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This thesis consists of two parts. In the first, we apply a formula of Petersson's for the 

Fourier coefficients of Poincare series, to compute the traces ofHecke operators acting 

on spaces of cusp forms for the modulaT group S L(2, Z). We compare the result with 

that obtained by using the Selberg Trace Formula. 

In the second part, we construct a Poincare series which reproduces the N-th sym

metric power £-function for normalized Hecke eigenforms of given weight on S L(2, Z). 

We show that, if N = 7, the initial data for this construction has the imaginary axis f'S 

its natural boundary. 



INTRODUCTION 

This thesis, written under the supervision of Professor Ilya Piatetski-Shapiro, inves

tigates certain applications of Poincare series in the theory of automorphic forms. It 

consists of two fairly independent chapters, and I refer the reader to the beginning of 

each chapter for detailed introductions. Here I will give a brief description of the content 

of each chapter. 

In Chapter I, I show how to use a formula of Petersson's for the Fourier coefficients 

of Poincare series, to compute the trace of Hecke operators acting on the space Sk(I') 

of cusp forms of weight k > 2 for the full modular group I' = S L(2, Z). I also discuss 

the relation between this method and the Selberg Trace Formula. 

In Chapter II, I construct, following (PS], a Poincare series which reproduces the N-th 

symmetric power £-function L(s,f,symN) for Hecke eigenforms f E Sk(I'). Somewhat 

surprisingly, it turns out that in some instances of N ~ 7, the initial data for this 

construction cannot be meromorphically continued to the whole complex s-plane, but 

instead has the imaginary axis as its natural boundary. The reason for this comes from a 

problem in Invariant Theory: When does the Hilbert series of invariants of binary forms 

in N variables have zeros off the unit circle? I discuss this, in a more general setting, in 

the last section of Chapter II. 
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Chapter I. Traces of Hecke operators via Kloosterman sums 

One of the first succeses of Selberg's trace formula was the computation of the trace 

of the Hecke operators Tm acting on the space S k (I') of cusp forms of weight k ;::: 2 for 

the modular group I'= SL2(Z) and its congruence subgroups. Selberg reports on this 

in his seminal article [Se!] in the proceedings of the international conference on zeta 

functions, held at the Tata Institute in 1956. 

More or less at the same time, Eichler carried out this computation by viewing the 

Hecke operators as correspondences on the modular curve Xr and then using a suitable 

version of the Lefschetz fixed-point formula. His report [Ei 1] also appeared in the 

proceedings of the Tata conference, where he treated the case of weight 2. For higher 

weights, he needed a suitable cohomological interpretation of Sk(I'), for which he in

vented the theory of periods of "Abelian integrals" associated to cusp forms [Ei 2], later 

refined in [Sh 1]. 

The formula for the trace of Tm (the "Eichler-Selberg trace formula") is given by: 

k 1 1 k-1 -k-1 
tr Tm= o(vm)m~-1 -=- -- L H(t2 - 4m)Pt - Pt 

12 2 ltl<2<fiil Pt - Pt 

where H(d) is the class number of positive definite binary quadratic forms of discriminant 

d, counting forms in the class of a(x2 + y2 ) or a(x2 + xy + y2 ) with multiplicity 1/2 

(respectively 1/3); E' means that if m is a perfect square, we count the summand 

corresponding to d = Vm with multiplicity 1/2; Pt is a solution of x 2 - tx + m = O; and, 

finally, 

o( x) = { 1, x E Z 
O, otherwise. 

Formulas for the traces of Hecke operators played a crucial role in the solution of the 

"basis problem" for modular forms, i.e. finding a basis of Sk(I'o(N)) in terms of theta 

series [Ei 3]. Such formulas were also used to get various other lifting theorems for 

automorphic forms, e.g. Salto's work on cyclic base-change [Sai]. Another application 



is to give a unified treatment of many of the "class number relations" of classical number 

theory, as well as generating some new ones. 

In this thesis, I will sketch yet a third approach to the proof of the Eichler-Selberg 

trace formula. There are three key ingredients: The first is Petersson's classical formula 

(slightly generalized to account for the action of the Hecke operators) for the Fourier 

coefficient of Poincare series [Pe]: 

where a;(n) are then-th Fourier coefficients of an orthonormal basis of Sk(I') . 

Petersson's formula is then fed into the Rankin-Selberg method, to show that the trace 

of the Hecke operator Tm is essentialy given by the residue at s = 1 of the Dirichlet series: 

( () L 
1 LTmS(n,n;c) ( =n) D s) =Dk m s = - Jk-1 4irym- . 

' n 8 c c 
n~I c>O 

We then proceed to evaluate this residue; for simplicity I talrn m = 1. Working in the 

region of absolute convergence of the double sum for D( s ), we expand the Kloosterman 

sums in a finite Fourier series: 

S(n,n;c) = L v(c,t)e(~t) 
t mod c 

and using Poisson summation, show that: 

D(s) = LF(t,s).C(t,s) 

.C(t s) = '""" v( c, t) 
' L..,.,; cs , 

c>O 

tEZ 

1
00 dx 

F(t,s) = Jk-i(4irx)e(tx)-' . 
0 xs 

The summands correspond to the conjugacy classes of S L2 (R), the parameter t being 

the trace of the corresponding conjugacy class; of course the case t = ±2 is exceptional, 

all other values oft giving regular semi-simple classes . 

.C( t, s) is essentially the Dedekind (-function of the quadratic extension corresponding 

to the given conjugacy class, and F(t,s) is some transcendental object- a Fourier

Mellin transform of the Bessel function Jk-1(x). Remembering that one is actually 
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working on PSL2(R), we lump together terms coming from conjugacy classes of SL2(R) 

which coalesce in PSL2(R), i.e. those with trace of fixed absolute value. We then see 

that all the hyperbolic classes give zero contribution, which one expects from experience 

with Selberg's trace formula. I feel that, in our case too, this is a manifestation of 

"Selberg's principle": Vanishing of orbital integrals for discrete series representations on 

non-elliptic regular semi-simple conjugacy classes. This fact was conjectured by Selberg 

in the same Tata paper (Sel] cited earlier, and proved by Harish-Chandra in 1966 [HO]. 

Finally, we are left with a finite sum which involves the value at s = 1 of Dirichlet 

£-functions; the transition to the Eichler-Selberg formula is then completed by invoking 

Dirichlet's class number formula. 

It is curious to note that all the ingredients of our computation were available about 

fifteen years prior to the Tata conference, yet this approach seems to have been over

looked by the people working on the problem of computing traces of Hecke operators. I 

am happy to be able to fill in this gap in the history of the subject. 

A very similar approach was used by Mizumoto (M],1 who, following a question posed 

by Zagier, used Petersson's formula to give another proof of the entirety of the symmetric 

square £-function off E Sk(I'). This was first proved by Shimura [Sh 2]. Following Za

gier [Z], Mizumoto uses a Poincare series to represent the symmetric square £-function, 

rather than the Rankin-Selberg construction of Shimura. I refer the reader to Chapter 

II of this thesis for a general construction of such Poincare series for higher symmetric 

powers. 

1 I thank Bill Duke for bringing [MJ and [ZJ to my attention. 
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§1. THE RANKIN-SELBERG METHOD 

We stru:t by recalling a few definitions: Let Sk( I') be the space of cusp forms of weight k 

for the modular group I' = SL2 (Z), with k an even integer. These are holomorphic 

functions f(z) on the upper half-plane S) = {z: Im(z) > O} which satisfy: 

az + b k 
f(--d) = (cz + d) f(z) 

cz+ 

and have a Fourier expansion: f(z) = En;::i a(n)e(nz), where we use e(x) for e2"ix. 

Sk(I') has a hermitian structure given by the Petersson inner product: 

(1.1) (f,g) = r f(z)g(z)ykdxy·:y 
J I'\5) 

Hecke's operator Tm : Sk(I')--> Sk(I'), m <". 1, is given by: 

(1.2) Tmf = m~-i L flr"l• 
"Er\M(m) 

with: flr"J•(z) = (deta)k- 1j(a,z)-kf(az) for a E GL2(Q), and M(m) = 2 x 2 integral 

matrices of determinant m. 

To compute the trace of Tm on Sk(I'), k > 2, we talce an orthonormal basis of Sk(I') 

and use: 

tr(Tm) = L(Tmf;, f;) 
i 

We have: 

(1.3) 1 dxdy 
(Tmf,f) = Tmf(z)f(z)yk-2 

I'\5) y 

We now bring in the Rankin-Selberg method: Let 

(1.4) 
y• 

E(z,s)= L Im(1z)s= L lcz+dl2s 
-yEI'= \I' (c,d)=1 

be the non-holomorphic Eisenstein series. E(z,s) converges for Re(s) > 1, has mero

morphic continuation to all of the s-plane with a simple pole at s = 1, where it has 

constant residue: 
1 3 

~fE(z,s) = vol(I'\SJ) = 7r 

4 



Therefore, if f,g E Sk(I'), then the Rankin-Se/berg convolution L-function: 

(1.5) J, - dxdy 
L(f ® g,s) = f(z)g(z)E(z,s)yk-

2
-

I'\Si y 

has meromorphic continuation and (at most) a simple pole at s = 1, with: 

1 
I}-;lf L(f ® g' 8 ) = vol( I'\S:J) (!, g} · 

We see then that: 

(1.6) 
1 

vol(I'\SJ) tr Tm= I}-;lf L L(Tmfi ® f;, s). 

' 
On the other hand, if f(z) = En;:::l a(n)e(nz), and g(z) = En;:::t b(n)e(nz), then we 

have: 

(1.7) L(f ) = I'(s + k - 1) "a(n)b(n) 
® g, s ( 471' )•+k-1 L., n•+k-1 . 

n~I 

Therefore, if f;(z) = En;:::l a;(n)e(nz) are our orthonormal basis of Sk(I'), and: 

then: 

Tmf;(z) = LTma;(n)e(nz), 
n~l 

1 "I'(s+k-1)" -
(1.8) vol(I'\SJ) trTm = I}-;lf L., (47rn)•+k-l L_.,Tma;(n)a;(n). 

n~l t 

Our next step is to replace the hermitian form I;; Tma;(n)a;(n) by a different, more 

explicit, quantity. 

For this, recall the Poincare series 

(1.9) Pk(z,n) = L j(')',z)-ke(n-yz) 
-yEI'= \I' 

converging absolutely if k > 2. This is a cusp form of weight k, and represents the n-th 

Fourier coefficient, in the sense that: 

(1.10) 
. I'(k - 1) 

(f,Pk(.,n)} = (47rn)k-t a(n), f(z) = L a(n)e(nz) E Sk(I'). 
n~l 
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So, if we expand Pk(z, n) in terms of our orthonormal basis {Ji}, we find: 

and so: 

(1.11) 

"""" I'(k - 1) "-Pk(z, n) = L.,(Pk(·,n),f;)fi(z) = (
4
11'n)k-I L.,a;(n)f;(z), 

1 • 

I'(k-l) "TmPk(z,n) = (411'n)k-l L.,ai(n)Tmfi(z). 
• 

This shows that then-th Fourier coefficient of TmPk(z, n) is given by: 

(1.12) - I'(k-l)"""" -
TmPk,n(n) = (411'n)k-I ~Tma;(n)a;(n) 

• 
-which is precisely the hermitian form appearing in the formula for tr Tm ! 

We can now compute the Fourier coefficient T mi\;.( n) from the definition of 

TmPk(z, n) as the sum of an infinite series. For m = 1, this computation is due to 

Petersson [Pe]: 

i\;.(n) = 1+211'i-kL S(n~n;c) Jk-r(411'~) 
c>O 

and similarly we have: 

Lemma 1.1. 

(1.13) 

witl1: 

and: 

(1.14) 

•-1 
T-p ( ') 2 ·-k •-1 (n')-2 L TmS(n, n'; c)J ( . =Vri/iii) m kn n = 11'?. m~ - k-1 41rym--

' n c c 
c>D 

nm = n' d2 fol' some integer d I ( n, m) 

othel'wise 

6(x)={
1

' 
0, 

a; E Z 

otherwise 

TmS(n, n'; c) = 
a,d mod c 

ad::m mod c 

is a modified Kloosterman sum. 
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PROOF: We have: 

TmPk,n(z) = m~-l L (deta)'2' j(a,z)-kPk,n(az) 
<>EI'\M(m) 

= mk-l L L j(a,z)-kj(')',az)-ke(wyaz) 
<>EI'\M(m) -yEI'= \I' 

= mk-l L j("'f,z)-ke(wrz) 
r=\M(m) 

where we have used the cocycle relation: j(a,z)j(')',az) = j(')'a,z). We now follow the 

derivation of Petersson's formula. We divide the sum over I' 00 \M(m) into two parts, one 

coming from 'Yin the small Bruhat cell of GL2 (R), i.e. those')' of the form: ')' = ( ~ !) , 
and the other coming from the big Bruhat cell: 

T;;;J\,n(n') = fo1 

TmPk,n(z)e(-n'z)dx =small cell contribution+ big cell contribution 

We first compute the contribution of the small cell. 

smallcell=mk-111 

L L j((~!),z)-ke(naz:b)e(-n'z)dx 
O ad=m05b<d 

= mk-l L a-k L e(n£) 11 
e(n;jz - n' z)dx 

ad=m O~b<d 0 

= mk-1 '°" a-k. { O, d f n} . { O, na op n'd 
L.., 1, d In 1 na = n'd 

ad;:;m ' 

= mk-1 L a1-k . { ~' 
ad=m ' 

din 

na op n'd 

na = n'd 

k=.1 n' -,-
= mk-1 L a1-k = m ' (.,.) , 

{ 

•-1 

dl(n,m) O, 
nm:;;n'd2 

In particular, if n = n', we find: 

nm= n'd2 for some d I (n, m) 

otherwise 

small cell= { mY, m = d
2 

with d In 
O, otherwise 

Now for the contribution of the big cell; for c > O, we sum over all double cosets 

I' 00 \M(m)/ I' 00 for which the lower left-hand corner of the matrices equals c. 

big cell= mk-l L 11 L j("'f,z)-ke(n"'fz)e(-n' z)dx 
c>O O I'= \M(m,c) 
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where: 

M(m,c)= {-r= (: :) EM(m)}. 

We will need to know that as representatives of the double cosets of I'00 \M(m,c)/I'00 

we can take: 

{ ( ~ ~) I a, d mod c, ad = m mod c} . 

Now fix c > O; then the sum corresponding to c above is: 

mk-1 j 00 L j(7,z)-ke(n7z)e(-n1z)dx 
-oo ')'EI' 00 \M(m,c)/ I'oo 

L 1
00 k az+b = mk-l (cz+d)- e(n--d)e(-n'z)dx 

_ cz+ 
a,d mod c 00 

ad=:m mod c 

writing (az + b)/(cz + d) = a/c - m/c(cz + d), 

a j"° -nm =mk-l L e(n-) (cz+d)-ke(( d)-n'z)dx 
C _

00 
C CZ+ 

a,d mod c 
adsm inod c 

=mk-l """' e( ) (cz)-ke(---n'z)dx na + n'd j"" nm 
L.. c c2z 

a,d mod c -oo 
ad:m mod c 

= mk-lTmS(n,n';c)- z-ke(--- - -z)dx 1100 
nm/c n' 

c -oo z c 
k-1 

•-1 (n')-, TmS(n,n1;c) 2 ·-kJ (4 =ynnt) = m 2 - 1ri k-1 1rym-- . 
n c c 

This proves our formula. I 

Lemma 1.1 shows that we have an equality: 

(1.15) 
I'(k - 1) """' -- n •-1 
( )k 1 L.,Tmai(n)ai(n) = 8(Vm)8( =)m-,-47rn - . vm • 

We can now substitute this equality into our formula (1.8) for tr Tm to see that this 

trace is given by vol( I'\.f.i) times the residue at s = 1 of the Dirichlet series: 

8 



and so we find: 

(1.17) 
1 • 1 k - 1 k k-1 k - 1 

l(r\
"') tr Tm= m~- --c(vfm) + 21l"i- m-2- -

4
- Res Dk m(s), 

VO ~J 411" 7r s::::l ' 

where we set: 

(1.18) 

In the following sections I shall explain how to explicitly evaluate this residue. 
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§2. COMPUTING Res8~1 D(s) 

We now shift our attention to computing the residues of the Dirichlet series appearing 

in §1. This task seemingly has nothing to do with the theory of automorphic forms, in 

the sense that it is completely elementary, requiring nothing more involved than some 

basic properties of Bessel functions of integral order. For simplicity, we take m = 1 for 

the rest of this section, i.e we are computing the dimension of Sk(I'). As in §1, we set: 

(2.1) D( ·) L 1 L S(n, n; c)J (4 n) s = - k-1 'Tr- • 
n8 c c 

n~l c>O 

We need to know the asymptotics of Je(x), for f, an odd integer. These are given by 

[W]: 

Je(x) ~ 
2er(t + 1)' 

Je(x) < x-1/2' 

asx-+O 

as x-+ oo. 

From this, it is easy to see that the sum for D(s) converges absolutely for Re(s) > 2. 

Recall also that if£ is an odd integer, then Je(-x) = -Je(x). 

Before proceeding, we expand the Kloosterman sums S( n, n; c) in a Fourier series: 

(2.2) 

where: 

(2.3) 

We also define: 

(2.4) 

S(n,n;c) = L v(c,t)e(~t) 
t mod c 

v(c,t) = # { a,d mod c: 
ad= 1 mod c}. 

mod c 

1
00 dx 

F(t,s) = Jk-1(47rx)e(tx)-'. 
0 xs 

Lemma 2.1. For 1/2 < Re(s) < k - 1, we 11ave: 

00 ( ) 1 S n,n;c n '°' Jk-1(47r-) = c-•'°'v(c,t)F(t,s) 
L,,; n8 c c L,,; 
n=1 tEZ 

10 



Then for Re( s) > 1/2, 

f _..!:._ S(n,n;c) Jk-l(47r'.'.".) = c-• f S(n,n;c) J.('.'.".) 
n=l ns C c n=1 C C 

- -s Le S(u,u;c) Loo f ( '.'!.) 
-C 8 T+ , 

c c 
u=I r=O 

We now use Poisson summation: For 1/2 < Re(s) < k - 1, 0 < y :":: 1, 

00 

(2.5) Lf.(r+ y) = Lf;,(t)e(-ty) 
tez 

and both sides converge uniformly in y. Indeed, from the asymptotics of Jk-l ( 47rx ), we 

have: 

IJ.(x)I < ,,,-Re(s)-1/2, as X--> oo, 

IJ.(x)I X xk-1-Re(s), as X--> O, 

and one easily sees: 

lf.(t)I < ltl-(k-Re(s))' as !ti--> oo. 

Therefore, the RIIS of (2.5) converges uniformly for Re(s) < k - 1, while the LHS 

converges uniformly for Re(s) > 1/2. Thus, for 1/2 < Re(s) < k- l, we have: 

L
oo 1 S(n,n;c)J ( n) _8 Lc S(u,u;c)Lf~() ( u) 

- k-l 411"- = c • t e -t-
ns c c c c 

n=1 u=1 tEZ 

= c-• LF(t, s)v(c, t). I 
tEZ 

Set, for t E Z: 

.C(t,s) = ~ v(c, t). 
L., c• 
c>O 

Corollary 2.2. For 2 < Re(s) < k - 1, we have: 

(2.6) L
oo 1 L S(n,n;c) n L 

- Jk-1(411"-) = F(t,s).C(t,s), 
n8 c c 

n=1 c>O tez 

with the RHS absolutely conve)'gent for Re(s) > 1. 

PROOF: (2.6) follows from Lemma 2.1. From the explicit evaluation of v( c, t) in Lemmas 

3.2, 3.4, we see that if !ti > 2, then: 

v(c, t) < (t 2 
- 4)112d(c), d( c) = divisor function. 
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with the RIIS absolutely convergent for Re(s) > 1. 

PROOF: (2.6) follows from Lemma 2.1. From the explicit evaluation of v( c, t) in Lemmas 

3.2, 3.4, we see that if [ti > 2, then: 

v(c,t) < (t2 -4)112d(c), d( c) = divisor function. 

Therefore, if !ti > 2, then for s real, s > 1: 

.C(t,s) < tl/2 "'d(c). 
L.., c• 
c>O 

Together with the estimate IF(t, s)I < ltJR•(•)-k as [ti--. oo, we see: 

L F(t,s).C(t,s) < Ltlfz+Re(s)-k L d!~» 
ltl>2 t>2 c>O 

which converges for 1 < Re(s) < k - 3/2. I 

We are now left with computing the residue at s = 1 of the series: 

D(s) = L F(t, s).C(t, s). 
tEZ 

The Dirichlet series .C(t, s) have Euler products, and will be computed in §3. For now, 

we just list a few of them. 

Example. 

(2.7) 
((s) 

.C(O,s) = ((2s)L(x-4 ,s) 

where Xd is the quadratic character Xd(P) = (;) given by the Legendre symbol. 

Similarly, we have: 

(2.8) 

(2.9) 

- ((s) 
.C(l,s)-((2s)L(X-3,s) 

.C(2,s) ((s)((2s - 1) 
((2s) 

In general (see §3), one finds that up to a finite Euler product ( comi.ng from some 

"bad" primes), we have: 

(2.10) 
((s) 

.C(t,s)"' (( 2s)L(x1z_4 ,s), t f- ±2. 
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Note also that .C(-t,s) = .C(t,s). 

Next observe that from (2.10), .C(t, s) has a simple pole at s = 1, while (2.9) shows 

that .C(2,s) has a double pole at that point. This should cause some worrying, since 

the Rankin-Selberg method yields a simple pole. We are thus led into writing: 

(2.11) ~~f D(s) = ~f ,C(O, s)F(O,s) + ~~f L .C(t, s)F±(t, s) 
t>O 

Where I set F±(t,s) = F(t,s) +F(-t,s), t # 0. 

One can easily see, that in (2.11), we can take a residue term-by-term. We will now 

examine the various terms in (2.11). Before proceeding, recall that we have parametrized 

the summands in (2.11) by the parameter t; it came from taking the trace of an element 

t = a + d = tr ( ~ ~) mod c. 

Recall that conjugacy classes in SL2 (R) are parametrized by traces; if 'Y #±!,then: 

(1) I tr7I > 2 are hyperbolic classes; 

(2) I tr7I < 2 are elliptic classes; 

(3) I tr7I = 2 are unipotent classes. 

Recall, furthermore, that orbital integrals for discrete series representations vanish 

on non-elliptic semi-simple conjugacy classes [HC); this should intimate to us that in 

(2.11), the summands with t > 2 should vanish. This is indeed the case; to see this, it is 

enough to show that F±(t, 1) = 0 if t > 2, since .C(t, s) has only a simple pole at s = 1. 

There are (at least) two ways to see this: Since F±(t,s) is given explicitly, one should 

be able to compute it and check its behaviour at s = 1. This is indeed possible, using 

the Weber-Schafheitlein integral for the Mellin transform of a product of two Bessel 

functions; we shall come back to this later. However, from what has been said above, 

one should be able to come up with a "soft" proof that F±(t, 1) = 0 for t > 2. In fact, 

this follows from the Paley-Wiener theorem, which describes the image of the Fourier 

transform acting on compactly-supported functions on the real line. We have: 

( l oo dx j°" Jk-1 ( 411"X) F± t, 1) = Jk_ 1(41rx)[e(xt) + e(-xt)]- = e(xt)dx 
0 x -oo x 
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and so F±(t, 1) is the Fourier transform of the entire function z-1Jk_ 1(4irz), which is, 

moreover, of exponential type: 

-and so, by Paley-Wiener, is supported inside the interval [t[ :$ 2. This shows that the 

residue in (2.11) is a sum of three terms, all of which can be computed explicitly. 

Explicit Computations. To summarize, we have so far seen: 

(2.12) 

dimSk(I') = k - 1 Res ((s) 
vol(I'\SJ) 4ir s=l 

k - 1 k + --i- Res {F(O, s).C(O, s) + F±(l, s).C(l,s) + F±(2,s)£(2, s)} 
2 •=1 

I will write this in the following suggestive manner: 

k-1 
dimSk(I') = l2 the identity term 

(2.13) 
+ i-k(k- l)ir ResF(O,s).C(O,s) l 

6 •=1 
elliptic terms 

(k - l)ir 
+i-k 

6 
~.;fF±(l,s).C(l,s) 

+i-k(k- l)1r ResF±(2,s)£(2,s) parabolic term 
6 •=1 

I will now briefly indicate how the explicit computation of the terms in (2.13) is carried 

out: 

First, we have (W, p. 391]: 

l oo dx I'( k-s) 
F(O,s) = Jk-1(41rx)- = (41r)•-l ~) 

o x• 2' I'( 2 • 

and so at s = 1 we find F(O, 1) = k:l. 

Second, we use the discontinuous integral of Weber-Schafheitlein in the special form 

(W, p. 405]: 

00 { µ -l cos(µ arcsin !!. ) 
{ dx a 

lo Jµ(ax) cos(bx)-;; = aµ cos r 
µ(b + Jb2 - a2)µ 

, b :$a 

(Re(µ)> -1) 
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to see that: 

2 (k-1)" cos 6 
F±(l, 1) = k = 

-1 

y'3 
k- l' 
o, 

k = 0,2 mod 12 

k = 4, 10 mod 12 

y'3 
- k _ 

1
, k = 6, 8 mod 12. 

To compute the residue at s = 1 of .C(O, s) and .C(l, s), we use (2.7), (2.8) and Dirichlet's 

class n um her formula to get: 

3 
Res.C(O,s) = -
•=1 271' 

2 
Res.C(l,s)= r.; 
•=1 y371' 

and so we :find that the elliptic terms contribute: 

(2.14) 

. (k-1)11' i-k 
i-k ResF(O,s)C(O,s) = -

6 s=l 4 

(k 1) 2 ·-k (k-1)" 
·-k - 11' R F ( ) "( ) i cos 6 
i 

6 
es ± 1, s ,_, 1, s = r.; 

•=1 3v3 

For the parabolic term in (2.13), recall (2.9): 

(2.15) .C(2 ) _ ((s)((2s - 1) 
'

8 
- ((2s) 

which shows £(2, s) has a double pole at s = 1. We compute 

1
00 dx 

F±(2,s) = 2 Jk-1(411'x) cos(411'x)-
o a;• 

again by using the Weber-Schafheitlein integral (W, p. 403]: 

to :find (remember J-1/2(x) = /2 cosx ): v -:;; . 

(2.16) 
2•-111'•-tr(s - l)r(k-•) 

F±(2 s) - 2 2 
' - I'( ·+~-k )I'( •+;-1 )I'( kt·) 
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Notice that this has a simple zero at s = 1, since I'( s±~-k) has a simple pole at s = 1. 

Using (2.15) and (2.16), it is now a simple matter to check that 

(2.17) ResF±(2,s).C(2,s) = 
s;::;l (k - l)ir 

We can now write (2.13) using (2.14) and (2.17) as follows: 

(2.18) 

identity term 

i-k 2i-k cos (k-l)1T 

+ 4+ 3VJ 
6 

1 

2 
parabolic term 

This is the classical formula for dimSk(I'). 

16 

elliptic terms 



§3. COMPUTING Ress=l Dk,m(s) FOR m > 1 

In this section, I shall extend the methods of the previous section to compute tr Tm 

for m > 1. There will be one new feature - appearance of extra poles coming from the 

fixed-point at the cusp of the correspondence Tm. 

By (1.17), we know that tr Tm is given by: 

(3.1) 

where as in (1.18), Dm(s) is given by: 

D () _ L 1 LTmS(n,n;c)J (4 =n) m s - - k-1 7rym- . 
-n8 C C 

n~l c>O 

We now expand the Kloosterman sum T mS( n, n; c) in a Fourier series: 

TmS(n,n;c) = L vm(c,t)e(~t) 
t mod c 

(3.2) 
{ 

a + d = t mod c } 
vm(c,t) = # a,d mod c I 

ad:m mode 

Using Poisson summation as in the case m = 1, we find: 

Dm(s) = m<•-l)/2 LF(. ~,s)Cm(t,s) 
tEZ ym 

where F(t, s) is given as in (2.4), and: 

(3.3) Lm(t,s) = L Vm(c,t) 
c>O cs 

Thus we have: 

(3.4) 

Here, as in the case m = 1, we paired off the summands with fixed absolute value; as 

we saw in §2, F±(J,n-, 1) = 0 if itl 2:: 2,.;m,. Form= 1, there were no contributions to 
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(3.4) from the terms with t > 2ym = 2; however, if m > 1, we will see that there will be 

such a contribution from finitely many of these terms. This contribution corresponds to 

the cusp ioo being a fixed point for the correspondence Tm. To see all this, we have to 

compute .Cm(t,s) for various values oft. For most t, we will be content to do the exact 

computation only for "good" primes. 

Computing .Cm(t, s). We start by observing that, for any t, vm(c, t) is a multiplicative 

function of c: 

Vm(pq, t) = Vm(P, t)vm(q, t), if gcd(p, q) = 1. 

This follows from the Chinese Remainder Theorem, and in fact is equivalent to "twisted 

multiplicativity" of the Kloosterman sums. Therefore .Cm(t, s) has an Euler product: 

.Cm(t, s) = IJ .CJ;.(t, s), 
p 

.CJ;.(t,s) = 1 + L vm(~> t)_ 
k<'.1 p 

Lemma 3.1. Let ti. = t2 - 4m i O, and p be a prime such that pf ti.. Then: 

PROOF: First suppose p is odd; as a consequence of Hensel's lemma, we see that for 

k 2'.: 2, Vm(P\ t) = Vm(P, t). Furthermore, 

This shows that: 

Vm(P, t) = 1 + ( ~) = { ~: ti. is a square mod p 

otherwise 

,CP (t s) = 1 +"""' Vm(P, t) 
m ' L...J ks 

k<'.1 p 

= 1 + 1 + (~) -s 
1- p-s p 

1 + ( % ) p-S 
= ---''--''-----

1- p-s 
1 _ p-2s 
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Now take p = 2: 2 f ~ iff tis odd, and so~= 1 mod 4. Recall the Jacobi symbol is 

defined for n = 1 mod 4 by: 

If k 2:: 1, it is easy to see that: 

However, if k 2:: 3 and ~ = 1 mod 4, then: 

n = 1 mod 8 

n = 5 mod 8 

{ 2 k} {4, ~=1 mod8 ( (~)) # y = ~ mod 2 = _ = 2 1 + -
2 

. 
O, ~ = 5 mod 8 

Hence if k 2:: 1, and tis odd, vm(2k, t) = 1 + ( ~ ), and so: 

.c;,.ct,s) = 1 + c1+(~))2= !. 
2 k~l 2 

1 +(A) 2-• 
= 2 

1- 2-· 

Lemma 3.2. Suppose pis an odd prime,~= p°'~' witli pf~'. Tlien: 

(1) Vm(Pk,t) = pl~I, for 1 :s:; k :s:; a; 

(2) vm(Pk, t) = O, fork > a, a odd; 

(3) vm(Pk, t) = pil(l+ ( ~')), fork> a, a= 2(3 even. 

PROOF: If pis odd, then: 

If k < a, ~ = 0 mod pk and so 

If a is odd, and k > a, then ~ is not a square mod pk, and so vm(Pk, t) = O, which 

shows (2). 
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Finally, if k > a= 2/3, then: 

vm(P\ t) = # {y2 =fl mod pk} 

= pf3 · # {y2 = fl' mod pk-"} 

= pf3. (1 + ( ~') ). I 

Corollary 3.3. If pis an odd prime, and if we put X = p-•, then: 

(1) If a= 2/3 + 1 is odd, tlien: 

.c;;,(t, s) = (1 + X)(l + pX2 + · · · + (pX2)!3). 

(2) If a= 2/3 is even, then: 

1 + ( ~') x 
.c;;,(t,s) = X Ap(fl,X) 

l-

Ap(fl, X) = 1 + X(pX - ( ~') )(1 + pX2 + ... + (pX2)13-1 ). 

PROOF: (1) is immediate from the above lemma, and (2) can easily be proven from the 

lemma, e.g., by induction. I 

We now turn to the case 2 I fl; since fl = t2 - 4m, this implies 4 I fl. 

Lemma 3.4. Suppose fl = 2" fl', with a <". 2 and 2 f fl. Then: 

(1) vm(2k,t) = 2ltl, 1::; k::; a-2; 

(2) vm(2k, t) = O, k >a - 2, a odd; 

(3) vm(2"-1, t) = 1, a even; 

(4) vm(2k,t) = O, k >a- l,a even and fl'= 3 mod 4; 

(5) vm(2", t) = 213, a= 2/3 even, fl'= 1 mod 4; 

(6) vm(2k,t)=213(1+(~')), a=2(3even,fl'=l mod4. 

PROOF: We write out the case a = 2/3, k > a - 2, leaving the rest to the diligence of 

the reader. 
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Since A = t2 - 4m is even iff t = 2t1 is even, we have: 

vm(2k, t) = # { (x - t')2 
- ~ = 0 mod 2k} 

= 2/3-1# { z 2 :: A' mod 2k-(a-2J} 

The claim follows from this, coupled with: 

1, r=l 
o, r ;::-: 2, A' :: 3 

# { z 2 
:: A' mod 2"} = 2, r = 2, A' :: 1 

2(1 + ( ~·)), r ;::-: 3, A' :: 1 

mod 4 

mod4 

mod4. 

Corollary 3.5. If A= 2"A', with 2 f A', then putting X = 2-•, we have: 

(1) Ifa = 2(3+1 is odd, 

(2) If a = 2(3 is even, A':: 3 mod 4, 

1-X2 

.C~(t,s) = x (1+2x2 + ... + (2x2)fl-1) 
1-

(3) If a = 2(3 is even, A':: 1 mod 4, 

2 l-X2 (A') -1 .Cm(t, s) = l _ X (1- 2 X) A2(tl.,X), 

A2(A, X) = 1 + X(2X - ( ~') )(1 + 2X2 + ... + (2X2)/3-l ). 

I 

The parabolic contribution. Now consider the case A f. 0 is a perfect square; this 

happens iff the polynomial x 2 - tx + m = (x - a)(x - d) factors in the integers, and 

m = ad, t = a+ d, A = (a - d) 2• In this case, the results of the previous computations 

show that all the local factors .Cl:. ( t, s) are of the form: 

with Ap( t, 1) = 1. We thus have the global result: 
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Proposition 3.6. Ift =a+ d, for positive integers a> d such that m = ad,then: 

(3.5) 

with A(t, 1) = 1. 

Notice that this implies that .Cm(t, s) has a double pole fort> 2,/iii as above. 

Proposition 3. 7. If m = ad, a > d ~ 1, and t = a+ d then: 

(3.6) 
t 

Res F±(. =• s).Cm(t, s) = 
s=:l ym 

PROOF: Using the Weber-Schafheitlein integral (W): 

for a> b > O, Re(µ+ v + 1) >Re .X > -1, we can compute F±( rm• s): 

At s = 1, I'( •-;+1 ) has a simple pole, and the value of the hypergeometric function is 

given by: 
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where I have used the formula: 

l+vl-z ( . /,--::,)-2" 
F( a, a+ 1/2, 2a + 1; z) = 

2 
, I arg(l - z)I <tr. 

This shows that: 

Corollary 3.8. 

t ,_, 6ik 
~ ResF±( =,s).Cm(t,s)=-m:r(k ) ~ s=1 ym - 1 7r 

t>2Vm 

I: ak-1. 

dim 
d<.,/iii 

We call the above the parabolic term of the trace formula; it corresponds to the 

"complementary term" in [D-L], where the formula is derived using the adelic version 

of Selberg's trace formula. In Eichler's approach, it corresponds to the contribution of 

the fixed point {ioo} of the correspondence Tm. 

Suppose now that mis a perfect square; then we have a term in (3.4) corresponding to 

t = 2,.jm. I give a computation of this term, which I include in the parabolic contribution. 

Lemma 3.9. If m is a perfect square, t = 2,.jm, then: 

.C (t ) _ ((s)((2s - 1) 
m ,s - ((2s) . 

PROOF: We can write x2 - tx + m = (x - ,.jm)2, and so, for any prime p, 

which implies: 

pl~] 1 _ p-2s 
,CP (2,.jm s) - ~ - - I 

m ' - ~ pks - (1- p-•)(1 _ pl-2s)' 
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Corollary 3.10. Fort= 2rm, 

t 3ik 
ResF±( =,s)L:m(t,s) = - (k ) 
s=l vm -l'lr 

This was shown in (2.14). 

The elliptic contribution. We now assume It! < 2rm; then L:m(t, s) has a simple 

pole at s = 1, and we can compute the residue using Dirichlet's class number formula. 

Coupled with the computation of F±( J,n, 1), we will get a formula for the elliptic con

tribution to tr Tm· 

Lemma 3.11. For !ti < 2rm, let Pt= t-if§I be a solution ofx2 -tx + m = 0. Then: 

·k-1 -¥ 
F ( t l) i m ( k-1 -k-1) 

± rm, = k _ l Pt - Pt · 

PROOF: Suppose t oft O; then the Weber-Schafheitlein integral: 

1
00 dx b 

Jµ(ax) cos( bx)- = µ-1 cos((k - 1) arcsin - ), 
o x a 

b :$a, Reµ> -1, 

shows that: 

t 100 
t dx F±(. =• 1) = 2 Jk_1 (41rx)cos(21r. =x)-

vm 0 vm x 

= k: 
1 

cos((k - 1) arcsin 
2
.,5m). 

Since: 

i a.resin .,....' - nt2 + . t - i € "'Vm - - - 2-- - --pt 
4m 2rm rm 

We see that, since k - 1 is odd, 

F±(-t '1) = _1 { (i:E.!__) k-1 + (i:E.!__) k-1} rm k-1 rm rm 
·k-1 - k-1 

_ 2 m -.- ( k-1 -k-1) I 
- k- l Pt - Pt · 

We can now finish evaluating the elliptic terms; the extra ingredient we need is Dirich

let's class number formula: 

21rh(Ll.) 
L(xt>, 1) = wlti.11/2' 

24 

Ll. < 0 a discriminant 



where, as usual, 

{ 

4, A= -4 

w = 6, A= -3 

2, A< -4 

and h( A) is the number of classes of positive definite, primitive binary quadratic forms 

of discriminant A < 0. 

Since we saw that, for A = t2 - 4m < O, 

((s) 
£m(t,s) = ((

2
s)L(x11.,s)A(A,s), 

with A(A, s) given by Corollaries 3.3, 3.5, we have: 

1 
~~f Cm(t, s) = ((2) L(x11., l)A(A, 1). 

Noting that Pt - Pt = -iM, we can combine the class number formula with lemma 

3.11 above to see for A < O: 

k 1 k-1 t 6 27f' i - m--,-
Res F±( =,s)Cm(t,s) = 2 · -h(A)A(A,1)· 
•=1 vm 7f' w k- 1 

k-1 -k-1 
Pt - Pt 

i(Pt - Pt) 

6 ·k _I=! 
i m 2 

7r(k - 1) 
· ~h(A)A(A, 1) · P:-1 

- pf-
1 

w Pt - Pt 

One checks that: 

~h(A)A(A, 1) = H(A), 
w 

the class number of all (not necessarily primitive) positive definite forms of discriminant 

A, counted with the appropriate multiplicity. This concludes the computation of the 

elliptic contribution. 

Putting the results of this section in (3.1), we see: 

Ii 1k-l 
trTm =o(y'rri)m2- l2 

- ~ L H(t2 - 4m)P;-1 - pf-1 
2 ltl<2vm Pt - Pt 

•-1 - 'L dk-1 - o(vm) m 2, 

dim 
d<vm 

which is exactly the Eichler-Selberg formula. 
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Chapter II. Poincare series for symmetric powers on GL(2) 

Let f E Sk(I') be a normalized Hecke eigenform; its £-function then has an Euler 

product: 

L(s, J) = fa~:) =II det(Id-p-• Ap)-1
, 

n=l p 

where I have normalized the Fourier coefficients of f relative to chapter 1 so that 

a( n) = a1 ( n )n<k-l)/z; in particular, L( s, J) has a functional equation s ---> 1 - s, and the 

Ramanujan conjecture is that Ap E SU(2). The N-th symmetric power £-function for 

f is: 

L(s,f,symN) =II det(Id-p-•symN Ap)-1 

p 

where symN : GL(2, C)--; GL(N +1, C) is the representation of GL(2, C) on symN(C2 ). 

This Euler product converges absolutely for Re(s) > 1, and in a suitable right half-plane 

can be written as a Dirichlet series 

L(s,f,symN) = ~ aN(n) 
L... n• 
n:::::l 

It is a major problem to show meromorphic continuation of these L-functions; in 

particular, 

(1) L(s,f, symN) holomorphic in Re(s) > 1 for all N is equivalent to the Ramanujan 

conjecture; 

(2) L( s, f, symN) holomorphic in Re( s) 2:: 1 for all N, with no zeros on Re( s) = 1 

implies the Sato-Tate conjecture - equidistribution of the signs of the Fourier 

coefficients a(p). 

Langland's conjecture implies that these are £-functions for automorphic forms on 

GL(N + 1), so in particular are meromorphic and have a functional equation. 

Following [PS), we will define Poincare series P(z, s, symN) E Sk(I') which reproduce 

the N-th symmetric power £-function, in the sense that its Petersson inner product with 

a normalized Hecke eigenform f E Sk(I') equals L(s, J, symN). 
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We discover a somewhat surprising phenomenon: If N ;::: 7, then the initial data for 

the construction of P(z,s,symN) has a natural boundary at Re(s) = 0 (actually, at the 

time of writing I can only show this for small values of N ;::: 7). I lack an adequate 

understanding of why this phenomenon arises at present. 

27 



§1. CONSTRUCTION OF P(z, s, symN) 

We will now find a Poincare series Pk(z,s,symN) E Sk(I') so that its Peterson product 

with all normalized Hecke eigenforms is L(s, f, symN). This was done by Piatetski

Shapiro (PS] in adelic language for any split reductive group; the following construction 

is not much more than a translation' into classical language. 

We try to determine Pk(z, s, symN) in the form: 

00 

Pk(z,s,symN) = L°'N(n,s)P;:(z) 
n=1 

where P;:(z) are normalized Poincare series so that 

00 

f(z) = L a1(n)n<k-l)/2e(nz) E Sk(I'). 
n:::l 

We require the coefficients aN(n,s) to be multiplicative in the sense that 

aN(n,s) =II a~(pv,(nl,s), 
p 

Thus for normalized Hecke eigenforms we get 

00 

n = II nv,(n). 
p 

(f,P(·,s,symN)) = III:a~(pk,s)a1 (pk) = L(s,f,symN). 
p k=O 

Using a1(pk) = trsymk(Ap), we require that for all primes p, 

00 00 

L°'~(pk,s)trsymk(Ap) = det(Id-P-•symN(Ap))-1 = 2.:trsymn(symN Ap)p-n•. 
k=O n=o 

Decomposing the representation symn symN(C2 ) into its irreducible constituents: 

symn symN(C2 ) = E!j[symn symN(C2 ): symk(C2 )] symk(C 2 ) 

k 

we find that we are done if we talce 

00 

a~(pk,s) = L[symnsymN(C2): symk(C2 )]p-n•. 
n=O 
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This last series is known as the Poincare-Molien series; in general, for a finite dimensional 

representation p of a compact Lie group G, one has a Poincare-Molien series for each 

irreducible representation r of G, given by: 

00 

FT(p, t) = I)symn p: r]tn. 
n=O 

FT(p, t) is a rational function, which can be written in the form 

with HT(t) a polynomial, and the denominator independant of r. When r is the trivial 

representation of G, we get the Hilbert function for the graded algebra of invariants 

S(p)a. 

We can summarize the discussion above as follows: 

Proposition 1.1. Let ow(n,s) be given by: 

aN(n, s) = IJ aj:,,(p"•(n), s), 
p 

wlie1·e aj:,,(pk, s) = Fk(N,p-•) is tlie Poincare-Molien series 

Tlien if P(z, s, symN) = l:n aN(n, s)P~(z), we Jiave: 

for all normalized Hecke eigenforms f E Sk(I'). 
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§2. CONVERGENCE 

In this section, we show convergence of P(z, s, symN) for Re(s) > 1. In order to 

gain some flexibility, I do not assume the Ramanujan conjecture, but rather that, if 

J(z) = En2'.l a1 (n)n<k-l)f2 e(nz) is a normalized Hecke eigenform, then for some o;:: O, 

ja1(p)j :::; 2p5 for all primes p. The trivial bound is o:::; 1/2, the Ramanujan bound is 

o = O, and by more elementary means one can show o :::; 1/ 4. 

Proposition 2.1. E:=l <>N(n,s)P,i(z) converges absolutely for Re(s) > 1 + N8, uni

formly in z. 

PROOF: We first bound P,i(z): We have a spectral expansion 

d 

P,i(z) = L ai,;(n)f;(z) 
i=l 

with Ji, ... , fd an orthonormal basis of Sk(I'), f;(z) =En ai,;(n)n<k-l)f2e(nz). 

Since f;(z) are bounded and a1 ,;(n) < n5+' for all£> O, we see that 

for all £ > 0. 

Therefore 

00 

(2.1) IL <>N(n, s)P,i(z)I < L <>N(n, Re(s))n5+<, for all £ > 0. 
n=l n~1 

From now on, I shall omit the dependence on £, and assume s is real. 

Because the RHS of (2.1) is multiplicative: 

00 

(2.2) L"N(n,s)n5 = ITLFk(N,p-•)pk8, 
n~I p k=O 

we will need to have a suitable estimate on Fk(N,p-•). 

Lemma 2.2. Ast -+ O, we llave: 

(1) FaN(N, t) = t" + O(ta+i ); 

(2) FaN+r(N, t) = O(ta+l) for 1 :::; r :::; N - 1. 
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PROOF: Fk(N, t) = :Bn(symn PN: Pk]tn, where I have put Pd= symd C 2. To prove (1), 

we need to show 

If we denote 

(symn PN : PaN] = { O, 
1, 

n times 

n<a 

n=a 

TennpN=PN0···0PN 

then because symn PN ~Tenn PN, we have an inequality: 

[symn PN : PaN] :'S [Tenn PN : PaN]· 

Since the highest highest weight of Tenn p N is nN, we need that aN :<::: nN, i.e. a :<::: n, 

in order that (Tenn pN : PaN] f= 0. Furthermore, PaN appears exactly once in Ten" PN; if 

VN is the highest weight vector of PN, then v~• = VN® ... VN is the unique weight vector 

of weight aN, and is obviously symmetric, so that PaN ~ sym• PN· Thus [sym• PN : 

PaN] = 1, which shows (1). 

To see ( 2), we again use 

(symn PN: PaN+r] :'S (Tenn PN: PaN+r] 

so we need to see (Tenn PN : PaN+r] = 0 for n < a+ 1. This follows from the previous 

discussion: The highest weight of any representation appearing in Tenn PN is nN, so 

[Tenn PN : PaN+r] = 0 if nN < aN + r, i.e. if n < a+ 1. Thus [symn PN : PaN+r] = 0 

for n < a+ 1, so that 
00 

FaN+r(N, t) = I)symn PN: PaN+rltn = o(t•+l ). I 
n==l 

Corollary 2.3. The product aw(n,s) = ITPa}.r(P"'(nl,s) converges for Re(s) > 1. 

We can now prove Proposition 2.1. By Lemma 2.2, we have (setting t = p-•, Jtl < 1): 
oo N-1 oo 

I: Fk(N, t) = I: I: FaN+r(N, t)p(•N+r)o 
k=O r=O a=O 

oo n-1 oo 

= I:{ta + o(t•+l)}p•N8 +I: O(I:t•+lp(aN+r)8) 
a=O r=1 a=O 
00 

a=D 

= 1 - ~1N8t . (1 + O(t)) 
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We thus see that the product (2.2) converges for Re(s) > 1 + N8. I 

Remark. If N is odd then F(N, t) = F0 (N, t) is a function of t 2 rather than t, so 

ITP F(N,p- 0
) converges for Re(s) > 1/2. This follows from the fact that if both N and 

n are odd, the center of SU(2) acts nontrivially on Tenn PN, which therfore does not 

contain the trivial representation po. 
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§3. COMPUTING Fk(N, t) 

As our next step, we need to compute the Poincare-Molien series Fk(N, t). This is 

trivial for N = 1, since sym1(C2) = C 2, so: 

For N = 2, we have the decomposition: 

k<n 
k=n lnod 2 

sym2k c2 

k=n 

k =I- n 

which is at the heart of the classical theory of spherical harmonics on S0(3). Therefore, 

we have: 

{ 
o, 

Fk(2, t) = ,•t• 
1-t2' 

k odd 

k even 

This is well known,and is equivalent to the expansion: 

2 Loo a(n2) 
L(s,f,sym) = ((2s) --. 

n• 
n;::;;l 

The corresponding Poincare series was used by Zagier [Z] and Mizumoto [M] give new 

proofs of Shimura's theorem [Sh 2] on entirety of L(s,f,sym2 ). 

For N ;::: 3, all this is more complicated, and as we shall see, so is the answer. We use 

an algorithm of T. Springer's [Sp 2]: He starts from the formula 

where the Haar measure on SU(2) is normalized to have volume one. 

We have: 

k sin(k + 1)</i 
trsym (t(<fi)) = . , 

sm<fi ( 

'</> 
t(<fi) = e~ 

and using Weyl's integration formula, one sees that 

1 12" Fk(N,t) = - sin(k+ 1)¢isin<fidet(Id-tsymN(t(¢i)))-1d<fi 
7r 0 
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The crux of Springer's method is a partial fraction decomposition for 

N 

det(Id -t symN (t( </J)))-1 = IT (1 - tei(N-2j)ef>)-1, 
j=O 

together with the elementary formula: 

1 r2" . 1 1 ; Jo (1 - te•ef>)-1 sin(k + 1)</J sin </Jd</J = 2(1 + Ok,o)tk - 2tk+2, 

From these, one gets an "explicit" formula 

(3.1) Fk(N, t) = L tPN-2j((tk - tk+2hN,j) 
05j<f 

where </Jn : C( t) -> C( t) is the linear map such that 

and 
(-l)ktk(k+l) 

"IN,k(t) = rr7=1 c1 - t2i) rrf.,1kc1 - t2j). 

To compute <Pnf for f E C(t), one uses the following: 

(1) 

tPn(tk)(t) = { tk/n, k = 0 ~od n 
O, otherwise. 

(2) 

tPn(Unf)(t) = g(t)cf>nf(t), 

ftf < 1. 

For example, if f(t) = (1- tn)-1h(t), then cf>nf(t) = (1- t)-1cf>nh(t). 

(3) If q(t) = (1- tq)-ltk, q ~ 0 mod n, then rewriting q(t) in the form: 

we find: 

One uses the same procedure for dealing with expressions of the form 
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In (3.3), (3.4) I shall give the results of applying this algorithm to compute Fk(N, t), 

for N = 3, 4. As an example, I shall detail the computation of Fk(3, t). By (3.1), 

(3.2) 

Since </;1 =Id, the second term on the RHS of (3.2) is given by 

(1 - t2)(1 - t4). 

For the first term on the RHS of (3.2), we apply ¢3 to: 

tk tk(l + t4 + tB) 
f(t) = (tk - tk+2)13,o(t) = (1-t4)(1- t6) = (1- t6)(1-t12) 

to find 

Therefore, we have: 

(3.3) 

tk/3 
(1 t•)(i t•)' 

t<k+4)/3 
(1 t2)(1 t•)' 

t<k+8)/3 
(1 t•)(l t•)' 

k = 0 mod 3 

k = 2 mod 3 

k = 1 mod 3 

k=O 

k ;:;: 1 

Likewise, a similar computation shows: 

(3.4) 

tk(l+t+ 00 ·+tk) 
F4k(4, t) = (1- t2)(1 - t3) 

tk+2(l - tk) 
F4k+z(4,t) = (l -t)(l -t2)(1-t3) 

F2k+1(4, t) = 0 

The corresponding expression for N = 5, 6 are more complicated; for example, for 

N = 5, we need 15 formulas to describe Fk(5, t), depending on the residue class of k 

modulo 15. We omit these formulas. 
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§4. NATURAL BOUNDARY 

We have seen that we have a representation 

00 

( 4.1) Pk(z,s,symN) = L aN(n,s)P~(z), 
n::::l 

absolutely convergent for Re( s) > 1, and that in that range we have a spectral expansion: 

(4.2) 

where Ji, ... , fd(k) is a basis of Sk(I') consisting of normalized Hecke eigenforms. 

It is widely believed that L(s,f;,symN) have meromorphic continuation to all of C 

with functional equation - for instance, it would follow from Langlands' Functoriality 

Conjecture. By (4.2), the same should be true of Pk(z,s,symN). It is therefore sur

prising to see that if N 2': 7, the coefficients aN( n, s) in ( 4.1) have natural boundary at 

Re(s) = 0. Of course, this does not prevent Pk(z,s,symN) from being meromorphic 

in C. Nonetheless, it is interesting to note that, to date, meromorphic continuation of 

L(s,f;,symN) is unknown for N 2': 6. 

Theorem 4.1. Let aN(n, s) be defined as in Proposition 1.1 [01' N 2': 1, Re(s) > 1. 

· (1) For all N, aN(n, s) has meromorphic continuation to Re(s) > O; 

(2) If N ~ 6, aN(n,s) extends to a meromorphic function in all ofC; 

(3) If N = 7 then aN( n, s) has the imagina1y axis Re( s) = 0 as its natural bounda1y; 

more precisely, every point on Re(s) = 0 is a limit point of zeros of aN(n, s). 

PROOF: To see all this, we recall that for pf n, the p-th component of <>N(n, s) is the 

Hilbert function F(N,p-•) for the invariants of a binary N-ic: 

H ( -•) 
a" (n s) = F(N p-•) = N p 

N ' ' IJ;(l _ p-d;s) 

with HN(t) E Z(t], HN(O) = 1. Thus 

aN(n,s) = 9N(n,s) II ((d;s) II HN(P-s), 
i pfn 
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with 9N(n, s) meromorphic in C. In particulaJ" 

a<N(l, s) =IT ((dis) IT lIN(P-•). 
i p 

We now use a theorem of Esterman's [Est], who considered Euler products of the form: 

p 

with JI(t) = 1 + a1t + · · · + adtd E Z[t] a polynomial with integer coefficients. L(ll, s) 

converges for Re(s) > 1, has meromorphic continuation to Re(s) > O, and if we factor 

ll(t) as: 
d 

JI(t) = I1 (1 - (3;t), 
i=l 

then there are two alternatives: 

(1) If lf3;1 = 1 for all i = 1, ... , d then L(JI, s) has meromorphic continuation to all 

of C; we say then that ll(t) is unitary. 

(2) If lf3d # 1 for some i, then every point of Re( s) = 0 is a limit point of poles 

of L(JI,s) in the half-plane Re(s) > O, and so the imaginary axis is the natural 

boundary of L(JI, s). 

In view of Esterman's theorem, our theorem will follow if we show that for the Hilbert 

function 
lIN(t) 

F(N, t) = IT;(l - td•) 

the numerator lIN(t) is unitary for N :::; 6, and nonunitary otherwise. Note that the 

numerator JIN(t) is not unique, but it is well defined up to unitary factors. In fact, 

JIN(t) is unitary if and only if the prime factors of lIN(t) over Z are all cydotomic 

polynomials. Using the list in the Appendix, we see JI1(t) = ll2(t) = ll3 (t) = H4 (t) = 1, 

JI5(t) = 1 + t 18 , H 6 (t) = 1 + t 15 
- which aJ'e unitary. For N = 7 the Hilbert function is 

given by: 

- ll1(t) 
F(7,t) - (1-t4)(1-tB)(l -t12)2(1-t20)' 

with the prime factorization of 1I1(t) being: 

H1(t) = (t2 + 1)2(t4 
- t2 + l)(t8 

- t6 + t4 - t2 + 1) 

, (t32 _ t26 + 2t24 _ t22 + 5t20 + ztlB + 6t16 + zt14 + 5t12 _ tlO + ztB _ t6 + 1) 

37 



from which one sees H1(t) is not unitary. 

Likewise, we have the Hilbert function for the invariants of binary octavics: 

1 + t8 + t9 + t10 + t18 
F( 8 ' t) = ~( 1---t~2 )~(-1 --~t3~)(~1---t~4 )~(1--~t5~)(~1---t~6 )~(1--~t7 ) 

with H 8 (t) = 1 + t8 + t9 + t10 + t18 having prime factorization 

Inspection shows that the last factor in ( 4.3) is not cyclotomic. It seems likely that 

none of the numerators HN(t) of the Hilbert functions are unitary if N 2:: 7. Using the 

computer-generated tables in [Sal], I have checked this for N :$ 12. I 
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§5. A PROBLEM IN INVARIANT THEORY 

We digress to discuss a question in Invariant Theory. Let G be a complex connected 

semi-simple group, and V a finite dimensional representation of G (we may also consider 

compact Lie groups, or Chevalley groups over a finite field). We form the Poincare

Molien series for the algebra of invariants for G acting on the symmetric algebra S(V): 
00 

F(V, t) = L dim S(V):;"tn, 
n::::O 

where S(V):;" are the homogeneous invariants of degree n. Then we can write F(V, t) in 

the form: 

(5.1) 
H(t) 

F(V, t) = IL(l - td;), H(t) = 1 + a1t + · · · + a.t• E Z[t]. 

If V contains no invariant vectors, then we can talrn all. d; 2: 2. We say (G, V) is unitary 

if the roots of the numerator H(t) in (5.1) are all of modulus 1 (in which case they will 

all be roots of unity). This notion is independent of the choice of H(t) in (5.1). 

I would like to pose the following: 

Problem. Classify all unitary pairs (G, V). 

There is an obvious class of examples of unitary pairs (G, V) - those pairs such 

that S(V) 0 is a polynomial algebra, i.e. admits a finite set of homogeneous genera

tors p1 , ••• ,p, which are algebraically independent. In this case, if the degrees of the 

generators are d; = deg p;, then: 

1 
F(v, t) = rr ( d r 

i=l 1 - t ' 

Such pairs have been class.ified - see [K-P-VJ for G connected, simple, acting irreducibly 

on V. For example, one knows S(V)G is a polynomial ring in the following cases: 

(1) G has a Zariski dense orbit in the projective space P(V), in which case S(V)0 = 
C; for example, take SL(n, C) acting on en. 

(2) The adjoint representation of G on its Lie algebra g: By Chevalley's theorem, 

S(g)G = S(ry)w, where QC g is a Cartan subalgebra, and Wis the corresponding 

Wey! group. (W, ry) is a finite reflection group, so S(ry)W is a polynomial ring. 
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(3) G = SL(2, C), Vd = symd C 2 is the space of binary forms of degree d, then 

S(Vd)G is a polynomial ring if and only if d _$ 4 (K-P-V]. 

There are some less trivial examples of unitary pairs (G, V); as we have seen, SL(2, C) 

acting on Vd for d = 5, 6 is unitary, but the invariants are not a polynomial ring. These 

are examples of ( G, V) such that S(V)0 is a complete intersection. We recall the relevant 

definitions (see (St]): Let B be a finitely generated graded algebra over C, with a minimal 

set of homogeneous generators pi, ... ,pn of positive degree. Then, if A= C(xi, ... , Xn) 

is the polynomial algebra with grading given by degx; = degp;, we can write B =A/I 

for some homogeneous ideal I. If I can be generated by h = n - dimB homogeneous 

elements, we say that Bis a complete intersection. Usually, we need more than n-dim B 

generators; in our case, B = S(V)0 is Cohen-Macauley and so hd B = n - dimB is 

the homological dimension of B. Let y = {Yi, . .. , Yh} be a minimal set of homogeneous 

generators of the ideal I. Then if B is a complete intersection, we get a free resolution 

of B (as an A-module) from the Koszul complex K.(y) with respect to the elements y. 

Thus we have the exact sequence of graded A-modules: 

where the Kp(y) are free A-modules of rank (~) with basis: 

1 .$ ii < ... < ip .$ h. 

The boundary maps d: Kv(Y)-+ Kp-i(Y) are 

p 

d( e;1 II • · ·II e;,) = 2)-l)k-iy;, e;1 11 · · · 11 fi;; 11 · · · 11 e;, 
k=i 

and f : Ko(Y) ~ A -+ B is the canonical projection. From this one sees [St] that the 

Hilbert series of B is given by: 

h p 11?=1(1-t") 
F(B, t) = 2)-1) F(Kv(Y), t) = IT': ( _ d;) 

p=O J=i 1 t 

where dj = degpj, e; =deg Yi· 

40 



Thus, if S(V)G is a complete intersection then ( G, V) is unitary. N.D. Beklemishev has 

determined all the cases where the invariants of n-ary forms of degree r are a complete 

intersection [BJ; in particular, for SL(2, C) this happens only for Vd with d = 3, 4, 5, 6. 

I think it likely that if d 2: 7, then Va is not unitary2 . More generally, it is natural to 

conjecture that, given G, there are only finitely many representations V (up to addition 

of trivial summands) for which (G, V) is unitary. A related finiteness result (which 

strongly influenced [BJ) is due to V.L. Popov [Po], who showed that for each G there 

are only finitely many V such that the homological dimension of S(V)G is less than any 

given constant. In the case of SL(2, C), hd S(Va)G = 0 ford::; 4, hd S(Vd)G = 1 for 

d = 5, 6, and is at least 3 if d 2: 7 [Po]. 

In the case of finite Chevalley groups, the problem is likely to be at least as com

plicated. There certainly are cases of non-unitary invariants. For example,3 take 

G = PS L(2, F 7 ), the projective special linear group over the field of 7 elements, which 

is a simple group of order 168. Let V = St be the Steinberg representation, which can 

be realised as the space of functions on the projective line P(IF7 ), whose mean is zero. 

For any finite group G and a representation p: G -t GL(V), we can use the formula: 

F(V,t)= l~I ,Edet(l-tp(g))-1 
gEG 

1 
= I: c det(1 - tp(u n-1, 

{o} g 

where the second sum runs over the conjugacy classes {g} of G, and C9 is the order of 

the centralizer of the conjugacy class of g. One can see that: 

(5.2) F(St t) - - 1
-

1 ~ 1 
' - 168 (1 - t)7 + 8 (1 + t)4(1 - t)3 

1 1 1 1 
+ 3 (1- t)(l - t3)2 + 4 (1 + t)(l + t2)(1- t4) 

1 1 
+ 271 - t7 

- JI(t) 
- (1- t2)2(1- t3)2(1 - t4)2(1 - t1)' 

2J have verified this ford$ 12 
3 ! thank Walter Feit for suggesting this example. 
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H(t) = 1 - t 2 - t3 + t4 + 2t5 + 4t6 + 2t7 + 3t8 + 2t9 + 3t10 + 2t11 + 4t12 

+ 2t13 + t14 - t15 - t16 + t18 

(In (5.2), the factor 2 in the last summand comes from the two unipotent classes of G). 

This shows that (G,St) is non-unitary. 

42 



APPENDIX: HILBERT FUNCTIONS FOR BINARY N-ws, N:::; 10 

For the reader's convenience, I present a list of the Hilbert functions F(N, t) for 

invariants of binary forms of degree N :::; 10. This is very classical, and can be found, for 

instance, in (Syl]. For computer-generated tables of these Hilbert functions for N :::; 24, 

Ni' 21, 23, see (Sal]. For additional information and background, see (H], (Sp 1]. 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

F(l,t)=l 

1 
F(2,t) = -

1 2 -t 

1 
F(3, t) = 1 - t4 

1 
F(4,t) = (1-t2)(1- t3) 

1 + t8 

F(5• t) = (1- t4)(1 - tB)(l - t12) 

1 + t16 
F(6 t) = ---------' (1- t2)(1 - t4)(1- t6)(1 -t10) 

Ih(t) = 1 + 2t8 + 4t12 + 4t14 + 5t16 + 9t18 + 6t20 + 9t22 + 8t24 + 9t26 

+ 6t28 + 9t30 + 5t32 + 4t34 + 4t36 + 2t40 + t48 

1 + tB + t9 + t10 + t18 
F(S t) - .,..-----,-,....,.---~-~-~---~ 

' - (1 - t2)(1 - t3)(1 - t4)(1 - t5)(1 - tB)(l - t1) 

F(9 t) - H9(t) 
' - (1- t4)(1 - tB)(l - tB)(l - t10)(1 - t12)(1 - t14)(1 - t16) 
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(AlO) 

H9(t) = t6o + t66 - t64 + 5t52 + 3t5o + 18t4B + 15t46 + 44t44 + 43t42 

+ 82t40 + 76t38 + 122t36 + 107t34 + 147t32 + 119t30 + 147t28 

+ 107t26 + 122t24 + 76t22 + 82t20 + 43t18 + 44t16 + 15t14 

+ 18t12 + 3t10 + 5t8 
- t6 + t4 + 1 

F(lO t) = . H10(t) 
' (1 - t2)(1 - t4)(1 - t5)(1 - t6)2(1-'- t1)(1 - tB)(l - t9) 

H10(t) = 1 - t 5 + 2t6 - t7 + 4t8 + 4t9 + 8t10 + 6t11 + 16t12 

+ 9t13 + 17t14 + 15t15 + 19t16 + 12t17 + 2318 + 12t19 

+ 19t20 + 15t21 + 17t22 + 9t23 + 16t24 + 6t25 + 8t26 

+ 4t21 + 4t28 - t29 + 2t30 - t31 + t36 
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