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1. I n t r o d u c t i o n  

Let F C SL2(Z) be a congruence subgroup, and A0 = 0 < )u < . . .  
be the eigenvalues of the non-euclidean Laplacian on L2(F\H2).  A fun- 
damental  conjecture of Selberg ([Se]) asserts that  the smallest nonzero 
eigenvalue )~I(F) _> 1/4 = 0.25. In the same paper Selberg proved that 
)u(F) >_ 3/16 = 0.1875. Gelbart and Jacquet ([GJ]), using very different 
methods,  improved this to AI(F) > 3/16. Iwaniec ([I]) showed that for al- 
most all Hecke congruence groups F0(p) with a certain multiplier Xp, one 
has )u(F0(P), Xp) >_ 44/225 = 0.19555 . . . .  In [I], he also established a den- 
sity theorem for possible exceptional eigenvalues as above, which while not 
giving any improvement on 3/16 for an individual F, is sufficiently strong 
to substitute for Selberg's conjecture in many applications to number the- 
ory. Selberg's conjecture is the archimedean analogue of the "Ramanujan 
conjectures" on the Fourier coefficients of Maass forms. For these, much 
progress has been made in improving the relevant estimates, beginning with 
Serre ([Ser]) and later on Shahidi ([Sh2]) and nump-Duke-Hoffstein-Iwaniec 
([BDHI]). In this paper we restore the balance and establish in part for the 
archimedean place what is known at the finite places. The method on the 
face of it is quite different, but  the quality of the results coincide (the reason 
will be made clear later). 

T H E O R E M  1.1. For any congruence subgroup F C SL2(Z), we have 

21 
A,(F) >_ 10---0 

There are numerous applications of this result. We present some imme- 
diate ones. The first is towards the Linnik-Selberg conjecture ([L],[Se]) on 
cancellation in sums of Kloosterman sums. For m, n, c > 1 one defines the 
Kloosterman sum as 

r Z ( m ,  n,  c) = e 
c 

x rno dc  
x ~ l m o d c  
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COROLLARY 1.1. Fix N, n, m. Then as x --* c~, 

E S(m, n, c) x2/5 << 
C 

c~_x 
c~0  rood N 

Note that  Weil's bound ([We]) S(m, n, c) <<~ c 1/2+~ would give a bound 
of x 1/2+~ for the sum so that Corollary 1.1 indicates that  there is consid- 
erable cancellation due to the signs of the Kloosterman sums along any 
progression c - 0 mod N. Indeed this Corollary is the first such result on 
cancellation of Kloosterman sums on a general progression. 

A second application is to the remainder term in the "Prime Geodesic 
Theorem" for congruence subgroups F of SL2(Z). Let r r (x )  be the number 
of prime closed geodesics of length g _< log x on F \ H  2. 

COROLLARY 1.2. For any congruence group F C SL2(Z), 

r r ( x )  ---- Li(x) + O(x 7/'~ 

where Li(x) = f2  dt log  t " 

A remainder term of the f o r m  O(X 3/4) has been known for a some time 
(see [S]). The natural  conjecture here is that  as in the theory of primes, the 
remainder term is O~(x 1/2+~) for any e > 0. 

Our proof of Theorem 1.1 is based on the Gelbart-Jacquet lift ([G J]) 
and so is naturally concerned with the cuspidal spectrum of GLm (in what 
follows m ~_ 2). To describe our results we need to introduce various L- 
functions. For this we assume some familiarity with the adelic language. Let 
A be the adeles of Q, and ~r = | be an irreducible cuspidal automor- 
phic representation of GLm (A), which we normalize to have uni tary central 
character. Assume that  the archimedean component ~ror is spherical, so that 
one associates to it a semi-simple conjugacy class diag(#o~(1),..., poe(m)) 
in GLm(C). The gamma factor for the principal L-function L(s, ~r) associ- 
ated to ~r ([GoJ],[J])is 

m 

L(s, Tr~) = H F R ( s -  #o~(j)) (1.1) 
j = l  

where rR(s) = The a alogue of Selberg's conjecture for e l m  
is that  r ~  is tempered, i.e. for j = 1 , . . . ,  m 

Re ( # ~ ( j ) )  = 0 .  (1.2) 

For m -- 2, Selberg's bound ~1 _> 3/16 is equivalent to J R e ( p ~ ( j ) )  I _< 1/4. 
For m :> 3 the only known bound toward (1.2) is the (local) result of 
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Jacquet-Shalika ([JShal,2]), which asserts that  for generic unitary represen- 
tations 

[ Re (p~( j ) )  I < �89 (1.3) 

(see [BR] for a proof using Vogan's classification of the unitary dual of 
GLm(R)) .  

T H E O R E M  1.2. Let ~ be a cuspidal automorphic representation of G Lm / Q 
with ~ spherical. Then 

1 1 
] Re(#~(J ) ) l -<  2 m 2 + 1 

Theorem 1.1 follows from Theorem 1.2 via the Gelbart-Jacquet lift. In- 
deed if ,~ -- 1/4 - r 2, r > 0, is an exceptional eigenvalue for F \ H  u then 
there is a cuspidal automorphic representation r on GL2/Q such that ~r~ 
is parametrized by #~(1)  -- r, #~(2)  -- - r .  Since ~r cannot be monomial 
(as these have A _> 1/4), it lifts to a cuspidal automorphic representa- 
tion H on GL3 whose archimedean component H ~  is also spherical and is 
paraznetrized by diag(2r, O,-2r). Now apply Theorem 1.2. 

Our proof of Theorem 1.2 makes heavy use of the by now well developed 
Rankin-Selberg theory on GLm. The key to the proof is the following obser- 
vation: If ~r on GLm is as above, the Rankin-Selberg L-function L(s, ~ x ~) 
has as its gamma factor 

m 

x II  
j,k=l 

Let/3o = 2 m a x R e ( # ~ ( j ) ) ,  then 5(s, r ~  • ~ )  is holomorphic for Re s >/3o 
and has a pole at s =/3o �9 If X is a primitive even Dirichlet character then the 
same is true for the gamma factor of L(s, ( r |  • ~ )  - in fact the gamma 
factor is still equal to L(s, r ~  • ~ ) .  For X even primitive of sufficiently large 
(prime) conductor q we have ~| ~ r and so L(s, ~ • ~ ) i ( s ,  (~r| x ~) 
is entire. Hence/30 is a trivial zero of L(s, (~r | X) x ~), that  is 

L(f~0, (~ @ X) x ~) = 0 (1.4) 

for all such X. In this way the problem becomes the familiar one of proving 
that  certain twists of L-functions do not vanish at a given point. Theo- 
rem 1.2 follows from 

Q2 
Z Z L ( / ~ , ( r Q x )  x ~) >> log--Q (1.5) 
q,.,Q xCx0 

e v e n  

2 with Q large, the implied constants depending only for R e ~  > 1 - ~-r4-f, 
on 7r and f~. 
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To prove (1.5) we use the functional equation for L(s,  ( r  | X) x ~-) to 
approximate L(/3, ( r  | X) x ~). This brings in Gauss sums and in order to 
optimize the analysis we use Deligne's bounds on hyper-Kloosterman sums 
([D]); these arise for similar reasons in Duke-Iwaniec ([DuI]), Rohrlich ([R]) 
and Barthel-Ramakrishnan ([BR]). We note however that an improvement 
of (1.3) and hence of Selberg's 3/16 bound would result even without use 
of Deligne's bound. 

To end the Introduction we make some further remarks. Firstly one can 
treat the finite places in a similar way and reduce the problem of bounding 
the size of Fourier coefficients to one of non-vanishing of twists. That  is, 
fix a prime p at which ~r is unramified. The local L-factor L(s ,  7cp • ~rp) = 

m 1 = 1-Ij,k=l( - aJ(P)~ -1 has a pole at the point/3o defined via p~0 

maxj  laj(p)] 2. Hence the partial L-fimction L(P)(s, ~r • ~r) :--- L(s ,  7cp • 
~rp)-lL(s,  7r • ~) has a "trivial" zero at s =/3o. The same is true for the 
twists L(P)(s ,(r  | X) • ~) for any X of conductor q for which X(P) = 1 
(this being the analogue of X(-1)  -- 1 which we needed in (1.4)). By 
choosing special q's (as in Rohrlich (JR])) one can modify the arguments 
in this paper and obtain similar results towards P~manujan at p. This 
puts the finite and infinite places on the same footing and explains the 
comment  before Theorem 1.1. In this connection we note that  the full 
Selberg conjecture (or as above, the Ramanujan conjecture) would follow 
from the following statement:  Given 7r an irreducible cuspidal automorphic 
representation and/3  with Re(/3) > 0, there is an even Dirichlet character 
such that  L(/3, 7r | X) r 0. Such problems have been studied by many 
authors ([Shi], [R], [BR]). 

In the special case of m -- 3 an improvement of Theorem 1.2 would result 
from the theory of the symmetric  square L-function L(s,  ~r, Sym 2) on GL3. 
The point is that  by using n(s ,  ~ | )l, SY m2) instead of L(s,  ( r  | X) • #), 
the conductor dependence in X is reduced from q9 to q6. On the other 
hand the location of the trivial zeros remains unchanged. The result would 
be an improvement in the RHS of Theorem 1.2, with 2/5 being replaced 

171 _= 0.21811 in Theorem 1.1. by 5/14 and correspondingly )~I(F) _> ~ . . .  
Unfortunately, the archimedean theory (even in the unramified case) for 
L(s ,  r ,  Sym 2) is not well understood at present and so we cannot carry out 
the above analysis. 1 However, in view of [PP-S],[BuGi], this is not  a problem 
at the finite unramified places, and so for these one can carry out the above. 
This is the analogue of [BDHI]. 

The results above, both at the infinite and finite places, can be estab- 

1D. Ramakrishnan has pointed out to us a device using [BuGi] and the functional equation 
in [Shl] to overcome this difficulty. 
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lished with Q replaced by a number  field F with no loss in the quality of the 
estimates.  The  point being that  the size of the conductor  (in the character 
aspect) of L(s, (r|  • #) is independent  of the number  field. The analysis 
is made  more difficult by the presence of units which restrict the choice of 
X. A similar difficulty appears, and is overcome, in the work of Rohrlich 
([R]; see also [Ba D. A complete proof of the results with Q replaced by a 
number  field will appear  in a forthcoming article. 

A c k n o w l e d g e m e n t .  We thank H. Iwaniec for several i l luminating dis- 
cussions on this work. 

2. B a c k g r o u n d  on  R a n k i n - S e l b e r g  L - f u n c t i o n s  

2.1 R a n k i n - S e l b e r g  t h e o r y .  We recall the Rankin-Selberg theory as de- 
veloped by Jacquet,  Piatetski-Shapiro and Shalika ([JP-SS]), Shahidi ([Shl]) 
and Mceglin-Waldspurger ([MW]). The Rankin-Selberg L-function associ- 
ated to a pair of cuspidal automorphic  representations 7r' on GLm, r" on 
GLn is given by an Euler product  

= ' 7r;) L(s, • I I  L(s, • 
p < ~  

For primes p where both  7r' and ~" are unramified the local factors are given 
by 

, - - - , ,  - 8 , - 1  (2.1) L(s, 7r~ x 7r~') -- de t ( I  - Ap | .app ) 
I where A~ (respectively Ag) are the Satake parameters  associated to 7rp 

/ i  7i./t (respectively to rp).  At finite primes where one of ~r', are ramified, the 
' x r ; ) =  p p ( p - 8 ) - I  where Pp(x) is local factor is still of the form L(s, rp 

a polynomial  of degree at most  mn with P(0) = 1. The  Euler product  is 
absolutely convergent for Re s > 1 [JShal]. 

! II In case r ~ ,  ro~ are spherical, the local factor at infinity is given by 
m 

L(s, Tr: x 7r:)  = H H FR(s  - #~( j )  - #5(k) )  �9 (2.2) 
j----1 k----1 

The completed L-function h(s ,  7r' x r " )  = L(s, 7r~ • r~)L(s ,  ~r' • It") 
has a meromorphic  continuation and satisfies a functional equation 

h(s ,  ~' • ~") = e(s, ~' x ~")h(1  - s, ~' • ~") (2.3) 

where the e-factor is of the form 

e(s, r '  x u" )  = r ( r '  x u " ) f (u '  x ~, ,)-8 (2.4) 

with f(~r' x ~r") > 0 and r(rr' x 7r") E C*. It can be wri t ten as a product  of 
local factors by fixing an additive character r = I-[ ep of A / Q  (which we 
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will assume to be everywhere normalized): 

E ( 8 ,  71 "t 

and each local factor is 1 
malized, and otherwise it 

I I I  
• ~") = I I  ~p(~, ~, • ~,, r (2.51 

P 

' and " if both 7rp 7rp are unramified and Cp is nor- 
is of the form 

! I !  I I  t ! or~ ~p(s, ~p • ~p,r = r ( ~  • ~ ) p - C , . , •  (2.6) 

with c(r~ • r ; )  E Z and r ( r~  x ~r~') a "Gauss sum". The "conductor" 

[ ( r '  • r " )  is the product l-IppC(r~x~ :). At infinity, since we are assuming 
" ' " r  1. that  both  r ~  and ~ror are unramified, one has e(s, ~ r  x ~r~, 

The completed L-function A(s, r '  x ~") is entire unless ~" ~_ #' | I" It 
for some t E C, and A(s, r x #) is holomorphic except for simple poles at 
s = 0, 1 ([MW]). Moreover it is easily deduced from [JShal,2] and [MW] 
that  L(s,  7r' x 7r") is of order one, see [RuS]. If we express L(s,  ~ x ~) as a 
Dirichlet series 

b(n) (2.7) L(s,~ • ~)= ~ .~ 
n-----1 

then the coefficients b(n) >_ 0 (see [auS] for the verification at the ramified 
primes) and the following is a simple consequence: 

~ b ( . ) ~ e ~ x ,  ~ - - , ~  (2.S) 

for some c~ > 0. 

2.2 T w i s t s .  Let X be a primitive Dirichlet character mod q. As is well 
known, X corresponds to a Hecke character of the idele class group A x / Q  • 
trivial on R~_, so x is of the form X = | The Dirichlet character being 
even (i.e. X(-1)  = 1) is equivalent to X~ - 1. For q > 2 prime, there are 
( q -  1)/2 such characters rood q. 

We apply the Rankin-Selberg theory described above to the following 
situation: Fix r on GLm, and let X be an even primitive Dirichlet character 
rood q, where q is a prime not dividing the conductor f(r)  of r .  Take 
r I = ~r(X ) := r | X and r "  = ~. To describe the exact functional equation 
in this case, we recall the Gauss sum 

~(~)= ~ ~(x)~(q). (2.9) 
x m o d q  

LEMMA 2.1. Let  q be apr ime,  q~f(r) ,  and let X be a primitive even Dirichlet 
character modq. 
i) I~w~ w~ite L(s ,  ~ • ~) = ~ = ~  b(n)n -~, then (rec~I x(n)=O i[ (q, n )#  l ) : 
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oo 

L(s, ~(x) • ~) = ~ x ( - )b( - )  
n s 

n = l  

ii) A(s, 7r(X ) • #) = i ( s ,  ~ x ~ ) L ( s ,  ~(X) x ~r) satistles the [unctionM 
equation 

A(s ,r (X)  x # ) = e ( s , r ( X ) x ~ ) A ( 1 - s , r ( ~ ) x ~ )  (2.10) 

where the global e-factor is given by 

e(s, ~(x) • ~) = x(f(~  • ~))e(s,  ~ • ~)e(~, x) m~ 
(2.11) 

= x(f(~  x ~ ) ) r (X)m~q-~%( , ,  ~ • # ) .  

Proof: IfpXqi(r  ) then 

L(s, Tr(X)p x ~p) = det ( I -  X~P)A(p)| ~(p)p_ , ) - I  (2.12) 

e(s, r(X)p x ~p, Cp) = 1 . 

To describe the local factors in the case p I q~(r), we begin with p = q: If 
X ~ 1 then the local L-factors are given by 

L(~, ~(x)q • ~ )  = 1 .  

Indeed, at the prime q, 7% = I n d ( G L m , B ; p l , . . . , p m )  is an unramified 
principal series representation, where #j(x) = Ixl ~i are unramified char- 
acters. Likewise ~rq = Ind(GLm, B;p~- l , . . . ,#~ l )  is unramified. Then 
% | X = Ind(GLm, B; X#I , . . . ,  XPm). Hence (see [JP-SS]) 

m 

L(s, ~(x)~ • ~) = H L(~, ~ | x~| G ~) 
j=l 

m 
= ] - [  L(~,x,~,; ~) 

j,k----1 

and since Xq is ramified, each factor above is 1. As for the epsilon factor, 
we have by [JP-SS] 

m 

e(~, ~(x)~ x ~, cq) = I I  e(*,~ | xG~,r 
j=l 

= E e ( 8 ' X ~ k ' 7  l'~)q) 
j,k=l 

= f i  e(s + uk - u;,  X, Cq) 
j ,k= l 

where the abelian e-factor (for X primitive) is given by 
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e(s, X, Cq) = T(x)q -s �9 

Therefore  we have 

m 

E(8,'K(X)q X ~q , r  = E v(x)q-(~+"'-"J) 
j ,k=l 

~-- T(X,  Cq)rn 2 q--m=~ . 

Since the local e-factor e(s, 7rq x ~q, Cq) = 1, we see tha t  

m 2 
e(8 ,  71"(X)q X ~'q, Cq) ---- e(8,  X, Cq) e(S, 7rq X ~q, Cq) . (2 .13)  

Now suppose  tha t  p ] f(zr). Then (with Pp(p-~) :=  L(s, 7rp x #p)) 

L(s ,~(X)p • ~p) = Pp(X(p)p-~) -1 
(2.14) 

e(~,,,(:~),, • ~,,, r = x(p~(" ,x~, ) )~(s ,  ~-,, • %, r 

Indeed,  Xp(X) = Ixl'" is unramified.  We claim tha t  L(s ,r(X)p x #p) = 
L(s + vp, ~rp x ~p) and similarly for the  e-factor. This  can be  seen from the 
local Rankin-Selberg  integrals of [JP-SS]. Wi th  this given, we have 

i ( s ,  Tr(X)p • ~rp) = pp(p-S-V. ) - i  = pp(x(p)p-S)  -1 

while 

e(s. ~(x)p • %. r = r ( ~  • %)p-C(.p• 

= x(p c('~, • ~ x %, %) 

Since Xor = 1, e(s, Xoo, r = 1 and so we find for the  global e-factor 

e(~, ~(~) • ~) = 1-[e(~, ~(x)~ • ~p, r 
P 

m 2 
~- E(8, 7r X ~oo)I~(8, X, Cq) e(S, "ffq X ~q, Cq) 

IX x(P~("""" ' ) )e (  s , ' , '  • ~,', r 
plf(~') 

= x( f ( ,~  • ~ ) ) , - ( : ~ ) ' ~ q - ' ~ % ( s ,  ~" • ~) 

as required,  n 
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3. T h e  P r o o f s  

For X ~ X0 a primitive even Dirichlet character modq, q~(~r), let 
o o  

L ( s , x )  := x = (3.1) 
n s 

n = l  

We write the functional equation for L(s, X) as 

L(s, X) = e(s, ~(X) x ~ )a ( s )L(1  - s, ~) (3.2) 

with e(s, r(X) x #) is given by Lemma 2.1 and where we set 

V(s) = n(1 - s, 7too x ~oo) (3.3) 
L(s, 7too x #oo) 

We investigate the averages 

E E L(/],X) (3.4) 
q~Q x ~ x 0  

e v e n  

where )-~.q~Q means we sum over primes Q < q _< 2Q. 

PROPOSITION 3.1. For 0 < Re/] < 1, and e > 0 

E E L(/]'X)= �89 E q-}-Oz'e(Ql+":+l(1-aeZ)+e)" (3.5) 
q~Q x ~ x 0  q~Q 

e v e r  

Proof o] Theorem 1.2: As noted in the introduction, Theorem 1.2 follows 
from noting that  if ~oo is spherical and parametrized by diag(/too(1),..., 
/too(m)) then for all even Dirichlet characters X the Rankin-Selberg L- 
function L(s, ~'(X) x ~) has a trivial zero at/]0 = 2 max Re/too(j). Note that 
since 7too is unitary, {/too(j)} -- {-/too(k)} and so to prove Theorem 1.2 it 
suffices to show that fl0 _< 1 - 2/(m 2 -F 1). However if Re/] > 1 - 2 / (m 2 -F 1) 

1 3 2 then in (3.5) the O-term is of smaller order than ~ ~j'~q~Q q ,,, ~Q / log Q 
while the left-hand side is zero. This gives a contradiction and so proves 
Theorem 1.2. 

AN APPROXIMATE FUNCTIONAL EQUATION. To prove Proposition 3.1, 
we need an appropriate series representation of L(/], X)- The following is 
such a representation which is gotten by a well known use of the functional 
equation (3.2). For f e C~(0 ,  c~) with f~o f(x)dx = 1, set 

f0oo i(yly"  k(s) = . (3.6) 
Y 

Thus k(s) is entire, rapidly decreasing in vertical strips and k(0) = 1. For 
x > 0 set 
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1 /R k(s)x-'ds 
Fa(x) = e.=2 

(3.7) 
+ / 3 ) x - .  de. iL 

F2(x) = ~ ,=2 s 

Recall that/3o = 2 m a x R e # ~ ( j )  and we assume 0 < Re/3 < 1. 

LEMMA 3.1. i) FI(X) and F2(x) are rapidly decreasing as x---* ~ .  
ii) F1 (x) = 1 + O(x N) t'or 311 N >_ 1 as x --* O. 
iii) F2(x) << 1 + x  1 - 0 ~  a s x  --, 0. 

Proof: The asymptot ics  of Fl(x) follow upon shifting the contour of inte- 
gration to the right (for x --, ~ )  and left (for x --, 0). As for F2(x), by 
Stirling's formula, G(s) is of moderate  growth in vertical strips and so we 
may shift contours. To get the behaviour as x --* ~ ,  shift the contour to 
the right. For the behaviour as x --~ 0, shift to the left. If Re/3 +/30 - 1 < 0 
then we pick up a simple pole at s = 0 which gives F2(x) = O(1); otherwise 
we pick up the first pole at s = / 3  +/3o - 1 and none to its right. In this 
case we get the bound 

F2(x) << x l - 0 - R e a ( - - l o g x ) d - 1  , as x --* 0 

where d _< m 2 is the maximal order of a pole of L(s, 7r~r • ~ )  on the line 

R e s  =/30. [] 
In the rest of this section we set 

f =  f(~- x ~) . (3.8) 

LEMMA 3.2 [Approximate Functional Equation]. IfX # Xo is an even prim- 
itive Dirichlet character modq, with qXf(r), and 0 < Re/3 < 1 then for any 
Y > I ,  

nO 
n=l (3.9) 

+ T ( r X  #)(qm~f) - a  ~ b(n)x(n)X(f)T(X)r"~F2 ( n Y )  
n = l  •1--/3 ~ " 

Proof: Consider the integral 

1 f k(s)L(s+/3,x)y.ds ~--~b(n)x(n)i f Y ,ds 
27ri s = nO 2ri k(S)(n) s 

n = l  rte,=2 Re,=2 (3.10) 

n = l  

Both the fact that  this converges absolutely and the justification of the 
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contour shifts follow from the comments at the end of section 2.1. On the 
other hand, shifting the contour to Res  = -1 ,  since L(s, X) is entire for 
X:fi Xo, 

1 / k(s)L(s+~,x)ysdS=L(fl, X)+~__~z f k(s)L(s+~,x)y.ds.  
2~i s s 

Re s = 2  Re s------1 

On applying the functional equation (3.2), this gives 

L(fl, X) 

f - 
§ 2-~r/ k(s)T(rX fr)X(f)r(X) m~ (fq m~ )-8-ZG(s+~)L(1-s-fl, yc)Y 8 ds 8 

Re 8=--1 

On changing variable s --+ - s  this gives 

= i ( ~ ,  X) 1/ 
2~ri k(-s)r(r x ~r)X(f)r(x) "? (fq m2)~-~ 

Re s = l  

. G(-s + ~)L(s + 1 - ~, 2)Y -8 d-2s 
8 

n = l  n l  - f l  ~ - ~  " 

Comparing with (3.10) we recover (3.9). a 

Proof of Proposition 3.1: We study the average (3.4) by using the approx- 
imate functional equation (3.9) with Q << Y << Q m2 . On using 

0 ,  n = 0 m o d q  
E x(n)= ~ - ~ - 1 ,  n = _ : k l m o d q  (3.11) 
x~o ' - 1  , otherwise 

e v e n  

we find that  the contribution of the first sum on the RHS of (3.9) to the 
average is 

E E E b(n)~(n)Flnl~ (y)  : E q- 12 Z bin)rtB F1 (y)  
q~Q x•x0 n q,~Q n - 4 - 1 m o d q  

e v e n  

*a~4-1 rood q 

We single out the contribution from n = 1 in the first term above: 

q~Q 

(3.12) 

(3.13) 
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ra2+l 
We will c h o o s e Y ~ Q  2 and so we use F l (x)  -* l as x --, 0. 
E~~Q q ~ ~r162  

The sum over n = 1 mod  q, n ~ 1 contributes 

Note that  

E q 1 b ( l + d q )  r, a ~ d q  < < Q E  raR.f~ 
q~Q 2 _ ( l + d q )  ~ ' 1  ,~ 

where we use the fact that  for n ~ 1, the number  of different representations 
n = 1 + dq = 1 + d'q' is O(n~). Now apply (2.8) and Fl (x )  ,,~ 1 as x --* 0 to 
find tha t  

q -  1 b(n) 
-2 E nf~Fl(y)  << 

Q y l - i r  (3.15) 
q~Q n--~Imodq 

(recall tha t  R e ~  < 1). Similarly we find that  

E q - 1  2 E b~)F1 ( y )  ~ Qyl-Refl+c * ( 3 . 1 6 )  

q~Q n - - l m o d q  

The last sum in (3.12) is bounded by 

<< (3.17) 
q~O (n,q)=l 

To treat  the contribution of the second term in (3.9) we first note that  
if q Xn then 

m2-~l 
~(n)x( f )~(~)  m~ << q ~ (3.18) 

x~x0 
even 

Indeed, setting r - n~ mod q (with 6 -  1 mod q) we have 

E ;~(r)v(X)m2 -- q - 1 
2 

x-~xo 
even 

- - { K l r ~ 2 ( r , q ) + K l , ~ 2 ( - r , q ) } - ( - 1 )  m2 (3.19) 

where for r r 0 m o d  q the hyper-Kloosterman sum Kin(r, q) is defined by 

xl + . . .  + x , )  
Kl , ( r ,  q) = E e q- . 

xl "...'x• = r m o d  q 

(3.20) 

Using Deligne's bound  Kln(r,q) << q(n--1)/2 ([D]), we get (3.18). 
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Now sum over q to find 

Z/fq ') z n 1-fl 
q~Q x~•  n 

even 

q~Q (n,q)=l 

<< ~-~(fqm2)-ae~ ~ nl--L-h-.~e~ q 2 F2 ~ - ~  
q~Q ( n , q ) = l  

<< E(fqm2)-rtr  ~ F2 x Y  dx Q l + ~ y - R e ~  
q~Q 1 X 1 - Re---- - ' - -~ < <  

on using the bound for F2(x) in Lemma 3.1 and Refl > 0, flo < 1. Thus 

E ( [ q m 2 ) - f ~ Z E  ~ XU)T(X) r 2 ~ [ - ~ ) < < Q  1+ 
q,.~Q x~x0  n 

e v e n  

(3.21) 
Collecting together (3.13), (3.15), (3.16), (3.17) and (3.21) we find 

Z L(/3 'X)= Z q - 1  +O(Qyl-ae~+~ +Ql+"~, '  y -a r  . (3.22) 
q~Q x # x 0  q~Q 

even  

On taking Y ,.., Q (m2+1)/2 we prove Proposition 3.1. 

APPLICATIONS. We sketch how Corollaries 1.1 and 1.2 follow from Theo- 
rem 1.1. For Corollary 1.1, we use the result of Goldfeld and Sarnak ([GolS]) 
which asserts that if A i = sj(1 - sj) < �88 are the exceptional eigenvalues 
for F0(N) \H  2, then 

E S ( m ' n ' c ) - - Z T j ( m ' n ) x 2 ~ ' - l T O ' ( x [ + e ) "  (3.23) 
C 

1 < c < a c  8 j  
c--_--OmodN 

Since Theorem 1.1 gives �89 ~ sj < 7 ,  we recover Corollary 1.1. 
Corollary 1.2 was established in the recent work of Luo and Sarnak 

([LuS]) for the full modular group F = SL2(Z). It was pointed out there 
that the only obstruction to establishing Corollary 1.2 for any congruence 
subgroup is the presence of small eigenvalues )~j = sj(I - sj) with sj > ~ .  
Theorem 1.1 asserts precisely that these do not exist. 
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