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ON SELBERG’S EIGENVALUE CONJECTURE

W. Luo, Z. RUDNICK AND P. SARNAK

1. Introduction

Let I' C SL2(Z) be a congruence subgroup, and A\g = 0 < A; < ...
be the eigenvalues of the non-euclidean Laplacian on L*(I'\H?). A fun-
damental conjecture of Selberg ([Se]) asserts that the smallest nonzero
eigenvalue A\ (I') > 1/4 = 0.25. In the same paper Selberg proved that
A(T) > 3/16 = 0.1875. Gelbart and Jacquet ({GJ]), using very different
methods, improved this to A;(I') > 3/16. Iwaniec ([I]) showed that for al-
most all Hecke congruence groups I'g(p) with a certain multiplier x,, one
has A1 (To(p), xp) > 44/225 = 0.19555. ... In [I], he also established a den-
sity theorem for possible exceptional eigenvalues as above, which while not
giving any improvement on 3/16 for an individual T, is sufficiently strong
to substitute for Selberg’s conjecture in many applications to number the-
ory. Selberg’s conjecture is the archimedean analogue of the “Ramanujan
conjectures” on the Fourier coefficients of Maass forms. For these, much
progress has been made in improving the relevant estimates, beginning with
Serre ([Ser]) and later on Shahidi ([Sh2]) and Bump-Duke-Hoffstein-Iwaniec
([BDHI)). In this paper we restore the balance and establish in part for the
archimedean place what is known at the finite places. The method on the
face of it is quite different, but the quality of the results coincide (the reason
will be made clear later).

THEOREM 1.1. For any congruence subgroup I' C SL2(Z), we have

21
A(l) 2 100 °
There are numerous applications of this result. We present some imme-
diate ones. The first is towards the Linnik-Selberg conjecture ([L],[Se]) on
cancellation in sums of Kloosterman sums. For m,n,c > 1 one defines the
Kloosterman sum as

Stmn,)= 3 e(ﬁi;ﬁf)

zmodc
z2=1modc
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CoroOLLARY 1.1. Fix N,n,m. Then as x — oo,

Z S(m,cn,c) < 225

c<z
c=0mod N

Note that Weil’s bound ([We]) S(m,n,c) <. c!/>* would give a bound
of z1/2+¢ for the sum so that Corollary 1.1 indicates that there is consid-
erable cancellation due to the signs of the Kloosterman sums along any
progression ¢ = 0 mod N. Indeed this Corollary is the first such result on
cancellation of Kloosterman sums on a general progression.

A second application is to the remainder term in the “Prime Geodesic
Theorem” for congruence subgroups I' of SL2(Z). Let nr(z) be the number
of prime closed geodesics of length ¢ < logz on I'\H2.

COROLLARY 1.2. For any congruence group I' C SLy(Z),
7r(z) = Li(z) + O(z7/10)
where Li(z) = [, 4

Togt”

A remainder term of the form O(x%/4) has been known for a some time
(see [S]). The natural conjecture here is that as in the theory of primes, the
remainder term is O¢(z!/?*¢) for any € > 0.

Our proof of Theorem 1.1 is based on the Gelbart-Jacquet lift ([GJ])
and so is naturally concerned with the cuspidal spectrum of GL,, (in what
follows m > 2). To describe our results we need to introduce various L-
functions. For this we assume some familiarity with the adelic language. Let
A be the adeles of Q, and ™ = ®,<x T, be an irreducible cuspidal automor-
phic representation of GL,,(A), which we normalize to have unitary central
character. Assume that the archimedean component 7, is spherical, so that
one associates to it a semi-simple conjugacy class diag(poo(1),. .., ftoo(m))
in GL,,(C). The gamma factor for the principal L-function L(s, ) associ-
ated to 7 ([GoJ],[J]) is

L(s, 7o) = H (s = Hool4)) (1.1)

where I'r(s) = 77°/2I'(£). The analogue of Selberg’s conjecture for GLn,
is that 7 is tempered, i.e. for j=1,...,m

Re (o)) = 0 - (1.2)

For m = 2, Selberg’s bound \; > 3/16 is equivalent to |Re(po(5))| < 1/4.
For m > 3 the only known bound toward (1.2) is the (local) result of
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Jacquet-Shalika ([JShal,2]), which asserts that for generic unitary represen-

tations
| Re(hoo ()] < 2 (1.3)

(see [BR] for a proof using Vogan’s classification of the unitary dual of
GL,(R)).

THEOREM 1.2. Let 7 be a cuspidal automorphic representation of GL,,/Q
with ms, spherical. Then
1

) 1
|Re(oo ()] < 5 = =57

Theorem 1.1 follows from Theorem 1.2 via the Gelbart-Jacquet lift. In-
deed if A = 1/4 —r% r > 0, is an exceptional eigenvalue for ['\H? then
there is a cuspidal automorphic representation 7 on GL,/Q such that 7o,
is parametrized by p(1) = r, po(2) = —r. Since 7 cannot be monomial
(as these have A > 1/4), it lifts to a cuspidal automorphic representa-
tion II on GL3 whose archimedean component Il is also spherical and is
parametrized by diag(2r,0, —2r). Now apply Theorem 1.2.

Our proof of Theorem 1.2 makes heavy use of the by now well developed
Rankin-Selberg theory on GL,,. The key to the proof is the following obser-
vation: If 7 on GL,, is as above, the Rankin-Selberg L-function L(s, 7 X %)
has as its gamma factor

L(5,T0 X Too) = H Tr(s — too(J) — Hoo(k)) .
k=1
Let By = 2maxRe(poo(7)), then L(s, Too X oo ) is holomorphic for Re s >
and has a pole at s = 3y . If x is a primitive even Dirichlet character then the
same is true for the gamma factor of L(s, (T®X)oo X eo) - in fact the gamma
factor is still equal to L(s, Too XT oo ). For x even primitive of sufficiently large
(prime) conductor g we have 1®x # 7 and 50 L(8, Too X Too ) L(s, (T®X) X )
is entire. Hence Jp is a trivial zero of L(s, (7 ® x) X 7), that is

L(Bo, (r®x) x F) =0 (1.4)

for all such x. In this way the problem becomes the familiar one of proving
that certain twists of L-functions do not vanish at a given point. Theo-

rem 1.2 follows from
2

> Y LB rex) <) > prp (19)

q~Q X#X0

even

for Ref > 1 — 77?2va with @ large, the implied constants depending only
on 7 and f3.
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To prove (1.5) we use the functional equation for L(s, (7 ® x) X 7) to
approximate L(3, (7 @ x) x #). This brings in Gauss sums and in order to
optimize the analysis we use Deligne’s bounds on hyper-Kloosterman sums
([D]); these arise for similar reasons in Duke-Iwaniec ([Dul}), Rohrlich ([R])
and Barthel-Ramakrishnan ([BR]). We note however that an improvement
of (1.3) and hence of Selberg’s 3/16 bound would result even without use
of Deligne’s bound.

To end the Introduction we make some further remarks. Firstly one can
treat the finite places in a similar way and reduce the problem of bounding
the size of Fourier coefficients to one of non-vanishing of twists. That is,
fix a prime p at which 7 is unramified. The local L-factor L(s,m, X 7p) =
[17%=1(1 = @j(p)ax(p)p~*)~" has a pole at the point 3o defined via pho =
max; |o;(p)|?>. Hence the partial L-function L(®P)(s, 1 x #) 1= L(s,m, X
7ip) ' L(s,m x %) has a “trivial” zero at s = By. The same is true for the
twists L(P)(s, (7 ® x) x ) for any x of conductor ¢ for which x(p) = 1
(this being the analogue of x(—1) = 1 which we needed in (1.4)). By
choosing special ¢’s (as in Rohrlich ([R])) one can modify the arguments
in this paper and obtain similar results towards Ramanujan at p. This
puts the finite and infinite places on the same footing and explains the
comment before Theorem 1.1. In this connection we note that the full
Selberg conjecture (or as above, the Ramanujan conjecture) would follow
from the following statement: Given 7 an irreducible cuspidal automorphic
representation and 3 with Re() > 0, there is an even Dirichlet character
such that L(8,7 ® x) # 0. Such problems have been studied by many
authors ([Shi], [R], [BR]).

In the special case of m = 3 an improvement of Theorem 1.2 would result
from the theory of the symmetric square L-function L(s, 7, Sym?) on GLj.
The point is that by using L(s, 7 ® x, Sym?) instead of L(s, (7 ® x) X 7),
the conductor dependence in x is reduced from ¢° to ¢°. On the other
hand the location of the trivial zeros remains unchanged. The result would
be an improvement in the RHS of Theorem 1.2, with 2/5 being replaced
by 5/14 and correspondingly A (') > 3%; = 0.21811... in Theorem 1.1.
Unfortunately, the archimedean theory (even in the unramified case) for
L(s,, Sym?) is not well understood at present and so we cannot carry out
the above analysis.! However, in view of [PP-S],[BuGi], this is not a problem
at the finite unramified places, and so for these one can carry out the above.
This is the analogue of [BDHI].

The results above, both at the infinite and finite places, can be estab-

ID. Ramakrishnan has pointed out to us a device using [BuGi| and the functional equation
in [Sh1] to overcome this difficulty.
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lished with Q replaced by a number field F' with no loss in the quality of the
estimates. The point being that the size of the conductor (in the character
aspect) of L(s, (1@ x) x 7) is independent of the number field. The analysis
is made more difficult by the presence of units which restrict the choice of
xX- A similar difficulty appears, and is overcome, in the work of Rohrlich
([R]; see also [BR]). A complete proof of the results with Q replaced by a
number field will appear in a forthcoming article.

Acknowledgement. We thank H. Iwaniec for several illuminating dis-
cussions on this work.

2. Background on Rankin-Selberg L-functions

2.1 Rankin-Selberg theory. We recall the Rankin-Selberg theory as de-
veloped by Jacquet, Piatetski-Shapiro and Shalika ([JP-SS]), Shahidi ([Sh1))
and Meceglin-Waldspurger ([MW]). The Rankin-Selberg L-function associ-
ated to a pair of cuspidal automorphic representations 7’ on GL,,, 7" on
GL, is given by an Euler product
L(s,n’ x n") = H L(s,m, x ) .
p<oo

For primes p where both 7’ and 7" are unramified the local factors are given
by

L(s,m, x 7)) = det(I — A, ® Ajp~*)~" (2.1)
where A, (respectively A}) are the Satake parameters associated to
(respectively to 7). At finite primes where one of 7/, 7" are ramified, the
local factor is still of the form L(s, 7}, x 7)) = Pp(p™*)~!, where P,(z) is
a polynomial of degree at most mn with P(0) = 1. The Euler product is
absolutely convergent for Res > 1 [JShal].

In case 7/, 7/l are spherical, the local factor at infinity is given by

m n
L(s,mbe x 7o) = [ ] T] Tr (5 = #ea i) = 1o (k) - (2.2)
7=1k=1
The completed L-function A(s, 7’ x «”) = L(s,n., x e )L(s, 7" x «'')
has a meromorphic continuation and satisfies a functional equation

A(s, ' x ") = e(s, 7' x 7" )A(1 — 5,7 x &) (2.3)
where the e-factor is of the form
e(s, " x ') = v(x' x o' )f(x' x x'")~* (2.4)

with f(z’ x #”) > 0 and 7(7’ x 7'') € C*. It can be written as a product of
local factors by fixing an additive character ¢ = [[ 4, of A/Q (which we
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will assume to be everywhere normalized):

e(s, ' x 7)) = Hep(s Ty X Ty, p) (2.5)

and each local factor is 1 if both 7, and 7, are unramified and wp is nor-
malized, and otherwise it is of the form

€p(8, T, X Wy 1p) = T(m, X Ty )P~ oy xmy)e (2.6)

with c(r, x 7,) € Z and 7(7, X 7r") a “Gauss sum”. The “conductor”

f(r' x «"") is the product [], p™»X*y) At infinity, since we are assuming
that both 7o, and 7’y are unra.m1ﬁed one has €(s, 7l X 7/, 9¥) = 1.

The completed L function A(s, 7’ x ") is entire unless 7r" ~7 @
for some t € C, and A(s, 7 x %) is holomorphic except for simple poles at
s = 0,1 ([MW]). Moreover it is easily deduced from [JShal,2] and [MW]
that L(s,n’ x 7") is of order one, see [RuS). If we express L(s,7 x ) as a
Dirichlet series

Lis,mx®) =Y. bf:;‘) (2.7)

then the coefficients b(n) > 0 (see [RuS] for the verification at the ramified
primes) and the following is a simple consequence:

Z b(n) ~ crz, Z — 00 (2.8)

n<z
for some ¢, > 0.

2.2 T'wists. Let x be a primitive Dirichlet character mod g. As is well
known, x corresponds to a Hecke character of the idele class group AX/Q¥,
trivial on R}, so x is of the form x = ®x,. The Dirichlet character being
even (i.e. x(=1) = 1) is equivalent to xo = 1. For ¢ > 2 prime, there are
(g — 1)/2 such characters mod q.

We apply the Rankin-Selberg theory described above to the following
situation: Fix 7 on GL,y,, and let x be an even primitive Dirichlet character
mod g, where ¢ is a prime not dividing the conductor f(7) of x. Take
7' = w(x) := 7 ® x and 7" = 7. To describe the exact functional equation
in this case, we recall the Gauss sum

)= 3 x(z)e(g) - (2.9)

zmodgq

LEMMA 2.1. Let q be a prime, g (), and let x be a primitive even Dirichlet

character modg.
i) Ifwe write L(s,mx%) = Y ne, b(n)n=2, then (recall x(n)=0 if (g, n)#1) :
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L(s,m(x) x )

Z x(n)b(n)

i) A(s,m(x) x ) = L(s, Moo X 7r°o)L(s,7r(X X ) satisfies the functional
equation
A(s,m(x) x ) = €(s,m(x) x F)A(1 — s, 7(%) x 7) (2.10)
where the global e-factor is given by
e(s,7(x) x 7) = x(f(m x 7))e(s, 7 x T)e(s, )™ (2.11)
= x(f(r x ir))T(x)mnq_mz"e(s, TXT) . .

Proof: If p fgf() then

. RN |

L(s,m(x)p X 7p) = det (I — x(p)A(p) ® A(P)p™") (2.12)

(s, 7(X)p X Tp,¥p) =1 .
To describe the local factors in the case p | ¢f(7), we begin with p = ¢: If
x # 1 then the local L-factors are given by

L(s,m(x)g X Tq) =1.

Indeed, at the prime ¢, 7y = Ind(GLp,B;p,...,m) is an unramified
principal series representation, where p;(z) = |z|% are unramified char-

acters. Likewise #; = Ind(GLy, B;p;?,...,py!) is unramified. Then
Tq ® X = Ind(GLp, B; X4, . . -, Xfim). Hence (see [JP-SS])

L(s,m(X)g X Tq) = [[ L(s,mq ® xq ® 115'1)

st’fp:ls

= ] LG, xmeni®)

Jak=1
and since X, is ramified, each factor above is 1. As for the epsilon factor,
we have by [JP-SS]

G(S,W(X)q X 7~rqa¢q) = €(s,mq ® xp; ,¢q)

3 Tl::li

= [I (s xensi*s0)
jk=1

m

= H 6(3+Uk —ujax,¢q)

Jrk=1

where the abelian e-factor (for x primitive) is given by
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E(S, X qu) = T(X)q_s .

Therefore we have

m

E(s’ W(X)q X irq’ z/)q) = H T(X)q'—(8+u1=—uj)
j1k=1

2 2
=7(X, %)™ g7 ° .

Since the local e-factor €(s, mq X 7g,104) = 1, we see that

€(s,7(X)q X 7q, ¥q) = €(5, X, ’bq)mzf(safq X g, ¥q) - (2.13)

Now suppose that p | f(r). Then (with P,(p~*) := L(s, 7, X Tp))

L(s,w(x)p x ) = P (x(p)p™) " (2.14)
f(syw(X)p X ﬁpaz/}p) = X(pc(rpxwp))f(sva X Tpy Pp)
Indeed, xp(z) = |z|"» is unramified. We claim that L(s,7(x), X p) =

L(s+ vp, T, X Tp) and similarly for the e-factor. This can be seen from the
local Rankin-Selberg integrals of [JP-SS]. With this given, we have

L(s,7(X)p X Tp) = Po(p™ ™)™ = B (x()p™)

while

6(3, W(X)p X 7?1,, ¢p) = T(ﬂ’p X ﬁp)p"c(""px;"p)(3+vp)

= X(Pc("pXi’))T(”p X &p)p
= X(PC(WPW"))E(S’ Tp X T, 1p)

—c(mp XTp)s

Since xoo = 1, €(8, Xoo, Yoo) = 1 and so we find for the global e-factor
e(s,m(x) x &) = [ (5, 7(X)p X 7p, %)
P

~ 2 ~
= €(8, Too X oo )€(8, X, Yq)™ €(8,Tq X Tq,1q)

T x@ " )e(s, mp x 7, )
plf(r)

= x(f(r x ®) 7)™ ¢~ ™ *e(s, 7 x 7)

as required. o
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3. The Proofs
For x # xo a primitive even Dirichlet character modg, q /f(7), let
oo
. b(n)x(n
L(s,x) = L(s,m(x) x &) = bn)x(n) (3.1)

718
n=1

We write the functional equation for L(s, x) as
L(s,x) = €(s,m(x) x #)G(s)L(1 — s, X) (3.2)
with €(s, 7{x) x %) is given by Lemma 2.1 and where we set
L(1 — 8,700 X Too)
L(s, oo X Too)

G(s) =

We investigate the averages

> > LB (3.4)

qrv(? x#Xx0

where ) g~ TNeans we sum over primes @ < q < 2Q.

PRrRoPOSITION 3.1. ForO0 < Re < 1,and e >0

S Y LB, =1 Y g+ 0p (QUETHOSRANG L (35)

q~Q X#xo 4~Q

even

Proof of Theorem 1.2: As noted in the introduction, Theorem 1.2 follows
from noting that if 7 is spherical and parametrized by diag(peo(1),...,

w(m)) then for all even Dirichlet characters x the Rankin-Selberg L-
function L(s, w(x) x 7) has a trivial zero at fp = 2maxRe f1.(j). Note that
since Ty is unitary, {#teo(j)} = {—teo(k)} and so to prove Theorem 1.2 it
suffices to show that 3y < 1—2/(m?+1). However if Re 8 > 1—2/(m? +1)
then in (3.5) the O-term is of smaller order than %Zq~Qq ~ 2Q%/logQ
while the left-hand side is zero. This gives a contradiction and so proves
Theorem 1.2.

AN APPROXIMATE FUNCTIONAL EQUATION. To prove Proposition 3.1,
we need an appropriate series representation of L(83,x). The following is
such a representation which is gotten by a well known use of the functional
equation (3.2). For f € C(0,00) with [ f(z)dz = 1, set

k(s) = /0 f(y)ys;y- (3.6)

Thus k(s) is entire, rapidly decreasing in vertical strips and k(0) = 1. For
z > 0 set
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1 d
F](IE) = '—7;" k(s)x—’?s

Re s=2
i (3.7)

1 _ads
Fy(z) = 5 /Re.,=2 K=2)G(s + Bz~ "
Recall that Sy = 2maxRe pt(j) and we assume 0 < Re < 1.

LEMMA 3.1. i) Fi(z) and Fy(z) are rapidly decreasing as x — oo. |
ii) Fi(z)=1+0(z") forall N>1asz— 0.
iii) Fy(z) € 14217 Po—Reb=€ 355 — 0.

Proof: The asymptotics of Fj(z) follow upon shifting the contour of inte-
gration to the right (for + — o) and left (for z — 0). As for Fy(z), by
Stirling’s formula, G(s) is of moderate growth in vertical strips and so we
may shift contours. To get the behaviour as * — oo, shift the contour to
the right. For the behaviour as z — 0, shift to the left. f Re8+ 8o ~1< 0
then we pick up a simple pole at s = 0 which gives Fz(z) = O(1); otherwise
we pick up the first pole at s = 3 + By — 1 and none to its right. In this
case we get the bound

Fy(z) € '~ A~ReB(_logz)41, asz — 0
where d < m? is the maximal order of a pole of L(s, e X o) on the line
Res= . o
In the rest of this section we set
f=f(mx7). (3.8)

LEMMA 3.2 [Approximate Functional Equation]. If x # xo is an even prim-
itive Dirichlet character modgq, with ¢ /f(r), and 0 < Re 3 < 1 then for any
Y > 1,

L(B,x) = E b—(%Ln—)R ("‘;;)
n=1 (3.9)

(e x D)) ﬂz MO 0™ Fa (o ) -
Proof: Consider the integral

o [ KoL+ 8,07 2= S UL [ o Eyd

nf  2xi
Re s=2 n=1 Re s=2 (310)
_a=bn)x(n) , (n
~; nf B (?) ’

Both the fact that this converges absolutely and the justification of the
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contour shifts follow from the comments at the end of section 2.1. On the
other hand, shifting the contour to Res = -1, since L(s, x) is entire for

X#XO’

1 d
— / KOL(s+B,0Y* 2 = L(8, )+ 50 / KO)L(s48, )Y "2
Re s=2 Re s=—1
On applying the functional equation (3.2), this gives
(ﬂ, X)
tar [ EOTEERXDTO™ (™) PG AL (-5, DY S
Res=-1
On changing variable s — —s this gives
- m? -8
35 [ Heormx x@r 0™ Gy’
Res=1

‘G(=s+B)L(s+1-5, X)Y“‘%f

= L(B,x) — m(x x D)x(NTO)™ (g™ )" > “ZZ’EE,"’ P (fz,}n/) :

Comparing with (3.10) we recover (3.9). o
Proof of Proposition 3.1: We study the average (3.4) by using the approx-
imate functional equation (3.9) with Q@ €« ¥ < Q"‘z. On using

0, n=0modg
Z X(n):{gg—l——l, n=+1modgq (3.11)
x#xo -1, otherwise

even

we find that the contribution of the first sum on the RHS of (3.9) to the
average is

LETEEA - E A6

~Q ’ife’f'o n n=t1modgq
Ty Mma.
~Q (m,9)=1 nf Y/
1 n;i’lmodq

We single out the contribution from n =1 in the first term above:

unl ( )-‘-%ZHO(QHO(QZY‘”). (3.13)
q~Q

~Q
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We will choose Y ~ Qm_iﬂ and so we use Fy(z) — 1 as x — 0. Note that
ZqNQ q-~ %Qz/log Q'

The sum over n = 1 mod ¢, n # 1 contributes

g—15~b+dg) p (1+dg b(m)me
q~ZQ 2 d>1(1+dQ)’3 1( Y )<<QE mRe P lFl( )I.(3.14)

where we use the fact that for n # 1, the number of different representations
n=1+dg=1+d'q is O(n®). Now apply (2.8) and Fi(z) ~1asz — 0 to

find that
Z q -1 Z b(Z) Fl (}_7}:) & QYI_Reﬂ+€ (315)

'n;él
(recall that Re 8 < 1). Similarly we find that

Z _q——2—_-1_ Z b(n)F1 (Y) < le—Reﬂ+e . (3.16)

q~Q n=—1modgq

The last sum in (3.12) is bounded by

> 2 bI({T:ﬂ |Fl( |<<QY‘"‘“”+‘. (3.17)

9~Q (n,9)=1
To treat the contribution of the second term in (3.9) we first note that
if ¢ /n then
— mz m?41
3 xmx(Hr)™ < "7 (3.18)

X#Xo
even

Indeed, setting r = nf mod ¢ (with ff = 1 mod ¢) we have

3 )™ = q—;—l{Klmz(r, q9) + Klpa(-r,)} — (-1)™  (3.19)

X#X0
even

where for r # 0 mod ¢ the hyper-Kloosterman sum Kl,(r, ) is defined by

Kla(rg)= 3. e(u) (3.20)

£y Tp=rmodgq 9

Using Deligne’s bound Kl,(r,q) < ¢(®~1/2 ([D]), we get (3.18).
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Now sum over ¢ to find

> (lg™)~* Zzb(n D)™ F (%)

-2 e
_ b{n -
=Sy Y X )[-2—K1mz(nf,q}
q~Q (n,q)= 1

+ L2 Kl (-nf,q) - (<D™ ] (;ZY)
<3 (g™ N nlb(zzﬂq FZ(fﬁ’)

q~Q (n, q) 1
- dzx 142541 _Reg
<Y (™) (fqm,) SR Q@YY
~Q

on using the bound for F3(z) in Lemma 3.1 and Re8 > 0, Sy < 1. Thus

>0y 5 5 M o B o ) <@ YR

g~Q X#x0 n

even

(3.21)
Collecting together (3.13), (3.15), (3.16), (3.17) and (3.21) we find
Y Y L= Y L o@Qrirestes iy -Res) | (3.2)

q~Q x#xo ~Q

even

On taking ¥ ~ Q(™*+1)/2 we prove Proposition 3.1.

APPLICATIONS. We sketch how Corollaries 1.1 and 1.2 follow from Theo-
rem 1.1. For Corollary 1.1, we use the result of Goldfeld and Sarnak ([GolS])
which asserts that if A; = s;(1 —s;) < i, are the exceptional eigenvalues
for To(IN)\H?, then

S(m, n, C) 28 ~—1 1
2027 =Y r(myn)a?i T + O () . (3.23
T =T ( )

Since Theorem 1.1 gives % <s;< %, we recover Corollary 1.1.

Corollary 1.2 was established in the recent work of Luo and Sarnak
([LuS)) for the full modular group I' = SLy(Z). It was pointed out there
that the only obstruction to establishing Corollary 1.2 for any congruence
subgroup is the presence of small eigenvalues A; = s;(1 — s;) with s; > 10
Theorem 1.1 asserts precisely that these do not exist.
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