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The moments of central values of families of L-functions have
recently attracted much attention and, with the work of Keating
and Snaith [(2000) Commun. Math. Phys. 214, 57–89 and 91–110],
there are now precise conjectures for their limiting values. We
develop a simple method to establish lower bounds of the con-
jectured order of magnitude for several such families of L-func-
tions. As an example we work out the case of the family of all
Dirichlet L-functions to a prime modulus.

A classical question in the theory of the Riemann zeta
function asks for asymptotics of the moments �1

T ��(1
2
� it)�2k dt,

where k is a positive integer. A folklore conjecture states that the
2kth moment should be asymptotic to CkT(log T)k2

for a positive
constant Ck. Only very recently with the work of Keating and
Snaith (1) modeling the moments of �(s) by moments of
characteristic polynomials of random matrices has a conjecture
emerged for the value of Ck. This conjecture agrees with classical
results of Hardy and Littlewood and Ingham (see ref. 2) in the
cases k � 1 and k � 2, but for k � 3 very little is known.
Ramachandra (3) showed that �1

T ��(1
2

� it)�2k dt �� T(log T)k2

for positive integers 2k, and Heath-Brown (4) extended this for
any positive rational number k. Titchmarsh (see theorem 7.19 of
ref. 2) had previously obtained a smooth version of these lower
bounds for positive integers k.

Analogously, given a family of L-functions an important
problem is to understand the moments of the central values of
these L-functions. Modeling the family of L-functions by using
the choice of random matrix ensembles suggested by Katz and
Sarnak (5) in their study of low-lying zeros, Keating and Snaith
(6) have advanced conjectures for such moments. We illustrate
these conjectures by considering three prototypical examples.
The family of Dirichlet L-functions L(s, �) as � varies over
primitive characters (mod q) is a unitary family, and it is
conjectured that

�
� �mod q�

* �L�1
2
, �� �2k � C1,k q� log q�k2, [1]

where k � � and C1,k is a specified positive constant. The family
of quadratic Dirichlet L-functions L(s, �d), where d is a funda-
mental discriminant and �d is the associated quadratic character,
is a symplectic family and it is conjectured that

�
�d��X

L�1
2
, �d�

k � C2,k X�log X�k�k�1�/2 , [2]

where k � � and C2,k is a specified positive constant. The family
of quadratic twists of a given newform f, L(s, f R �d) (the
L-function is normalized so that the central point is 1

2
); this is an

orthogonal family and it is conjectured that

�
�d��X

L�1
2
, f � �d�

k � C3,kX�log X�k�k�1�/2 , [3]

where k � �, C3,k is a specified constant that depends on the
form f.

While asymptotics in Eqs. 1–3 are known for small values of
k, for large k these conjectures appear formidable. Further, the
methods used to obtain lower bounds for moments of �(s) do not
appear to generalize to this situation. In this article we describe

a simple method that furnishes lower bounds of the conjectured
order of magnitude for many families of L-functions, including
the three prototypical examples given above. As a rough prin-
ciple, it seems that whenever one can evaluate the first moment
of a family of L-functions (with a little bit to spare) then one can
obtain good lower bounds for all moments. We illustrate our
method by giving a lower bound (of the conjectured order of
magnitude) for the family of Dirichlet characters modulo a
prime.

Theorem. Let k be a fixed natural number. Then for all large primes q

�
� �mod q�

���0

�L�1
2
, �� �2k ��k q� log q�k2.

Our methods yield corresponding lower bounds for several
other families, as well as other applications, for instance to
fluctuations of matrix elements of Maass wave forms in the
modular domain, which are not presented here. We remark also
that we may take k to be any positive rational number �1 in the
theorem. If k � r�s(�1) is rational, then we achieve this by
taking A(�) � (	n�q1/(2r) d1/s(n)�(n)�
n)s in the argument
below.

Proof: Let x :� q1/(2k) be a small power of q, and set A(�) �
	n�x �(n)�
n. We will evaluate

S1 :� �
� �mod q�

���0

L�1
2
, ��A���k�1A���

k
, and S2 :� �

� �mod q�
���0

�A��� �2k ,

and show that S2 �� q(log q)k2
�� S1. The theorem then follows

from Hölder’s inequality:

�
� �mod q�

���0

�L�1
2
, �� �2k �

�S1�2k

S2
2k�1 �� q� log q�k2 .

If � � � then we may write A(�)� � 	n�x� �(n)d�(n; x)�
n
where d�(n; x) denotes the number of ways of writing n as
a1 � � � a� with each aj � x. As usual d�(n) will denote the �th
divisor function, and note that d�(n; x) � d�(n) with equality
holding when n � x.

We start with S2. Note that A(�0) �� 
x and so

�
� �mod q�

���0

�A��� �2k � �
� �mod q�

�A��� �2k � O�xk�

� �
m,n�xk

dk�m , x�dk�n , x�

�mn
�

� �mod q�

��m��� �n�

� O�xk� .

Since xk � 
q � q the orthogonality relation for characters
(mod q) gives that only the diagonal terms m � n survive. Thus
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S2 � ��q� �
n�xk

dk�n, x�2

n
� O��q�.

Since dk(n, x) � dk(n) and 	n�y dk(n)2�n � ck(log y)k2
for a

positive constant ck, we find that S2 �� q(log q)k2
, as claimed.

We now turn to S1. If Re(s) � 1 then integration by parts gives

L�s, �� � �
n�X

��n�

ns � �
X


 1
ys d� �

X�n�y

��n��
� �

n�X

��n�

ns � s�
X


 �X�n�y��n�

ys�1 dy.

Since the numerator of the integrand above is �� 
q log q by
the Pólya-Vinogradov inequality (see chapter 23 of ref. 7) the
above expression furnishes an analytic continuation of L(s, �) to
Re(s) � 0. Moreover we obtain

L�1
2
, �� � �

n�X

��n�

�n
� O��q log q

�X
� .

We choose here X � q log4 q and obtain

S1 � �
� �mod q�

���0

�
n�X

��n�

�n
A���k�1 A���

k

� O� 1
log q �

� �mod q�
���0

�A��� �2k�1� .

Since �A(�)�2k�1 � 1 � �A(�)�2k the error term above is �� (q � S2)�
log q. The main term is

�
� �mod q�

�
n�X

��n�

�n
A���k�1 A���k � O� �Xxk�

1
2� .

Recalling that x � q1/(2k) and using the orthogonality relation for
characters we conclude

S1 � ��q� �
a�xk�1

�
b�xk

�
n�X

an�b �mod q�

dk�1�a ; x�dk�b ; x�

�abn

� O� S2

log q� .

The main term above will arise from the diagonal terms an �
b. Let us first estimate the contribution of the off-diagonal terms.
Here we may write an � b � q�, where 1 � � � Xxk�1�q �
xk�1(log q)4. The contribution of these off-diagonal terms is

��q �
b�xk

dk�b; x�

�b
�

��xk�1�log q�4

1
�q�

�
an�b�q�

dk�1�a ; x�

��q
1
2
��x

k�1
2 �

k
2 ��

q
log q

since 	an�b�q� dk�1(a; x) � dk(b � q�) �� (q�)�. Therefore,

S1 � ��q� �
b�xk

dk�b; x�

b �
a�xk�1,n�X

an�b

dk�1�a; x� � O� S2

log q� .

Since

�
a�xk�1,n�X

an�b

dk�1�a; x� � �
a�xk�1,n�x

an�b

dk�1�a; x� � dk�b; x�,

and dk(b; x) � dk(b) for b � x, we deduce that

S1 � ��q� �
b�xk

dk�b; x�2

b
� O� S2

log q�
� ��q��

b�x

dk�b�2

b
� O� S2

log q��� q� log q�k2.

This proves the theorem.
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