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Abstract. The problem of \quantum ergodicity" addresses the limiting distri-

bution of eigenfunctions of classically chaotic systems. I survey recent progress

on this question in the case of quantum maps of the torus. This example leads

to analogues of traditional problems in number theory, such as the classical

conjecture of Gauss and Artin that any (reasonable) integer is a primitive root

for in�nitely many primes, and to variants of the notion of Hecke operators.

1. Introduction

One of the few rigorous general results in the �eld of \Quantum Chaology" is

Quantum Ergodicity [13, 2, 14]. To formulate this notion, recall that if the clas-

sical dynamics of a system are ergodic, then almost all trajectories of a particle

cover the energy shell uniformly, that is to say that the time averages along the

trajectory converge to the phase space average. The intuition a�orded by the

\Correspondence Principle" leads one to look for an analogous statement about

the semiclassical limit of expectation values of observables in an energy eigenstate.

As formulated by Schnirelman [13], the corresponding assertion is that when the

classical dynamics is ergodic, for almost all eigenstates the expectation values of

observables converge to the phase-space average.

A key question is: Under suitable assumptions on the system, can one say

anything beyond \almost all"? For instance, when can one assert that all expec-

tation values converge to the phase space average? Such behavior has sometimes

been called quantum unique ergodicity [12].

Below is a survey some of recent attempts to understand question in the

context of quantum maps of the torus. These are an important model for under-

standing the quantization of classically chaotic systems, �rst studied by Hannay

and Berry [5]. We will devote special attention to linear hyperbolic automorphisms

of the torus T

2

- the so called \cat maps".

Notation: We will use the abbreviations e(z) := e

2�iz

, e

N

(z) = e(z=N).
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2. Quantum mechanics on the torus

We review the basics of quantum mechanics on the torus T

2

, viewed as a phase

space [5, 7, 3, 4].

2.1. Quantum states

We start with a description of the Hilbert space of states of such a system. In brief,

Planck's constant is restricted to be an inverse integer: h = 1=N , and the Hilbert

space of states H

N

is N -dimensional, in keeping with the intuition that each state

occupies a Planck cell of volume h = 1=N and the constraint that the total phase-

space T

2

has volume one. The \state vectors" are distributions on the line which

are periodic in both momentum and position representations:  (q + 1) =  (q),

[F

h

 ](p + 1) = [F

h

 ](p), where [F

h

 ](p) = h

�1=2

R

 (q) e(�pq=h) dq. The space

of such distributions is �nite dimensional, of dimension precisely N = 1=h, and

consists of periodic point-masses at the coordinates q = Q=N , Q 2 Z. We may

then identify H

N

with the N -dimensional vector space L

2

(Z=NZ), with the inner

product h � ; � i de�ned by

h�;  i =

1

N

X

QmodN

�(Q) (Q) :

2.2. Observables

Classical observables (i.e. functions f 2 C

1

(T

2

)) give rise to quantum observables,

that is operators Op

N

(f) on H

N

. To de�ne these, one starts with the translation

operators

[t

1

 ](Q) =  (Q+ 1)

and

[t

2

 ](Q) = e

N

(Q) (Q);

which may be viewed as the analogues of di�erentiation and multiplication (re-

spectively) operators. In fact in terms of the usual translation operators on the

line q̂ (q) = q (q) and p̂ (q) =

h

2�i

d

dq

 (q), they are given by t

1

= e(p̂), t

2

= e(q̂).

In this context, Heisenberg's commutation relations read

t

a

1

t

b

2

= t

b

2

t

a

1

e

N

(ab) 8a; b 2 Z:

More generally, mixed translation operators are de�ned for n = (n

1

; n

2

) 2 Z

2

by

T

N

(n) = e

N

(

n

1

n

2

2

)t

n

2

2

t

n

1

1

:

These are unitary operators on H

N

, whose action on a wave-function  2 H

N

is

given by:

T

N

(n) (Q) = e

i�n

1

n

2

N

e(

n

2

Q

N

) (Q+ n

1

) :
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For any smooth function f 2 C

1

(T

2

), de�ne a quantum observable Op

N

(f),

called the Weyl quantization of f , by

Op

N

(f) =

X

n2Z

2

b

f(n)T

N

(n)

where

b

f(n) are the Fourier coe�cients of f .

The observables Op

N

(f) satisfy: For any orthonormal basis of H

N

we have

1

N

N

X

j=1

hOp

N

(f) 

j

;  

j

i =

Z

T

2

f +O

f

(

1

N

) : (1)

That is, the mean of the expectation values is asymptotic to the classical average

of the the observable f .

2.3. Dynamics

To introduce dynamics, we consider a smooth, area-preserving (symplectic) map

A of the torus. Iterating A we get a discrete dynamical system. For instance,

if A 2 SL(2;Z) is a linear automorphism then the system is well-known to be

chaotic if A is hyperbolic, that is j trAj > 2 (such a map is called a \cat map" in

the physics literature). Another example is the \Kronecker map",

�

�

: x 7! x+ � mod 1; � = (�

1

; �

2

) : (2)

If 1; �

1

; �

2

are linearly independent over the rationals then this map is uniquely

ergodic , i.e. the only �

�

-invariant probability measure on the torus is Lebesgue

measure.

De�nition 2.1. A quantization of A is a sequence of unitary maps U

N

: H

N

! H

N

such that

U

�

N

Op

N

(f)U

N

�Op

N

(f �A)! 0; N !1 : (3)

The operator U

N

is called the quantum propagator, whose iterates give the

evolution of the quantum system, and we require the quantum evolution to be

asymptotic to the classical evolution as N !1 (this is an analogue of \Egorov's

theorem"). In this case we say that the map A is \quantizable". The eigenfunctions

of U

N

play the rôle of energy eigenstates.

In the example of the linear map A, if we further assume A =

�

a b

c d

�

with

ab � cd � 0 mod 2, then on can construct a unitary operator U

N

(A) which

satis�es an exact version of Egorov's theorem:

U

N

(A)

�

Op

N

(f)U

N

(A) = Op

N

(f �A) : (4)

A quantization of the Kronecker map �

�

(2) satisfying (3) was constructed

in joint work with Jens Marklof (see [10] for the closely related case of a skew

translation), by �rst doing so for rational �, in which case we have an exact Egorov

theorem (4), and then for the general case by approximating � by rationals.
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3. Quantum ergodicity

For quantum maps, the form that quantum ergodicity assumes is the following:

Theorem 3.1 ([1, 15, 16]). Let A be a quantizable area-preserving map of the torus.

Assume A is ergodic. Then for any orthonormal basis  

j

of H

N

consisting of

eigenfunctions of U

N

(A), there is a subset J(N) � f1; 2; : : : ; Ng, with

#J(N)

N

! 1,

so that for j 2 J(N) we have:

hOp

N

(f) 

j

;  

j

i !

Z

T

2

f; as N !1

for all observables f 2 C

1

(T

2

).

Theorem 3.1 is a consequence, using positivity and a standard diagonalization

argument, of the following estimate for the variance due to Zelditch [15] (see the

Appendix for the proof):

Theorem 3.2 ([15]). Let A be a quantizable area-preserving, ergodic map of the

torus. For any orthonormal basis  

j

, j = 1; : : : ; N of of H

N

consisting of eigen-

functions of U

N

(A), we have

1

N

N

X

j=1

�

�

�

�

hOp

N

(f) 

j

;  

j

i �

Z

T

2

f

�

�

�

�

2

! 0

for all observables f 2 C

1

(T

2

).

A key problem is:

Problem 3.3. Is it true that all eigenfunctions become equidistributed as N !1?

For the Kronecker map �

�

, Jens Marklof and I gave an a�rmative answer

(see [10] for skew translations):

Theorem 3.4. If 1; �

1

; �

2

linearly independent over the rationals, then for all eigen-

functions  of U

N

(�

�

),

hOp

N

(f) ;  i !

Z

T

2

f; N !1 :

This is a consequence of the quantization procedure for the map coupled with

the fact that for such �, the map is classicaly uniquely ergodic.

In the most interesting case of hyperbolic maps (e.g. \cat maps"), a basic

problem is the existence of several invariant measures.

4. Beyond quantum ergodicity for cat maps

I will now describe some recent attempts, joint with P�ar Kurlberg, to improve on

quantum ergodicity (Theorem 3.1) for cat maps.
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4.1. Hecke operators [8]

It transpires that there is a commutative group of unitary operators on the state-

space H

N

which commute with the quantized map and therefore act on its eigen-

spaces. We call these \Hecke operators", in analogy with the setting of the modular

surface.

To understand their origin, one needs to note that it is possible to de�ne

U

N

(A) so that it only depends on the remainder of A mod 2N and satis�es (4).

One thus gets a projective representation A 7! U

N

(A) of the subgroup of \quan-

tizable" elements in the �nite modular group SL(2;Z=2NZ). It turns out that it

can be made into an ordinary representation if we further restrict to the subgroup

�(4; 2N) given by g = I mod 4 for N even, g = I mod 2 for N odd. Thus for

A;B 2 �(4; 2N) we have U

N

(AB) = U

N

(A)U

N

(B). Consequently, if AB = BA

mod 2N then their propagators commute. This is the basic principle that we use

to form the Hecke operators (see [6] for another application of this idea).

Remark 4.1. The congruence AB = BA mod 2N is much less restrictive than the

equation AB = BA. The latter has as its solutions in SL(2;Z) essentially only �

powers of A (at least for A \primitive").

4.2. Equidistribution of Hecke eigenfunctions

Since the Hecke operators commute with U

N

(A), they act on its eigenspaces, and

since they commute with each other there is a basis of H

N

consisting of joint

eigenfunctions of U

N

(A) and the Hecke operators, whose elements we call Hecke

eigenfunctions. We show

Theorem 4.2 ([8]). Let A 2 SL(2;Z) be hyperbolic, A = I mod 4, and f 2

C

1

(T

2

) a smooth observable. Then for all normalized Hecke eigenfunctions � 2

H

N

of U

N

(A), the expectation values hOp

N

(f)�; �i converge to the phase-space

average of f as N !1. Moreover, for all � > 0 we have

hOp

N

(f)�; �i =

Z

T

2

f(x)dx+O

f;�

(N

�1=4+�

); as N !1 :

The exponent of 1=4 in our theorem is certainly not optimal, and more likely

the correct exponent is 1=2. What we in fact show is that if �

i

, i = 1; : : : ; N is an

orthonormal basis of H

N

consisting of Hecke eigenfunctions then

N

X

i=1

�

�

�

�

hOp

N

(f)�

i

; �

i

i �

Z

T

2

f(x)dx

�

�

�

�

4

� N

�1+�

(5)

(compare Theorem 3.2). We deduce Theorem 4.2 from (5) by taking an orthonor-

mal basis with �

1

= � and omitting all but one term on the LHS. If all terms on

the LHS of (5) are of roughly the same size then we would expect this to give the

exponent 1=2.

Remark 4.3. The Hecke eigenspaces have small dimension (at most O(log logN)),

while the eigenspaces of U

N

(A) may have large dimension. In fact, the mean de-

generacy is N= ord(A;N) where ord(A;N) the order (or period) of A modulo N ,
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that is the least integer k � 1 for which A

k

= I mod N . It can be shown that the

mean degeneracy can be as large as N= logN for arbitrarily large N .

4.3. Arbitrary eigenfunctions

Since not all eigenfunctions of U

N

(A) are Hecke eigenfunctions, we have not com-

pletely solved Problem 3.3 - whether all eigenfunctions become equidistributed,

that is if we have quantum unique ergodicity. In [9], we show equidistribution of

all eigenfunctions of U

N

(A) for almost all integers N :

Theorem 4.4. Let A 2 SL(2;Z) be hyperbolic. There is a set of integers N

�

of

density one so that all eigenfunctions of U

N

(A) are equidistributed, as N ! 1,

N 2 N

�

.

Previously, the only result giving an in�nite set of N for which all eigenfunc-

tions of U

N

(A) become equidistributed is by Degli-Esposti, Gra� and Isola [4],

which conditional on the Generalized Riemann Hypothesis give an in�nite set of

primes.

A key step in the proof of Theorem 4.4 is an estimate for the fourth power

moment of the expectation values, involving the order of A modulo N :

Theorem 4.5 ([9]). There is a sequence of integers of density one so that for all

observables f 2 C

1

(T

2

) and any orthonormal basis f 

j

g

N

j=1

of H

N

consisting of

eigenfunctions of U

N

(A) we have:

N

X

j=1

jhOp

N

(f) 

j

;  

j

i �

Z

T

2

f j

4

�

N(logN)

14

ord(A;N)

2

:

Thus for any subsequence of integers N such that

ord(A;N)

N

1=2

(logN)

7

!1 (6)

(and satisfying an additional \genericity" assumption) we �nd that for all eigen-

functions of U

N

(A), hOp

N

(f) ;  i !

R

T

2

f as N !1.

4.4. Controlling the order of A modulo N

Theorem 4.5 reduces the problem of quantum ergodicity to that of �nding se-

quences of integers satisfying (6), a problem closely related to the classical Gauss-

Artin problem of showing that any integer, other than �1 or a perfect square, is

a primitive root modulo in�nitely many primes; see [11] for a survey. We show

Theorem 4.6. Let A 2 SL(2;Z) be hyperbolic. Then there exist � > 0 and a density

one subset S of the integers such that for all N 2 S we have

ord(A;N)� N

1=2

exp((logN)

�

) :

Combining Theorem 4.6 with Theorem 4.5 gives Theorem 4.4.

Remark 4.7. We note that condition (6) fails in�nitely often. In fact one can

show that there are arbitrarily large integers so that ord(A;N) is smaller than

const:N= logN .
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Appendix A. Proof of quantum ergodicity

We review the proof of Quantum Ergodicity (Theorem 3.1) as given in [15], that

is we show that given f 2 C

1

(T

2

), for any orthonormal basis  

j

, j = 1; : : : ; N of

of H

N

consisting of eigenfunctions of U

N

(A), we have

1

N

N

X

j=1

�

�

�

�

hOp

N

(f) 

j

;  

j

i �

Z

T

2

f

�

�

�

�

2

! 0 (7)

We do this to emphasize the di�erence between it and our results (Theorems 4.2,

(5), 4.4 and 4.5), which while far stronger than what is given by (7), requires

methods that are special to the arithmetic structure of the cat map. In contrast,

the argument below uses nothing more than Egorov's theorem and the ergodicity

of the map. Without loss of generality, we will in the sequel assume that

R

T

2

f = 0.

We �rst recall some basic properties of the quantized observables Op

N

(f):

1. The adjoint is given by

Op

N

(f)

�

= Op

N

(

�

f) : (8)

2. The composition of operators satis�es:

Op

N

(f)Op

N

(g) = Op

N

(fg) +O

f;g

(

1

N

) (9)

for f; g 2 C

1

(T

2

).

We �x T � 1. By Egorov's theorem (3), as N !1 we have

1

T

T

X

j=1

(U

N

(A)

t

)

�

Op

N

(f)U

N

(A)

t

�

1

T

T

X

t=1

Op

N

(f �A

t

) = Op

N

(f

T

)

where f

T

:=

1

T

P

T

t=1

f � A

t

is the ergodic average of f . Moreover, if  

j

is an

eigenfunction: U

N

(A) 

j

= e

i�

j

 

j

, then

hOp

N

(f) 

j

;  

j

i = hOp

N

(f)U

N

(A) 

j

; U

N

(A) 

j

i

= hU

N

(A)

�

Op

N

(f)U

N

(A) 

j

;  

j

i

� hOp

N

(f �A) 

j

;  

j

i :

Consequently, if  

j

is an eigenfunction then for all T � 0,

hOp

N

(f) 

j

;  

j

i = hOp

N

(f

T

) 

j

;  

j

i :

Now we look at the sum (recall

R

f = 0)

S

2

(f;N) :=

1

N

N

X

j=1

jhOp

N

(f) 

j

;  

j

ij

2

:

We will show that lim

N!1

S

2

(f;N) = 0.

By Egorov (3), we have S

2

(f;N) � S

2

(f

T

; N) as N !1, for all T � 1. By

Cauchy-Schwartz, we have

jhOp

N

(f

T

) 

j

;  

j

ij

2

� kOp

N

(f

T

) 

j

k

2

k 

j

k

2

= hOp

N

(f

T

)

�

Op

N

(f

T

) 

j

;  

j

i :
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Moreover, by (8), (9),

Op

N

(f

T

)

�

Op

N

(f

T

) = Op

N

(jf

T

j

2

) +O

f;T

(

1

N

)

and so

S

2

(f;N) .

1

N

N

X

j=1

hOp

N

(jf

T

j

2

) 

j

;  

j

i+O

f;T

(

1

N

) :

By (1) we thus �nd that for �xed T � 1,

lim supS

2

(f;N) �

Z

T

2

jf

T

j

2

:

So far we have used nothing about the cat map except Egorov's theorem.

Now we use the fact that it is ergodic, in particular the mean ergodic theorem

holds: For F 2 L

2

(T

2

), the ergodic averages F

T

converge to

R

T

2

F in L

2

. Thus we

have

R

T

2

jf

T

j

2

! 0 as T !1. Therefore given � > 0, we can �nd T = T (f; �) for

which

R

T

2

jf

T

j

2

< � and consequently

lim supS

2

(f;N) < �

which shows that S

2

(f;N)! 0 as required.
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