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THE DISTRIBUTION OF SPACINGS BETWEEN
QUADRATIC RESIDUES

PAR KURLBERGAND ZEEV RUDNICK

1. Introduction. Our goal in this paper is to study the distribution of spacings (or
gaps) between squaresdrigZ, asq — oo. In the case thaj is prime, a theorem of
Davenport (see [3], [4], [11], and [18]) shows that the probability of two consecutive
quadratic residues modulo a primebeing spaced units apart is 2", asqg — oo.

For our purposes, we may interpret this result as saying that when we normalize the
spacings to have unit mean, then the distribution of spacirg-asoco along primes

is given by
P(s)=) 2" (s - g) :
h=1

that is, a sum of point masses at half-integers with exponentially decreasing weights.
In this paper, we study the spacing distribution of squares moglwden g is

square-free ankighly compositgthat is, the limiting distribution of spacings between

the squares modulg as the number of prime divisor&,(q), tends to infinity. For

odd square-freg, the numbenv, of squares modulg equals

plq

This is because, ip is an odd prime, the number of squares modullis (p +1)/2
and, forqg square-freey is a square modulg if and only if x is a square modulp
for all primesp dividing ¢. Thus, for oddy, the mean spacing, = ¢/N equals

20(q) 20(q)

T @+ 1p) o)

Forg = 24’ even and square-free, itis easily seenthat s, . It follows thats, — oo
asw(qg) — oo, unlike the case of primg, where the mean spacing is essentially
constant. Thus, unlike in the prime case (where the level spacing distribution was
forced to be supported on a lattice), in the highly composite case, there is an a priori
chance of getting a continuous distribution.

Received 3 August 1998.

1991 Mathematics Subject Classificatidtimary 11.

Authors’ work supported in part by Israel Science Foundation grant number 192/96. Kurlberg
also partially supported by the European Community Training and Mobility of Researchers network
“Algebraic Lie Representations,” EC-contract number ERB FMRX-CT97-0100.

211
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A relevant statistical model for the distribution of spacings is given by looking
at random points in the unit interv&/Z. For independent, uniformly distributed
numbers inR/Z, the spacing statistics are said to Baissonian The distribution
P(s) of spacings between consecutive points is that of a Poisson arrival process, that
is, P(s) = e~ * (see [6]). Moreover, the joint distribution éfconsecutive spacings is
the product ok-independent exponential random variables.

Itis well known (see [15]) that the spacing statistics of the superposition of several
independent spectra converge to the Poisson case—the spacing statistics of uncorre-
lated levels. Thus, the heuristic that “primes are independent,” together with Daven-
port’s result, indicates that the spacing statistics of the squares mgpdhlmuld be, in
the limit asw(g) — oo, Poissonian; that is, in some sense, squares medb&have
as random numbers. It is our purpose to confirm this expectation.

In order to study the level spacings, we proceed by studying-theel correlation
functions These measure clustering properties of a sequenByZhon a scale of
the mean spacing. Their definition and their application to computing various local
spacings statistics are recalled in Appendix A. In our case, these turn out to be given
by the following. Forr > 2 and a bounded convex sét- R” 1, let

1 L
R, (€,q) = N—#{x,- distinct squares magl: (x; —xz,...,x,—1—x,) € s6}.
q

This is immediately transformed into

1
(1.1) Rib.p== " ) N,
1 pesenzr—1

whereN (h, q) is the number of solutions of the system of congruenggs— y; =
h; modg with y1, y2, ..., vy, squares modulg andh = (h1,...,h,—1) € zr1

To compute the correlations for distingt we consider only seté that a priori only
contain vectorgx; — x;4+1) with distinct coordinates. To do this, we define “roots”
oij onR" L for i < j by o;;(h) = i;ilhk. The hyperplanego;; = 0} ¢ R™!
are called “walls,” andx; — x;+1) does not lie in any of the walls if and only if all
coordinates;; are distinct.

Our main result shows that® does not intersect any wall, th& (¢, g) — vol(6)
for any sequence of square-freavith w(q) — oo.

THEOREM 1. Letq be square-free, let > 2, and let¢ ¢ R”~! be a bounded con-
vex set that does not intersect any of the walls. Themeeel correlation function
satisfies

Ry (6,9) =vol(€)+ 0 (s7Y?™) ass — oo

for all € > 0, wheres is the mean spacing.
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This theorem implies that all spacing statistics are Poissonian (see Appendix A). For
instance, if we denote by, ..., sy_1 the normalized differences between neighboring
squares, then we have the following theorem.

THEOREM 2. For g square-free, the limiting level spacing distribution of the squares
modulog is given byP (1) = exp(—t) asw(q) — co. Moreover, under the same con-
dition, for anyk > 1, the limiting joint distribution of(s;,, s,,+1, . . ., Sn+%) iS @ product
]'[ffzo exp(—t;) of k+1 independent exponential variables.

There are only a few known cases where the complete spacing distribution can be
proved to be Poissonian as in our case. A notable example is Hooley's results (see [7],
[8], [9], and [10]) that the spacings between elements coprimg doe Poissonian
as the mean spacing/¢ (¢) — oo. A much more recent result is due to Cobeli and
Zaharescu [2], who show that the spacings between primitive roots with respect to a
prime p are Poissonian provided the mean spagifigy(p — 1) — oc.

The results of this paper are related to work on the level spacing distribution of the
fractional partgan?} (« irrational) by Rudnick, Sarnak, and Zaharescu [16], [17]. In
particular, in [17], an attempt to study that problem is made by replagingth a
rational approximatioid/q, and this leads to a study of the spacings of the sequence
bn?modg, 1 <n < N for N a small power of;. The available sites are exactly the
set of squares with respectgohence our interest in the problem.

In [17], it is shown that in order for all the correlation functions of the sequence
{an?} to have Poisson behavior, it is necessary to assume that the rational approxi-
mantsb/q have denominatgg that is close to square-free, hence our interest in the
square-free case. For arbitrayyit is still true that all correlations are Poissonian, but
there are significant technical complications to overcome in proving this (see [13]).

We believe that the methods developed in this paper should be useful in studying
similar problems, for instance, the spacing distribution of cubes moglus the
number of prime factors af that are congruent to 1 modulo 3 tends to infinity. (The
condition modulo 3 is necessary in order for the mean spacing to go to infinity.)

Contents of the paperWe begin with a section sketching the argument for Theo-
rem 1 in the case of the pair correlation function. This section can be used as a guide
to the rest of the paper.

In Section 3, we first reduce the problem to the casedglimbdd. Then in Section 4,
we analyze the behavior o¥(k, p), where p is prime. Squares that are distinct
modulog are not necessarily distinct moduto we denote by (7)) the number of
squares that remains distinct after reduction mogultsing an inclusion-exclusion
argument, we writees; (1) as a linear combination of characteristic functions of certain
hyperplanes oveZ /pZ. Next, in Section 5, we use the multiplicative properties of
the counting functiongV (4, ¢) to derive an expression fa, (6, ¢) as a sum over
divisorsc of g and lattices. arising from intersections of hyperplanes modpléor
different p’s (see Proposition 6).

In Section 6, we show that the main term of the sum consists of those terms for
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which the product ot and the discriminant of. are small with respect tgo, and
an error term corresponding to terms where the product is large. In Section 7, we
evaluate the main term and show that it gives us exactlf@jolthus giving us our
main result.

In Appendix A, we explain how to use Theorem 1 to derive results such as those
in Theorem 2, that is, that the level spacings are Poissonian as well. Appendix B
explains some background on counting lattice points in convex sets. In Appendix C,
we estimate the number of divisors @fthat are smaller than a fixed power of the
mean spacing.

2. The pair correlation: A sketch. In order to explain the proof of Theorem 1, we
give an overview of the argument in the special case of the pair correlation function.

Let ¢ be an odd, square-free number witllg) prime factors, and lef be an
interval not containing the origin. As in the introduction, define the pair correlation
function 1

Ro(l, )=~ ) N,
hesINZ
whereN is the number of squares modujos = g/N = 2°@ /o_1(g) is their mean
spacingg_1(q) = ]'[p‘q(1+(1/p)), andN (h, g) is the number of solutions in squares
modulog of the equation
y1—y2="h modg.

We sketch a proof thaR2(1,q) — |I| asw(g) — oo (|I]| being the length of the
interval). In fact, we have the more precise result in the following theorem.

THEOREM 3. For ¢ odd and square-free, we have, for alt 0,
Ro(1,q) = |I|+O(s71T°).

Proof. Here are the main steps in the argument.
Step 1.By the Chinese remainder theoreM(h, g) = ]_[mq N(h, p) is a product
over primes dividing;. By elementary considerations, one sees that

h,
(2.1) N, py =TI £y,

with a(k, p) = O(1) and

pth,

A(h, p) =1+8(h, p), 8(h, p) =
1 plh.

From this, we see that

gA(h,q) x—~a(h,c)
(2.2) N, g) =300 > -

clg
with a(h, c) := ]_[plca(h, p) L c®andA(h,q) = leq A(h, p).
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Step 2.We decomposé (i, g) = A(h,c)A(h, g /c) and rewriteA(h, g /c) as

a(nd)= T @+st.p)= Y sth.g)

plg/c) gl(q/c)

with
0 gfh,

8(h,g) = {1 ¢l

Substituting this into the expression (2.2) Ik, ¢), and inserting the result into
the formula forR2(1, q), we get

1 1
(2.3) RZ(I,(I):WZ; Z Z a(h,c)A(h,c).

clg  glq/c) hesingZ

Step 3.We partition the sum into two parts, one over the pgirs with gc < s,
and the leftover part over pairs wigr > s. We show this leftover part is negligible
(in fact, O (s~1+€)). We first usea(h, ¢)A(h, ¢) < ¢¢ and the fact that, in order for
the inner sum ovek to be nonempty, we neegl« s (recall that/ does not contain
the origin) to get that the sum over pairs with > s is bounded by

sTHENY T N HsINgZ) L sTHEY e 3

clg gl(g/o) clg gl(g/c)
8L gks
cg>s cg>s
< $€ § :d—l-i-e 2 :1_
dlq gld
d>s gKs

Now we use Lemma 18, which shows that the number of divigotss of ¢ is at
mostO (s€), and Lemma 19 to bound the above by

§€ Zd—l+e < s—l+e

dlq
d>s

as promised.

Step 4.For each pair ot, g with cg < s, we first treat the inner sum ovére
sINgZ.We break it up into sums ovér|I|/gc)+ O (1) subinterval§y, y+cg)NgZ,
plus a leftover term of size at most<. For each subinterval, we use periodicity of
a(h,c)A(h,c) underh — h+c to find

c

Z a(h,c)A(h,c) = Za(ghl,c)A(ghl,c).

hely,y+cg)NgZ h1=1
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Because; is square-free ang dividesqg/c, we have thag, ¢ are coprime. There-
fore, we can change variablés= gh; to get that this last sum equals

> ath,o)Ah, =[] Y. alh p)A, p).

hmodc plc hmodp

We evaluate the surp, modp @ (1, p)A(h, p) by noting that, summing (2.1) over
hmodp, the sum of the left-hand side is simply the number of all pairs of squares
modulo p, namely,(p + 1)2/4. This gives

> ah.p)Ath.p)=p+1.
hmodp

Thus, the inner sum ovére sI NgZ equals

> ah.0)Ah.0) = (M + 0(1>) [T(r+D+0(c)
8¢C
hesINgZ ple
s||

= "—0_1(c)+ O(c*).
8
Step 5.Inserting this into the expression (2.3) fBy(1, g) gives

1 1 || —1+e€
R2(1,q)—m2|:z ) /Z) —0'_1(C)+0(s )
clg  gllg/c):ge<s

Now we extend the sum to all paigsc, to find that, up to an error of (s ~1t¢),
we have

1 o_1(c) 1
Ra(l,q) ~ 11— ()ZZ — > -
-1, dl@/o®

_ 1 o-1(c) q
_|I|a1(q)2CX|q: c O_l(Z)

Y-,

C
clg

=|I|
o-1(q)
which is what we need to prove our theorem. O
In the following sections, we repeat these steps with full details for the higher
correlation functions, where several technical complications arise.

3. Reduction to oddg. We first show that in Theorem 1 it suffices to consider
only the case of odd. Suppose that = 2¢’ with ¢’ odd and square-free. We recall
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that

1
3.1 Rr (61 = — N hs ’
(3.1) €=y > N9
hesenzr—1

where N (h,q) is the number of solutions of the system,1 —y; = h; where
¥1, y2,..., ¥y, are squares modulpandh = (hy,...,h,—1) € (Z/qZ)’*l.
By the Chinese remainder theorem, the numNgrof squares modulg is the
product
Ny = N2Ny = 2Nq/.

Therefore, the mean spacing:= ¢g/N, is given by
29 ¢

sq = = =
2N, Ny

(3.2)

Sq’-

Moreover, again by the Chinese remainder theorem,
N(h,q)=Nh,2)N(h,q'),
and since all residues modulo 2 are squares, we Nawe2) = 2. Thus, we find

N(h,q) 2N(h,q') N(h,q")
N, 2Ny Ny

Inserting (3.2), (3.3) into (3.1), we find that

(3.3)

R/ (6,q) = R (6,q').

This shows that it suffices to prove Theorem 1 §oodd, which we assume is the
case in the sequel.

4. The prime case. Let p > 2 be a prime. Foh = (h1,...,h,—1) € (Z/pZ)’*l,
we defineN, (h, p) to be the number of solutions in squangsmod p (including
y; = 0) of the system

(4.1) yi—Yisr=h;modp, 1<i<r-1

This number depends crucially on the number of distictFor each = (hy, ...,
hy—1), we definerett (k) to be the number of distinct; (not necessarily squares)
satisfying the system (4.1). Since the solutions of the homogeneous system =
Omodp are spanned b, ..., 1), resf (k) is well defined (independent of the particular
solutiony of (4.1)).

We definerootso;j(h), 1<i < j <r, by

j-1
(4.2) oij(h) = hi
k=i
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so thato; ;y1(h) = h;, 0j; = ZI{;}O’kyk_i_l. The solutions of (4.1) are all distinct if
and only ifo;;(h) # 0, for alli < j, since

j-1 j—1
Yi—yj =Y w—yer1= Y i =0ij(h).
k=i k=i

ProPOSITION 4. Letref(h) be the number of distingt in a solution of (4.1). Then

(4.3) Noth,py = PEE0D)

with a(h, p) <, p/2.

Proof. The casef(h) = 1 happens precisely wheén= 0 and ally; are equal:
y1 = y2 = --- = y,. In this case, the number of solutions is the number of squares
modulo p, namely,(p + 1)/2, which is of the desired form. We thus assume from
now on thatreg (h) > 1.

We first reduce the system (4.1) to a systemegf— 1 equations inef variables. If
reff (h) is the number of distincg; in a solution of (4.1) (independent ¢f), then we
can eliminate some of the equations. Renumber the variables sp that y, ., are
the distinct coordinates of a solution, and for gl 1, y,.4; equals one of these;
then the system (4.1) is equivalent to the reduced system

(4.4) yi—Yirr=h;modp, 1<i<rer—1

(where theh; are renumbered; to give that the firsie coordinates are distinct).
So we need to find the number of solutions of the reduced system (4.4).

We first eliminate those solutions where at least one ofythés zero. In this
case, since the system (4.4) (considered as a linear system) haggank in reg
variables, specifying any one of the variables determines all the others; hence the
number of solutions with some coordinate zero is at mgst Thus, we need only
count solutions where all coordinatgsare nonzero.

To every such solution in squares = Omodp, write y; = xl? modp with x; #
0Omodp. There are precisely two such solutions, namelhy, modp. Thus, the number
of possiblex; corresponding to a given solutionof (4.4) is precisely 2f, and the
number of nonzero solutions of the reduced system (4.4) wigguares modulg
is exactly 2= times the number of solutions of the system

(4.5) x?—xZ =himodp, 1<i<ref—1

with x; = 0modp. By adding back at mostsolutions, we can remove the condition
x; # 0, and then we find that

. n(h', p)+ 0, (1),

(4.6) Ny (h, p) = et
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wheren(h’, p) is the number of solutions of

xZ—xfy=hmodp, 1<i<ref(h)—1.

1

This is just the number of solutior{s, x1, ..., x,) Of the system

4.7) x2=1—by, X5 =t—by,..., x> =t—b

reff = Teff

with b1 = 0, bp = h), bz = | +hY, ... . brgn) = h/l+h’2+~-~+h’reﬁ_1 and, in
generalp, = o1 (k). Note that theé; are distinct; this is equivalent to the requirement
that the solutions of the reduced system (4.4) be distinct. One can now use the
Riemann hypothesis for curves (see [21], and [18, Theorem 5A and Corollary 5B]
for the caséby = —1,bp =-2,...,b, = —r), to find

(4.8) In(h', p) — pl K refi2"*"\/p.

In addition,|N (h, p) —n(h’, p)/2"f| <r, and so

__p+a(h,p)
N(h,p) = ZFT
with
a(h, p) KL 2 (refi/P+1) K /P
This proves Proposition 4. O

A formula forress (h). Our next order of business is to give a formula fef (7).
We begin with some combinatorial backgroundsét partitionof the sef{1, 2, ..., r}
is a collection of disjoint subsels = [Fy, ..., F], F; € {1,2,...,r}, whose union is
allof {1,2,...,r}. We set|F| = ¢, the number of subsets if.

To each set partitiorf, we associate a subs®&f of affine r-spaceV = A” by
setting

(4.9 Ve ={seA :s;=s;if i, j are in someF;}.

Correspondingly, irH = A”~1, we have a subspace

(4.10) Hp={he A :0;;(h) =0if i, j are in someFy .

Under the mapr : V — H takings = (s;) > (s; —si1+1), we haveVy = 71 Hp.
There is a partial ordering on the collection of all set partitions{Xf..., r}

with F < G if and only if every F; is contained in somé& ;. For example,O =

[{1,2,...,r}] is the maximal element of this partial ordering, wit®| = 1 and
Hop = (0). The minimal elementis = [{1},{2},..., {r}]with |r| =r andH, = A1
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The partial ordering on set partitions is inclusion-reversing on subspaces:
G & Vg D Vg < Hr 2 Hg. The regular part of/r is

Vi ={s e Vp:si#s;if i, j are notin some },

and we defingd; likewise. ThenH ) = Hp = (0), and every: belongs to a unique
Hj; for someF. Thus, we have

F
and likewise,
Hp= || H
F=G
We can now give a formula fotes (h):
(4.11) reff(h) =dimVy =dimHp +1=|F|,

whereF is the unique set partition such thiaEe H, . We can write this as follows.
Define B

1 heHF 1 heH],
4.12 Sr(h) = £ §X(h) = F
(442 £ {0 otherwise £ {O otherwise
Then
(4.13) ret(h) =Y _ dim(Vp)8j (h).

F

Similarly,
(4.14) A(h, p) = 277ei) = " 200dMVE) 5 (1)

E

It is convenient to express this in terms of the characteristic fundtioaf the sub-
spacedHr. For this, we use Mobius inversion. Since the collection of all set partitions
of {1,...,r} is a partially ordered set, it has a Mobius functietF, G) that is the
unique function so that, for any functionls ¢ on set partitions satisfying

(4.15) ¢E) =) V(G),
F=G

we have

(4.16) Y(F) =Y uF,6)¢G).

F=<G
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An explicit form of u(F, G) can be found in [14, 825]. We do not have any use for
it.
In our case, clearly we havér = [ [ H; so that

(4.17) Sp=Y_ 85
F<G

Thus, we have

(4.18) 8y = Z w(E,G)sg.
F=<G

This gives us the formula fot (, p) = 2" "=t From (4.14) and (4.18), we find

(4.19) A(h, p) =Y MGG (h)
G
with
(4.20) MG) = ) w(E G2,
F=G

For use in Section 7, we need to know the sum of the produat(sf p) with the
error terma(h, p) in (4.3) over all vectors.

LemmA 5. We have the following relation:

> ath.p)Ath.p)=(p+1) = p" Y MG)p~ PIMHic,
hmodp G

Proof. We have, by definition,

N = ZEE A,
so that
a(h, p)A(h, p) =2'N(h, p) — pA(h, p).
Now sum over allzmodp. The sum ofN (h, p) is just the total number of-tuples
of squares modul@, namely,((p +1)/2)". To sumA(h, p) overh, we use (4.19).
Since the sum over all of §g (h) is just the number of vectors in the subspdZg,

namely,pdimHQ — pr—l—codimHQ’ we find

Y. at.p)Atp)=(p+D =p Y Ahp)

hmodp hmodp

= (p+1 =p" ) M(G)p~ e
G

as required. O



222 KURLBERG AND RUDNICK

5. A formula for R,(%6,q). In order to prove Theorem 1, we give an expression
(5.2) for ther-level correlationR, (6, ¢) that involves summing over the intersection
of the dilated set¢ with various lattices.

Recall that, for each set partitiai of {1,...,r}, we associate a subspatg; <
(Z/pZ)"~1. Now, given a divisodd modg, let4 = ® ,,G”’ be a tuple of such set
partitions, one for each prime dividing d (recall thatg, and hencet, is square-
free). Let L(9) c Z'~1 be the preimage oﬂp‘d Hg ) under the reduction map

z1— ]_[p|d(Z/pZ)’_l ~ (Z/dZ) 1. L(%) is a lattice whose discriminant (that
is, the index inz”—1) is

disq@) = HPCOdim(HQ(p))-

pld
The support supgs) of L(%) is the product of all primeg for which HQ@ *
Z/pZ)
SUpHY) = I p.
PGP AL, {r-1}]

Since codintH ) <r—1, we get

supp¥) | disa9) | supp9)” L.

We set
a9 =]rc"?).
pld
whereA(G) is given by (4.20). For a divisar | ¢, we also set

ath,c):=[Jath.p),  Alhc):=]]AG p).
ple ple
Note that by Proposition 4,
(5.1) a(h,c) < cY/?+e, A(h,c) < c€

forall e > 0.
Our formula forR, (6, ¢) is the following proposition.

ProposiTION 6. Ther-level correlation function is given by
s 1
clg — supp9)l(g/c) hesenL(¥)
Proof. We have that
1
Rie.q)=— ) Ng).

hesenzr—1
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By the Chinese remainder theorem,

N(h,q) =] NG, p).

rlq
We rewrite formula (4.3) in the form
+a(h, p)
N(h. p) = F=2 2 A ).

where
A(h, p) =27 "ef (),

Thus, we find

qA(h,q) a(h,c) q q\ aCh,c)A(h,c)
(63) N =170 3 - =2m(q)ZA<h,Z>—C .

clg clg
Inserting (5.3), we get a formula fat, (¢, ¢). Recalling thatv = ¢/,

s 1 q
(5.4) Rr(%ﬂ):W;ZhZ;AOI,Z)a(h,C)A(h,C).
clg ese

Next we use the expression (4.19) fan(h, p) to write A(h,q/c) = ]_[m(q/c)
A(h, p) in the form

(5.5) A(h,%): [T S 26P)s(h6P)= Y a9s(h,9),

plg/c) g» 6=®p|(q/0 G

where the sum is over all tuples of set partitiéhs: ®p‘(q/6)Q(P), one for each prime
dividing ¢ /¢, and we put for each such tupke

a9 := [ »c"”)
pl(g/c)

and

— H q
1 he modp for all =
5(h,9) := | | 3(n, G(p)) _ G p pl ;

pl(g/o) 0 otherwise

This is the characteristic function of the lattit€9) whose support sugfs) divides
q/c. Thus, we get the desired expression

R,(%,q):Zri(q)Z% Yooxe Y athod®mo).

clg ~ supp9)l(g/c) hesnL(%)
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6. Evaluating ther-level correlations. In order to estimate the correlations using
Proposition 6, we partition the sum (5.2) into two parts: The first consisting of pairs
¢ and% such thatcdisq¥) < s, and the second consisting of the pairs for which
cdisq9) > s. We show that the first part gives the main term and the second part is
negligible.

6.1. The casedisq¥) > s. We usea(h,c) < ¢¥/?t€ (5.1) andA(h, ¢) <« c€ to
see that this term is bounded by

$ 1 1/2+e

(6.1) WE - § (G [#{sCNL(Y)}c .
clg ~ supp9)lq/c
cdisq9)>s

By the Lipschitz principle (Lemma 16),

vol(s€) ,_,
disq@) ¥

#{s6NL9)} <«

and since vals©) = s"~1vol(®), we find that
r—1

disa(9)

r—2

(6.2) #{s6NL©Y)} <« +s5

Moreover, in order that¢ N L(%) # @, we see that we need suf < s""~/2,
since¢ does not intersect the walls. This is a consequence of the following observa-
tion. Let¢ c R"~1 be a bounded convex set. Define

r—1
diamy (¢) = max{Z|xk| ‘x € %} )

k=1
Note that diam scales linearly: diaa(s¢) = s diamy (%6) for all s > 0.

LEMMA 7. If supg) > diamy(s€)" " —D/2 thens% N L(%) is contained in the
walls {h € R"~1: 0;;(h) = O for somei < j}.

Proof. Letd;;(%) be the product of the primgssuch thab;; vanishes orf; ),
that is, so that B
oij(x) =0modp forall x € L(9).

Thend;; (%) | supg9), and moreover, we claim that

disc(9) | [ [ i (9).

i<j
It is enough to check this one prime at a time and is equivalent to saying that

COdim(HQ(p)) 5#{i < ] 10jj =0 OI’IHQ(p)},



THE SPACING DISTRIBUTION OF QUADRATIC RESIDUES 225

which follows sinceH ;) is given by vanishing of some of ths;.

Now note that if supg9) > d""~1/2, then for some < j, d;;j(9) > d because
SUppY) < disq¥) < ]_[l-<j d;;(%9), and the last product consistsiaf — 1) /2 factors.
If we taked = diamy (s6) = s diamy (6), then one hag;; (%) > diamy (s6) for some
i < j. Howevero;;(h) = 0modd;; () and sao;;(h) = md;; (‘%) for some integem.
If m =0, thenk lies in a wall. Ifm # 0, then being an integeli| > 1, and so

loij (h)| = dij(4) > diamy (s6).

Since
j-1 j-1 r—1
oij(h) =Y hi| <> el <1l
k=i k=i k=i
we find that
r—1
> 1kl > diamy ().
k=i
Thus, i ¢ s by definition of diam (s6). O

By Lemma 7, together witht.(%9)| <« supp¥)¢, (6.1) is bounded by

r—1
s —1/2+¢ e S r—2
C . > s Gy ).
clg Supp9)|((q/c)
cdisq9)>s

sup;:(‘@)<<s"(r*l)/2

We split the sum into two parts and use: 229 to bound (6.3) by the sum of

1 s

6.4 = —1/2+e SUpp9)©
(6-4) s 2C 2, supa®) disa(9)

clg supp9)|(g/c)

cdisq9)>s

and

1 1

- —1/2+4€ €
(6.5) - > e > SUPEY)©.

clg SUpp9)|(g/c)

cdisq9)>s
Sup’fg)<<sr(rfl)/2

We begin by noting that the number @fwith supg¥%) = g is 0(g), that is,

(6.6) >k

supp9)=¢g
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Since we sum over suPp) < s”~Y/2in (6.5), we have sup)¢ < s¢ , and thus
(6.5) is bounded by

%26—1/2+e Z ge < S—l+e Zc—l/Z—i-e Z 1

clg glg/c) clg gl(g/c)
g<<sr(rfl)/2 g<<sr(r71)/2

By Lemma 18, the number of divisors gfc that are less thas'"~Y/2 is at most
s€, so this term is bounded by

S*l“ré Z c71/2+e'
clq

Since

Zcfl/ZJre _ 1_[ <1+ pT12_6> < l_[(l-i- )¢ « s,

clg plq rlq

the contribution of (6.5) is at mogd (s ~11¢).

It now remains to bound (6.4). We first consider the terms for whalpp9) > s.
Now, disd9) > supf), so if csupg$) > s, then certainlyc disq9) > s, and the
sum of the corresponding terms in (6.4) is bounded by

1‘ —1/2+4€ € s
- D e > supp9) SoPrd)

clg Supp9)|(g/c)
cSupp9)>s
1 1
_ —1/2+€ —1/24€
N D B D DIETS S e D=
clg gl(g/c) supp9)=g clg gl(g/c)
cg>s cg>s

by (6.6). Changing the variable th= cg, which is a divisor ofy satisfyingd > s,
this is bounded by

e 1 1/2+€
ZZ (d/c)l_f = Z dl—e Zc :
dlg cld dlg cld
d>s d>s

Now the sumy_, ,c/?*¢ is bounded byr(d)d?+¢ « d¥/?+¢, so the above is
bounded by

Z d-Y2re o ~1/2+e

dlq

d>s

by Lemma 19. This bounds the contributioncofg with csupg9) > s.
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If cdisq9) > s thens/disq9) < c. This, together with (6.6) implies that

1 s
—1/2+€ € s
-Y c SUpPEY)© —
s Z Z PRCS) disq%9)
clq supp9)l(g/c)
cdisq9)>s
csupp9) <s

< %ch/Z-i-e I L aad D) BE!

clq gl(g/c) clg glg
cg<s c<s g<§

2

« s~ V2te Zl « 5 V2e,

clq
c<S§

since)” ¢, 1 < s by Lemma 19. Consequently, (6.4)@(s~Y/2%€). (Note that we
only used supf) < s""~Y/2 to bound (6.5).)

6.2. The casedisq¥9) < s. Fix ¢ > 1 and%, and partition the lattice points in
s6 N L(9Y) into two subsets as follows. Fix a reduced fundamental cell (see B.1)
P = P (%) for the latticeL = L(%). ThencP is a reduced fundamental cell for the
dilated latticecL. We can tileR" 1 by the translatesd. +cP, h. € cL.

Definition. We say thatx € L Ns% is c-interior if there is somey € cL so that
x € y+cP C5%6. We say thakr € LNs% is ac-boundarypoint otherwise.

Note that the notion depends orand on the choice of a fundamental cgllfor
L. An important fact is that if digt, d(s%€)) >, cdisa L), thenx is c-interior. This
follows from Lemma 15 since dia(@P) <, cdisa(L).

LeEmMa 8. Let P be a fundamental cell for the lattice € Z"~1, ¢ > 1 so that
gcd(c,disq(L)) = 1. Then, fory € cL, the intersectionL N (y + ¢P) with L of
the translate of the dilated celt + c¢P consists of a full set of representatives of
Zr—l/czr—l.

Proof. If P = {Z;;ixjﬁj :0 < x; < 1}, then thec" 1 lattice pointSy+Z;;i
nitj,n;=0,1,...,c=1in LNy+cP are clearly inequivalent modutd. and are the
only points ofL in this intersection. We show that if géd disq(L)) = 1, then they
are inequivalent moduloZ”~1. To see this, it suffices to show thancZ"~1 = cL.
By the theorem on elementary divisors, there is a bgai of Z"~1 and integers
d; > 1 so that{d;e;} is a basis of_, and dis¢L) = ]"[;.;idj. If x € LNcZ™L, then
x =fzg;imjdj2j e L, and alsor = c Y/ 1n;é; € cZ'~1. Comparing coefficients,
we fin

(6.7) mjdj=cnj, j=1..,r—1L
Now, sinced; | disa(L) and gcdc, disa(L)) = 1, we have that gad, d;) = 1, and so
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(6.7) shows that: ; = 0modc andx € cL. O
LemMMA 9. (@) The number of pointg of ¢cL so thaty +cP C 56 is

vol(s6) S\"—2
diso(cL) +0((Z) )

(b) The number of-boundary points of. is < cs” 2.

Proof. (&) If y =cz € cL,theny+cP C s if and only ifz € LN (s/c)% and
z+ P C (s/c)6. Thus, we need to coum :=#{z € LN(s/c)6:z+ P C (s/c)¢}.
An upper bound is obtained by a packing argument: Since the tranglatésare
disjoint and contained is/c)6, we get

Nvol(P) < vol (;%) ,

and so

- vol((s/c)6)  s"~Lvol(6)

(6.8) disdL) ~ ¢ ldisalL)’

For a lower bound, note thatife L N(s/c)% satisfies didkz, 9((s/c)€)) > diam(P),
thenz+ P C (s/c)€. By the Lipschitz principle (Lemma 16) and Lemma 17, the
numberN of such points is

vol{x € (s/c)6 : dist(x, d((s/c)€6)) > diam(P)} Lo (<S)r_2)

N= diso(L) c

Cc

Further,
volfx & . dist(x, 9 (2)) = diam(p) | =vol (1) + 0 (diamp) () ).
and so

N =

vol ((s/c)6) diam(P)(s/c) =2 /s\r-2
disaL) +0< disaL) +(E> )

_vol((s/c)6) N
~ disaL) +0<(E> )

because dial(rf) &, disa(L).
SinceN > N, together with the upper bound (6.8), we find

_VOI((s/c)Cé) S\7—2
N= disa(L) +0(<E) )
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(b) For the number ot-boundary points, we subtract the numberceahterior
points from the total number of points 6fns%. The total number of points ih Ns%
is given by the Lipschitz principle (Lemma 16):

_Vol(s6) 2
= disaL) ().

(6.9) LNs€

To count the number af-interior points, we can write each uniquely ag p, with
y as in part (a) angh € LNcP. Now #HLNcP) ="~ (see Lemma 8), and so, by
part (a), the number af-interior points is

r—1_ Vol(s6) 2
(6.10) N = disal) + O0(cs"™%).
Subtracting (6.10) from (6.9) gives us part (b). O

Fix 4, c > 1 withcdiso¥) < s. Note that since is square-free and su@) | (¢/c),
we have gcde, disq9)) = 1. We now estimate the sum

> aoAh o).

heL(9)Ns6

We divide this into two sumsgiy; over thec-interior points andx;; over thec-
boundary points. We use(h, ¢)A(h, ¢) < c¢Y/?t€ to boundZ,, by

#{c-boundary pointgt/?te « cs" 2 Y2He = (812 Hegr 2,

The contribution of the:-interior points is computed by writing each suelash =

y+ho with hg e cPNL andy € cLNs%. For eachy, we get all possiblég that run
over a full set of representatives®f—1/cZ"~1 since gcde, disa9)) = 1 (Lemma 8).
Denote the number of suchby N; by Lemma 9(a)N = (vol((s/c)®)/disq L)) +

O((s/c)"~2). Moreover,

a(y+ho,c)A(y+ho,c) = a(ho,c)A(ho,c),

sincey € cL(9) c ¢Z"1. Thus,
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EIrlt - N Z hO» h07 )

homodc

_ <%+O(G)r—z>> 3" a(ho.¢)A(ho.c)

homodc

vol ((s/c)6 o 6
:ﬁ Z a(ho,C)A(ho,c)-l—O((E) c 1c1/2+>

homodc

_ vol((s/e)%) 3/2+e r—2
= Twho%dca(ho, c)A(ho, c) + O(C ) )

Thus, the total contribution of the pairs witlliso(9) < s is

(6.11)
s 1
S s 2 M9 Y atkhoAG.o)
clg ~ supp9)|(g/c) hesenL(9)
cdisq9)<s

s 1 vol(s6)
:WZ; Z A(%)W Z a(ho,c)A(ho,c)

clg — supp9)|(g/c) homode
cdisq9)<s

3/24+€ r—2
+0 2rw(q) Z Z |)»((§)|C §
clq Supﬂ‘g)\(q/c)

cdisq9)<s

To estimate the error in (6.11), note that the conditiatisq9) < s implies
cSUp%) < s since supp9) < dis9), so for an upper bound, we may replace the
summation over pairs satisfying the former condition by the sum over pairs satisfying
the latter. Noting that24) > s, this gives

s 1
W Z E Z |)»((§)|C3/2+€Sr_2 & S—l+€ ZC1/2+5 Z |)\'((g)|

clg ~ supp9)l(q/c) clq sup9)|q/c
cdisq9)<s cSUpp9)<s
< s—l—‘ré ch/z-‘re Z Z |A((g)|
clq gl(g/c) supp9)=g
Cg=<s

Now |1 (9)| <« sup¥)¢ and the number ¢& with supa%) = g is 0(g¢), which is
0O (s€) sinceg < cg < s, so that the above is bounded by

s—l—i—eZCl/Z—i-e Z 1

clq 8l(q/c)
Cg=<s

The number of small divisorg of ¢/c with g <s/c < s is at mosts€, so the above
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is at most

S—l+e ch/2+e < S—l+esl/2+e#{c | g:ic< S} < 5_1/2"'6,,

clg
c<s

which gives that the error term in (6.11) i&(s ~1/2+¢).

We now extend the sum of the first term in (6.11) to all the paif§, introducing
an error which was bounded in Section 6.1 @ys~1/2t€). (This is the term (6.4)
that was bounded without using the condition s@p s”"~1/2))

In summary, we find that the following proposition holds.

ProrosiTioN 10. For r > 2, we have
(6.12)
s 1 vol(s6)
Rr((g’Q)_WZZ Z )»((g)m Z a(hO’C)A(hO,C)

clg  supp9l(q/c) homodc
o5V,

7. The main term. We now treat the main term of (6.12). Define
s 1 vol(s6)
=gew e 2 M9 Tigeng 2 alhoc)s(koc).

clg — supp9)l(g/c) homodc

We show that
MM = vol(6),

which, with (6.12), proves Theorem 1.
The sum ovef:modc is multiplicative:
Y athoamo =[] > at.pa@,p).
hmodc ple hmodp
Furthermore, by Lemma 5,
3" ath. p A p) = (p+1 —p’ Y LGP p~ M,
hmodp G»

codiMHs) _ disqGP), we get

s 1 s"Lvol(@) ( (GP) )

= ew e 2 '\(@),_—-H P+ =p Z—

2ra(q) - csup[:(‘@)l(q/c) ¢ 1disa%9) disc(G7)
_ vol(6)s” (9 G(” )

T rel@ Z Z disc(i'é)lp_!<( D =p Zdlsc(G(P))

CIq Supp9)|(g/c)

Now note that since
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Furthermore,

1(9) G(P)
Z disa9) l_[ ZdISC G(P)

suppé)l(g/c) plg/e) g»

Therefore, we find that

(G(p))

M= vol(®) _(q),Z I1 Zd.sc G0 H(( > ZW)

clg plig/c) Gg» ()

( v ZA <E) B(o).

Thus, it is a multiple of the Dirichlet convolution of the multiplicative functiods
B, with A(1) = B(1) =1,

= voI(<6)

A(G(p))
A — = J
(P) E( disc(GP)’
QP)

and (sincgl1+1/p) =o_1(p)")
(7.1) B(p) = o-1(p)" — A(p).

Now, by (7.1), we have

AxB) @)=Y A(L)Be) = [ (AW B + AP BD)
C

clg rlq
=[[o-1(p) =0-1(0)"
rlg

Finally, this gives the main term @&, (¢, ¢):

1
A%B)(q) = vol(¢
71(q)’( *B)a)=voll )afl(q)’

M= voI(‘@)U o_1(g)" = vol(6).

APPENDICES

Appendix A. Recovering the level spacing from the correlations. In this appen-
dix, we explain how to recover the various spacing distributions from the correlation
functions. This is well known in the physics literature (e.g., [15]) and is certainly
implicit in Hooley’s work [8], [9], [10], but we do not know of a good source for it
in the mathematical literature. A very detailed treatment of this and more will appear
in a forthcoming book by Katz and Sarnak [12].
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We begin withR/Z, which we think of as the circle with unit circumference. We
denote by{x} the fractional part ok. If n < x <n+1, n integer, ther{x} = x —n.
We set

We order the points ifR/Z counterclockwise and write > y if the points lie in a
segment of length< 1/2 onR/Z andx follows y. The signed distancen R/Z is
given by ((x —y)); thus,—1/2 < ((x — y)) < 1/2. In terms of the signed distance,
x >y ifand only if ((x —y)) > 0.

Given afinite sef of N points onR/Z, andk > 2, thek-level correlation functions
measure clustering properties of the sequehceR /Z on a scale of the mean spacing
1/N. For ak-tuple of pointsx = (x1, ..., xx) of S, the oriented distance vector is

(A1) D(x) = ((x1—x2)), ..., (kg1 —xx)))-

Given a bounded sé& c R¥~1, we define thé&-level correlation as
Ri(6, ) 1# e sk D()el%
s = — X . X — .
k N N

As an example, len*~1 c R¥~1 pe the standard open simplex

k-1

AR = {(yl,---,yk—l) 1% >0, yi < 1}’

i=1

and forr > 0, set¢ = rA¥~1. Then if N > 2¢, D(x) € (1/N)€ = (t/N)A*~1 means
that the following are true:

(1) ((x; —xi+1)) > 0, thatis,xg = x2 > -+ > xz;

(2) the points all lie in an arc of length at magtv.

As another example, write—1 =i + j, and forry, o > 0, set€ = 1Al x tp A/,
which we can write as

%:{(yl,...,yk) 2Ym >0, y1+y2+-+yi <t, Y1+t Vit <t2}_

ThenD(x) € (1/N)% if and only if x1 = x2 > --- > x; andxy, ..., x;11 lie inan arc
of length< /N, andx;;1, ..., x4+ 11 = x¢ lie in an arc of length< 12/ N.

Given any subsel’ C S that is contained in a semicircle, the ordering gives us
unigue initial and final elements @f, and we can writd’ = {xjnit = x1 < x2 < -+ <
xiin}. We denote byT'| the number of elements df, and by diandT') the distance
dist(xinit, Xfin) between the initial and final points @f. If T consists of just the initial
and final points, we say that is a consecutive pair. Aonsecutive-tuple of S is
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a k-tuple of elementsi; = xjnit < -+ < xx = xfin SO that there are no points 6f
betweeny; andx; 1, for 1< j <k.

Forx < 1/2, let Ni(x) be the number of-tuples of diameter smaller than this
is 0 if K > 1. It is clear from the definitions and the discussion above that we can
describe these functions in terms of the correlation function of the siméx? by

(A.2) Re(xAkL,8) = %Nk (%)

Furthermore, leg (x) be the number of consecutive pairs of diameter less thamat
is, the number of spacings between consecutive elemerst©bfength less than.
We may expresg in terms of an alternating sum of;’s as follows.

Lemma 11 With g and Ny as above, we have far< 1/2,

gx) =Y (D N ().

k>2

Moreover, for alln > 1, we have the inequalities

2n+1 2n
DD N < () <) (=DFNe(x).
k=2 k=2

Before giving the proof, we need the following elementary lemma on sums of
binomial coefficients.

LEmMA 120 Letm > 0 be an integer. Thei} "/ o(—1)'("') = O unlessm = 0, in
which case the sum equdlsMoreover,

2n+1

m 2n
g (~1 ('7) < ;;(—1)" (’?) < ;;(—1)" (’7)

Proof. The first part is just the binomial expansion @— 1)". As for the sec-
ond part, ifm > 1, use the identitf”) = (";%) + ("77) to find Y5_o(—1) (%) =
(—1)"(’”,:1), from which the claim follows. O

We can now prove Lemma 11.

Proof of Lemma 11.For each pairT = {a >~ b} of diameter less than/2, we
associateX 7, the set of alli-tuplesxy > --- = x; in S such that(x1, x;) = (a, b).
The set of all tuples of diameter less tharis thus expressed asdisjoint union
of the Xr’s asT ranges over all pairs of diameter less tharf we let NZ.T be the

number ofi-tuples inXz, thenN; = 3", N7. But N7 = ("173), so by Lemma 12,

1

> i=2(=1' N/ is 0 unlessT is a consecutive pair, in which case the alternating sum
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is 1. Summing over all consecutive pairs, we get that) = Zk22(—1)"Nk(x).
Lemma 12 also gives that far> 0,

2n+1

Z( 1)NT<Z( 1)NT<Z( 1)'NT.

i>2
Summing over alll’, we get the second assertion. O

A.1l. The joint level spacingAn (i, j)-tuple of diameteKx, y) is an(i + j)-tuple
X1 > - > Xx; > Xi41 > -+ > x4 (@ll lying in an arc of length< 1/2) such that
dist(x;, x1) = x and distx; 1, x;) =y

Fori >2,j>1,andx+y < 1/2, we letN; ;(x,y) be the number ofi, j)-
tuples of diameter at mosk, y). Let g(x, y) be the number of consecutive triples
x1 > x2 = x3 of diameter smaller thafx, y). Analogously to Lemma 11 we have the
following lemma.

LemMA 13. Ifwe letAi(x,y) = Zi-i-j:k N;,j(x,y), then

gr,y) =Y (=D Arx, y).

k>3

Moreover, forn > 0, we have the inequalities

3+2n+1 3+2n
D D AL y) g y) = ) (D Ak, ).
k=3 k=3

Proof. Foreach triplér ={a>b> c} of diameter at mogtx, y), let X be the set
of (i, j)-tuplesxy > --- > x; > xj41 > --- > x;4j such that(x1, x;, x;4 ;) = (a,b, ¢),
and IetNT] be the number ofi, j)- tuples inXr. We may write the set ofi, j)-
tuples of diameter smaller thanm, y) as a disjoint union o ¢'’s, asT ranges over
all (2, 1)-tuples with diameter at mosk, y). GivenT, we may count tuples of type
(i,j) in X7 as follows. LetM, N be the number of elements &f betweena, b
andb, c, respectively (we allow bot¥ and N to be 0). Thenv/; = ([1,)(.X)).
Moreover, A} =Y, NI = (*3) since there arg’/*7) Ways of choosing
k — 3 objects out ofM “blue” and N “red” objects. By Lemma 12, we see that
Siaa(=DFAT =3 o(—DFL(M Y)Y is 0 unlesd is a consecutive, 1)-tuple,

in which case itis 1. Now Lemma 12, together WHI‘,5 (M+N) shows that
3+2n-1 3+2n
Z ( 1)k+lAT < Z( 1)k+lAT < Z ( 1)k+lAT

k>3

Summing over all tripleg” of diameter at mostx, y), we are done. O
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A.2. Applications to squaresodg. We let
n R
Sg = {— :0<n<g—1nasquare modulq} C 7
q

be the image irR/Z of the set of squares i@/qZ. The mean spacing between
elements ofS, is 1/N,, whereN, is the number of squares modujo For x > 0,
84(x/Ny) is the number of consecutive pairsSp of diameter at most/N,, that is,
the number of normalized consecutive spacings of lergth We set

Aoy = lim = al
X)= — — .
q—o0 N, 8a Ny
This is the limiting proportion of normalized consecutive spacing$;inf length at

mostx (this normalization sets the mean spacing to be uniy}.) is the cumulant of
the level spacing distributioR (s) of the introduction. Likewise, we set fat, y > 0,

P(x,y) = lim ig <x y)

Mn s\,

the cumulant of the joint level spacing distribution.

For a bounded convex sé c R*1 not intersecting the walls, anty > 1,
(1/N,)€ will be contained in the cube-1/2,1/2)*~1. Forx = (n/q) € S}, (0 <
n; < q are squares modulg) the oriented distance vect@(x) (see (A.1)) lies in
(1/N,) if and only if there is an integer vectare (¢/N,)% NZ*=1 so that

Xi—xjz1=h;modg, 1<i<k-1.
Denoting by N (h, g) the number of solutions of the above system in squares
modulog, we find that the correlation functioRy (€, ) := Ry (¢, S,) satisfies

1
(A3) Ri6,q)=~- D> N.g)
9 pesenzi-1

with s = g/Ny.
LemMma 14. If x,y > 0O, then
Px)=1-e"

and
Bx,y) = (L= 7) (1-e7).

Proof. As noted above (see (A.2)), we can express the functdyis) in terms
of the correlation functions associated to the simptex*—1, whose volume is

F =tk —1): .
_ X
Rk()CAk 1;(]) =N—qu (N_q)

From Theorem 1, we know that
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Ry (xAk_l; q) = x*1vol (Ak_l) + Oy (s_1/2+€)
k—1

o g~ 1/2+e
Ok .
By Lemma 11, we see that far> 0,
1+2n+1
> (- 1)”rl <liminf 2447 8q(x/Ng)
= ! q—>00 Ny
and
( / ) 1+2n ‘ xi
Iimsupu < Z(—l)’*l,—‘.
q— 00 2

i=1
Letting n — oo and noting that the above polynomials are truncations of the Taylor
series of 1-¢~*, we are done.

For the second part of the lemma, recall that; (x, y) is the number of ordered
i+ j-tuples of elements of, such that the firstare contained in an interval of length
x, and the lastj elements lie in an interval of length Thus, analogously to (A.2),
N;,j(x,y) is a scaled version of thé + j — 1)-correlation with respect to the convex
setx Al x yAJ:

Ni j((x/Ng), (y/Ng))

N, = Ri+j(xAT x yAT q).

By Theorem 1,
ie x'~yl _1/2+e€
Ritj(xA xyA],q) (z——J.)']'+Oi’j(s )
since
xi=lyi
(i — Dl
Letting Ax(x,y) = Ziﬂ.:k N; j(x,y) and using Lemma 12, we get

3+2n
Ilmsup ( ) Z( 1)<+t Z - 1)'

N
g— 00 it i=k

i>1
j>0

vol (x ATt x yAT) =

and

3+2n 1 .
Z( 1k+1 Z <liminf =g (—l>
(1—1']' q—>00 Nq Ny Ny

l>l
j>0

Since the above polynomials are truncations of the Taylor serie€lfere™) (1 —
e~ Y), we are done. O
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Appendix B. Some geometry of numbers

B.1. Givena basiil, ...,Z,, of a latticeL in R", the fundamental cell is the half
open set

P({E]) = st iy 0= < 1),

It serves as a fundamental domain for the action.adn R" by translations. The
volume of P({¢;}) is the discriminant digd.) of the latticeL:

vol (P({€;})) = | det(¢y, ..., £,)] = disAL).

B.2. We need the following basic fact (due to Mahler and Weyl) from reduction
theory. In any dimension > 1, there are constantsO¢,, < ¢, so that any lattice
L Cc R" has a basigy, ..., £, which is reduced in the sense that

< {Z]_{|Zn| <

(B.1) Cp disoal) = Cp-

This is a consequence of Minkowski’'s second theorem on successive minima (see [1,
Lemma V.8] or [20, 8§6]). This basis is not unique in general.

B.3. We define the diameter diai) of the latticeL to be the minimum of the
diameters of all fundamental cells for.

LemmMA 15. The diameter of an integer lattide C Z" is bounded by the discrim-
inant of L:

(B.2) diam(L) <, diso(L),

the implied constant depending only on the dimension

Proof. It suffices to show that ifP({Ei}) is Ihe fundamental cell of anﬁinteger
lattice L C Z" with respect to a reduced bagk}, then the diameter of ({¢;}) is
bounded by the discriminant df:

(B.3) diam(P ({€:})) < disa(L).

To see this, note that, sindeC Z" is an integer lattice, the length of any nonzero
vectorinL is atleast 1; then this implies that a reduced basibbaaded eccentricity

(B.4) 1< || < |t <+ < |6] < ¢ disaL)

(assuming we ordered the basis vectors according to their length). Indeed using (B.1)
together with|£;] > 1, we get an upper bound for the longest basis vegtpr
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18, = 1 || < 2] 2| - |Eu] < dlisalL).

Thus, the diameter of the fundamental détl{fi}) is at most

n
Z |Zl| = n|zn| =< C,/{diS(XL)
i=1
as required. -

B.4. It is useful to note that for integer dilated. of a lattice L, ¢ > 1, the
diameter scales linearly: digil.) = cdiam(L), while the discriminant scales with
c¢". disacL) = ¢" disaL). Thus, to bound the diameter of a dilate of an integer lattice,
we use

(B.5) diam(cL) <, cdisqL).

B.5. The Lipschitz principle

Definition. A set C R" is of classm if the intersection of every line witk
consists of at most: intervals (including the degenerate case when some of the
intervals are points) and if the same is true for the projectiof¢ @in every linear
subspace.

Thus, for instance, a convex set is of class 1.
We use the following form of the “Lipschitz principle” from the geometry of
numbers to estimate the number of lattice points in a regidR"of

LemMMA 16. Let L € Z" be an integer lattice of discriminardiso(L), and let
% C R" be a set of clasa (e.g., a convex set). Suppose tiddies in a ball of radius
R around the origin. Then
vol(6)
disq(L)

This follows from the Lipschitz principle for the integer lattice proven by Davenport
[5], as adapted by W. Schmidt (see [19, Lemma 1]).

We apply the Lipschitz principle to certain subsets of convex sets. For this purpose,
we need the following lemma.

(B.6) #H(LNE) =

+0(R").

LEMMA 17. Let% C R" be a convex set, let > 0, and define
@y = {x € @ : dist(x, 06) > d}

to be the set of points & of distance at least from the boundand% of €. Then
%4 is convex.

Proof. What we need to show is that for any, x, € €; and A € [0, 1], the
point x3 = x1 + A(x2 — x1) also lies in6,, that is, if|y| < d, thenxz+y € 6. But
x3+y=(x1+y)+A((x2+y)—(x1+y)), thatis,xz+ y lies on a line betweem + y
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andx,+ y. These two points lie if6 sincexy, x» € €,. By convexity, so doesz + y.
O

Appendix C. Counting small divisors. In the paper, we need to use some es-
timates for the number of divisors gf that are smaller than a fixed power of the
mean spacing. As is well known, the number of all divisors gfis O(¢¢) for all
€ > 0. This is not enough for our purposes, as we need a bound tBgt13. This is
provided by the following lemmas.

LEMMA 18. Letg be square-free, and let= 2°4) /o_1(q). Fix & > 0. Then as
s — 00,
#{d lg:d <s°‘} = 0(s%)

for all e > 0.

Proof. We start by bounding products fdistinct primes below by*; we may
assume that the primes are the firgirimes. Then by the prime number theorem,

k k
log[ [ pi = logpi ~ pi ~ klogk.
i=1 i=1

Exponentiating, we see that the product is bounded beloif biow,
#dlg:d<sy=) aj,
J
wherea; = a(j,s%, q) is the number of divisors of that are smaller thas® and

have precisely prime factors. Butifi > N, whereN is the smallest integer such that
NV =%, thena; = 0. Moreover, setting» = »(q), we see thai; < (*/). Hence,

ser ()4()
dlq j=n N N
d<s*
By Stirling’s formula, () < (w" /(N /e)V). Thus,
. w we\N Nlog(N)e\™

sinceNV > s > 2v*(1-€) implies thatw < (N log(N)/«10g(2)). Thus,

log(N)e
alog(2)

N
{d|q:d<s“}<<N< ) <« (ClogN)V,

but the last term is clearlg (s€). O
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LemMa 19, If o > 0, then)_ 4, d™* < s €.

d>s

Proof. We divide the sum into two parts: one ovex d < s® and the other over
d > s® (R is a parameter chosen later). For the first, we use the fact that there are
few (namely,0 (s€)) divisorsd of ¢ with d < s® to bound that contribution by

Y ae Y e
dlq dlq
s<d<s® s<d<s®

For the summands witlh > s%, used ™ < s~k andt(q) = 2@ « s1*€ to get

Z d=° <<S_Ra1'(q) < Sl—Ra+e‘
dlq
d>sk

Now chooseR > 0 so that - Re < —« to conclude the lemma. O
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