' ( n  - 1) = n - 1, o (1)  = 1 = o (1 ) ' .  We will  p rove  by i n d u c t i o n  on i t h a t  

a'( i)  = i = a(i) .  For  i = 1, we a l r eady  have  o(1)  = 1 = a ' ( 1 )  and ,  c o m p a r i n g  

t h e  s u m m a n d s  c o n t a i n i n g  ym~ = y-~,(~),  we find 

(1 - yml ) (1  -- ym~)zr~ = (1 -- ym~)(1 -- y'~'(~))Z ~(~) 

and  the re fo re  or(2) = 2 = or'(2). 

C o n t i n u i n g  in th is  way, suppose  t h a t  we showed  t h a t  (r(j)  = j = a ' ( j )  for 

all  j < i. We  will  now show t h a t  or(i) = i = a'(i) .  We can  o m i t  the  iden t i ca l  

s u m m a n d s  for j = 1 . . . .  i - 1 in b o t h  sides of  (5.5) to  find 

n - - 1  n - - 1  

E ( 1  -- ym~-~)(1 - ymj)z~'J = Z ( 1  - y '~- ' (¢-1))(  1 _ ym~,'(j))zr~,(J). 
j= i  j=i  

T h e  on ly  s u m m a n d  invo lv ing  mi-1  = m~,(i-1) is t he  one  for j = i, which  gives  

(1 - ym~- ' ) (1  - ym*)z~ = (1 - ym~-~)(1 - ym~'(~))z~"(~), 

a n d  e q u a t i n g  power s  of  y and  z we get  a ( i )  = i = a ' ( i )  as requ i red .  T h i s  shows 

t h a t  a = id = a ~. | 
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