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A METRIC THEORY OF MINIMAL GAPS

ZEÉV RUDNICK

Abstract. We study the minimal gap statistic for fractional parts of sequences
of the form Aα = {αa(n)}, where A = {a(n)} is a sequence of distinct integers.
Assuming that the additive energy of the sequence is close to its minimal possible
value, we show that for almost all α, the minimal gap δαmin(N ) = min{αa(m) −
αa(n) mod 1 : 1 6 m 6= n 6 N } is close to that of a random sequence.

We start with a sequence of points X = {xn : n = 1, 2, . . . } ⊂ R/Z in the unit
interval/circle, which we assume is asymptotically uniformly distributed: for any
subinterval ⊂ R/Z, we have

lim
N→∞

1
N

#{n 6 N : xn ∈ I } = |I |. (1)

In particular, the mean spacing between the points lying in any subinterval is
1/N . Our goal is to understand the minimal gap

δmin(X , N ) = min(|xn − xm | : n,m 6 N , n 6= m)

(with a suitable modification for wrapping around).
For random points, namely N independent uniform points in the unit interval

(Poisson process), the minimal gap is almost surely of size 1/N 2 [9]. In this note
we study the metric theory of the minimal gap statistic for a class of deterministic
sequences of fractional parts, such as fractional parts of polynomials. The case
of quadratic polynomials xn = αn2 has its roots in the recent paper [3], which
studies the more complicated case of the minimal gap statistic for the sequence of
eigenvalues of the Laplacian on a rectangular billiard, namely the points {αm2+
n2 : m, n > 1} on the real line.

We fix a sequence A = {a(n) : n = 1, 2, . . . } ⊂ Z of distinct integers (a(n) 6=
a(m) if m 6= m), and study the minimal gap statistic of fractional parts of the set

Aα = {αa(n) mod 1 : n = 1, 2, . . . } ⊂ R/Z.

(it is an old result of Weyl that Aα satisfies (1) for almost all α). We want to
know under which conditions we can show that for almost all α, the minimal
gap statistics

δαmin(N ) = δmin(Aα, N )

follows that of the random case, that is of size about 1/N 2 for almost all α. It is
easy to see that we cannot have much smaller minimal gaps.
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A METRIC THEORY OF MINIMAL GAPS 629

THEOREM 1. Assume that A consists of distinct integers. Then for all η > 0,
for almost all α,

δαmin(N ) >
1

N 2+η for all N > N0(α).

To make the minimal gap small, we give a criterion in terms of the “additive
energy” E(A, N ) of the sequence

E(A, N ) := #{(n1, n2, n3, n4) ∈ [1, N ]4 : a(n1)+ a(n2) = a(n3)+ a(n4)}.
Note that N 2 6 E(A, N ) 6 N 3. The result is the following.

THEOREM 2. Assume that A consists of distinct integers, and that the
additive energy satisfies

E(A, N )� N 2+o(1) for all N � 1.

Then for all η > 0, for almost all α,

δαmin(N ) <
1

N 2−η for all N > N0(α).

Examples: for a(n) = nd , d > 2, it is shown in [11] that the E(A, N )
� N 2+o(1). For lacunary sequences, we have E(A, N ) � N 2 [12]. Hence,
Theorem 2 applies to these sequences.

Relaxing the required bound on the additive energy will give a weaker result
on the minimal spacing, basically that δαmin(N ) < E(A, N )/N 4−η almost surely.
For this to be non-trivial, we need the additive energy to be no bigger than E(A,
N )� N 3−η′ for some η′ > 0. A notable case where the additive energy is bigger
is that of A = P being the sequence of primes, where E(P, N ) ≈ N 3/log N .
In this case, we cannot have gaps much larger than the average gap: a simple
argument shows that given any ε > 0, for almost all α, we have δmin(Pα, N )�
1/(N (log N )2+ε); see §3.

§1. A bilinear statistic. To study the minimal gap, we introduce statistics
counting all possible gaps: we start with a smooth, compactly supported window
function f ∈ C∞c ([−1/2, 1/2]), which is non-negative: f > 0, and of unit mass∫

f (x) dx = 1, and define

FM (x) =
∑
j∈Z

f (M(x + j)),

which is localized on the scale of 1/M , and periodic: FM (x + 1) = FM (x). We
then set

DA(N ,M)(α) =
∑

16m,n6N
m 6=n

FM (αa(n)− αa(m)).
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630 Z. RUDNICK

The expected value of DA(N ,M) is easily seen to equal∫ 1

0
DA(N ,M)(α) dα = N (N − 1)

M
∼ N 2

M
. (2)

This already suffices to show that minimal gaps cannot typically be small
(Theorem 1); see §2.

We will bound the variance of DA(N ,M), from which Theorem 2 will follow.

PROPOSITION 3.

Var DA(N ,M)� 1
M

N εE(A, N ).

The statistic DA(N ,M)(α) is related to the pair correlation function of
the sequence Aα , which in our notation is DA(N , N )(α)/N . Pair correlation
measures gaps on the scale of the mean spacing, assumed here to be 1/N ,
corresponding to M = N , here we are looking at much smaller scales of M
close to N 2.

The metric theory of the pair correlation function of fractional parts was
initiated in [11], where the sequences a(n) = αnd were shown to almost surely
have Poissonian pair correlation for d > 2 (see [7, 10] for different proofs of the
quadratic case d = 2). The problem has since been studied in several other cases
and has recently been revived in an abstract setting [1, 4, 8, 14]. In particular, a
convenient criterion for almost sure Poisson pair correlation has been formulated
by Aistleitner, Larcher and Lewko [1] in terms of the additive energy E(A, N )
of the sequence. The proof of Proposition 3 is close to that of the analogous
statement for the pair correlation function in [1], which in turn is based on
[11, 12].

Proof. The Fourier expansion of FM (x) is

FM (x) =
∑
k∈Z

1
M

f̂
(

k
M

)
e(kx), (3)

where f̂ (y) = ∫∞
−∞ f (x)e−2π ixydx . Inserting into the definition of D(N ,M)

gives

D(N ,M)(α) =
∑
k∈Z

1
M

f̂
(

k
M

) ∑
16m,n6N

m 6=n

e(kα(a(m)− a(n))). (4)

Integrating over α gives the expected value (we assume a(m) 6= a(n) if n 6= m)∫ 1

0
D(N ,M)(α) dα = f̂ (0)

1
M

N (N − 1) = N (N − 1)
M

.
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A METRIC THEORY OF MINIMAL GAPS 631

The variance is the second moment of the sum over non-zero frequencies:

Var D(N ,M) =
∫ 1

0

∣∣∣∣ ∑
06=k∈Z

1
M

f̂
(

k
M

) ∑
16m,n6N

m 6=n

e(kα(a(m)− a(n)))
∣∣∣∣2 dα.

Squaring out and integrating gives

Var D(N ,M) =
∑

k1,k2 6=0

1
M2 f̂

(
k1

M

)
f̂
(

k2

M

)
× #{m1 6= n1,m2 6= n2 : k1(a(m1)− a(n1)) = k2(a(m2)− a(n2))}.

We now follow [1, Lemma 3] to convert this to “greatest common divisor
(GCD) sums”. Let

R(v) = #{1 6 m 6= n 6 N : a(m)− a(n) = v}.
Then

Var D(N ,M) =
∑

v1,v2 6=0

∑
k1,k2 6=0

c(k1)c(k2)R(v1)R(v2)δ(k1v1 = k2v2),

where we set

c(k) := 1
M

f̂
(

k
M

)
.

LEMMA 4. Let f ∈ C∞c (R). For any non-zero integers v1, v2 6= 0,∑
k1,k2 6=0

c(k1)c(k2)δ(k1v1 = k2v2)� f
1
M

gcd(v1, v2)√|v1v2|
. (5)

Proof. For k1, k2 6= 0, we have k1v1 = k2v2 if and only if

(k1, k2) = `
(

v2

gcd(v1, v2)
,

v1

gcd(v1, v2)

)
for some non-zero integer 0 6= ` ∈ Z. Abbreviating ai = vi/(M gcd(v1, v2)), we
find∑

k1,k2 6=0

c(k1)c(k2)δ(k1v1 = k2v2) =
∑

0 6=`∈Z
c
(
`

v2

gcd(v1, v2)

)
c
(
`

v1

gcd(v1, v2)

)
= 1

M2

∑
06=`∈Z

f̂ (a2`) f̂ (a1`)

so that it suffices to show that∑
06=`∈Z

f̂ (a1`) f̂ (a2`)� f
1√|a1a2|

= M gcd(v1, v2)√|v1v2|
. (6)
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632 Z. RUDNICK

Applying Cauchy–Schwarz we get

∑
06=`∈Z

f̂ (`a1) f̂ (`a2) 6
(∑
6̀=0

f̂ (a1`)
2
)1/2(∑

`6=0

f̂ (a2`)
2
)1/2

.

We will obtain (6) if we show that for any a > 0,∑
6̀=0

f̂ (a`)2� f
1
a
.

Indeed, if 0 < a � 1 then we get a Riemann sum for ( f̂ )2:

∑
`6=0

f̂ (a`)2 ∼ 1
a

∫ ∞
−∞

f̂ (y)2 dy = 1
a

∫ ∞
−∞

f (x)2 dx .

If a � 1 then use the decay rate of the Fourier transform: for y 6= 0,

| f̂ (y)| 6 1
2π |y|

∫ ∞
−∞
| f ′(x)| dx,

to obtain ∑
`6=0

f̂ (a`)2 �
∑
6̀=0

(∫∞
−∞ | f ′(x)| dx

|a`|
)2

� f
1
a2 ,

which for a � 1 is� 1/a.
Hence,

Var D(N ,M)� 1
M

∑
v1,v2 6=0

R(v1)R(v2)
gcd(v1, v2)√|v1v2|

.

According to the GCD bounds of [6],

∑
v1,v2 6=0

R(v1)R(v2)
gcd(v1, v2)√|v1v2|

� exp
(

10 log N
log log N

)∑
v

R(v)2

(see [5] for an essentially optimal refinement). Now∑
R(v)2 = #{mi , n j 6 N ,m1 6= n1,m2 6= m2 : a(m1)−a(n1)= a(m2)−a(n2)}

is at most the additive energy E(A, N ). Thus,

Var D(N ,M)� 1
M

N εE(A, N )

as claimed. �
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A METRIC THEORY OF MINIMAL GAPS 633

COROLLARY 5. Assume that the additive energy satisfies E(A, N ) <

N 2+o(1). If M < N 2−η, then for almost all α,

DA(N ,M)(α) ∼ N 2

M
.

Proof. Take Nk = bk4/ηc, so that
∑

k N−η/2k <∞, and pick any Mk < N 2−η
k ,

then we find from Proposition 3,

∑
k

∫ 1

0

∣∣∣∣ D(Nk,Mk)(α)

Nk(Nk − 1)/Mk
− 1

∣∣∣∣2 dα =
∑

k

Var D(Nk,Mk)

(Nk(Nk − 1)/Mk)2

<
∑

k

N o(1)
k

E(Nk)Mk

N 4
k

�
∑

k

1

Nη/2
k

<∞,

and so for almost all α,

D(Nk,Mk)(α) ∼ N 2
k

Mk
for all k > k0(α). (7)

A priori the set depends on the test function f , but that can be taken care of
by a standard diagonalization procedure; for our purposes we only need one test
function.

Given N � 1, there is a unique value of k so that Nk 6 N < Nk+1. Note that
N/Nk = 1+ O(N−η/4). Since M < N 2−η ∼ N 2−η

k < N 2−η
k+1 , we know from (7)

that almost surely D(Nk,M)/(N 2
k /M)→ 1.

Note that
D(Nk,M) 6 D(N ,M) 6 D(Nk+1,M).

This is because the sums D(N ,M) consist of non-negative terms, and hence,

D(N ,M) =
∑

16m 6=n6N

FM (α(a(m)− a(n)))

>
∑

16m 6=n6Nk

FM (α(a(m)− a(n))) = D(Nk,M)

(we dropped all pairs (m, n) where max(m, n) > Nk).
Since N/Nk = 1+ O(N−η/4), we have

D(Nk,M)

N 2
k /M

6 D(N ,M)
N 2/M(1+ O(N−η/4))

= D(N ,M)
N 2/M

(1+ O(N−η/4))

and likewise
D(N ,M)

N 2/M
6 D(Nk+1,M)

N 2
k+1/M

(1+ O(N−η/4)).
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634 Z. RUDNICK

Since we know that almost surely D(Nk,M)/(N 2
k /M) → 1, we deduce that

almost surely also D(N ,M)/(N 2/M)→ 1. �

COROLLARY 6. Theorem 2 holds.

Proof. Fix η > 0, and let M = 1/2N 2−η. Since D(N ,M)(α) ∼ N 2/M > 1
by Corollary 5, we have a gap of size at most 1/(2M) = 1/N 2−η, that is
δαmin(N ) < 1/N 2−η almost surely. �

§2. Lower bounds: proof of Theorem 1. We take any sequence of integers
A = {a(n)} with distinct elements. We want to show that for any η > 0, almost
surely,

δα(N ) > 1/N 2+η for all N > N0(α).

Let Nk = bkc2/η. We claim that it suffices to show that, for almost all α,

δαmin(Nk) > 2/N 2+η
k for all k > k0(α). (8)

Indeed, note that if Nk 6 N < Nk+1 then δαmin(N ) > δαmin(Nk+1). Since
Nk+1 ∼ N , by (8) we have, for almost all α

δαmin(N ) > δαmin(Nk+1) > 2/N 2+η
k+1 > 1/N 2+η

for N > N0(α).
To prove (8), it suffices, by the Borel–Cantelli lemma, to show that∑

k

Prob(δαmin(Nk) 6 2/N 2+η
k ) <∞. (9)

In the definition of D(N ,M) = D f (N ,M), choose f so that f (x) > 1 if
|x | 6 1/4 (and in addition, f > 0 is non-negative,

∫∞
−∞ f (x) dx = 1, f is

smooth and supported in [−1/2, 1/2]). Now note that for such f , if D f (N ,M)
< 1 then δαmin(N ) > 1/(4M). This is because D f (N ,M) is a sum of non-
negative terms, and if there is one gap of size 6 1/(4M) then the corresponding
termFM (α(a(m)− a(n))) =∑ j f (M(α(a(m)− a(n))+ j)) > 1 by the choice
of f , so that D f (N ,M) > 1. Thus, we find that

δαmin(N ) 6
1

4M
⇒ D f (N ,M) > 1,

and hence,

Prob
(
δαmin(N ) 6

1
4M

)
6 Prob(D f (N ,M) > 1). (10)

Now since D f > 0,

Prob(D f (N ,M) > 1) 6
∫ 1

0
D f (N ,M)(α) dα
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A METRIC THEORY OF MINIMAL GAPS 635

so that by (2), for Mk = 1
8 N 2+η

k ,∫ 1

0
D(Nk,Mk)(α) dα ∼ 8N−ηk � 1

k2 ,

which together with (10) proves (9), and hence, (8). This proves Theorem 1.

§3. Minimal gaps for the primes. Let a(n) = pn , the nth prime. By
Khinchin’s theorem, for all ε > 0 there is a set of full measure of the α so
that ‖qα‖ > 1/(q(log q)1+ε) for any integer q > q0(α). In particular, for such
α, the gap between fractional parts of αpn mod 1 are

‖α(pm − pn)‖ � 1
|pm − pn|(log |pm − pn|)1+ε >

1
N (log N )2+ε

,

since |pm − pn| 6 pN ∼ N log N for m < n 6 N . Hence, for such α, the
minimal gap satisfies δαmin(N ) > 1/N (log N )2+ε.

A similar argument applies to other dense cases, such as the sequence of
square-free integers. An extreme case is that when A = N is the sequence of all
natural numbers. The argument above gives the minimal gap here is, for almost
all α, at least δαmin(N )� 1/(N (log N )1+ε). Note that in this case the “three-gap”
theorem shows that there are at most three distinct gaps between the fractional
parts {αn mod 1 : n 6 N }. Concerning other “dense” sequences, it is known that
for any sequence of integers A ⊂ [1,M], the fractional parts αa(m) mod 1 have
at most O(

√
M) distinct gaps [2, 13].
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