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1. Introduction. Our goal in this paper is to study the distribution of zeros of
the Riemann zeta function as well as of more general L-functions. According to
conjectures of Langlands [14-1, the most general L-function is that attached to" an
automorphic representation of GLN over a number field, and these in turn should
be expressible as products of the "standard" L-functions L(s, r) attached to
cuspidal automorphic representations of GLm over the rationals. Such L-functions
are therefore believed to be the building blocks for general L-functions, and we
call them (principal) primitive L-functions of degree m. (They do not factor as
products of such L-functions.)2 For m 1 these are the Riemann zeta function
((s) and Dirichlet L-functions L(s, 7.) with ;t primitive. For m 2 the analytic
properties and functional equation of such L-functions were investigated by Hecke
and Maass, and for m > 3 by Godement and Jacquet [5]. We are interested in the
fine structure of the distribution of the nontrivial zeros of such primitive L(s, r).
Let p= (1/2)+ i denote these zeros. To motivate the formulation of our
results, we begin by assuming the Riemann hypothesis (RH) for L(s, r), that is,
that ,,0 R. We order the ,t)’s (with multiplicities)

The number of y’s in an interval I-T, T + 1] is asymptotic to (m/2r)log T as
T (see (2.11)). It follows that the numbers = (m/2rr) logical have unit
mean spacing. The problem is to understand the statistical nature of the sequence
)" Do they come down randomly (Poisson process) or do they follow a more
revealing distribution?

In the case of the Riemann zeta function, following the original calculation by
Montgomery [20] of the pair correlation (see below) and the extensive numerical
calculations of Odlyzko [21], [22], it is now well accepted (but far from proven)
that the consecutive spacings follow the Gaussian unitary ensemble (GUE) distri-
bution from random matrix theory. That is, if fin n+l Yn are the normalized

The reader interested only in the Riemann zeta function ’(s) should read the paper with L(s, n)
replaced by ((s) and m everywhere, in which case the results were announced in [26].

2It is quite plausible that these coincide with the primitive Dirichlet series introduced by Selberg
[29] or the "arithmetic Dirichlet series" in Piatetski-Shapiro [24].
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spacings, then for any nice function on (0, ), one expects

1
f(6,,) f; f(s)e(s)(.) -ff . ds

where P(s) is the distribution of consecutive spacings of the eigenvalues of a large
random Hermitian matrix. This distribution was determined by Gaudin and
Mehta [18] and is given as follows:

dZE
P(s) --d-fi-(s)

where E(s)= det(I- Q), Q being the trace class operator on L2( 1, 1) whose
kernel is

sin rs( r/)/2

The Fredholm determinant defining E(s) converges, and it is easy to cheek that
P(s) vanishes to second order at s 0. This means that, unlike a Poisson process,
the numbers y. tend to "repel" each other (this is often referred to as "level repul-
sion"). The graph of P(s) and its comparison with Odlyzko’s computation for
zeros near the 10Zth are depicted in Figure 1.

For Diriehlet L-functions, the picture is similar, and Rumely [27] has carried
out analogous numerical experiments. Recently, Hejhal [6] has succeeded in
computing the three-level correlation function for zeros of (s), assuming RH
and in a restricted range, similar to the assumption and restriction used by
Montgomery.
The consecutive level spacing distribution is determined by the n-level correla-

tion functions for all n > 2 [28]. The main result of this paper is the computation
of the general n-level correlation function for the zeros of a primitive principal
L-function (also in a restricted range). We show that the answer is universal and
is precisely the one predicted by Dyson’s computations for the GUE model [3].
To define the n-level correlations, suppose that as above we have a set Bs of N
numbers y <...< ys. The n-level correlation function measures the correlation
between differences of n elements of Bs. That is, for a box Q = R"-, set

1
(1.2) R.(Br, Q) - # {jx,..., j. < N distinct: (, , ,_, ,) e Q}.

A technically more convenient way to measure this distribution is to use smooth
test functions f(x,..., x.) satisfying the following.

CONDITIOY TF 1. f(xl, x.) is symmetric.

CONDITION TF 2. f(x + t(1,..., 1)) f(x) for R.

CONDITION TF 3. f(x) 0 rapidly as Ix[ in the hyperplane x O.
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FIGURE 1.
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normalized spacing

Nearest neighbor spacings of zeros of if(s)

Probability density of the normalized spacings di,. Solid lines: GUE prediction. Scatterplot:
empirical data based on 78,893,234 zeros near zero number 10. Reprinted from Odlyzko
[21].

The n-level correlation sum Rn(BN, f) is defined by

(1.3)
n

f(S).R(Bs, f) s=s.,
Here f(S)= f(al, an) if S {al, an}. Since f is symmetric, this is well
defined. Condition TF 2 asserts that f is a function of the successive differences so
that we recover what (1.2) seeks to measure. Condition TF 2, together with the
localization TF 3, means that we can think of Rn(BN, f) as counting clusters of
size n in BN. It turns out that knowing the asymptotic behaviour of Rn(BN, f) as
N --. o is equivalent to knowing that of the smoothed correlations
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for a sufficiently rich family of localized cutoff functions h (e.g., of rapid decrease).
Here L m log T, and ’ means sum over distinct indices. Note that since h
localizes to be of order T, the normalization (L/2r0y is the same as .
As mentioned above, Dyson [3] determined the limiting n-level correlation

density W(xl, x,) for the GUE model. He showed it is given by

(1.5) W(xl, xn) det(K(x- x)), K(x)
sin

W(x) is a density (though not a probability density) satisfying 0 < W(x) < 1 with
W(x) 0 if and only if x =x for some i j, and W(x)= 1 if and only if
x x Z and x - x for all # j.

Before stating our results, we need a technical hypothesis concerning the coeffi-
cients of L(s, ). For Re(s) large, write

L’ oo A(n)a,(n)
(1.6) -(s, n) n,

where A(n) log p if n pe is a prime power, and is zero otherwise. The hypo-
thesis asserts that for any k > 2,

(1.7)
la,(pk) log pl 2

pk < "
This is a very mild hypothesis. Firstly, the general "Ramanujan conjectures" for
cusp forms on GL, asserts that la,(pk)l < m, which yields (1.7) with a lot to spare.
Secondly, we show in Section 2 that (1.7) is valid for m < 3.

Returning to the n-level correlations, we note that if h and f are defined for
complex argument and are localized, then the sums (1.4) make sense even if we
do not assume RH, and we still refer to these as the n-level correlations. As
explained above, RH and the GUE model (if it applies) can be used to predict
their asymptotic behaviour as T . Our first result proves that this prediction
is correct at least for a restricted class of f’s.
THEOREM 1.1. Let be a cuspidal automorphic representation of GLm/Q. As-

sume m < 3 or the hypothesis (1.7). Let f satisfy TF 1, 2, 3 and in addition assume
that () is supported in I1 < 2/m. Let c(I) and h(r) -o g(u)e’ru du (so
that h and f are entire). Then as T

gn(T, f, h) T log T h(r) dr f(x)W(x)6 .x + ""+ xn dx dx

where 6(x) is the Dirac mass at zero.
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If we assume RH for L(s, r), we can relax the smoothness condition on h and
in fact choose it to be the characteristic function of an interval. In this way
we can prove that the n-level correlations of the zeros are GUE at least for
f’s with restricted Fourier transforms. Precisely, we deduce the following from
Theorem 1.1.

THEOREM 1.2. With the assumptions of Theorem 1.1 and also RH for L(s, ),

f(x) W(x)6 (xl + + xn)t dxl""

as N-o .
Remark 1. The restriction I1 < 2/m is a natural one when m 1, since in

this case it is exactly the region in which the asymptotic behaviour of R(BN, f)
is dominated by the contributions from all the multidiagonals (see Section 3).
Beyond this region, a saturation takes effect and the diagonals no longer domi-
nate. For ((s), this region is also distinguished by being the range in which the
pole at s 1 contributes only terms of lower order to R(BN, f). In the case
of ((s) and n 2, Theorem 1.2 coincides with the result of Montgomery [20].
For m > 1, the restriction j’__l I1 < 2/m is no longer natural in the sense
that we expect the diagonals to continue being the dominant terms as long
as j’--x I1 < 2. The difference and heuristic reasoning leading to this is given
at the end of Section 3. In all cases we conjecture the complete universality of
the n-level correlations--that is to say that Theorems 1.1 and 1.2 hold without
any restrictions on the support of 3 It would be very interesting to check
numerically the level spacing distribution for the various types of primitive
L-functions of degree m 2 (e.g., of CM type, general type, holomorphic, and
nonholomorphic).

Remark 2. The condition that L(s, r) be primitive (i.e., coming from a cuspidal
n over Q) is crucial. Firstly, if, for example, we look at L(s) ((s)2, then dearly
the distribution of the zeros of L(s) will be GUE with multiplicity two. However,
also in the case L(s) L(s, rl)L(s, r2), with rr rr2 (e.g., the Dedekind zeta func-
tion of a quadratic extension of Q), the distribution will not be GUE. The reason
is that one can by these methods easily see that the zeros of distinct primitive
L-functions are uncorrelated--so to speak are unaware of each others’ existence.
As a consequence, the zeros of L(s) will not exhibit the "level repulsion" charac-
teristic of the GUE distribution. Indeed, the natural conjecture here is that the
zeros of L(s)= L(s, r)L(s, rr2) will follow the distribution of the superposition
of two GUEs [18]. This clarifies the role played by the primitive L-functions in
understanding the distribution of zeros of the general L-function.

Remark 3. The universality (in rr) of the distribution of zeros of L(s, r) is
somewhat surprising, the reason being that the distribution of the coefficients
a(p) in (1.6), as p runs over primes, is not universal. For example, for degree-two
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primitive L-functions, there are two conjectured possible limiting distributions for
the a,(p)’s: Sato-Tate or uniform distribution (with a Dirac mass term) [30]. As
the degree increases, the number of possible limit distributions increases rapidly.
However, it is a consequence of the theory of the Rankin-Selberg L-functions
(developed by Jacquet, Piatetski-Shapiro, and Shalika !8] for m > 3) that all these
limiting distributions have the same second moment (at least under hypothesis
(1.7)). It is the universality of the second moment that is eventually responsible for
the universality in Theorems 1.1 and 1.2. For the case of pair correlation (n 2),
this is reasonably evident; for n > 2 it was (at least for us) unexpected, and it has
its roots in a key feature of "diagonal pairings" that emerges as the main term in
the asymptotics of Rn(T, f, h) (see Section 3).

To end the introduction, we outline our proof of Theorems 1.1 and 1.2. As in
[20] (and indeed in all work on zeros of L-functions), we use some version of
Riemann’s "explicit formula" relating sums over zeros to sums over primes. One
technical novelty lies in our means of using the explicit formula, which results
in an integrated and smoothed version in Theorem 1.1. This allows us to avoid
appealing to RH and also considerably facilitates the computation of the n-level
correlation functions. Theorem 1.2 is easily recovered from the smooth version.
The advantage is that the multidimensional sums over primes that arise can be
analyzed by rather "soft" means (e.g., no large sieve inequalities are needed).
What emerges as the main term are contributions from diagonal pairs. The com-
binatorics relating this to what is predicted by GUE, viz. the determinant (1.5),
are nontrivial; after all, at some point we have to see this determinant emerge
from the theory of primes. The marriage comes from the pairing structure men-
tioned earlier (which in turn stems from unique factorization) and the cycle struc-
ture of the determinant (1.5)uthis being encoded in the identity of Theorem 4.1
and Proposition 4.3. This combinatorial analysis is described in Section 4. A
crucial ingredient is the combinatorial method of Spitzer [34-1. In Section 2 we
collect various facts about principal L-functions, local factors, and Rankin-Selberg
L-functions, as well as Ramanujan-type bounds that will be needed. The use of
the explicit formula to convert the problem to sums over primes is carried out in
Section 3. The appendix contains the calculations of the Rankin-Selberg local
factors at the ramified places.

2. Background on L-functions

2.1. Principal L-functions. This section is devoted to reviewing some more or
less standard facts about automorphic L-functions on GLm. Our emphasis, in
places, will be on the higher-rank theory (m > 3), the results for Dirichlet L-
functions being well known and the case m 2 being by now also classical. For
definitions and proofs of various statements below, see Jacquet’s article [7]. We
have also included an appendix in which proofs are given of some facts that we
could not find either explicitly stated or proved in the literature.

Let r (R), rq, be an irreducible cuspidal automorphic representation of GL,/Q.
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For normalization purposes, we assume that r is unitary, by which we mean that
the central character o), of r is unitary. To n, one associates an Euler product
L(s, ) I-IpL(s, ) given by a product of local factors. Outside of a finite set of
primes S,, n, is unramified and we can associate to n, a semisimple conjugacy
class {A,(p)} e GL,(C). Such a conjugacy class is parametrized by its eigenvalues
,(j, p), j 1, m. The local factors L(s, ) for the unramified primes are
given by

(2.1) L(s, r,) det(I p-SA(p))-* I-I (1 (j, p)p-s)-*.
j=l

At the ramified finite primes, the local factors are best described by the Langlands
parameters of rp (see the appendix). They are of the form L(s, )= P(p-)-,
where P(x) is a polynomial of degree at most m, and P,(0)= 1. We will find it
convenient in this case, too, to write the local factors in the form (2.1), with the
convention that we now allow some of the e’s to be zero.
The local constituents np of a cuspidal n as above are generic [23], [33]. Using

local methods, Jacquet and Shalika I10] show that a generic n, satisfies

(2.2) [(j, p)[ < pl/2.

The general "Ramanujan conjectures" for cuspidal automorphic n on GL, assert
that for p unramified, [(j, p)[-- 1. This is known for certain r (e.g., on GL2
corresponding to holomorphic forms, due to Deligne) but certainly not in general.
We will derive a slightly sharper estimate than (2.2) for all p < . In the appen-
dix it is shown by a well-known global argument that for any p <

(2.3) I(J, P)I < P(1/2)-1/(’+1).

There is also an archimedean local factor L(s, noo). Again, it is best described in
terms of the Langlands parameters of n (see the appendix). For now it suffices to
note that L(s, zoo)can be written as a product qt’ m Gamma factors:

(2.4) L(s, 1-I r,(s +
=I

where Fl(S)= z-sl2F(s/2) and {/(j)} is a set of m numbers associated to
They satisfy the analogue of (2.2),

1
(2.5) Re(/,(j)) > -.
We refer to the appendix for a discussion of (2.5) and of the analogue of (2.3).

2.2. The functional equation. With all the local factors defined, we can turn to
the functional equation. Firstly, from (2.2) it is clear that

(2.6) L(s, ) I-I L(s, )
p<oo
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converges absolutely, at least for Re s > 3/2. Set

(2.7) (s, n) L(s, noo)L(s, z).

Associated to n is its contragredient , which is itself an irreducible cuspidal
automorphic representation. For any p < oo, ff is equivalent to the complex
conjugate [4], and hence

(2.8)
{%(j, p)} {a,,(k, p)}

{re(J)}

The basic analytic result, proven by Godement-Jacquet [5], [7] is ,that (s, n)
extends to an entire function (except in the case of (s), which has a simple pole at
s 1). Moreover, (s, r) is bounded in vertical strips and satisfies a functional
equation

(2.9)
O(s, r) e(s, r0tI)(1 s, )

e(s, re)= .c(rc)Q

where Q, > 0 is the conductor of r. It is a positive integer with prime factors in S,
[9], and v(r0 C*. We note that Q Q, and (n)v() Q,.
The zeros of tI)(s, r) will be denoted by p, and by definition are the "nontrivial"

zeros of L(s, r). The nontrivial zeros of L(s, ) are related to those of L(s, rO via
s 1 s. The analogue of the Riemann hypothesis for L(s, n) is that Re(p,)
1/2. Inasmuch as (s, z0 is of order one and the real parts of the zeros are con-
strained to lie in a strip, it follows that the counting function

(2.10) N(T) := # {p.: IIm P.I < T}

satisfies N(T) O(T +9 for all e > 0. A standard winding number argument [2]
shows that the Gamma factors in L(s, roo) control the number of zeros; in fact,

(2.11) N,(T)
m
T log T.

2.3. An explicit formula.
tive of (2.6). This yields

For Re s > 3/2, we may take the logarithmic deriva-

L’ A(n)a.(n)
(2.12) z(s, ) n

where A(n) log p if n pk and zero otherwise, while

(2.13) a(P) E a(p, j)*.
j--I
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Note that

(2.14) a(n) a,(n).

It will be convenient to set

(2.15) %(n) A(n)a,(n).

We recast the information in the Euler product and functional equation in
terms of an explicit relation between the zeros p and the a,(p’). Such relations
go by the name of "explicit formulae"; the one we use is a smooth version of
Riemann’s original formula [25].

PROPOSITION 2.1 (The explicit formula). Let g e C(R) be a smooth compactly
supported function, and let h(r) -oo g(u)eiru du. Write p 1/2 + iy. Then

(2.16)

+ h(r) logQ,+ Z F

))+ + N(j)- ir dr

where () 1 ff g corresponds to ((s), and is zero otherwise.

Proof. Set H(s) := h((s 1/2)/i), and consider the integral

1 fRY ds.

Now H(s) is rapidly decreasing in Im s and is entire, so that the integral con-
verges absolutely, and all contour shifts below are legitimate. ’/ has simple
poles at the zeros of (s, zr) with residues the multiplicity of the zero (and in the
case of ((s) a simple pole with residue -1 at the poles s 0, 1). Shifting the
contour in (2.17) to Re s 1, we have

--(s, rOH(s) as

where the sum is over the zeros, each counted with its multiplicity. The functional



278 RUDNICK AND SARNAK

equation (2.9) gives

(I) (I
(s, n) log Q, (1 s, ).

Using this and changing variables gives

1= -cS(r){h(-)+h()}+ h(,,,)---i fs=21ogQ,,H(s)ds
2il fr.es=2 q’(I)’--(s, r)H(1 s) as

O1"

2 h(,,) di(r) h + h
s=2

log Q,,H(s) ds

+ - es--2
-(s, rOH(s) ds

Using I)(s, n) L(s, noo)L(s, n), we get

-(s, )H(1 s) ds.

1
(s + #(j)) + (s, r) n(s) ds

2rci e=z-(s’n)H(s)ds= =2 =
Now, shifting the contour of integration to Re s 1/2,

1 r (s + + ir + .(j) h(r)dr.
2hi ,=2 "= j=l

That no poles are picked up on shifting the contour from Re s 2 to Re s 1/2
is equivalent to the inequality (2.5).

Thirdly, using (2.12) we have

2ni =2
(s, n)H(s) ds

2

c (n)

We do the same for the integral involving ’/(s, ), and use (2.14) and (2.8).
Collecting the terms gives the explicit formula of the proposition.

2.4. Rankin-Selber convolutions. A crucial ingredient in Section 3 is the
asymptotic behaviour of the mean square of %(n)= A(n)a(n). To determine the
asymptotics, we will need the Rankin-Selberg L-function. Its general theory has
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been developed by Jacquet, Piatetski-Shapiro, and Shalika [8], and more recently
by Shahidi [32] and Meglin-Waldspurger [19]. For cuspidal automorphic repre-
sentations n on GLm, ’ on GLm, the Rankin-Selberg L-function L(s, 7r x ’) is
defined as a product of local factors L(s, 7r x 7r’) I-L,L(s, 7rp x 7). Initially, it is
seen to be absolutely convergent for Re s >> 1, but in the end one finds this to be
so in Re s > 1. For primes p where both rp and 7r, are unramified, the local factor
is given in terms of the corresponding semisimple conjugacy classes A,(p), A’,,(p)
(2.1) by

L(s, t, x 7t) det(I p-A.(p) (R) A..(p))- 1-[ (1 .(p, j).,(p, k)p-)-t
j,k

The local factors for ramified primes will be described in the appendix. They are
of the form p(p-)-x, where P(x) is a polynomial of degree at most ram’ with
P(0) 1. At infinity the local factor is of the form l-I.k Fa(s + #,,,(j, k)). If 7too
and noo are unramified, then

{ #,, ,,,(j, k) } { #,,(j) + #,,(k)}.

See the appendix for a description of the general ease.
For us, the ease of most interest is 7r’ z. In this ease we see from (2.8) and

(2.18) that for 7r unramified,

(2.19) log L(s, r, x ,) y’. ’. (a,,(p, j)a,,(p, k))
j,k ’=1 vP

o la.(p)12
vps

With the local factors, one can define the completed Rankin-Selberg L-function

(2.20) I)(s, r if)= L(s, r% oo)L(s, 7r ).

Some of the basic analytic properties of L(s, 7r ) which we will use are as
follows.

PROPERY RS 1 [10]. The Euler product for L(s, 7r ) converoes absolutely
for Re s > 1, and L(s, 7r ) has a simple pole at s 1.

PROPERTY RS 2. I)(s, 7t x ) has a meromorphic continuation to the entire com-
plex plane and satisfies a functional equation

O(s, x )= e(s, x )0(1- s, n x )

e(s, x )= ( x )@

where Q. > 0 and z(: x ) +01/2
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PROPERTY RS 3. O(s, x ) is bounded in vertical strips, and is holomorphic
except for simple poles at s O, 1.

There are two approaches to proving analytic properties of (I)(s, r x ). The
first is via Rankin-Selberg integrals as developed by Jaequet, Piatetski-Shapiro,
and Shalika, and the second uses the constant term of general Eisenstein series, as
is done by Shahidi and by Mceglin and Waldspurger. The first approach yields
RS 1 and RS 2, but the complicated nature of the arehimedean integrals [11]
makes RS 3 much more elusive by this method. On the other hand, the second
method (which avoids such integrals) yields [19] that (I)(s, rr x ) is entire except
for simple poles at s 0, 1. To see that s(1 -s)(I)(s, rr x ) is of order one and
bounded in vertical strips, we can proceed as follows: As in the first part of
[11] choose Whittaker functions W and Wo for roo and oo, and # e 2f(R"). The
arehimedean integrals q(s, Woo, Wo, #)

g(s, Woo, W, () :=
L(s, roo, x oo)

are entire and satisfy a functional equation

g(1- s, oo, l, q)- (s)g(s, Woo, W, )

with e(s) of the form ab. Moreover, note that q(s, Woo, W, I) is bounded in
vertical strips (except for a finite number of poles in the strip in question) and is
uniformly bounded for Re s >> 0. It follows that g(s, Woo, W, q) is of order one.
Now, using the global Rankin-Selberg integral, one checks that

s(1- s)O(s, r x )-
B(s, W, W;, 0
o(s, woo,

where B(s) is entire of order one (it comes from an integral against a standard
Eisenstein series). On the other hand, by [19] we know that s(1 s)O(s, r x ) is
entire, and so it must be of order one. Moreover, (I)(s, r x ) is bounded for
Re s >> 1, and hence by the functional equation RS 2 this is also so for Re s << 0.
By an application of the Phragmen-Lindel6f principle, the claim follows.
As an application of RS 1, we obtain the asymptotics of

(2.21) a(x) "= E
logn<x

Ic(n)l

We note that the bound (2.3) ensures that the contribution to a(x) of n pe
for ramified primes p S is bounded independently of x. As for the unramified
primes, set Ls(s, r x fr)= I-[vsL(s, % x v) (sometimes called the partial L-
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function). Differentiating (2.19), we see

(2.22)
L}

(s, 7 x 7)= ZLs
A(n)la,(n)l

n

Differentiating (2.22), we have

(2.23) G(s) := \ssJ (s + 1, n x )= Z
(n,Sn)=l

(log n)A(n)la,(n)l
ns+l

Since L(s, r x ) has a simple pole at s 1, it follows from (2.23) that

(log n)A(n)la,,(n)l2 n- 1

n=l n
as s x, 0 (s real).

Hence, by a standard Tauberian argument, we conclude that

(2.24) tr: (x).= ,, (log n)A(n)la,(n)l2n 1g22 x

To relate trl(x and tr(x), we need to make a technical hypothesis. (This is the
hypothesis (1.7).)

HYPOTHESIS H. For anyfixed k > 2,

I(log p)a(pk)l2

p pk

We will establish H in many cases below. Note that it is an immediate conse-
quence of the "Ramanujan conjectures" mentioned after (2.2). Indeed, these assert
that la,,(pk)l < rn, which implies H with lots to spare. In view of (2.3), we see that
if k > (rn2 + 1)/2, then

I(log P)a(pk)12pk
Hence, assuming H, we have

(2.25)
I(log p)a,(pk)l 2

k>2 p pk < o0,

so that

(2.26) a(x) a(x) + 0(1).
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PROPOSITION 2.2. Assuming H, we have tr(x) (log x)2/2.
That this asymptotic is independent of rr is at the root of the universality of

GUE. Using RS 3, we can sharpen Proposition 2.2 somewhat.

PROPOSITION 2.3. Assuming H, we have

[c(n)l 2 log2 x
,<x n

+ O(log x).

Proof. Since the ramified primes contribute only a bounded quantity, we need
only estimate the sum over (n, S) 1. The function G(s) in (2.23) is holomorphic
for Re s > 0, with Taylor expansion at s 0 of the form 1Is2 + holomorphic. G(s)
is meromorphic and has at most double poles in Re s < 0. A term-by-term inte-
gration yields the familiar identity

(2.27) .x 1
I(log n)A(n)a(n)l2 1

G(s) ds + O(1)
n o,-1 sts

(the O(1) term coming from the ramified primes and from (2.25)). Now RS 3
allows us to give standard bounds for G(s) in Re s < 0 and also to bound the
number of poles of G(s) in Isl < T by O(T +). In particular,
where the sum is over the zeros of L(s, zc x ). So shifting the contour in (2.27) to
the left of Re s 0 yields

(2.28) (1 )Ic’(n)}2- Res+G(s)xS 0 (vo lgx )n =o s(s + 1) Ipl(lpl + 1)

log2 x
+ O(log x).

If f(x) tr(log x), tr as in (2.21), then

and hence

(2.29) f(t) dt
x log2 x

2 + O(x log x).

Since f is increasing, we have for any h < x

1
f(t) dt < f(x) < - f(t) dt.

h -h

Applying (2.29) with h x/4 yields Proposition 2.3. El
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We turn to the "technical hypothesis" H. There is little doubt about its truth,
since as was pointed out it follows from very modest bounds towards the
"Ramanujan conjectures" (which are proven for some of the known n’s on GLm).
Even so, we have not been able to establish it in general.

PROPOSITION 2.4. Hypothesis H holds for 1 < m < 3.

Proof. For m 1 this is trivial. We give the proof for m 3. For m 2 it is
proven in the same way (or follows from known bounds in that case). Write
A(p) diag(, 2, a) so that a(pk) tr A(p)k. Assume that Ixl > 121 > Ial.
Since og(p) det A(p) has absolute value one and (} {a-1 } by (2.8), we must
have 121 1 and Ial 1/lxl. Therefore,

and

la(pk)l2 << 1 + la(p)l2k.

Together with la(p)l << pl/2-1/lo (see (2.3)), we get

I(log p)21a(pk)12 log2 p log2 pla(p)l2

Since k > 1 we can apply RS 1 (in particular, the convergence in Re s > 1) to
conclude that

I(log p)21a(pk)12
pk

<00. O

For the rest of the paper we will assume that either m < 3 or that Hypothesis
I-I is valid.

3. Sums over primes.
level correlation function

We wish to study the asymptotic behaviour of the n-

1
E* f(,,..., .)(3.1) R.(f, T)

i, in.<N

where N N(T) and * means we sum over distinct indices ij. Instead of looking
directly at Rn(f, T), we instead look at the sums

(3.2) C.(f, T)=
i in<N
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It is important to note that the sum in (3.2) is no longer over distinct ordered
zeros as in the definition of the n-level correlation function (3.1). We will recover
(3.1) from (3.2) by combinatorial sieving in Section 4. In order to determine the
asymptotics of C,(f, T), we look at smoothed sums

(3.3) C,(f, h, T):= E h ...h f y,...,-y,
)1,

where we have set

(3.4) L m log T

and hi(r) is a smooth "cutoff"--we take

(3.5) hj(r) I g(u)e iru du
.I-oo

with g C(R). Our main result in this section is Theorem 3.1, which gives the
asymptotics of Cn(f, h, T). We prove it for f satisfying TF 2, 3, though in the end
one is only interested in looking at symmetric f. Our reason for considering these
more general f’s is to carry out the induction in Section 4. In fact, it will be
convenient to work with the Fourier transform of f; thus for , a compactly
supported C function on Rn, we get an f satisfying TF 2 by setting

(3.6) f(x) ft, ()6( +...+ n)e(-x" ) d.

In the sequel, we set for h (hi, h,)

(3.7) x(h) ;-o hl(r)’" h(r) dr.

THEOREM 3.1. Let t e C(R") be supported in = I1 < 2/m, and let f(x)=
ln()6( +... / )e(-x" ) d. Then, for h as in (3.5), we have

(3.8) ht hn f fY, -Yn x(h)-- Co(v)(v) dv + O(T)

with

(3.9) ;ln (v)Co(v) dv

(o) + Ivxl... Iv, l(vxei(1),j(1) +"" + vre,),j,)) dvx’"dv
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where the sum is over all choices of r disjoint pairs of indices i(t) < j(t) in { 1,..., n}
and for < j we set

(3.10) ei’J
(0, 1, 0,...) the ith standard basis vector.

From Theorem 3.1, we will deduce the asymptotics of the unsmoothed sums
C,(f, T); for this we will assume the Riemann hypothesis for L(s, ).

TI-mOREM 3.2. Let P C2(Rn) be supported in ’,11 < 2/m, and f be oiven by
(3.6). Assume the Riemann hypothesis for L(s, ); then

Cn(f, T),.,, N(T) f,, P(u)Co__(u) du + O(T).

Proof of Theorem 3.1. To begin the proof, we rewrite the sum Cn(f, h, T)
using the Fourier transform as

(3.11)

We can convert (3.11) into a sum over primes by use of the explicit formula (2.16),
with the test functions

(3.12) Hr(r) hj() e-irz, GT(U Tj(T(L + u))

where O(u), h(r) are as in (3.5), and e R.
The explicit formula (2.16) with this choice reads

+ h - Tm/2 + log Q," Tg(TL)

+ f j=t \Fit
+ #’(J) + ir

+ + #,,(j)- ir h dr

T A(n)
n= -- {a(n)o(T(L + log n)) + a(n)o(T(L log n))}

polar + Tor(TL) + TS+() + TS-()
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where

(3.14) polar 60r) h

(3.15)
1 LaT(X)-- h(r),,(rT)e-irx dr

(3.16)
J=

+ g(j) + ir + + ,(j)- ir

(3.17)

S+( A(n)a(n)

S-()
A(n)a(n)

a(T(L + log n))

g(T(L log n)).

(The term polar occurs only in the case of (s); in the sequel we omit it.)
Inserting (3.13) into (3.11) with the different hi, we find that we have expressed

Cn(f, h, T) as a sum over primes as desired:

(3.18)

Cn(f, h, T)= fa J--I {Tgj, r(TLj)+ TS(j)+ TSj-(j)}dP()6( + ""+ n)d.

Expanding the product in (3.18), we find that C,(f, h, T) is an alternating sum of
terms of the form

(3.19) C,,s(T
c(nl)"" c(nr)c(n,+)...c(n,+s)

A,.(n, T)
/rt fir+

where we have set

(3.20) c(n) A(n)a(n)

and

(3.21) A,,,(n, T) Tn -I lj(T(Lj + log nj)) H gj(T(Lj log nj))
j=l j=r+l

I-I gj, T(TLj)’()6( + ""+ n)d.
j>r+s
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In expressing C.(f, h, T) as a sum of various Cr,s(T), we get terms from all possi-
ble choices of r of the factors tobe S+(j), s of the factors to be Sf(j), and the
remaining k n r s of the factors to be Oj, r(TLj).
LEMMA 3.1. (1) We have

log T,

0r(x) << 1

]xl << log log T

]xl >> log log T.

(2) We have 10r(x)l dx << log T.

Proof. Recall that by (3.16),

1 h()co(Ts)e_dso (x)
o =o

with

(3.22) co,,(s) log Q,, + J= \Fn
+ #,,(j) + s + + #,,(j)- s

Assuming that x > 0, we shift the contour of integration to the right to
s a + Jr, with a > 0; this we can do since, by Stirling’s formula, f(r) << log(r)
and h(r) is rapidly decreasing as IRe(r)[ o. Since Re(l/2 + #(j)) > 0 (2.5), the
first F-factor is holomorphic in Re s > 0. The second factors contribute simple
poles at

1/2 + fi’(J)T + 2k
0 < k < T.

Thus

The double sum is majorized by

where a mini <j<m {1/2 + Re #,(j)} > 0.
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As for the integral, by Stirling’s formula,

Ft( +,,(j)+Fl sT)<< log((1 + [sl)T),

and since h(s/i) is rapidly decreasing in vertical strips, we can bound the integral
by

2rci es=,

Thus we see that

giving part (1). Part (2) follows from integrating this. 121

From Lemma 3.1 we see that the integrals defining Ar,s(n, T) are rapidly
convergent.

LEMMA 3.2. Let as in (3.6) be supported in Ixl 4-’"/ I1 < (2- 6)/m.
Then Ar,s(n, T) 0 unless Inl << T and nl n2 n,+s << T2-.

Proof. The integrand in (3.21) is zero unless there is an r/ Supp (I) (so
rb 0) such that

T(qL + log n)l << 1, j 1,..., r
(3.23)

T(qL log n)[ << 1, j r + 1,..., r + s.

Hence

so that n << TmlJ << T1-/2 and nl n2 n+ << Trn’lgJ << T2-’. I"1

What follows is a series of reductions which show that the main term in Cr,(T)
comes from the "diagonal sums."

LEMMA 3.3. Let A,(n, T) be as in (3.21) with the re#ion of inteTration in the
variables j, j > r + s, restricted to TLj[ << T/a. Then, for T sufficiently larte,
A,,(n, T) 0 unless n (nl, n,+s) satisfies the conclusion of Lemma 3.2 and, in
addition,

(3.25) n n, n,+ n,+.
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Proof. Since # has compact support, in order that the integrand not vanish
we need some r/ Supp I), that is,

T(ljL + log nj)l << 1,

(3.26) T(rbL log n)l << 1, j r + 1,..., r + s

TLbl << T/3, j>r+s.

Furthermore, 7=1 b 0, and hence

(3.27) log
/’/1

nr+ nr+ (Lr/ + log nj) + (Lr/ log n;) + Lrb
j=l j=r+l j>r+s

1
<<- + T’/3-1
T

Thus

(3.28) log
n

nr+ F/r+
<< T-x +/3

Setting M nl""nr, N nr+l""n,+s, we know that MN << T2-/ and that
]log MINI << T-+/3. Assume that M 4 N, say M N + u, u > 1. Then

(3.29) T-X +/3 >>
M

log-- log 1 + > > x/-M
>> T-x +,/2.

Since 6 > 0, this gives a contradiction for T large. Thus M N, establishing the
lemma.

Recall the sum C,,s(T) given in (3.19), and denote by C,,s(T) the corresponding
sum with A,,(n, T) replaced by Ar,s(n, T).

PROPOSITION 3.1. C,,(T) ,,(T) + O(Tl-O/3).
We begin by estimating the difference between A,,(n, T) and A,,(n, T). As in

the proof of Lemma 3.3, we set M nl...nr, N n,+...n,+.

LEMMA 3.4. If NM << T2-, then

T -,13L-r-s,

A,(., T)- A,(n, T)<<

Ilog MINI << T/3-

Ilog M/N[ >> T’/3-1



290 RUDNICK AND SARNAK

Proof. The region of integration for the difference Ar,(n, T) A,,(n, T) is a
union U of the sets k {: ITLkl >> TX3}, k > r + s. Without loss of generality,
we estimate this integral over the region .. For this purpose, set

T(Ls + log ns),

xs T(Ls log ns),

l<j<r

r + l < j < r + s

j>rWs.

We have, on changing variables,

fU r+s

A,,s(n, T)- A,,s(n, T): Z fi gj(r(gj -t- log nj)) H gj(r(gj log nj))
j=l j=r+l

I-[ #,r(TL).O()6( + ...+ .)d
j>r+s

T f{ g (x )l I-I Ig , T(X )I<<
Ln-1 Ixjl<<TL, Ixnl>> T5/3} jF+s r+s<j<n-1

dx "dxn-

We claim that

(3.30)

H gj, T(Xj)gn, T T log M/N , x:i
r+s<j<n-1 j=l

dx dxn-1

Ln-l-r-s
Tx, Ilog M/NI << T’V3-1

<<
Ln-1

Tllog M/NI’
Ilog M/N] >> T’/3-1.

To see this, first assume that Ilog M log NI << Ta/3-1. As in the proof of Lemma
3.3, since MN << T2-, this implies that M N, and so in this case, on using
Lemma 3.1, the integral in (3.30) is bounded by

ri es(xs) I-I as, (xs)
j<r+s r+s <j< n--1

T-a/3 dxl""dx.-1 <<
Ln-1 -r-s

T/3
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If Ilog M- log NI >> T’/3-1, then we write,he integral as a sum 11 + 12 of inte-
grals over regions 127zI xl < (1/2)Tllog M/NI and IE7I xl > (1/2)Tllog M/NI.
In the first case, we have Ixl IT log M/N ’j2t xjl >> Tllog MINI, and then

I <<
1 ;,Tlog M T log NI ETzt xjl<(1/2)rllogM/NI

1-I (x) 1-I ,(x)
j<r+s r+s<j<n-1

dx

Ln-l-r-s
IT log M T log NI

For the integral 12 over the region where I xl >> Tllog M/NI, we write the re-
gion as a union of domains where for some j > r + s we have Ixl >> Tllog MINI
(this is possible since Ixl << 1 if j < r + s). On such a domain, we use

1 1
Tllog

(Lemma 3.1) to see that the integral 12 over, say, Ix.-x >> Tllog M/NI, is bounded
by

Tllog M/NI x rn: IXn_ll>>rllogM/N[}

r+s n-2

E J(,,) I-I j,(j)
j=l j>r+s

gn, T T log M/N xg
j=l

dx "dxn-1

Now set y T log M/N ’j2_ xg and change variables in the integral over
in the region of integration, it is bounded by

dy

/3<<y<< TL Y
<< L.

We find that

Tllog MINI "-n: [Xn-ll>>TllgM/NI}

Ln-1
IT log M- Tlog NI

This proves our claim (3.30) and so Lemma 3.4. 121

To prove Proposition 3.1, we divide the difference C,,s(T)- C,.,s(T) into two
sums Ea., + Eofr, the first sum Ed,, over n such that IlogM/NI << T’/3-1,
which implies as before that M N, and the second sum Eof over n for which
Tllog MINI >> T’V3.
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For the diagonal sum Edia,, we need to note that

M=N
n "..nr+s<<T2- " Ic(na)l << (log T)r+s.

j=l NJ
We defer the proof to Lemma 3.9 where we will see a more precise result. Com-
bining this with Lemma 3.4, we see that

(3.31) Ediag << T-6/3

Next we handle the off-diagonal sum Eoft. We have

off <<
1 1 - Ic(n)l

L"+ MN<T2- Ilog MINI j=l x//
MN

Setting

k

a(M):- H Ic(n)l,
n ...nk=M j=l

we have

(3.32) Eof <<
1 a(M)a(N)

L’+S mv<<r-a x//MNIlog MINI
MN

LEMMA 3.5. For k > 1 fixed, and any e > 0,

ak(m)2 <<X1+.
m<X

Proof. We begin by noting that, on using Cauchy-Schwartz and the fact that
the number of ways of writing rn m mk is O(m) for any e > 0, we have

ak(m)2 << m Ic(m)l2"’" Ic(mk)l2,
ml mk=m

and so

(3.33) ak(m)2 << X Ic(m)l2... IC(mk)l 2.
m<X mx mk<X

To estimate the above sum, we first note that

(3.34) Ic(n)l 2 << X +

n<X
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for all e > 0, which follows immediately from the absolute convergence of (2.22)
in Re(s)> 1 together with that series having nonnegative coefficients. Next, we
make a dyadic decomposition of the sum (3.33) into O((log X)k) terms of the form

Ic(m)l’’" Ic(m,)l.
Ml <ml <2M1 Mk<mk<2Mk

If Ml"’Mk << X, then on using (3.34) we find

Ic(m)l2... IC(mk)l 2 << M+""M+ << X+,
Mi <m <2M Mk<mk<2Mk

which gives the desired estimate. F1

Returning to (3.32), we may without loss of generality assume that N < M,
which implies that N << Ti-6/z. We consider two ranges in (3.32): the sum dx with
N < M < 2N and the sum d2 with N < M/2. For the first case,

a,.(N)as(M)

_
2 x//NM log M/NN< 6/2 N <M < 2N

x a,(N)as(N + k)
r / x//N(N + k)log(1 + k/N)

ar(N)a(N + k)
<< - kN< 6/2 k=l

1

k < 6/2 k N < -6/2
(at(N)2 + a(N)2)

<< (Tl-t/2)l+r log T,

so that for all e > 0

(3.35) x << T -6/2 +e.

For the sum d2, when 2N < M, then log M/N > log 2, so that

a,.(N)a(M)
"2

_
Z x//MN log MIN TN 6/2 2 < .M

MN< T2-

ar(N)a(M)
w/MN

Again by use of a dyadic decomposition, we will know

(3.36)
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once we can.show that for AB < T2-’

(3.37)
ar(N)a,(M)

<< (AB)/2+e.
A<N<2A x//MN
B<M< 2B

Now the left-hand side in (3.37) is

E
B<M< 2B as(M)2)1/2

<< A1/2+iB1/2+ei,

by Lemma 3.5.
Combining the estimates (3.35) and (3.36), we conclude that

(3.38) Xofr << Tl-/2+e

for any e > 0. From (3.31) and (3.38), we get Proposition 3.1.

We have seen that for T >> 1,

(3.39) C,s(T) E
nl nr=nr+ nr+s
n nr+s<< T

c(n) +1-I c-)X s(n, T)+ O(T-O/s).
j=l nj j=r+l

Now change variables in the integral (3.21) for Ar,,(n, T) (when nl""n, n,.+.
n+) by setting

(3.40)

T(L)+logn), 1 <j<r

y T(L log n), r+l<j<r+s

TLj, j > r + s.

Note that we still have jyj 0, and the region of integration is

j yj 0

(3.41) V- lyl << 1, j < r + s

lyl << T’v3, j > r + s.
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We then get

(3.42) A,,s(n, T)
v

]-I O(Yj)I-[ 9,(Y)
j=l j>r+s

log nr+ Yn )Yl log n Yr+" -L L TL L -L dy.

Expanding in a Taylor series about the point (-(log nl)/L, (log nr+)/L,
0) (recall that is C1) and using the constraints (3.41), we see that

(3.43) A,,s(n, T) Jv H 9j(yj) 1-[ 9j, T(Yj) dy
j--i j>r+s

with the error term uniform in n subject to n3 << T.

LEMMA 3.6. Setting k n- r- s, we have

fV(3.44) H Oj(Yj) H
j=l j>r+s

1, T(Y) dy nn x(h)Lk + O(Lk-1 )"

Proof. First we claim that

(3.45)

;vr+S ;,r+s (Zn-l-r-s)H aj(Yj)H aj, T(Yj) dY H aj(Yj)H aJ, T(Yj) dy q- 0
j=l j>r+s yj=O j=l j>r+s

Indeed, the difference between the two integrals in (3.45) is an integral over the
union k>,/ Vk, where

Vk { j=l Y O" IYkI >> T/3}
It suffices to estimate the integral in (3.45) over such Vk, say k n"

r+s

H Oj(Yj)H Oj, T(Yj)
j=l j>r+s

dy

r+s

j=l

n-1

H
j=r+s+l

dyl dy.-1.
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By Lemma 3.1, part (1), on V,,

g,,,r --Yj
j=l

1
To

so that

r+s n-1

1-I 1-I
j=l j=r+s+l

Applying Parseval’s equality to (3.45) gives

(3.46) rj=o91(yx)...9.(y.)dy hx(r)...h.(r)dr -- x(h),

from which it follows that

(3.47)
yj=o J= j>r+s - hl (r).." h.(r)f,(Tr)k dr.

On using Stirling’s approximation, we get for Irl 1 that f,(Tr) m log(Tr) +
O(1), so that

1
(3.48) f -oo 1

(Lk_h (r)’" h,(r),(Tr)k dr x(h)Lk + 0 ),

and the lemma follows. 121

We can conclude the next lemma from the above.

LEMMA 3.7. For r + s > O,

1 T
(3.49) C,,,(T) x(h) Lr+_ fi

nl nr=nr+ nr+
nt ""nr+s<<T2

.( log n log nr+s O)+O(T).L L

Proof. From (3.43) and (3.44), we see that for n in the range of summation,

T 1 x(h)tI)( log nx log nr+(3.50) A,,(n, T)= L,+,_ 2r L L



ZEROS OF PRINCIPAL L-FUNCTIONS 297

and so

(3.51)

C,,s(T) --x(h) L,+S_ 1+O

(-I c(nj)’+s1-I c(nj).O( lognl lognr+ )0.j<<T j=l n i=,.+i L L
nr=nr+ nr+

ttr + T2

We will see below (Lemma 3.9) that the sum is O(U+s), and so once that is
established Lemma 3.7 will follow. E!

LEMMA 3.8. Assume r + s > 3. Then

(3.52)
P ll + +ls=ki + +k

c(pk c(pkr)c(p’ c(ps)
pkl +’" +k

(the sums with ki, l > 1).

Proof. We first omit the restriction ki l, set t- r + s > 3, and write
k,+ l,..., kt l. The sum (3.52) is bounded by the sum

(3.53) ’, Ic(p)"" c(pk’)I
p k kt>l P(kl+’’’+kt)/2

Recall (2.3), which asserts that a(pk) << pkti/2-#) for fl 1/(m2 A- 1)> 0. We use
this to bound the sum (3.53) when we restrict the exponents to k +...+ k >/
K> lift"

(3.54)
Ic(p)"" c(P’)l

p ki+’"+kt>K p(k+’"+kt)/2
pk(1/2-#) 1ogt p

k<<
pk/2p k>K

To deal with the sum , ki < K, we need to use the Rankin-Selberg L-function.
It suffices to show that for s fixed, s < K, the sum

(3.55)
Ic(pk’)"" c(pk*)I

P kl+"" +kt=s pS/2

is bounded.
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Recall that > 3, and so we may replace all but two of the coefficients c(pk)
by pk(1/2-#)log p. Doing this, we find that for fixed p, the summand in (3.55) is
bounded by

Ic(pk)c(pk)I X 1og’-2p
(3.56) +k)/2

kt ptk+ +k)#
k+kE<S-(t-2) p(k ka+’"+ k-k2

<<s
Ic(pkl)c(pk2)I 1og’-2P

k +k2 <s-(t-2) p(k +k2)/2 p(t-2)#

<<
Ic(pk’)I Ic(P)I

<kl,k2 <s p(k +,’)/2 p(k2+,’)/2

for some 6’ > 0. Now fix k, k2 < S as we may, sum over p, and use Cauchy-
Schwarz:

Ic(pU’)l Ic(p)l Ic(p’)l2
(3.57) p(k,+,’)/2 p(k2+,’)/ << pk+O’P

Each of the sums is now seen to converge by applying RS 1.

We use Lemma 3.8 to deal with sums over several prime factors.

LEMMA 3.9. If 1 < r < s, then

(3.58)

O((log x)2r-2), /" < S.pkl... Prr:ql. Is p1. pr

Proof. We divide the sum (3.58) into subsums according to the number of
distinct prime factors appearing, and we collect together factors corresponding to
the same prime. The sum (3.58) then becomes a sum of products of the form

(3.59)
PiPj p;1....... <x Z + +k

where the product is taken over distinct primes. There are at most r factors,
and by Lemma 3.8, each factor in (3.59) contributes a bounded quantity unless
a b 1, in which case it is bounded by O(log2 x). Thus the product (3.59) is
O(log2r-2 x) unless r s and a b 1 in each factor of (3.59). Thus, if r < s, then
(3.58) is O(log2r-2 x), while for r s we can relax the condition that the product
in (3.59) is over distinct primes at the cost of introducing a bounded error in each
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factor, which after multiplying will introduce an error of O(1og2r-2 X). Therefore,
we find on using Proposition 2.3 that for r s, (3.58) equals

s=* v.-x Ps + O(log2-2 x)-
2 + O(log2-* x). U!

Recall from Lemma 3.7 that

1 T
(3.61) C,,s(T) nn x(h)(L),+s_

nr=nr+ nr +
n nr+ s<< T

c(n)." c(n,)c(n,+).., c(n,+)
tl n

( log n
L

log nr+s 0, 01 + O(T).
/

LEMMA 3.10. (1) Cr,(T) O(T) unless r s > O.
(2) If r s, then

"(--/31 --vr, v(1), v(r), O, O)dvl"’dv, -t- O(T)

where S, is the permutation group on r letters.

Proof. The first statement follows from the upper bound in Lemma 3.9. As for
the second, we use summation by parts and the asymptotics in Proposition 2.3:
From Lemma 3.8, we know that only distinct primes (not higher powers) are
going to contribute to the main term. Thus

1 T
(3.62) C,(T)=-x(h)(L)2r_-----. Z Ic(pj)12

pl Pr<T j=l Pj

( log p log p, log q
q qr=P Pr k, Z Z L

log q_______ 0, 01 + O(T)
/

where the inner sum is over primes qj. Since p, p are distinct primes,
the primes qj are then a permutation of p. Thus, for some tr e S, q p,t),
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j 1,..., r. Therefore,

(3.63)
1 T

C, (T) - w(h)(L)2,_------- E fi
p pr<T =

log pl log Pr log Ptl)
L L L

log P() 0, 0] + O(T)

and we need no longer restrict to summing over distinct primes. The sum in (3.63)
can be approximated by using summation by parts in the following form: By
Proposition 2.3 (assuming H),

E Ic(p)I2 1
log2 X + O(X)

vx P 2

Hence, for reasonable functions (e.g., a C function),

(3.64) v<r (lLg)j’ " Op;=
o

vf(v) dv" log2 T + O(log T),

and therefore

1 T f[/,,, j" 1/m

01 O(3.65) C,,(T) x(h) (Z)2r_ (L)2r as o

"(--vl, --v,, v(1), v(,), O, O) dr1 ""dvr + O(T)

(h)-nL s o

"(--vl, --vr, v,,(1), v,,(r), O, O)dvl""dv, + O(T),

as required. 121

If we use Lemma 3.10 and bring into account all possible choices of r 0,
In/2] and signs, we obtain Theorem 3.1.

Remark: The support condition I11+"" + I.l < 2/m. Consider first m 1
and the case of ((s). In this case (and only in this case), there is an added term in
the explicit formula (2.16) arising from the pole at s 1, of the form

(3.66)
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Corresponding to this all the coefficients A(n) in the sum over primes are non-
negative. From (3.66) it is clear that the region j I1 < 2, which appears in Theo-
rem 1.2, is precisely that which renders (3.66) smaller than the main term T log T.
Indeed, outside this region this polar term will be significant and the central
diagonal terms in the proof of Theorem 1.2 are no longer dominant.

In the case of Dirichlet L-functions L(s, 7.), the same is true but no longer
because of the (nonexistent) polar term--see below. For m > 2, the region in
which we prove Theorem 1.2 is no longer "natural": In the case of the pair corre-
lation function, the relevant sum coming from our analysis is

(3.67)
c(nl) c(n2)

g(T(2l log T + log n))g(T(22 log T- log n2))f({, 2)

with t + 2 0. If we assume that f is supported near 1 -2 > 0, then
the diagonal contribution is of size log T. Consider the off-diagonal contribution:
These are essentially sums over primes

log2 T
(3.68) OD := c(m)c(n)

T2 Ilogm/nl<<l/T
mn T2

log2 T T c(m)c(m + h)
T2 2 <h<T2-1

log2 T
c(m)c(m + h).

<h< T2-1 2

The inner sum in (3.68) will have substantial cancellation if a(m) are the Fourier
coefficients of a cusp form on GL(2)/Q. We expect the size of the inner sum to be
of order square root of the number of terms, that is, O(T). With the square root
saving, we find that the off-diagonal contribution will be bounded by

log2 T T= T-1 log2 T.(3.69) OD << T2 <h<T2-1

Hence, for < 1 (i.e., I1 +121 < 2), we see that the diagonal still dominates.
That is to say that the region should be the same as in the case rn 1.

In this respect, we observe an important difference of the above analysis when
rn 1 and a(p) Z(p) is a Dirichlet character, say of conductor Q. Then the sum

(3.70) A(p)z(p)A(p + 2kQ)z(p + 2kQ)
X<p< 2X
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is of order X, if we assume the "twin-prime" type conjectures of Hardy and
Littlewood. Thus the inner sum of (3.68) does not have the same cancellation as
for m 2. In fact, as with (s), the region Ixl 4-I1 < 2, valid for L(s, ), is
the largest in which the diagonal dominates.

Proof of Theorem 3.2. We first show that in Theorem 3.1 we can take hj
;t-1,1j to be the characteristic function of the interval I-- 1, 1]. In what follows we
assume the Riemann hypothesis for L(s, ). In Theorem 3.1 we established that
for hj as in (3.5), and f satisfying (3.6),

(3.71)
N(T) " hi h f -, -- -. x(h)/(f)

where N(T)= # {0 < 7i < T} TL/2r, and//(f) is the measure given by (3.9).
By taking linear combinations, we obtain

N(T)
h f -n x(h)#(f)

where h(?) is a finite linear combination of functions of the form h(r)’"hn(rn)
and

(3.73) x(h) ?oo h(r, r) dr.

To extend the validity of (3.72) further, we note that if H(?) is piecewise continu-
ous of rapid decrease, then, given e > 0, there are finite linear combinations h, h2
as above so that h < H < h2 and _2o (h2 ht)(r, r)dr < e. We use these to
show that (3.72) is valid for such H: Indeed, given f as above, we can find an
f/ > 0 with Ifl < f+ and f/ admissible for (3.72) (at least assuming in (3.6) is
C2). If we set

(3.74) D(H, f; T):=
N(T)

H f x(H)#(f),

then

ID(H, f; T)I < ID(hl, f; T)I + ID(H h, f; T)I

< ID(ht, f; r)[ + N(T)
(h2 ht) f+ + r.(H ht)l/.t(f)l

< ]D(hx, f; T)I + ID(h2 hi, f+; T)]

+ x(h2 h)la(f+) -4- x(H- h)l#(f)],
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and since (3.72) is valid for the first two terms, we find

lim sup ID(H, f; T)I < x(h2 hx)#(f+) + x(H hl)l#(f)l < e(l(f+) + I/(f)l).
T

Since e > 0 is arbitrary, it follows that D(H, f; T) O.
With this approximation argument, we can include many more admissible

functions h, and in particular the characteristic function of the cube i--1, 1]n.
Hence Theorem 3.1 is valid with hi(r) ;tt-l,l(r) or ;tta, b, for a < b.

Next, we need to discuss the passage from the normalization of zeros (L/2r0])
appearing in the definition of the smooth sums C,(f, h, T) in (3.3), and the nor-
malization (m/2n)]) logl])l initially used to define C.(f, T) in (3.2). We explain
it for the pair correlation (n 2). Consider, for if(x) f(x + y, y),

(3.75)

m log )m log ])1 ])2
C(, T)= E ])1 ])

T< I, V2 <2T 2re 2re

C(, T)= .--(])1 ])2)
T <, )’2 < 2T

Then we claim that

(3.76) C(, T)- C(, T)= O(T).

This will show that the different normalizations lead to the same main term, and
thus prove Theorem 3.2.
To see this, observe that

((, T)= E
T<l,2 < 2T

Applying the mean value theorem, (3.76) equals

where t:,2, T is in the interval with endpoints (m/2r)(])l log ])1- ])2 log ])2) and
(L/2zr)(])l ])2). Thus (since 0 < log(])jT) < log 2),

(3.77) I((, T)- C(O, r)l << IO’(ar,,,,,T)l’(Y2
T< <),2<2T

For this fixed , let 1 > I’[ be a rapidly decreasing function on R which is even
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and monotone on [0, oo). Then, by (3.77),

(LYIC(k. T)- C(ff. T)I <<
T<r...<T

We can find a majorant @+ and h which are admissible in Theorem 3.1, sat-
isfying @+(x) > Ixlq,l(X) and h > Ztr,2r]. Then, with these choices, we have

C(0, T)- C(0, T)I <<E h h 0+

and we can bound the sum by O(TL), by Theorem 3.1. Thus we find

1
C(. T)- C(0. T)I << TL << T.

as required. This establishes Theorem 3.2.

4. Combinatorial sieving. In Section 3 we showed that the unrestricted sums
C.(f, T) have a limiting distribution

(4.1) Cn(f, T):= , f(,, n) N(T)" fl(u)Co(u) du
il, ...,i

where the sum is over all indices (il, i,). However, the n-level correlation func-
tion R.(f, T) is the same sum but over distinct indices; it differs from C.(f, T) by
omitting all sums over diagonals ij ik, which measure lower-order correlations.
In this section we recover Rn(f, T) by a combinatorial sieving.
We begin with some set-theoretic combinatorics. A set partition F of N

{1, n} is a decomposition of N into disjoint subsets IF1,..., Fv]. The collec-
tion 17. of all set partitions of N forms a lattice with the partial ordering given by
F -< ._G if every subset Gi is a union of subsets of _F. The minimal element of II. is
O [{ 1}, {2}, {n}], and the maximal element is N { 1, 2, n}.
The M6bius function of a poset such as II. is the unique function #(x, y) so

that for any functions f, O" 17. R, satisfying

(4.2) f(x) E g(Y),

we have

(4.3) g(x)= IJ(X, y)f(y).
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In the case of IIn, the M6bius function can be computed explicitly [15, 25], in
particular,

(4.4) #(Q, F) 1--I (- 1)IDI-X(IFI 1)!.
j=l

Given a set partition F IF1, Fv] erIn, we have an embedding
given by le(Xl,..., x,,) (y,..., y,,), where yi xj if e F. For instance, if F
[{1, 3}, {2-4}] e 1-I,, then re(x, y) (x, y, x, y).
We can define the lower-order correlations

(4.5) Re(f, T)"= RvF(tv_f, T)= f(tE(,, )).
it
distinct

This is the v-level correlation between n zeros (7 ,7n) where we mandate that
the indices i ik are equal if l, k F, and i v ik if k, are in different subsets of F.
Thus if F N, then Rv(f, T)= f(,..., ) counts the number of zeros up to
height T, while if F Q, then Ro is just the n-level correlation function (1.3)
defined in the introduction (after division by N and where BN BN(r), N(T)=
# { j: I1 < T}). We similarly define unrestricted correlation functions by setting

(4.6) Ce(f, T)"= C,(t.f, T)= f(t_v(ff,, ffv))
il

so that C,,(f, T)= Co(f, T).
Observe that we have an identity

(4.7) Co(f, T)= E Re(f, T)
F

or, more generally, for any G e 1-In,

(4.8) Ca(f, T)= Re(f, T).
GF

This is merely partitioning the unrestricted sum for Co as a sum over the various
possibilities for coincidences between the indices. Thus we can use M6bius inver-
sion to express the n-level correlation function Ro(f, T) in terms of the unrestricted
sums Ce(f, T):

(4.9) Ro(f, T) la(Q, F)Ce(f, T).
F

This allows us to find the limiting behaviour of Rn(f, T) by using Theorem 3.2,
which yields the limit of Ce(f, T). To describe the answer, we define b-functions
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as follows: For a subset S c {1, n}, we put

where (x) Dirac delta mass at the origin, and for a set partition _F [F, F]
we define

(4.11) diE(u) jI-I 6rj(u).

6r is a delta function supported on the linear subspace

(4.12) Ur={uR": ut=O,j=l,...,v(F)}.
Fj

LEMMA 4.1. With the assumptions as in Theorem 3.2,

C(f, T)= N(T) f(u)C(u) du + O(T)

where Cr(u) is 9iven by

e(t) uz H
k i(a), j(b)

the sum being over all possible choices of r pairs of subsets (Fitt), Fo)) of F__, no
repetitions allowed.

Proof. We first express t_f _r as a Fourier transform, in terms of the origi-
nal such that f

(4.14) r(Vx,...,v)=6(vl+"’+v)fR (-I6(vj- ut)((u)du.j=l teFj

Indeed,

t_f(xl, x) IR. O()6(x +"" + n)e(-" lF(X)) d

+ +n=0
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which proves (4.14). Note that (4.14) implies that if Supp @ c {=l I1 < r}, then
Supp (I)_ {=l It/)[ < r}.
Now we use Theorem 3.2 to get the asymptotics of Cr(f, T) (note that the

conditions TF 2, 3 descend to tf):

C_(f, T)= C,(_f, T)= N(T)" f. @(v)C,,(v) dv + O(T).

On using (4.14), we find

j=l

lcF1 lcF

Now substituting the expression (3.9) for Cv(u) in Theorem 3.2 yields (4.13). El

We have seen that

(4.15) Ro(, T)= N(T) ln @(U)Ro(U) du + O(T)

where

(4.16) Ro(u) #(0, F)Cr(u).

In view of (4.15), (4.16), and the definition of the GUE determinant W(u) (1.5),
Theorem 1.2 follows from Theorem 4.1.

THEOREM 4.1. Let W(x) det(K(x,- xj)), K(x) (sin nx/nx). Then, for
lull < 2, the Fourier transform ff’,(u) is equal to Ro(u) in (4.16).

Similarly, Theorem 1.1 follows from Theorem 3.1 (with hi hn h) and
the above combinatorics.
We will divide the proof of Theorem 4.1 into three propositions.

PROPOSITION 4.1. We have

(4.17)
v(D

Z Z 1-I
r F

where, for any subset S c N,

(4.18)

Ss(u (- 1)lsl-l(IS 1)! + (- 1)Isl-2
S=S+ uS-

(IS+l- 1)!(IS-I- 1)!
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PROPOSITION 4.2. The Fourier transform of the GUE determinant

W,(ul, u,) det(K(xi xj))e ujx dx
j=l

is given by

(4.19) l,(u) fir(u) H (-- 1)I1-1Yej(u)
F j=l

where, for any subset S c N,

(4.20) Ys(u)-- Z f_oo f2(/))f2(/3 "[- uil) f2(/) -[- uil - [- uim) do,
m)

the sum over all cyclic permutations of S, and

Ivl < 1/2(4.21) f2(v)- o, Ivl > 1/2

(so that K(x) f2(x)is the Fourier transform off2).
PRO’OSITIOrq 4.3. For a subset S c N with esUt O, teslut[ < 2, we have

an identity

(4.22) Xs(u) (- 1)Isl-1Ys(u).

By comparing the coefficients of 6v(u) in Propositions 4.1 and 4.2, we see that
Proposition 4.3 is exactly what is needed to establish Theorem 4.1. The rest of
Section 4 is concerned with proving these propositions.

Proof of Proposition 4.1. It is expedient to introduce some structure on set
partitions that corresponds to the combinatorics of pairs appearing in the calcu-
lations. To this end, we define a markin9 ck of a set partition G [G1,..., Gv] to
be a choice of r > 0 pairs of subsets (G,+,, G ), (G,+ G).
We will denote such a marking by

(G,b)=[G,+ G’G,+ G’.. "G+ G,r’ Gl2r+l’"" Gv]"

We will allow the trivial markin9 (G_Q, b) [G; G].
A marking (G_q_, k) reduces to an unmarked set partition _F if, for all j 1, r,

there is a subset F of F so that F G{ w G.7, and likewise for all k there is a
subset of F so that G Ftk). We will denote tillS symbolically as _iF red(G, b) or
(, )--, g.
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Note. A marked set partition reduces to a unique unmarked one; however,
there are usually several different marked partitions reducing to the same un-
marked one.

With the notion of marking of a set partition, we can describe the formula (4.13)
for Co(u) as

(4.23) C(u) 6,(_,, (u) fi
j__

where the sum is over all possible marking of G__, and for the trivial marking the
empty product is interpreted as equal to one. Therefore we find

(4.24) #(Q, G)C(u) (_)#(Q, G)6,.(,)(u) fi

E Au) 7_. #(o, _)E (, )-*g

Now fix a set partition F, and consider the coefficient of 6r above. Then we have
a factorization identity: If u Ur, then

(4.25) _, #(__O, _(_(_G) fi
((;, ) -.-._F j=l

(-) f1-I (- 1)lrl-X(IFl- 1)!
j=l

To prove this, just multiply out the right-hand side of (4.25) and compare with
(4.4). The factors in the product are exactly what we called X in Proposition 4.1,
and so we find, as desired, that

v(D
(4.26) ,u(_O, G_)C(;(u)= 2 fir(u) ]-I X(u).

F j=l

This proves Proposition 4.1. E!

Proof of Proposition 4.2. We expand the determinant as a sum over all
permutations of N { 1, n}:

(4.27) W,(Xl,..., x,,) Y’. (- 1) 11 K(x x,()).
S j=l
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When taking the Fourier transform of W., decompose each permutation as a
product over disjoint cycles a Zl z,, with zj (il, i,,) a cycle of length
rn m(j). Note that (- 1) I-I (- 1)")-1. We then notice that the Fourier trans-
form of each summand in (4.27) breaks up into a product of Fourier transforms
of similar expressions over the cycles

=I f K(xi, xi)K(xi xia)’"K(Xim xi,)e(ui, xi, +’" + UimXi,,) dx.

It is therefore sufficient to compute the Fourier transform of each factor sepa-
rately when we have a cyclic permutation.

LEMMA 4.2. We have

K(x x2)K(x2 x3)"" K(x,, x)e(ux +’" + u,,x,,) dx

I(Ul " " Urn) ;-oo f2(/))f2(/) " Ul)’’’f2(/) -- ul -I-"’" -t- Urn-l)dl).

Proof. Set t x Xj+l, j 1,..., rn 1. Then, changing variables, we find

K(xl x2)K(x2 x3)." K(xm- xl)e(UlXl + ""+ umx,,)dx

e(tu + + tm_x(Ux + + Um_l) -1- Xm(U -Jr-"’" + Um)) dtx’"dtm_ dxm

(U --"’" -’ Urn) f K(tm_)K(--t tm_)

e(tls + ...+ tm_iSr._)dt

where we have set Sk ux + + uk.
Since K fz, we can use Parseval to see

(4.28) f_o K(t)K(-z tl)e(ts) dt f-oo fz(v)fz(v + s)e(w) dr.
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Applying this with z 2 + -F tin_1, we find

K(t)’"K(tm_:)K(-t: tm_x)e(ts: + ""+ tm-xSm-:) dt

j’A(v)A(v + s)e(v(t2 + ""+ tm-))K(t2)"" K(t_)

e(t2s2 + ""+ tm_lSm_)dt dv

f2(v)f2(v + s) I-I K(ti)e(ti(v + s)) dti dv
j=2

ff2(v)fz(v + s)f2(v + s2)’"f2(v + Sm-1)

To finish the proof of Proposition 4.2, we decompose the permutations into
products of disjoint cyclic permutations indexed by set partitions F of N
(1,..., n}:

I_[ x S*(FO
F

where, for a subset F c N, S*(F) denotes the set of all cyclic permutations of the
indices in F. The sign of any cyclic permutation in S*(F) is (- 1)1I-1. Proposition
4.2 now follows. El

Proof of Proposition 4.3. It clearly suffices to prove Proposition 4.3 for the
case S N, which we assume from now on. We will need some preparation: For
u R, with juj 0, and jlujl < 2, and an orderino 0 (0(1), O(n)) of N,
we define the consecutive partial sums

k

(4.29) Sk(O) Uo(j)= uo() + ""+ uo()
j=l

and let M(0), m(O) be the maximum (respectively, the minimum) of these partial
sums:

(4.30)
Mu(O) max{sk(0), k 1,..., n},

mu(O) min{sk(0), k 1,..., n}.

Further, set

(4.31) V(O) M(O)- m(O).
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When no ordering 0 is explicitly given, we just write V for the corresponding
quantity.

It is useful to think of uo(j) as the increments of a "random walk" on the real
line, starting and ending at the origin, and the partial sums Sk(O) are the positions
after k steps. M and m are the farthest positions to the right (respectively, to the
left), and the difference V(O) M(O)- re(O) is then the maximal deviation of the
walk. From this description, it is apparent that V(O) V(O’) if 0’ is a rotation of 0,
e.g., 0’= (0(2), O(n), 0(1)).
The connection of this to our previous discussion is the following.

LEMMA 4.3. If Ux +"" + U, 0, j lull < 2, then

(4.32) fz(v)fz(v + u)’" fz(v + u + ...+ Un) dv 1 V.

Proof. Recall that f2(v) is the characteristic function of the interval I
1--1/2, 1/2]. Thus, the integral (4.32) is the length of the intersection of the inter-
vals 1, -sl + I, -s,_l + I. This intersection is nonempty if lul < 2,
in which case it equals the interval [-m- 1/2,-M + 1/2], whose length is
-M+1/2-(-m-1/2)= 1-V. El

Set

(4.33) T(u) ’ V(O),

the sum being taken over all orderings modulo rotations, i.e., over cyclic permu-
tations of 1, n}, of which there are (n 1)!. Using Lemma 4.3, we can rewrite
Yn(u) in (4.20) as

(4.34) Ys(u) (n 1)! T(u).

Taking into account the definition of Xs(u) (4.18), in order to prove Proposition
4.3, it suffices to prove the following identity between piecewise linear functions:

(4.35) T(u)= Z (IFI-1)!(n-IFI-1)! ru’IF,Fc]

This we accomplish below by adapting Spitzer’s combinatorial method ]-34]. 3
Both sides of (4.35) are continuous in u, so it suffices to prove (4.35) for u

generic, i.e., the components u are linearly independent over the rationals. Since

Apparently, this identity is quite oldmit can already be found in Kac [12].
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(0, 0) (n, 0)

FIGURE 2
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V(O) is invariant under rotations, we may write T(u) in (4.33) as

(4.36)

The sums 0M(O) and om(O) are easily seen to be negatives of each other, and
so

(4.37) T(u)
2- o M(O).

For u (ul, ur) Rr, define the (polygonal) walk W to be the walk (0, 0)
(1, ul)---,...--,(r, u: + ""+ u,). The chord is the segment connecting (0, 0) to
(r, u: +...+ u,). Define the upper convex envelope Uu of the walk Wu to be the
lowest convex curve lying above Wu (Figure 2).

LEMMA 4.4 (Spitzer [34, Theorem 2.1]). Given u (u,..., u) in #eneric posi-
tion, there is a unique rotation of u so that the walk lies below its chord.

Given u, W, and Uu, let 0 < kx < k2 <..- < kv r be the first coordinates of
the vertices of the upper convex walk Uu. Note that the walk W restricted to the
sets { 1, kl }, {k: + 1, k2 },... has the following properties.

PROPERTY SP 1. The walks lie below their chords.

PROPERTY SP 2. Their respective slopes are decreasin#, i.e.,

U "- ....- Ukl > Ukl+l + "..._ Uk2 > ’’’.
kl k2 k

Returning to the ordering 0 of N { 1,..., n}, and u Rn, juj 0, which we
assume is generic, we get a convex polygon Uu(O) above the walk Wu(0). This
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convex polygon starts at (0, 0) and ends at (n, 0) (Figure 2). It determines intervals
as above, GI(O)= [1, kl], G2(0 [k + 1, k2] Each of these comes
with an ordering ffj(0). So, for each ordering 0, we get data D(O) (G (0), (0)),
(G2(0), 2(0)), satisfying SP 1 and SP 2. Moreover,

1
(4.38) M,,(O)

Conversely, given u generic and a set partition _G [G, Gv] of N and order-
ings j of G, we can uniquely arrange them to satisfy SP 1 and SP 2 by first
arranging their slopes (i.e., SP 2) and then using Spitzer’s Lemma 4.4 to adjust
each ordering @ by a (unique) rotation so as to satisfy SP 1. That is, using this
bijection and (4.38), we have

(4.39)
1o M,(O) =[..,v] (IGl- 1)! (IGl- G ul

1
(IFxl-1)!

2 FI=N _F=[F,F2 Fv]

For a fixed subset F1 c N, the innermost sum is clearly equal to the sum over all
set partitions of the complement F N F of

(4.40) (If21- 1)!"’(lEvi- 1)!.
[F2 FI,,]

This counts all the permutations of F( when writing a permutation as a product
of disjoint cycles. So the sum (4.40) is simply lEVI! (n IFx I)!. Hence

(4.41) M.(O)=
1

(IFI- 1)!(n- IFxl)!
0 F cN

Grouping together the terms corresponding to Fx and its complement F, and
using u 0 (so that Izr u,I I,r utl), we have

(4.42)
1

((IFI- 1)t(n- IFl)t + (n- IFI- 1)tlFlt)M.(O)= -n (IFI- 1)!(n-IFI- 1)!
2
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(4.43) T(u) Z (IFI- 1)!(n- IFI- 1)! Z u,
[F,Fc] F

This concludes the proof of (4.35) and so of Proposition 4.3. El

APPENDIX

A.1. Our goal in this appendix is twofold. Firstly, we describe the local
L-factors at ramified places, and secondly we derive the estimates (2.3) and (2.5)
for the (j, p) and #(j).

Let rp be an irreducible admissible (generic) representation of G GLm, over R
or Qp, with unitary central character. From the description below it follows that
if z is tempered, then L(s, rrp) is holomorphic in Re s > 0. The general non-
tempered representation z9 can be described as a Langlands quotient: There is a
standard parabolic subgroup P of type (ml, mr) (so that the Levi complement
M, P/U, GL(ml) x x GL(mr)), tempered representations trj of GL(mj),
and real numbers t > > 6 (called the Langlands parameters of rp) so that

(A.1) zp J(G, P; traits],..., trr[tr]

is the unique irreducible quotient of the induced representation Ind(G, P; trl[tl],
trr[6]). Here the twist operation for C is defined as tr[t] := tr (R) Idet(’)l t. If

zr is unitary, then {traits]} {#k[-- tk] }. In terms of this data, the L-factor is
given by

(A.2) L(s, r) -I L(s + t, try)
j=l

where the definition of the tempered factors still needs to be given. Indeed, in this
case, for tr tempered, there is a standard parabolic P of type (m,..., mr) and
square-intelrable representations zj of GL(m) so that tr is isomorphic to the full
induced representation I(G, P; z,..., zr). Then

(A.3) L(s, tr)= (-I L(s, z).
j=l

This reduces the problem to the case of square-integrable representations. We
describe these separately in the p-adic and real setting.

A.2. p-adic factors. For the p-adic case, the square-integrable representations
are built out of supercuspidal representations as follows: If r is a unitary square-
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integrable representation of GLm(Qp), then there is a divisor dim, a standard par-
abolic subgroup P of type (d, d), and a unitary supercuspidal representation p
of GLd so that is the unique square-integrable constituent of Ind(G, P; Px, P,),
where n m/d, and p p (R) [det[ -("+1)/2, j 1, n. We will write A(n, p).
We note that the contragredient of such a representation is A(n, p) A(n, 3). Then
the principal L-factor is given by L(s, )= L(s + (n- 1)/2, p). Next, for super-
cuspidal representations p, we have L(s, p)= 1 unless rn 1 (in which ease the
supercuspidal condition is empty) and p [.it is unramified, in which ease
L(s, p)= (1- p-(S+t))-l. This completes the description of the p-adic factors for
the principal L-function.

Next, we describe the p-adie factors for the Rankin-Selberg L-function [8]. Let
z, z’ be irreducible, unitary generic representations of GL,,(Qp) and GLm,(Qp),
respectively. We say two representations 1, 2 are in the same twist class if
deg zx deg 2 and x 2 ()Idetl. First, if is supercuspidal, then for deg z >
deg ’, the Rankin-Selberg local factor L(s, x ’) equals one unless n’ is twist-
equivalent to : ’ [t] (in particular, ’ is itself supereuspidal). In that ease,

(A.4) L(s, x 7[t]) L(s + t, x )
1

where rldeg g is the order of the cyclic group of unramified characters Z Idet]
for which (R) Z

_ .
Now if A(n, p), g’ A(n’, p’) are square-integrable representations of GL,,

and GL, respectively, then

min(.,n’) ( n+ n )(A.5) L(s,A(n,p) xA(n’,p’))= 1-I L sd j,p xp’
= 2

In particular, we see that L(s, x if’) 1 unless p, p’ are in the same twist class.
For the general , given as a Langlands quotient J(G, P; trait1], trr[tr]

as in (A.1), we can, by using induction by stages, assume that tr A(n, p) and
t >... > tr. Then we have

(A.6) L(s, z x ) (-I L(s + t3-- tk, tr3 x
j,k=l

(-I L s + tj-- tk-
rtj + nk

j,k=l v=l 2
V, pj k

We know that the only factors which contribute are those for which pj, Pk are in
the same twist class. We can partition the components p, p, into twist classes;
there is a set partition F [Fx,..., Fh] of {1,..., r} and unitary supercuspidals
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pt, 1= 1, h, which are twist-inequivalent, and reals uj so that for j
pj pt[iuj] is a unitary twist of pt. We then find

(A.7)
L(s, 7 x ) I-] ]-I L(s + tj t, A(nj, p’Eiuj]) x ,(n, ptEiu])) =: 1-[ Lr,(s).

j, keF

We have

(A.8) Lr(s) I-I L(s + tj- tk, A(nj, ptEiuj] x (nk, ptEiUk]))
j, keF

H 1-[ L s+sj-s,+nj+n*
j,kF v=l 2

v, p x /

where sj tj + iuj. We know that L(s, pt x ) (1 p-,s)-i for suitable rtldeg p
(A.4), and so we find

min(nj, k)
(a.9) L(s) I-I l-I

j, keF v=l
(1 (pV-(’J+nk)/2-sj+kp-ft)-x

To transform this further, we note that by unitarity, the set {sj: j Ft} is stable
under s -. Thus

min(nj, k)
(A. 10) LFI(S)-- H H

j,ke ,=t

where

(1 (p v-(nj+nk)/2-sj-kp-S)rt)-1

min(nj, k)

l-[ I-I (1 --(pVZjk)"’p-rts)-j,kF v=l

(A.11) zj p-(n/2+sj), j e Ft.

To conclude, we see that, with the above notation,

min(nj, k)

(A.12) L(s, ) I-I I-I I-I
j, keF v=l

(1 (p’zjkp-Sft)-
Therefore, if t > ...> t, are the Langlands parameters of r (A.1), then the
local factor L(s, rCp x rp) is holomorphic for Re s > 2 max{Itjl} with a pole at
s 2 max { j] }. Since it is known that’ the local factor is holomorphic in Re s > 1
[8], being the greatest common divisor of local integrals with this property, we
see that for r generic and unitary, the Langlands parameters satisfy max{ Its[ } <
1/2. As a consequence, if we write the principal local factor as L(s, rcp)=



318 RUDNICK AND SARNAK

Ijl (1- a(p, j)p-S)-l, then we see that la(p, J)l < pmax{Itjl} < pl/2. This proves
(2.2) for all p <
We can expand L(s, np x ) and Lee(s in a Dirichlet series

(A.13)

b(p)
L(s, n x )

e=o

b(pe,l)
LFI(S) e=0E peti

LEMMA A.1. If r, le, then

1
(A.14) b,(p) > -Proof. Take logarithms in (A.10) to find

log Lrl(S
p-erls

)(e)
e

with

min(nj, k)

E (PVZJk)erl
v=l

E (Pv)erl
<v<max{nj:jFl}

On substituting zj p-(nj/2-sj), we get

2,(e)
< < max{nj: JFl}

J Fl: nj>

2

E (P(v-nj)/2-sj)erl
e Fl: nj>

2

y (pt-/-’)’
jeF

Exponentiating, we find that

2t(e) 1
bt(perl) -e e

2

E (P(1-nJ)/2-sj)erl Ui

As a consequence of (2.19) and (A.14), we see that the L(s, n x ) has non-
negative coefficients b(n) > O.
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A.3. Archimedean factors. Any irreducible unitary representation of G
GL,,(R) is given as a Langlands quotient

zroo J(G, P; a[s], tr,.[s,])

where trj are square-integrable representations and Re sl > ""> Re sj. For the
real case, GLm(R) does not have square-integrable representations if n > 3. To
describe the principal L-factors in the remaining cases n 1, 2, we define Gamma
factors by

(A.16)
r,(s) .-’/:r ()
re(S) 2(2z0-r(s).

Note that the duplication formula reads Fc(s Flt(S)FR(s + 1). In the case n 1
(when the condition to be square-integrable is vacuous), the unitary representa-
tions are of the form n(x) Ixl or (x) sign(x)lxl Ixl’/Xx-x, with iR. We
then set L(s, no)= FR(s + t) in the former case, and L(s, no)= Fl(S + + 1) in
the latter. In the case n 2, the unitary square-integrable representations are
unitary twists of the kth discrete series Dk, k > 2 (these correspond to holomorphic
forms of weight k), for which the L-factor is given by L(s, Dk) Fc(s + (k 1)/2).
To summarize, for p oz the local factor has the following form: We can write

rn rl + 2r2, and there are complex numbers s t + iu, j 1,..., rx + r2 sat-
isfying -1 t + 2= t 0 and integers k > 2, j 1, r2 so that

(A.17) L(s, zroo)= VI Fa(s + s) VI Fc s + s,+s +
j=l j=l

We can rewrite this using the duplication formula as a product of m real Gamma
factors:

(A.18) L(s, zroo)= I-I Fa(s + ,(j)).

The Rankin-Selberg local factors are defined in terms of L-factors attached to
representations of the Weil group W by means of the Langlands correspondence,
and L(s, rroo r2oo) can be computed from knowledge of a few basic cases. We will
list them and use this knowledge to derive (2.5). Suppose that roo is a unitary
irreducible generic representation of GL,,(R). If we exhibit rcoo as a Langlands
quotient J(G, P; at[st],..., trr[sr]) as in (A.15), then

(A.19) (s, oo ) I-I (s + s s, rs ).
j,k
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It therefore suffices to check the following cases:
(1) L(s, tr x 1) L(s, tr);
(2) L(s, sign sign)= L(s, 1)= F.(s);
(3) D, (R) sign

_
D, and so L(s, D, sign, s) L(s, D,) Fc(s + (k 1)/2);

(4) if kl > kz, then L(s, Dk, Dk2) Fc(s + (kl kz)/2)Fc(s + (kt + kz)/2 1).
In particular, L(s, noo oo) has its first pole at s 2 maxltl, t Re s. On the
other hand, if rroo is the local component of a cuspidal automorphic represen-
tation n, then according to RS 3 of Section 2, L(s, noo x o)L(s, rr ) is
holomorphic for Re s > 1 with a simple pole at s 1 coming from the Euler
product L(s, n ). Thus L(s, noo oo) is holomorphic for real s > 1, and hence
2 maxltl < 1. That is, in the notations of (A.18), Re #,(j) > 1/2, proving (2.5).

Remark. We have given a global proof of (2.5) in order to avoid the complica-
tions involved in carrying out the analogue of the p-adic proof via the archimedean
Rankin-Selberg integrals [11]. A purely local proof of (2.5) is given in I-1] by
going through Vogan’s classification of the unitary dual of GLm(R) and checking
which representations are generic. On the other hand, the improvements of the
bounds (2.2) and (2.5), described below, do require global considerations.

A.4. Global bounds. The first improvement is for the finite places and follows
a well-known argument I-31].

PROPOSITION A.1. Let r be an irreducible cuspidal automorphic representation
of GL,,/Q, and let rrp be a local constituent of r. Then

(A.20) I=(P, J)l < pl/2-1/(m2+l).

Proof. This is merely an application of Landau’s theorem [13]. Indeed, we
have shown that the series L(s, rr x fr)= b(n)n has nonnegative coefficients,
and by RS 3 a meromorphic continuation with Gamma factors and poles exactly
at s 0, 1. In Landau’s notation, we have fl 1 and r/= m2/2, and his result
gives

b(n)= Ax + O,(x(z"-)/(z"+x)+)

for all e > 0. Moreover, since b(n) > 0, it follows that

b(n) << n(2r/-1)/t2q+l)+e.

For r, unramified, in view of (2.19), this means that for e > 1,

Z ,(P, j)e
2

la(pe)l 2 < eb(pe) << epe((z’-)/(z’+)+O
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This clearly implies that

I=(P,/)l p(1/2)((2rl-1)/(2l+l)) pl/2-1/(2+1).

For ramified primes we find from (A.14) that for all l, if rle, then

2

(ptl-.j)/2-sj)e < eb(pe) <<
jF

and therefore we get a bound on the Langlands parameters

1 1
max ltl - m2 +1

In view of the formula (A.2) for L(s, %), we find that le(P, j)l < P1/2-1/(m+1) in the
ramified case as well. El

As for the analogous improvement at infinity of (2.5), it is shown in [16] by a
quite different method that for rroo spherical, we have exactly as in the finite places

1 1
(A.21) IRe #(j)l < mE + 1
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