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THE DISTRIBUTION OF SPACINGS BETWEEN
QUADRATIC RESIDUES

PÄR KURLBERGand ZEÉV RUDNICK

1. Introduction. Our goal in this paper is to study the distribution of spacings (or
gaps) between squares inZ/qZ, asq →∞. In the case thatq is prime, a theorem of
Davenport (see [3], [4], [11], and [18]) shows that the probability of two consecutive
quadratic residues modulo a primeq being spacedh units apart is 2−h, asq →∞.
For our purposes, we may interpret this result as saying that when we normalize the
spacings to have unit mean, then the distribution of spacing asq →∞ along primes
is given by

P(s)=
∞∑
h=1
2−hδ

(
s− h

2

)
,

that is, a sum of point masses at half-integers with exponentially decreasing weights.
In this paper, we study the spacing distribution of squares moduloq whenq is

square-free andhighly composite, that is, the limiting distribution of spacings between
the squares moduloq as the number of prime divisors,ω(q), tends to infinity. For
odd square-freeq, the numberNq of squares moduloq equals

Nq =
∏
p|q

p+1
2

.

This is because, ifp is an odd prime, the number of squares modulop is (p+1)/2
and, forq square-free,x is a square moduloq if and only if x is a square modulop
for all primesp dividing q. Thus, for oddq, the mean spacingsq = q/N equals

sq = 2ω(q)∏
p|q(1+1/p)

= 2ω(q)

σ−1(q)
.

Forq = 2q ′ even and square-free, it is easily seen thatsq = sq ′ . It follows thatsq →∞
asω(q) → ∞, unlike the case of primeq, where the mean spacing is essentially
constant. Thus, unlike in the prime case (where the level spacing distribution was
forced to be supported on a lattice), in the highly composite case, there is an a priori
chance of getting a continuous distribution.
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A relevant statistical model for the distribution of spacings is given by looking
at random points in the unit intervalR/Z. For independent, uniformly distributed
numbers inR/Z, the spacing statistics are said to bePoissonian. The distribution
P(s) of spacings between consecutive points is that of a Poisson arrival process, that
is,P(s)= e−s (see [6]). Moreover, the joint distribution ofk-consecutive spacings is
the product ofk-independent exponential random variables.
It is well known (see [15]) that the spacing statistics of the superposition of several

independent spectra converge to the Poisson case—the spacing statistics of uncorre-
lated levels. Thus, the heuristic that “primes are independent,” together with Daven-
port’s result, indicates that the spacing statistics of the squares moduloq should be, in
the limit asω(q)→∞, Poissonian; that is, in some sense, squares moduloq behave
as random numbers. It is our purpose to confirm this expectation.
In order to study the level spacings, we proceed by studying ther-level correlation

functions. These measure clustering properties of a sequence inR/Z on a scale of
the mean spacing. Their definition and their application to computing various local
spacings statistics are recalled in Appendix A. In our case, these turn out to be given
by the following. Forr ≥ 2 and a bounded convex set� ⊂ Rr−1, let

Rr(�,q)= 1

Nq

#
{
xi distinct squares modq : (x1−x2, . . . ,xr−1−xr) ∈ s�

}
.

This is immediately transformed into

Rr(�,q)= 1

N q

∑
h∈s�∩Zr−1

N(h,q),(1.1)

whereN(h,q) is the number of solutions of the system of congruencesyi+1−yi =
himodq with y1,y2, . . . ,yr squares moduloq andh= (h1, . . . ,hr−1) ∈ Zr−1.
To compute the correlations for distinctxi , we consider only sets� that a priori only

contain vectors(xi − xi+1) with distinct coordinates. To do this, we define “roots”
σij on Rr−1 for i < j by σij (h) = ∑j−1

k=i hk. The hyperplanes{σij = 0} ⊂ Rr−1
are called “walls,” and(xi −xi+1) does not lie in any of the walls if and only if all
coordinatesxi are distinct.
Our main result shows that if� does not intersect any wall, thenRr(�,q)→ vol(�)

for any sequence of square-freeq with ω(q)→∞.
Theorem 1. Letq be square-free, letr ≥ 2, and let� ⊂ Rr−1 be a bounded con-

vex set that does not intersect any of the walls. Then ther-level correlation function
satisfies

Rr(�,q)= vol(�)+O
(
s−1/2+ε

)
ass →∞

for all ε > 0, wheres is the mean spacing.
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This theorem implies that all spacing statistics are Poissonian (see Appendix A). For
instance, if we denote bys1, . . . , sN−1 the normalized differences between neighboring
squares, then we have the following theorem.

Theorem 2. For q square-free, the limiting level spacing distribution of the squares
moduloq is given byP(t)= exp(−t) asω(q)→∞. Moreover, under the same con-
dition, for anyk ≥ 1, the limiting joint distribution of(sn,sn+1, . . . , sn+k) is a product∏k

i=0exp(−ti ) of k+1 independent exponential variables.
There are only a few known cases where the complete spacing distribution can be

proved to be Poissonian as in our case. A notable example is Hooley’s results (see [7],
[8], [9], and [10]) that the spacings between elements coprime toq are Poissonian
as the mean spacingq/φ(q)→∞. A much more recent result is due to Cobeli and
Zaharescu [2], who show that the spacings between primitive roots with respect to a
primep are Poissonian provided the mean spacingp/φ(p−1)→∞.
The results of this paper are related to work on the level spacing distribution of the

fractional parts{αn2} (α irrational) by Rudnick, Sarnak, and Zaharescu [16], [17]. In
particular, in [17], an attempt to study that problem is made by replacingα with a
rational approximationb/q, and this leads to a study of the spacings of the sequence
bn2modq, 1≤ n ≤ N for N a small power ofq. The available sites are exactly the
set of squares with respect toq, hence our interest in the problem.
In [17], it is shown that in order for all the correlation functions of the sequence

{αn2} to have Poisson behavior, it is necessary to assume that the rational approxi-
mantsb/q have denominatorq that is close to square-free, hence our interest in the
square-free case. For arbitraryq, it is still true that all correlations are Poissonian, but
there are significant technical complications to overcome in proving this (see [13]).
We believe that the methods developed in this paper should be useful in studying

similar problems, for instance, the spacing distribution of cubes moduloq, as the
number of prime factors ofq that are congruent to 1 modulo 3 tends to infinity. (The
condition modulo 3 is necessary in order for the mean spacing to go to infinity.)

Contents of the paper.We begin with a section sketching the argument for Theo-
rem 1 in the case of the pair correlation function. This section can be used as a guide
to the rest of the paper.
In Section 3, we first reduce the problem to the case thatq is odd. Then in Section 4,

we analyze the behavior ofN(h,p), wherep is prime. Squares that are distinct
moduloq are not necessarily distinct modulop; we denote byreff(h) the number of
squares that remains distinct after reduction modulop. Using an inclusion-exclusion
argument, wewritereff(h) as a linear combination of characteristic functions of certain
hyperplanes overZ/pZ. Next, in Section 5, we use the multiplicative properties of
the counting functionsN(h,q) to derive an expression forRr(�,q) as a sum over
divisorsc of q and latticesL arising from intersections of hyperplanes modulop for
differentp’s (see Proposition 6).
In Section 6, we show that the main term of the sum consists of those terms for
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which the product ofc and the discriminant ofL are small with respect tos, and
an error term corresponding to terms where the product is large. In Section 7, we
evaluate the main term and show that it gives us exactly vol(�), thus giving us our
main result.
In Appendix A, we explain how to use Theorem 1 to derive results such as those

in Theorem 2, that is, that the level spacings are Poissonian as well. Appendix B
explains some background on counting lattice points in convex sets. In Appendix C,
we estimate the number of divisors ofq that are smaller than a fixed power of the
mean spacings.

2. The pair correlation: A sketch. In order to explain the proof of Theorem 1, we
give an overview of the argument in the special case of the pair correlation function.
Let q be an odd, square-free number withω(q) prime factors, and letI be an

interval not containing the origin. As in the introduction, define the pair correlation
function

R2(I,q)= 1

N

∑
h∈sI∩Z

N(h,q),

whereN is the number of squares moduloq, s = q/N = 2ω(q)/σ−1(q) is their mean
spacing,σ−1(q)=∏

p|q(1+(1/p)), andN(h,q) is the number of solutions in squares
moduloq of the equation

y1−y2= h modq.

We sketch a proof thatR2(I,q) → |I | asω(q) → ∞ (|I | being the length of the
interval). In fact, we have the more precise result in the following theorem.

Theorem 3. For q odd and square-free, we have, for allε > 0,

R2(I,q)= |I |+O
(
s−1+ε

)
.

Proof. Here are the main steps in the argument.
Step 1.By the Chinese remainder theorem,N(h,q) =∏

p|q N(h,p) is a product
over primes dividingq. By elementary considerations, one sees that

N(h,p)= p+a(h,p)

4
$(h,p)(2.1)

with a(h,p)=O(1) and

$(h,p)= 1+δ(h,p), δ(h,p)=
{
0 p � h,

1 p | h.
From this, we see that

N(h,q)= q$(h,q)

4ω(q)

∑
c|q

a(h,c)

c
(2.2)

with a(h,c) :=∏
p|c a(h,p)� cε and$(h,q)=∏

p|q $(h,p).
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Step 2.We decompose$(h,q)=$(h,c)$(h,q/c) and rewrite$(h,q/c) as

$
(
h,

q

c

)
=

∏
p|(q/c)

(
1+δ(h,p)

)= ∑
g|(q/c)

δ(h,g)

with

δ(h,g)=
{
0 g � h,

1 g | h.
Substituting this into the expression (2.2) forN(h,q), and inserting the result into
the formula forR2(I,q), we get

R2(I,q)= 1

σ−1(q)2ω(q)

∑
c|q

1

c

∑
g|(q/c)

∑
h∈sI∩gZ

a(h,c)$(h,c).(2.3)

Step 3.We partition the sum into two parts, one over the pairsg,c with gc < s,
and the leftover part over pairs withgc ≥ s. We show this leftover part is negligible
(in fact,O(s−1+ε)). We first usea(h,c)$(h,c) � cε and the fact that, in order for
the inner sum overh to be nonempty, we needg � s (recall thatI does not contain
the origin) to get that the sum over pairs withcg > s is bounded by

s−1+ε
∑
c|q

c−1+ε
∑

g|(q/c)
g�s
cg>s

#(sI ∩gZ)� s−1+ε
∑
c|q

c−1+ε
∑

g|(q/c)
g�s
cg>s

s

g

� sε
∑
d|q
d>s

d−1+ε
∑
g|d
g�s

1.

Now we use Lemma 18, which shows that the number of divisorsg < s of q is at
mostO(sε), and Lemma 19 to bound the above by

sε
∑
d|q
d>s

d−1+ε � s−1+ε

as promised.
Step 4.For each pair ofc,g with cg < s, we first treat the inner sum overh ∈

sI∩gZ. We break it up into sums over(s|I |/gc)+O(1) subintervals[y,y+cg)∩gZ,
plus a leftover term of size at mostc1+ε . For each subinterval, we use periodicity of
a(h,c)$(h,c) underh �→ h+c to find

∑
h∈[y,y+cg)∩gZ

a(h,c)$(h,c)=
c∑

h1=1
a
(
gh1,c

)
$
(
gh1,c

)
.
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Becauseq is square-free andg dividesq/c, we have thatg,c are coprime. There-
fore, we can change variablesh= gh1 to get that this last sum equals∑

hmodc

a(h,c)$(h,c)=
∏
p|c

∑
hmodp

a(h,p)$(h,p).

We evaluate the sum
∑

hmodp a(h,p)$(h,p) by noting that, summing (2.1) over
hmodp, the sum of the left-hand side is simply the number of all pairs of squares
modulop, namely,(p+1)2/4. This gives∑

hmodp

a(h,p)$(h,p)= p+1.

Thus, the inner sum overh ∈ sI ∩gZ equals

∑
h∈sI∩gZ

a(h,c)$(h,c)=
(
s|I |
gc

+O(1)

)∏
p|c

(p+1)+O
(
c1+ε

)

= s|I |
g

σ−1(c)+O
(
c1+ε

)
.

Step 5.Inserting this into the expression (2.3) forR2(I,q) gives

R2(I,q)= 1

2ω(q)σ−1(q)
∑
c|q

1

c

∑
g|(q/c):gc<s

s|I |
g

σ−1(c)+O
(
s−1+ε

)
.

Now we extend the sum to all pairsg,c, to find that, up to an error ofO(s−1+ε),
we have

R2(I,q)∼ |I | 1

σ−1(q)2
∑
c|q

σ−1(c)
c

∑
g|(q/c)

1

g

= |I | 1

σ−1(q)2
∑
c|q

σ−1(c)
c

σ−1
(q
c

)

= |I | 1

σ−1(q)
∑
c|q

1

c
= |I |,

which is what we need to prove our theorem.

In the following sections, we repeat these steps with full details for the higher
correlation functions, where several technical complications arise.

3. Reduction to oddq. We first show that in Theorem 1 it suffices to consider
only the case ofq odd. Suppose thatq = 2q ′ with q ′ odd and square-free. We recall
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that

Rr(�,q)= 1

N q

∑
h∈s�∩Zr−1

N(h,q),(3.1)

whereN(h,q) is the number of solutions of the systemyi+1 − yi = hi where
y1,y2, . . . ,yr are squares moduloq andh= (h1, . . . ,hr−1) ∈ (Z/qZ)r−1.
By the Chinese remainder theorem, the numberNq of squares moduloq is the

product
Nq =N2Nq ′ = 2Nq ′ .

Therefore, the mean spacingsq := q/Nq is given by

sq = 2q ′

2Nq ′
= q ′

Nq ′
= sq ′ .(3.2)

Moreover, again by the Chinese remainder theorem,

N(h,q)=N(h,2)N(h,q ′),

and since all residues modulo 2 are squares, we haveN(h,2)= 2. Thus, we find
N(h,q)

Nq

= 2N(h,q ′)
2Nq ′

= N(h,q ′)
Nq ′

.(3.3)

Inserting (3.2), (3.3) into (3.1), we find that

Rr(�,q)= Rr(�,q ′).

This shows that it suffices to prove Theorem 1 forq odd, which we assume is the
case in the sequel.

4. The prime case. Let p > 2 be a prime. Forh= (h1, . . . ,hr−1) ∈ (Z/pZ)r−1,
we defineNr(h,p) to be the number of solutions in squaresyi mod p (including
yi = 0) of the system

yi−yi+1= himodp, 1≤ i ≤ r−1.(4.1)

This number depends crucially on the number of distinctyj . For eachh = (h1, . . . ,

hr−1), we definereff(h) to be the number of distinctyj (not necessarily squares)
satisfying the system (4.1). Since the solutions of the homogeneous systemyi−yi+1=
0modp are spanned by(1, . . . ,1), reff(h) is well defined (independent of the particular
solutiony of (4.1)).
We definerootsσij (h), 1≤ i < j ≤ r, by

σij (h)=
j−1∑
k=i

hk(4.2)
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so thatσi,i+1(h) = hi , σij =∑j−1
k=i σk,k+1. The solutions of (4.1) are all distinct if

and only ifσij (h) �= 0, for all i < j , since

yi−yj =
j−1∑
k=i

yk−yk+1=
j−1∑
k=i

hk = σij (h).

Proposition 4. Letreff(h) be the number of distinctyi in a solution of (4.1). Then

Nr(h,p)= p+a(h,p)

2reff
(4.3)

with a(h,p)�r p
1/2.

Proof. The casereff(h) = 1 happens precisely whenh = 0 and allyi are equal:
y1 = y2 = ·· · = yr . In this case, the number of solutions is the number of squares
modulop, namely,(p+1)/2, which is of the desired form. We thus assume from
now on thatreff(h) > 1.
We first reduce the system (4.1) to a system ofreff−1 equations inreff variables. If

reff(h) is the number of distinctyi in a solution of (4.1) (independent ofy!), then we
can eliminate some of the equations. Renumber the variables so thaty1, . . . ,yreff are
the distinct coordinates of a solution, and for allj ≥ 1, yreff+j equals one of these;
then the system (4.1) is equivalent to the reduced system

yi−yi+1= h′imodp, 1≤ i ≤ reff−1(4.4)

(where theh′i are renumberedhj to give that the firstreff coordinates are distinct).
So we need to find the number of solutions of the reduced system (4.4).
We first eliminate those solutions where at least one of theyj is zero. In this

case, since the system (4.4) (considered as a linear system) has rankreff −1 in reff
variables, specifying any one of the variables determines all the others; hence the
number of solutions with some coordinate zero is at mostreff . Thus, we need only
count solutions where all coordinatesyi are nonzero.
To every such solution in squaresyi �= 0modp, write yi = x2i modp with xi �=

0modp. There are precisely two such solutions, namely,±ximodp. Thus, the number
of possiblexi corresponding to a given solutiony of (4.4) is precisely 2reff , and the
number of nonzero solutions of the reduced system (4.4) withyi squares modulop
is exactly 1/2reff times the number of solutions of the system

x2i −x2i+1= h′imodp, 1≤ i ≤ reff−1(4.5)

with xi �= 0modp. By adding back at mostr solutions, we can remove the condition
xi �= 0, and then we find that

Nr(h,p)= 1

2reff
n(h′,p)+Or(1),(4.6)
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wheren(h′,p) is the number of solutions of

x2i −x2i+1= h′imodp, 1≤ i ≤ reff(h)−1.

This is just the number of solutions(t,x1, . . . ,xreff ) of the system

x21 = t−b1, x22 = t−b2, . . . ,x
2
reff

= t−breff(4.7)

with b1 = 0, b2 = h′1, b3 = h′1+ h′2, . . . ,breff (h) = h′1+ h′2+ ·· · + h′reff−1 and, in
general,bk = σ1k(h

′). Note that thebi are distinct; this is equivalent to the requirement
that the solutions of the reduced system (4.4) be distinct. One can now use the
Riemann hypothesis for curves (see [21], and [18, Theorem 5A and Corollary 5B]
for the caseb1=−1,b2=−2, . . . ,br =−r), to find

|n(h′,p)−p| � reff2
reff
√
p.(4.8)

In addition,|N(h,p)−n(h′,p)/2reff | ≤ r, and so

N(h,p)= p+a(h,p)

2reff

with

a(h,p)� 2reff (reff
√
p+r)�r

√
p.

This proves Proposition 4.

A formula forreff(h). Our next order of business is to give a formula forreff(h).
We begin with some combinatorial background. Aset partitionof the set{1,2, . . . , r}
is a collection of disjoint subsetsF = [F1, . . . ,Ft ], Fi ⊆ {1,2, . . . , r}, whose union is
all of {1,2, . . . , r}. We set|F | = t , the number of subsets inF .
To each set partitionF , we associate a subsetVF of affine r-spaceV = Ar by

setting

VF = {
s ∈ Ar : si = sj if i,j are in someFk

}
.(4.9)

Correspondingly, inH = Ar−1, we have a subspace

HF = {
h ∈ Ar−1 : σij (h)= 0 if i,j are in someFk

}
.(4.10)

Under the mapπ : V →H takings = (si) �→ (si−si+1), we haveVF = π−1HF .
There is a partial ordering on the collection of all set partitions of{1, . . . , r}

with F � G if and only if everyFi is contained in someGj . For example,O =
[{1,2, . . . , r}] is the maximal element of this partial ordering, with|O| = 1 and
HO = (0). Theminimal element isr = [{1}, {2}, . . . , {r}]with |r| = r andHr = Ar−1.
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The partial ordering on set partitions is inclusion-reversing on subspaces:F �
G⇔ VF ⊇ VG ⇔HF ⊇HG. The regular part ofVF is

V ×
F = {

s ∈ VF : si �= sj if i,j are not in someFk

}
,

and we defineH×
F likewise. ThenH

×
O =HO = (0), and everyh belongs to a unique

H×
F for someF . Thus, we have

H =
∐
F

H×
F ,

and likewise,
HF =

∐
F�G

H×
G .

We can now give a formula forreff(h):

reff(h)= dimVF = dimHF +1= |F |,(4.11)

whereF is the unique set partition such thath ∈ H×
F . We can write this as follows.

Define

δF (h)=
{
1 h ∈HF ,

0 otherwise,
δ×F (h)=

{
1 h ∈H×

F ,

0 otherwise.
(4.12)

Then

reff(h)=
∑
F

dim(VF )δ
×
F (h).(4.13)

Similarly,

$(h,p) := 2r−reff (h) =
∑
F

2codim(VF )δ×F (h).(4.14)

It is convenient to express this in terms of the characteristic functionδF of the sub-
spacesHF . For this, we use Möbius inversion. Since the collection of all set partitions
of {1, . . . , r} is a partially ordered set, it has a Möbius functionµ(F ,G) that is the
unique function so that, for any functionsψ , φ on set partitions satisfying

φ(F )=
∑
F�G

ψ(G),(4.15)

we have

ψ(F)=
∑
F�G

µ(F ,G)φ(G).(4.16)
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An explicit form ofµ(F ,G) can be found in [14, §25]. We do not have any use for
it.
In our case, clearly we haveHF =∐

F�GH×
G so that

δF =
∑
F�G

δ×G.(4.17)

Thus, we have

δ×F =
∑
F�G

µ(F ,G)δG.(4.18)

This gives us the formula for$(h,p)= 2r−reff (h). From (4.14) and (4.18), we find

$(h,p)=
∑
G

λ(G)δG(h)(4.19)

with

λ(G)=
∑
F�G

µ(F ,G)2codimVF .(4.20)

For use in Section 7, we need to know the sum of the product of$(h,p) with the
error terma(h,p) in (4.3) over all vectorsh.

Lemma 5. We have the following relation:∑
hmodp

a(h,p)$(h,p)= (p+1)r−pr
∑
G

λ(G)p−codimHG.

Proof. We have, by definition,

N(h,p)= p+a(h,p)

2r
$(h,p)

so that
a(h,p)$(h,p)= 2rN(h,p)−p$(h,p).

Now sum over allhmodp. The sum ofN(h,p) is just the total number ofr-tuples
of squares modulop, namely,((p+1)/2)r . To sum$(h,p) overh, we use (4.19).
Since the sum over allh of δG(h) is just the number of vectors in the subspaceHG,
namely,pdimHG = pr−1−codimHG , we find∑

hmodp

a(h,p)$(h,p)= (p+1)r−p
∑

hmodp

$(h,p)

= (p+1)r−pr
∑
G

λ(G)p−codimHG

as required.
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5. A formula for Rr(�,q). In order to prove Theorem 1, we give an expression
(5.2) for ther-level correlationRr(�,q) that involves summing over the intersection
of the dilated sets� with various lattices.
Recall that, for each set partitionG of {1, . . . , r}, we associate a subspaceHG ⊆

(Z/pZ)r−1. Now, given a divisordmodq, let � = ⊗p|dG(p) be a tuple of such set
partitions, one for each primep dividing d (recall thatq, and henced, is square-
free). LetL(�) ⊂ Zr−1 be the preimage of

∏
p|d HG(p) under the reduction map

Zr−1 → ∏
p|d(Z/pZ)r−1 � (Z/dZ)r−1. L(�) is a lattice whose discriminant (that

is, the index inZr−1) is

disc(�)=
∏
p|d

p
codim(H

G(p) )
.

The support supp(�) of L(�) is the product of all primesp for which HG(p) �=
(Z/pZ)r−1:

supp(�)=
∏

p:G(p) �=[{1},...,{r−1}]
p.

Since codim(HG(p))≤ r−1, we get
supp(�) | disc(�) | supp(�)r−1.

We set
λ(�)=

∏
p|d

λ
(
G(p)

)
,

whereλ(G) is given by (4.20). For a divisorc | q, we also set
a(h,c) :=

∏
p|c

a(h,p), $(h,c) :=
∏
p|c

$(h,p).

Note that by Proposition 4,

a(h,c)� c1/2+ε, $(h,c)� cε(5.1)

for all ε > 0.
Our formula forRr(�,q) is the following proposition.

Proposition 6. Ther-level correlation function is given by

Rr(�,q)= s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)

λ(�)
∑

h∈s�∩L(�)

a(h,c)$(h,c).(5.2)

Proof. We have that

Rr(�,q)= 1

N

∑
h∈s�∩Zr−1

N(h,q).



THE SPACING DISTRIBUTION OF QUADRATIC RESIDUES 223

By the Chinese remainder theorem,

N(h,q)=
∏
p|q

N(h,p).

We rewrite formula (4.3) in the form

N(h,p)= p+a(h,p)

2r
$(h,p),

where
$(h,p)= 2r−reff (h).

Thus, we find

N(h,q)= q$(h,q)

2rω(q)

∑
c|q

a(h,c)

c
= q

2rω(q)

∑
c|q

$
(
h,

q

c

) a(h,c)$(h,c)

c
.(5.3)

Inserting (5.3), we get a formula forRr(�,q). Recalling thatN = q/s,

Rr(�,q)= s

2rω(q)

∑
c|q

1

c

∑
h∈s�

$
(
h,

q

c

)
a(h,c)$(h,c).(5.4)

Next we use the expression (4.19) for$(h,p) to write $(h,q/c) = ∏
p|(q/c)

$(h,p) in the form

$
(
h,

q

c

)
=

∏
p|(q/c)

∑
G(p)

λ
(
G(p)

)
δ
(
h,G(p)

)= ∑
�=⊗p|(q/c)G(p)

λ(�)δ(h,�),(5.5)

where the sum is over all tuples of set partitions� =⊗p|(q/c)G(p), one for each prime
dividing q/c, and we put for each such tuple�,

λ(�) :=
∏

p|(q/c)
λ
(
G(p)

)

and

δ(h,�) :=
∏

p|(q/c)
δ
(
h,G(p)

)=

1 h ∈HG(p)modp for all p | q

c
,

0 otherwise.

This is the characteristic function of the latticeL(�) whose support supp(�) divides
q/c. Thus, we get the desired expression

Rr(�,q)= s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)

λ(�)
∑

h∈s�∩L(�)

a(h,c)$(h,c).
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6. Evaluating ther-level correlations. In order to estimate the correlations using
Proposition 6, we partition the sum (5.2) into two parts: The first consisting of pairs
c and� such thatcdisc(�) < s, and the second consisting of the pairs for which
cdisc(�) > s. We show that the first part gives the main term and the second part is
negligible.

6.1. The casecdisc(�) > s. We usea(h,c) � c1/2+ε (5.1) and$(h,c) � cε to
see that this term is bounded by

s

2rω(q)

∑
c|q

1

c

∑
supp(�)|q/c
cdisc(�)>s

|λ(�)|#{s�∩L(�)
}
c1/2+ε.(6.1)

By the Lipschitz principle (Lemma 16),

#
{
s�∩L(�)

}� vol(s�)

disc(�)
+sr−2,

and since vol(s�)= sr−1vol(�), we find that

#
{
s�∩L(�)

}� sr−1

disc(�)
+sr−2.(6.2)

Moreover, in order thats�∩L(�) �= ∅, we see that we need supp(�) � sr(r−1)/2,
since� does not intersect the walls. This is a consequence of the following observa-
tion. Let� ⊂ Rr−1 be a bounded convex set. Define

diam1(�)=max
{

r−1∑
k=1

|xk| : x ∈ �

}
.

Note that diam1 scales linearly: diam1(s�)= s diam1(�) for all s > 0.

Lemma 7. If supp(�) > diam1(s�)r(r−1)/2, then s�∩L(�) is contained in the
walls {h ∈ Rr−1 : σij (h)= 0 for somei < j}.
Proof. Let dij (�) be the product of the primesp such thatσij vanishes onHG(p) ,

that is, so that
σij (x)= 0modp for all x ∈ L(�).

Thendij (�) | supp(�), and moreover, we claim that

disc(�) |
∏
i<j

dij (�).

It is enough to check this one prime at a time and is equivalent to saying that

codim
(
HG(p)

)≤ #{i < j : σij = 0 onHG(p)

}
,



THE SPACING DISTRIBUTION OF QUADRATIC RESIDUES 225

which follows sinceHG(p) is given by vanishing of some of theσij .

Now note that if supp(�) > dr(r−1)/2, then for somei < j , dij (�) > d because
supp(�)≤ disc(�)≤∏

i<j dij (�), and the last product consists ofr(r−1)/2 factors.
If we taked = diam1(s�)= s diam1(�), then one hasdij (�) > diam1(s�) for some
i < j . However,σij (h)= 0moddij (�) and soσij (h)=mdij (�) for some integerm.
If m= 0, thenh lies in a wall. Ifm �= 0, then being an integer,|m| ≥ 1, and so

|σij (h)| ≥ dij (�) > diam1(s�).

Since

σij (h)=
∣∣∣∣∣
j−1∑
k=i

hk

∣∣∣∣∣≤
j−1∑
k=i

|hk| ≤
r−1∑
k=i

|hk|,

we find that
r−1∑
k=i

|hk|> diam1(s�).

Thus,h �∈ s� by definition of diam1(s�).

By Lemma 7, together with|λ(�)| � supp(�)ε , (6.1) is bounded by

s

2rω(q)

∑
c|q

c−1/2+ε
∑

supp(�)|(q/c)
cdisc(�)>s

supp(�)�sr(r−1)/2

supp(�)ε
(

sr−1

disc(�)
+sr−2

)
.(6.3)

We split the sum into two parts and uses < 2ω(q) to bound (6.3) by the sum of

1

s

∑
c|q

c−1/2+ε
∑

supp(�)|(q/c)
cdisc(�)>s

supp(�)ε
s

disc(�)
(6.4)

and

1

s

∑
c|q

c−1/2+ε
∑

supp(�)|(q/c)
cdisc(�)>s

supp(�)�sr(r−1)/2

supp(�)ε.(6.5)

We begin by noting that the number of� with supp(�)= g isO(gε), that is,

∑
supp(�)=g

1� gε.(6.6)
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Since we sum over supp(�)� sr(r−1)/2 in (6.5), we have supp(�)ε � sε
′
, and thus

(6.5) is bounded by

1

s

∑
c|q

c−1/2+ε
∑

g|(q/c)
g�sr(r−1)/2

gε � s−1+ε
∑
c|q

c−1/2+ε
∑

g|(q/c)
g�sr(r−1)/2

1.

By Lemma 18, the number of divisors ofq/c that are less thansr(r−1)/2 is at most
sε , so this term is bounded by

s−1+ε
∑
c|q

c−1/2+ε.

Since ∑
c|q

c−1/2+ε =
∏
p|q

(
1+ 1

p1/2−ε

)
�
∏
p|q

(1+1)ε′ � sε
′′
,

the contribution of (6.5) is at mostO(s−1+ε).
It now remains to bound (6.4). We first consider the terms for whichcsupp(�) > s.

Now, disc(�) ≥ supp(�), so if csupp(�) > s, then certainlycdisc(�) > s, and the
sum of the corresponding terms in (6.4) is bounded by

1

s

∑
c|q

c−1/2+ε
∑

supp(�)|(q/c)
csupp(�)>s

supp(�)ε
s

supp(�)

=
∑
c|q

c−1/2+ε
∑

g|(q/c)
cg>s

1

g1−ε

∑
supp(�)=g

1�
∑
c|q

c−1/2+ε
∑

g|(q/c)
cg>s

1

g1−ε
,

by (6.6). Changing the variable tod = cg, which is a divisor ofq satisfyingd > s,
this is bounded by

∑
d|q
d>s

∑
c|d

c−1/2+ε

(d/c)1−ε
=
∑
d|q
d>s

1

d1−ε

∑
c|d

c1/2+ε.

Now the sum
∑

c|d c1/2+ε is bounded byτ(d)d1/2+ε � d1/2+ε′ , so the above is
bounded by ∑

d|q
d>s

d−1/2+ε � s−1/2+ε

by Lemma 19. This bounds the contribution ofc, � with csupp(�) > s.
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If cdisc(�) > s thens/disc(�)≤ c. This, together with (6.6) implies that

1

s

∑
c|q

c−1/2+ε
∑

supp(�)|(q/c)
cdisc(�)>s
csupp(�)<s

supp(�)ε
s

disc(�)

� 1

s

∑
c|q

c1/2+ε
∑

g|(q/c)
cg<s

gε � s−1/2+ε
∑
c|q
c<s

∑
g|q
g<s

1

� s−1/2+ε


∑

c|q
c<s

1



2

� s−1/2+ε,

since
∑

c|q
c<s
1� sε by Lemma 19. Consequently, (6.4) isO(s−1/2+ε). (Note that we

only used supp(�)� sr(r−1)/2 to bound (6.5).)

6.2. The casecdisc(�) ≤ s. Fix c ≥ 1 and�, and partition the lattice points in
s� ∩L(�) into two subsets as follows. Fix a reduced fundamental cell (see B.1)
P = P(�) for the latticeL = L(�). ThencP is a reduced fundamental cell for the
dilated latticecL. We can tileRr−1 by the translateshc+cP , hc ∈ cL.

Definition. We say thatx ∈ L∩ s� is c-interior if there is somey ∈ cL so that
x ∈ y+cP ⊆ s�. We say thatx ∈ L∩s� is ac-boundarypoint otherwise.

Note that the notion depends onc and on the choice of a fundamental cellP for
L. An important fact is that if dist(x,∂(s�))!r cdisc(L), thenx is c-interior. This
follows from Lemma 15 since diam(cP )�r cdisc(L).

Lemma 8. Let P be a fundamental cell for the latticeL ⊆ Zr−1, c ≥ 1 so that
gcd(c,disc(L)) = 1. Then, fory ∈ cL, the intersectionL ∩ (y + cP ) with L of
the translate of the dilated celly + cP consists of a full set of representatives of
Zr−1/cZr−1.

Proof. If P = {∑r−1
j=1xj "2j : 0≤ xj < 1}, then thecr−1 lattice pointsy+∑r−1

j=1
nj

"2j , nj = 0,1, . . . ,c−1 inL∩y+cP are clearly inequivalent modulocL and are the
only points ofL in this intersection. We show that if gcd(c,disc(L)) = 1, then they
are inequivalent modulocZr−1. To see this, it suffices to show thatL∩cZr−1= cL.
By the theorem on elementary divisors, there is a basis{"ej } of Zr−1 and integers
dj ≥ 1 so that{dj "ej } is a basis ofL, and disc(L)=∏r−1

j=1dj . If x ∈ L∩cZr−1, then
x =∑r−1

j=1mjdj "ej ∈ L, and alsox = c
∑r−1

j=1nj "ej ∈ cZr−1. Comparing coefficients,
we find

mjdj = cnj , j = 1, . . . , r−1.(6.7)

Now, sincedj | disc(L) and gcd(c,disc(L))= 1, we have that gcd(c,dj )= 1, and so
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(6.7) shows thatmj = 0modc andx ∈ cL.

Lemma 9. (a)The number of pointsy of cL so thaty+cP ⊂ s� is

vol(s�)

disc(cL)
+O

(( s
c

)r−2)
.

(b) The number ofc-boundary points ofL is� csr−2.

Proof. (a) If y = cz ∈ cL, theny+ cP ⊆ s� if and only if z ∈ L∩ (s/c)� and
z+P ⊆ (s/c)�. Thus, we need to countN := #{z ∈ L∩ (s/c)� : z+P ⊆ (s/c)�}.
An upper bound is obtained by a packing argument: Since the translatesz+P are
disjoint and contained in(s/c)�, we get

N vol(P )≤ vol
( s
c

�
)
,

and so

N ≤ vol
(
(s/c)�

)
disc(L)

= sr−1vol(�)

cr−1disc(L)
.(6.8)

For a lower bound, note that ifz ∈ L∩(s/c)� satisfies dist(z,∂((s/c)�)) > diam(P ),
then z+P ⊆ (s/c)�. By the Lipschitz principle (Lemma 16) and Lemma 17, the
numberÑ of such points is

Ñ = vol
{
x ∈ (s/c)� : dist(x,∂((s/c)�))≥ diam(P )

}
disc(L)

+O

(( s
c

)r−2)
.

Further,

vol
{
x ∈ s

c
� : dist

(
x,∂

( s
c

�
))

≥ diam(P )
}
= vol

( s
c

�
)
+O

(
diam(P )

( s
c

)r−2)
,

and so

Ñ = vol
(
(s/c)�

)
disc(L)

+O

(
diam(P )(s/c)r−2

disc(L)
+
( s
c

)r−2)

= vol
(
(s/c)�

)
disc(L)

+O

(( s
c

)r−2)

because diam(P )�r disc(L).
SinceN ≥ Ñ , together with the upper bound (6.8), we find

N = vol
(
(s/c)�

)
disc(L)

+O

(( s
c

)r−2)
.
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(b) For the number ofc-boundary points, we subtract the number ofc-interior
points from the total number of points ofL∩s�. The total number of points inL∩s�
is given by the Lipschitz principle (Lemma 16):

L∩s� = vol(s�)

disc(L)
+O

(
sr−2

)
.(6.9)

To count the number ofc-interior points, we can write each uniquely asy+p, with
y as in part (a) andp ∈ L∩cP . Now #(L∩cP ) = cr−1 (see Lemma 8), and so, by
part (a), the number ofc-interior points is

Ncr−1= vol(s�)

disc(L)
+O

(
csr−2

)
.(6.10)

Subtracting (6.10) from (6.9) gives us part (b).

Fix�, c ≥ 1withcdisc(�)≤ s. Note that sinceq is square-free and supp(�) | (q/c),
we have gcd(c,disc(�))= 1. We now estimate the sum

∑
h∈L(�)∩s�

a(h,c)$(h,c).

We divide this into two sums,4int over thec-interior points and4bd over thec-
boundary points. We usea(h,c)$(h,c)� c1/2+ε to bound4bd by

#{c-boundary points}c1/2+ε � csr−2c1/2+ε = c3/2+εsr−2.

The contribution of thec-interior points is computed by writing each suchh ash =
y+h0 with h0 ∈ cP ∩L andy ∈ cL∩s�. For eachy, we get all possibleh0 that run
over a full set of representatives ofZr−1/cZr−1 since gcd(c,disc(�))= 1 (Lemma 8).
Denote the number of suchy by N ; by Lemma 9(a),N = (vol((s/c)�)/disc(L))+
O((s/c)r−2). Moreover,

a
(
y+h0,c

)
$
(
y+h0,c

)= a
(
h0,c

)
$
(
h0,c

)
,

sincey ∈ cL(�)⊂ cZr−1. Thus,
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4int =N
∑

h0modc

a
(
h0,c

)
$
(
h0,c

)

=
(
vol

(
(s/c)�

)
disc(L)

+O

(( s
c

)r−2)) ∑
h0modc

a
(
h0,c

)
$
(
h0,c

)

= vol
(
(s/c)�

)
disc(L)

∑
h0modc

a
(
h0,c

)
$
(
h0,c

)+O

(( s
c

)r−2
cr−1c1/2+ε

)

= vol
(
(s/c)�

)
disc(L)

∑
h0modc

a
(
h0,c

)
$
(
h0,c

)+O
(
c3/2+εsr−2

)
.

Thus, the total contribution of the pairs withcdisc(�)≤ s is

s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)
cdisc(�)≤s

λ(�)
∑

h∈s�∩L(�)

a(h,c)$(h,c)

= s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)
cdisc(�)≤s

λ(�)
vol(s�)

cr−1disc(�)

∑
h0modc

a
(
h0,c

)
$
(
h0,c

)

+O


 s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)
cdisc(�)≤s

|λ(�)|c3/2+εsr−2

 .

(6.11)

To estimate the error in (6.11), note that the conditioncdisc(�) ≤ s implies
csupp(�) ≤ s since supp(�) ≤ disc(�), so for an upper bound, we may replace the
summation over pairs satisfying the former condition by the sum over pairs satisfying
the latter. Noting that 2ω(q) ≥ s, this gives

s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)
cdisc(�)≤s

|λ(�)|c3/2+εsr−2� s−1+ε
∑
c|q

c1/2+ε
∑

supp(�)|q/c
csupp(�)≤s

|λ(�)|

� s−1+ε
∑
c|q

c1/2+ε
∑

g|(q/c)
cg≤s

∑
supp(�)=g

|λ(�)|.

Now |λ(�)| � supp(�)ε and the number of� with supp(�) = g is O(gε), which is
O(sε) sinceg ≤ cg ≤ s, so that the above is bounded by

s−1+ε
∑
c|q

c1/2+ε
∑

g|(q/c)
cg≤s

1.

The number of small divisorsg of q/c with g ≤ s/c ≤ s is at mostsε , so the above



THE SPACING DISTRIBUTION OF QUADRATIC RESIDUES 231

is at most

s−1+ε
∑
c|q
c≤s

c1/2+ε � s−1+εs1/2+ε#
{
c | q : c ≤ s

}� s−1/2+ε′,

which gives that the error term in (6.11) isO(s−1/2+ε).
We now extend the sum of the first term in (6.11) to all the pairsc, �, introducing

an error which was bounded in Section 6.1 byO(s−1/2+ε). (This is the term (6.4)
that was bounded without using the condition supp(�)� sr(r−1)/2.)
In summary, we find that the following proposition holds.

Proposition 10. For r ≥ 2, we have

Rr(�,q)= s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)

λ(�)
vol(s�)

cr−1disc(L)

∑
h0modc

a
(
h0,c

)
$
(
h0,c

)
+O

(
s−1/2+ε

)
.

(6.12)

7. The main term. We now treat the main term of (6.12). Define

� = s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)

λ(�)
vol(s�)

cr−1disc(�)

∑
h0modc

a
(
h0,c

)
$
(
h0,c

)
.

We show that
� = vol(�),

which, with (6.12), proves Theorem 1.
The sum overhmodc is multiplicative:∑

hmodc

a(h,c)$(h,c)=
∏
p|c

∑
hmodp

a(h,p)$(h,p).

Furthermore, by Lemma 5,∑
hmodp

a(h,p)$(h,p)= (p+1)r−pr
∑
G(p)

λ
(
G(p)

)
p
−codimH

G(p)
.

Now note that sincep
codimH

G(p) = disc(G(p)), we get

� = s

2rω(q)

∑
c|q

1

c

∑
supp(�)|(q/c)

λ(�)
sr−1vol(�)

cr−1disc(�)

∏
p|c

(
(p+1)r−pr

∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

)
)

= vol(�)sr

2rω(q)

∑
c|q

1

cr

∑
supp(�)|(q/c)

λ(�)

disc(�)

∏
p|c

(
(p+1)r−pr

∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

)
)
.
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Furthermore, ∑
supp(�)|(q/c)

λ(�)

disc(�)
=

∏
p|(q/c)

∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

) .
Therefore, we find that

� = vol(�)
1

σ−1(q)r
∑
c|q

∏
p|(q/c)

∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

)∏
p|c

((
1+ 1

p

)r

−
∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

)
)

= vol(�)
1

σ−1(q)r
∑
c|q

A
(q
c

)
B(c).

Thus,� is a multiple of the Dirichlet convolution of the multiplicative functionsA,
B, with A(1)= B(1)= 1,

A(p)=
∑
G(p)

λ
(
G(p)

)
disc

(
G(p)

) ,
and (since(1+1/p)r = σ−1(p)r )

B(p)= σ−1(p)r−A(p).(7.1)

Now, by (7.1), we have

(A∗B)(q) :=
∑
c|q

A
(q
c

)
B(c)=

∏
p|q

(
A(1)B(p)+A(p)B(1)

)

=
∏
p|q

σ−1(p)r = σ−1(q)r .

Finally, this gives the main term ofRr(�,q):

� = vol(�)
1

σ−1(q)r
(A∗B)(q)= vol(�)

1

σ−1(q)r
σ−1(q)r = vol(�).

Appendices

Appendix A. Recovering the level spacing from the correlations. In this appen-
dix, we explain how to recover the various spacing distributions from the correlation
functions. This is well known in the physics literature (e.g., [15]) and is certainly
implicit in Hooley’s work [8], [9], [10], but we do not know of a good source for it
in the mathematical literature. A very detailed treatment of this and more will appear
in a forthcoming book by Katz and Sarnak [12].
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We begin withR/Z, which we think of as the circle with unit circumference. We
denote by{x} the fractional part ofx. If n ≤ x < n+1, n integer, then{x} = x−n.
We set

((x))=



{x} 0≤ {x}< 1

2
,

{x}−1 1

2
≤ {x}< 1.

We order the points inR/Z counterclockwise and writex % y if the points lie in a
segment of length< 1/2 onR/Z andx follows y. Thesigned distanceon R/Z is
given by((x−y)); thus,−1/2 ≤ ((x−y)) < 1/2. In terms of the signed distance,
x % y if and only if ((x−y)) > 0.
Given a finite setS ofN points onR/Z, andk ≥ 2, thek-level correlation functions

measure clustering properties of the sequenceS ⊂ R/Z on a scale of themean spacing
1/N . For ak-tuple of pointsx = (x1, . . . ,xk) of S, the oriented distance vector is

D(x)= (
((x1−x2)), . . . , ((xk−1−xk))

)
.(A.1)

Given a bounded set� ⊂ Rk−1, we define thek-level correlation as

Rk(�,S)= 1

N
#

{
x ∈ Sk :D(x) ∈ 1

N
�

}
.

As an example, let$k−1⊂ Rk−1 be the standard open simplex

$k−1=
{(

y1, . . . ,yk−1
) | yi > 0, k−1∑

i=1
yi < 1

}
,

and fort > 0, set� = t$k−1. Then ifN > 2t ,D(x) ∈ (1/N)� = (t/N)$k−1 means
that the following are true:
(1) ((xi−xi+1)) > 0, that is,x1 % x2 % ·· · % xk;
(2) the points all lie in an arc of length at mostt/N .
As another example, writek−1= i+ j , and fort1, t2 > 0, set� = t1$

i × t2$
j ,

which we can write as

� = {(
y1, . . . ,yk

) : ym > 0,y1+y2+·· ·+yi < t1,yi+1+·· ·+yi+j < t2
}
.

ThenD(x) ∈ (1/N)� if and only if x1 % x2 % ·· · % xk andx1, . . . ,xi+1 lie in an arc
of length< t1/N , andxi+1, . . . ,xi+j+1= xk lie in an arc of length< t2/N .
Given any subsetT ⊆ S that is contained in a semicircle, the ordering gives us

unique initial and final elements ofT , and we can writeT = {xinit = x1 ≺ x2 ≺ ·· · ≺
xfin}. We denote by|T | the number of elements ofT , and by diam(T ) the distance
dist(xinit ,xfin) between the initial and final points ofT . If T consists of just the initial
and final points, we say thatT is a consecutive pair. Aconsecutivek-tuple of S is
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a k-tuple of elementsx1 = xinit ≺ ·· · ≺ xk = xfin so that there are no points ofS
betweenxj andxj+1, for 1≤ j < k.
For x < 1/2, letNk(x) be the number ofk-tuples of diameter smaller thanx; this

is 0 if k ! 1. It is clear from the definitions and the discussion above that we can
describe these functions in terms of the correlation function of the simplexx$k−1 by

Rk

(
x$k−1,S

)= 1

N
Nk

( x

N

)
.(A.2)

Furthermore, letg(x) be the number of consecutive pairs of diameter less thanx, that
is, the number of spacings between consecutive elements ofS of length less thanx.
We may expressg in terms of an alternating sum ofNk ’s as follows.

Lemma 11. With g andNk as above, we have forx < 1/2,

g(x)=
∑
k≥2

(−1)kNk(x).

Moreover, for alln≥ 1, we have the inequalities

2n+1∑
k=2

(−1)kNk(x)≤ g(x)≤
2n∑
k=2

(−1)kNk(x).

Before giving the proof, we need the following elementary lemma on sums of
binomial coefficients.

Lemma 12. Letm ≥ 0 be an integer. Then
∑m

i=0(−1)i
(
m
i

) = 0 unlessm = 0, in
which case the sum equals1. Moreover,

2n+1∑
i=0

(−1)i
(
m

i

)
≤

m∑
i=0

(−1)i
(
m

i

)
≤

2n∑
i=0

(−1)i
(
m

i

)
.

Proof. The first part is just the binomial expansion of(1−1)m. As for the sec-
ond part, ifm ≥ 1, use the identity(m

i

) = (
m−1
i

)+ (
m−1
i−1

)
to find

∑k
i=0(−1)i

(
m
i

) =
(−1)k(m−1

k

)
, from which the claim follows.

We can now prove Lemma 11.

Proof of Lemma 11.For each pairT = {a % b} of diameter less than 1/2, we
associateXT , the set of alli-tuplesx1 % ·· · % xi in S such that(x1,xi) = (a,b).
The set of all tuples of diameter less thanx is thus expressed as adisjoint union
of theXT ’s asT ranges over all pairs of diameter less thanx. If we let NT

i be the

number ofi-tuples inXT , thenNi =∑
T NT

i . ButN
T
i = (|T |−2

i

)
, so by Lemma 12,∑

i≥2(−1)iNT
i is 0 unlessT is a consecutive pair, in which case the alternating sum
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is 1. Summing over all consecutive pairs, we get thatg(x) = ∑
k≥2(−1)kNk(x).

Lemma 12 also gives that forn > 0,

2n+1∑
i=2

(−1)iNT
i ≤

∑
i≥2

(−1)iNT
i ≤

2n∑
i=2

(−1)iNT
i .

Summing over allT , we get the second assertion.

A.1. The joint level spacing.An (i,j)-tuple of diameter(x,y) is an(i+j)-tuple
x1 % ·· · % xi % xi+1 % ·· · % xi+j (all lying in an arc of length< 1/2) such that
dist(xi,x1)= x and dist(xi+j ,xi)= y.
For i ≥ 2, j ≥ 1, andx + y < 1/2, we letNi,j (x,y) be the number of(i,j)-

tuples of diameter at most(x,y). Let g(x,y) be the number of consecutive triples
x1 % x2 % x3 of diameter smaller than(x,y). Analogously to Lemma 11 we have the
following lemma.

Lemma 13. If we letAk(x,y)=∑
i+j=k Ni,j (x,y), then

g(x,y)=
∑
k≥3

(−1)k+1Ak(x,y).

Moreover, forn≥ 0, we have the inequalities

3+2n+1∑
k=3

(−1)k+1Ak(x,y)≤ g(x,y)≤
3+2n∑
k=3

(−1)k+1Ak(x,y).

Proof. For each tripleT = {a % b % c} of diameter at most(x,y), letXT be the set
of (i,j)-tuplesx1 % ·· · % xi % xi+1 % ·· · % xi+j such that(x1,xi,xi+j ) = (a,b,c),
and letNT

i,j be the number of(i,j)-tuples inXT . We may write the set of(i,j)-
tuples of diameter smaller than(x,y) as a disjoint union ofXT ’s, asT ranges over
all (2,1)-tuples with diameter at most(x,y). GivenT , we may count tuples of type
(i,j) in XT as follows. LetM,N be the number of elements ofS betweena,b
andb,c, respectively (we allow bothM andN to be 0). ThenNT

i,j =
(

M
j−2

)(
N
i−1

)
.

Moreover,AT
k = ∑

i+j=k N
T
i,j = (

M+N
k−3

)
since there are

(
M+N
k−3

)
ways of choosing

k − 3 objects out ofM “blue” and N “red” objects. By Lemma 12, we see that∑
k≥3(−1)k+1AT

k =∑
k≥3(−1)k+1

(
M+N
k−3

)
is 0 unlessT is a consecutive(2,1)-tuple,

in which case it is 1. Now Lemma 12, together withAT
k = (

M+N
k−3

)
, shows that

3+2n−1∑
k=3

(−1)k+1AT
k ≤

∑
k≥3

(−1)k+1AT
k ≤

3+2n∑
k=3

(−1)k+1AT
k .

Summing over all triplesT of diameter at most(x,y), we are done.
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A.2. Applications to squaresmodq. We let

Sq =
{
n

q
: 0≤ n≤ q−1,n a square moduloq

}
⊂ R

Z

be the image inR/Z of the set of squares inZ/qZ. The mean spacing between
elements ofSq is 1/Nq , whereNq is the number of squares moduloq. For x > 0,
gq(x/Nq) is the number of consecutive pairs inSq of diameter at mostx/Nq , that is,
the number of normalized consecutive spacings of length< x. We set

P̃ (x)= lim
q→∞

1

Nq

gq

(
x

Nq

)
.

This is the limiting proportion of normalized consecutive spacings inSq of length at
mostx (this normalization sets the mean spacing to be unity).P̃ (x) is the cumulant of
the level spacing distributionP(s) of the introduction. Likewise, we set forx,y > 0,

P̃ (x,y)= lim
q→∞

1

Nq

gq

(
x

Nq

,
y

Nq

)

the cumulant of the joint level spacing distribution.
For a bounded convex set� ⊂ Rk−1 not intersecting the walls, andN ! 1,

(1/Nq)� will be contained in the cube(−1/2,1/2)k−1. For x = (n/q) ∈ Sk
q , (0≤

ni < q are squares moduloq) the oriented distance vectorD(x) (see (A.1)) lies in
(1/Nq)� if and only if there is an integer vectorh ∈ (q/Nq)�∩Zk−1 so that

xi−xi+1= himodq, 1≤ i ≤ k−1.
Denoting byN(h,q) the number of solutions of the above system in squaresni

moduloq, we find that the correlation functionRk(�,q) := Rk(�,Sq) satisfies

Rk(�,q)= 1

Nq

∑
h∈s�∩Zk−1

N(h,q)(A.3)

with s = q/Nq .

Lemma 14. If x,y > 0, then

P̃ (x)= 1−e−x

and
P̃ (x,y)= (

1−e−x
)(
1−e−y

)
.

Proof. As noted above (see (A.2)), we can express the functionsNk(x) in terms
of the correlation functions associated to the simplexx$k−1, whose volume is
(xk−1/(k−1)!):

Rk

(
x$k−1;q)= 1

Nq

Nk

(
x

Nq

)
.

From Theorem 1, we know that
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Rk

(
x$k−1;q)= xk−1vol

(
$k−1)+Ok

(
s−1/2+ε

)
= xk−1

(k−1)! +Ok

(
s−1/2+ε

)
.

By Lemma 11, we see that forn > 0,

1+2n+1∑
i=1

(−1)i+1x
i

i! ≤ lim infq→∞
gq(x/Nq)

Nq

and

limsup
q→∞

gq(x/Nq)

Nq

≤
1+2n∑
i=1

(−1)i+1x
i

i! .

Letting n→∞ and noting that the above polynomials are truncations of the Taylor
series of 1−e−x , we are done.
For the second part of the lemma, recall thatNi,j (x,y) is the number of ordered

i+j -tuples of elements ofSq such that the firsti are contained in an interval of length
x, and the lastj elements lie in an interval of lengthy. Thus, analogously to (A.2),
Ni,j (x,y) is a scaled version of the(i+j−1)-correlation with respect to the convex
setx$i−1×y$j :

Ni,j

(
(x/Nq),(y/Nq)

)
Nq

= Ri+j

(
x$i−1×y$j ;q).

By Theorem 1,

Ri+j

(
x$i−1×y$j ;q)= xi−1yj

(i−1)!j ! +Oi,j

(
s−1/2+ε

)
since

vol
(
x$i−1×y$j

)= xi−1yj

(i−1)!j ! .
LettingAk(x,y)=∑

i+j=k Ni,j (x,y) and using Lemma 12, we get

limsup
q→∞

1

Nq

gq

(
x

Nq

,
y

Nq

)
≤
3+2n∑
k=3

(−1)k+1
∑

i+j=k
i>1
j>0

xi−1yj

(i−1)!j !

and
3+2n∑
k=3

(−1)k+1
∑

i+j=k
i>1
j>0

xi−1yj

(i−1)!j ! ≤ lim infq→∞
1

Nq

gq

(
x

Nq

,
y

Nq

)
.

Since the above polynomials are truncations of the Taylor series for(1− e−x)(1−
e−y), we are done.
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Appendix B. Some geometry of numbers

B.1. Given a basis"21, . . . , "2n of a latticeL in Rn, the fundamental cell is the half
open set

P
({"2i}) := {

x1"21+·· ·+xn "2n : 0≤ xi < 1
}
.

It serves as a fundamental domain for the action ofL on Rn by translations. The
volume ofP({"2i}) is the discriminant disc(L) of the latticeL:

vol
(
P
({"2i}))= ∣∣det("21, . . . , "2n)∣∣= disc(L).

B.2. We need the following basic fact (due to Mahler and Weyl) from reduction
theory. In any dimensionn ≥ 1, there are constants 0< c′n < c′′n so that any lattice
L⊂ Rn has a basis"21, . . . , "2n which is reduced in the sense that

c′n ≤
∣∣"21∣∣ · · · ∣∣"2n∣∣
disc(L)

≤ c′′n.(B.1)

This is a consequence of Minkowski’s second theorem on successive minima (see [1,
Lemma V.8] or [20, §6]). This basis is not unique in general.

B.3. We define the diameter diam(L) of the latticeL to be the minimum of the
diameters of all fundamental cells forL.

Lemma 15. The diameter of an integer latticeL⊆ Zn is bounded by the discrim-
inant ofL:

diam(L)�n disc(L),(B.2)

the implied constant depending only on the dimensionn.

Proof. It suffices to show that ifP({"2i}) is the fundamental cell of an integer
latticeL ⊆ Zn with respect to a reduced basis{"2i}, then the diameter ofP({"2i}) is
bounded by the discriminant ofL:

diam
(
P
({"2i}))�n disc(L).(B.3)

To see this, note that, sinceL⊆ Zn is an integer lattice, the length of any nonzero
vector inL is at least 1; then this implies that a reduced basis hasbounded eccentricity:

1≤ ∣∣"21∣∣≤ ∣∣"22∣∣≤ ·· · ≤ ∣∣"2n∣∣≤ c′′n disc(L)(B.4)

(assuming we ordered the basis vectors according to their length). Indeed, using (B.1)
together with|"2i | ≥ 1, we get an upper bound for the longest basis vector"2n,



THE SPACING DISTRIBUTION OF QUADRATIC RESIDUES 239∣∣"2n∣∣= 1· ∣∣"2n∣∣≤ ∣∣"21∣∣ · ∣∣"22∣∣ · · · · · ∣∣"2n∣∣≤ c′′n disc(L).

Thus, the diameter of the fundamental cellP({"2i}) is at most
n∑

i=1

∣∣"2i∣∣≤ n
∣∣"2n∣∣≤ c′′n disc(L)

as required.

B.4. It is useful to note that for integer dilatescL of a latticeL, c ≥ 1, the
diameter scales linearly: diam(cL) = cdiam(L), while the discriminant scales with
cn: disc(cL)= cndisc(L). Thus, to bound the diameter of a dilate of an integer lattice,
we use

diam(cL)�n cdisc(L).(B.5)

B.5. The Lipschitz principle

Definition. A set� ⊂ Rn is of classm if the intersection of every line with�
consists of at mostm intervals (including the degenerate case when some of the
intervals are points) and if the same is true for the projection of� on every linear
subspace.

Thus, for instance, a convex set is of class 1.
We use the following form of the “Lipschitz principle” from the geometry of

numbers to estimate the number of lattice points in a region ofRn.

Lemma 16. Let L ⊂ Zn be an integer lattice of discriminantdisc(L), and let
� ⊂ Rn be a set of classm (e.g., a convex set). Suppose that� lies in a ball of radius
R around the origin. Then

#(L∩�)= vol(�)

disc(L)
+O

(
Rn−1).(B.6)

This follows from the Lipschitz principle for the integer lattice proven by Davenport
[5], as adapted by W. Schmidt (see [19, Lemma 1]).
We apply the Lipschitz principle to certain subsets of convex sets. For this purpose,

we need the following lemma.

Lemma 17. Let� ⊂ Rn be a convex set, letd > 0, and define

�d :=
{
x ∈ � : dist(x,∂�)≥ d

}
to be the set of points of� of distance at leastd from the boundary∂� of �. Then
�d is convex.

Proof. What we need to show is that for anyx1,x2 ∈ �d and λ ∈ [0,1], the
point x3 = x1+λ(x2− x1) also lies in�d , that is, if |y| ≤ d, thenx3+ y ∈ �. But
x3+y = (x1+y)+λ((x2+y)−(x1+y)), that is,x3+y lies on a line betweenx1+y
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andx2+y. These two points lie in� sincex1,x2 ∈ �d . By convexity, so doesx3+y.

Appendix C. Counting small divisors. In the paper, we need to use some es-
timates for the number of divisors ofq that are smaller than a fixed power of the
mean spacings. As is well known, the number of all divisors ofq is O(qε) for all
ε > 0. This is not enough for our purposes, as we need a bound that isO(sε). This is
provided by the following lemmas.

Lemma 18. Let q be square-free, and lets = 2ω(q)/σ−1(q). Fix α > 0. Then as
s →∞,

#
{
d | q : d < sα

}=O(sε)

for all ε > 0.

Proof. We start by bounding products ofk distinct primes below bykk; we may
assume that the primes are the firstk primes. Then by the prime number theorem,

log
k∏

i=1
pi =

k∑
i=1
logpi ∼ pk ∼ k logk.

Exponentiating, we see that the product is bounded below bykk. Now,

#{d | q : d < sα} =
∑
j

aj ,

whereaj = a(j,sα,q) is the number of divisors ofq that are smaller thansα and
have preciselyj prime factors. But ifj > N , whereN is the smallest integer such that
NN ≥ sα, thenaj = 0. Moreover, settingw = ω(q), we see thataj ≤

(
w
j

)
. Hence,

∑
d|q

d<sα

1≤
∑
j≤N

(
w

j

)
≤N

(
w

N

)
.

By Stirling’s formula,
(
w
N

)� (wN/(N/e)N). Thus,

∑
i

aj ≤N

(
w

N

)
�N

(we

N

)N �N

(
N log(N)e

αN log(2)

)N

sinceNN ≥ sα ! 2wα(1−ε) implies thatw ≤ (N log(N)/α log(2)). Thus,

{
d | q : d < sα

}�N

(
log(N)e

α log(2)

)N

� (C logN)N,

but the last term is clearlyO(sε).
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Lemma 19. If α > 0, then
∑

d|q
d>s

d−α � s−α+ε .

Proof. We divide the sum into two parts: one overs < d < sR and the other over
d > sR (R is a parameter chosen later). For the first, we use the fact that there are
few (namely,O(sε)) divisorsd of q with d < sR to bound that contribution by∑

d|q
s<d<sR

d−α �
∑
d|q

s<d<sR

s−α � s−α+ε.

For the summands withd > sR, used−α < s−Rα andτ(q)= 2ω(q) � s1+ε to get∑
d|q

d>sR

d−α � s−Rατ(q)� s1−Rα+ε.

Now chooseR > 0 so that 1−Rα <−α to conclude the lemma.
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