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ABSTRACT
We study the statistics and the arithmetic properties of the Robin spectrum of a rectangle. A number of results are obtained for the multiplic-
ities in the spectrum depending on the Diophantine nature of the aspect ratio. In particular, it is shown that for the square, unlike the case
of Neumann eigenvalues where there are unbounded multiplicities of arithmetic origin, there are no multiplicities in the Robin spectrum for
a sufficiently small (but nonzero) Robin parameter except a systematic symmetry. In addition, uniform lower and upper bounds are estab-
lished for the Robin–Neumann gaps in terms of their limiting mean spacing. Finally, the pair correlation function of the Robin spectrum on
a Diophantine rectangle is shown to be Poissonian.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061763

I. STATEMENT OF MAIN RESULTS
Let Ω ⊂ R2 be a compact planar domain with the Lipschitz boundary. The Robin eigenvalue problem on Ω is to solve the eigenvalue

equation −Δ f = λf with boundary conditions
∂f
∂n
(x) + σ f (x) = 0, x ∈ ∂Ω,

where ∂ f
∂n is the derivative in the direction of the outward pointing normal to ∂Ω and σ > 0. This boundary condition arises in the study of

heat conduction; see, e.g., Chap. 1 of Ref. 12. Our goal is to study arithmetic properties and statistics of the Robin eigenvalues on a rectangle.
For the results related to shape optimization for the first two eigenvalues of the Robin Laplacian on a rectangle, see Ref. 6.

Consider the case of the unit square. For σ = 0, the Neumann eigenvalues on the unit square are explicitly given as π2(n2 +m2) for
integer n, m ≥ 0. In particular, there are multiplicities coming from the many different ways of writing some of the integers as a sum of two
squares.

For σ ≠ 0, there is no known explicit formula. The problem is, however, separable, with an orthogonal basis of eigenfunctions of the
form un,m(x, y) = un(x) ⋅ um(y), where un(x) are the eigenfunctions of the Laplacian on the unit interval: −u′′n = k2

nun, satisfying the one-
dimensional Robin boundary conditions

−u′(0) + σu(0) = 0, u′(1) + σ ⋅ u(1) = 0.

The frequencies kn are the unique solutions of the secular equation

tan(kn) =
2σkn

k2
n − σ2 (1.1)

in the range nπ < kn < (n + 1)π, n ≥ 0; see Lemma 2.1. The eigenfunction corresponding to kn is un(x) = kn cos(knx) + σ sin(knx). The Robin
eigenvalues on the unit square are

Λn,m = k2
n + k2

m,
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with eigenfunction un(x) ⋅ um(y), and admit the symmetry Λn,m = Λm,n. For the rectangle

RL = [0, 1] × [0, L],

with the aspect ratio L > 0, the Robin energy levels of RL are all numbers

ΛL;n,m(σ) = kn(σ)2 + 1
L2 ⋅ km(σ ⋅ L)2, n, m ≥ 0. (1.2)

Note that if L ≠ 1, there is no longer the symmetry (n, m) ↦ (m, n).

A. Multiplicities
We now consider possible multiplicities in the Robin spectrum of rectangles. Recall that for the square and, more generally, for a rectangle

RL = [0, 1] × [0, L] with L2 rational, the Neumann spectrum has large multiplicities of arithmetic nature, whereas for L2 irrational, there are
no multiplicities. Our first goal is to show that for σ > 0 sufficiently small, there are no multiplicities in the Robin spectrum of the square
beyond the trivial symmetry Λ1;n,m = Λ1;m,n.

Theorem 1.1. There exists σ0 > 0 so that for 0 < σ < σ0, there are no spectral multiplicities other than the trivial ones Λ1;n,m(σ) = Λ1;m,n(σ).

In the Proof of Theorem 1.1 (see Sec. III), we shall see that as σ varies, the eigenvalues Λ1;n,m(σ) evolve at different rates depending on
n, m. These discrepancies are sufficiently large to break the degeneracies of the Neumann case (σ = 0) for σ > 0 sufficiently small.

One should compare the statement of Theorem 1.1 asserting that, for σ > 0 sufficiently small, the Robin spectrum of the square is non-
degenerate to the recent result10 asserting that the Robin spectrum of the hemisphere is non-degenerate for every σ > 0. On the other hand,
the Robin spectrum of the square does admit nontrivial spectral degeneracies for sufficiently large σ (see Proposition 3.4).

Next, we consider the rectangle RL with L2 irrational. Unlike the square, here, there exist multiplicities even for small σ.

Theorem 1.2. If L2 is irrational, then there are arbitrarily small σ > 0 for which there are multiplicities in the Robin spectrum of the
rectangle RL.

The Proof of Theorem 1.2 involves some arithmetic, in particular, in showing that the set of values attained by the indefinite ternary
quadratic form

Q(x, y, z) = L2x2 + y2 − z2

at integer values of (x, y, z) intersects every neighborhood of the origin: −ϵ < Q(n, m, m′) < 0 with all variables nonzero integers. This is a
variation on the Oppenheim conjecture (proved by Margulis7), which turns out to admit a simple solution using only the density of the
fractional parts of L2n2 mod 1, due to Hardy and Littlewood.5

We next show that in some special cases, we can give an upper bound for the multiplicities and for the number of eigenvalues that are not
simple. Let λ1(σ) ≤ λ2(σ) ≤ ⋅ ⋅ ⋅ be the ordering (with multiplicities) of the Robin eigenvalues of RL. By Weyl’s law, the number of eigenvalues
of size at most λ is asymptotically

N(λ) = NL;σ(λ) ∶= #{λj(σ) ≤ λ} ∼ Area(RL)
4π

λ, λ→∞. (1.3)

Denote by Nmult(λ) the number of multiple eigenvalues ≤ λ (again, counting the multiplicities in).

Theorem 1.3. If L2 is badly approximable, then there exists σ0 > 0 so that for σ < σ0, all the multiplicities in the Robin spectrum of the
rectangle RL are bounded by 3 and

Nmult(λ) ≪
√

λ. (1.4)

If, in addition, L is badly approximable, then the multiplicities are bounded by 2.

Recall that number θ is “badly approximable” if there is some c = c(θ) > 0 so that for all integer p, q ∈ Z with q ≥ 1, we have

∣θ − p
q
∣ ≥ c

q2 . (1.5)

For instance, quadratic irrationalities are badly approximable.
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B. Robin–Neumann gaps
We next turn to the differences between the Robin and Neumann eigenvalues, or simply RN gaps, introduced in Ref. 11. Let λ1(σ)

= λL
1(σ) ≤ λ2(σ) = λL

2(σ) ≤ ⋅ ⋅ ⋅ be the ordering (with multiplicities) of the Robin eigenvalues of the rectangle RL. For example, for σ = 0, we
recover the Neumann eigenvalues and λj(∞) are the Dirichlet eigenvalues. The RN gaps are the non-negative numbers,

dj = dL
j (σ) ∶= λL

j (σ) − λL
j (0).

For every bounded domain Ω with a piecewise smooth boundary, it was shown in Ref. 11 (Theorem 1.1) that for σ > 0, there is a limiting
mean RN gap, asymptotic to

d(σ) ∶= lim
N→∞

1
N

N

∑
j=1

dj(σ) =
2 length(∂Ω)

Area(Ω) ⋅ σ. (1.6)

Concerning the individual RN gaps, the authors of Ref. 11 gave a uniform lower bound for arbitrary star-shaped domains with a smooth
boundary. For an upper bound, they proved that

dj(σ) ≤ CΩ ⋅ (λj(∞))1/3 ⋅ σ,

valid for any Ω with a smooth boundary. This could be compared to the bound (Ref. 4, Theorem 2)

0 ≤ λj(∞) − λj(σ) ≤ Cσ−1/2λj(∞)2

with C > 0 absolute, for the distance between the Robin eigenvalues and the corresponding Dirichlet eigenvalue, in the regime σ → +∞, also
assuming that Ω has a smooth boundary.

For the rectangle, the authors of Ref. 11 (Theorems 1.3 and 1.7) gave the more precise upper bound

dL
j (σ) ≤ CL,σ (1.7)

for some constant CL,σ > 0. Here, we give uniform upper and lower bounds for the rectangle in terms of the mean gap d(σ), in particular,
refining the upper bound (1.7).

Theorem 1.4. There exist absolute constants C > c > 0 so that for every rectangle, for all σ > 0 and j ≥ 1,

dj(σ) ≤ C ⋅ d(σ), (1.8)

and for all σ ∈ (0, 1],
dj(σ) ≥ c ⋅ d(σ). (1.9)

Note that (1.9) can only be valid for

σ ≤ 1
c

π2(L + 1
L)

4(1 + L) .

Indeed, λ1(0) ≤ λ1(σ) ≤ λ1(∞) so that

c ⋅ 4(1 + L)
L

⋅ σ = c ⋅ d(σ) ≤ d1(σ) ≤ λ1(∞) − λ1(0) = (1 + 1
L2 )π2.

C. Pair correlation for the Robin energies
We next turn to study the statistics of the eigenvalues on the scale of their mean spacing. In our case, the mean spacing between the

eigenvalues is constant,

s̄ ∶= lim
N→∞

1
N∑k≤N

(λk+1(σ) − λk(σ)) ∼
4π

AreaRL
, (1.10)

by Weyl’s law (1.3). One popular local statistic is the distribution P(s) of nearest-neighbor gaps (λk+1(σ) − λk(σ))/s̄. For the square (and more
generally when L2 is rational), P(s) is a delta function at the origin.11 However, we expect that if the squared aspect ratio L2 is a Diophantine
irrationality, that is, there is some κ > 0 so that ∣L2 − p/q∣ > 1/qκ for all integers q > 1 and p, then the nearest-neighbor gap distribution will
be Poissonian: P(s) = e−s, that is, as for uncorrelated levels; cf. Refs. 1, 8, and 9. However, at present, this quantity is not accessible. A more
tractable statistic is the pair correlation function, defined as follows: For a test function f ∈ C∞c (R), we set
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Rσ
2( f , N) = 1

N ∑
1≤k≠k′≤N

f (λk(σ) − λk′(σ)
s̄

).

The Poisson expectation is that

lim
N→∞

Rσ
2( f , N) = ∫

∞

−∞
f (x)dx.

Theorem 1.5. Assume that L2 is a Diophantine irrationality. Then, for every fixed σ > 0, the pair correlation function is Poissonian.

To prove Theorem 1.5, we establish a comparison with the pair correlation of the Neumann spectrum (Proposition 6.1), which was
shown to be Poissonian in the Diophantine case by Eskin, Margulis, and Mozes.3 There are two key ingredients in the comparison argument:
a stronger, asymptotic, form of the bound for the RN gaps of Theorem 1.4 (see Proposition 4.6) and a count of lattice points in annular
regions, for which it suffices to appeal to a classical remainder term in the lattice point problem.

It is of interest to investigate analogs of our results for the case when the boundary conditions are non-constant, that is,

∂ f
∂n
(x) + σ(x) f (x) = 0

for x on the boundary, where σ(x) > 0 is a continuous function on the boundary. New methods will be required since we make heavy use of
the fact that σ is constant.

II. THE ONE-DIMENSIONAL PROBLEM
In this section, we review some classical properties of the Robin eigenvalue problem on an interval; see, e.g., Ref. 12 (Sec. 4.3).

A. The secular equation
Let I = [− 1

2 , 1
2 ] be the unit interval, and consider the Helmholtz equation

f ′′ + k2 f = 0, (2.1)

subject to Robin boundary conditions

σ f (−1
2
) − f ′(−1

2
) = σf (1

2
) + f ′(1

2
) = 0.

We use the symmetry x ↦ −x, which is respected by both the second derivative operator f ↦ f ′′ and the boundary conditions, to separate
solutions into even and odd symmetry classes. The even solutions of the eigenvalue equation (2.1) are f (t) = cos(kt), which inserting into the
boundary conditions gives

k ⋅ tan(k
2
) = σ.

Likewise, the odd solutions of (2.1) are f (t) = sin(kt), and the secular equation is

−k ⋅ cot(k
2
) = σ.

As we shall see below, the solutions of the even and odd secular equations interlace, and the totality of solutions {kn(σ) : n = 0, 1, 2, . . .}
is the solutions of the combined secular equation

(k tan(k
2
) − σ) ⋅ (k cot(k

2
) + σ) = 0,

which, after some algebra, reads

tan(k) = 2σk
k2 − σ2 . (2.2)

We could also deduce Eq. (2.2) directly if we ignore the symmetry x ↦ −x.
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B. General intervals
Instead of the unit interval, we consider an interval of length L. The Laplace eigenfunctions f ′′ + k2 f = 0 on [− L

2 , L
2 ] are subject to the

Robin boundary conditions

σf (−L
2
) − f ′(−L

2
) = σf (L

2
) + f ′(L

2
) = 0.

We obtain solutions to the Helmholtz equation on [− L
2 , L

2 ] by scaling the corresponding solutions on the unit interval: If g on [− 1
2 , 1

2 ] solves
g′′ + k2 g = 0 and σg(− 1

2) − g′(− 1
2) = σg( 1

2) + g′( 1
2) = 0, then f L(t) = g(t/L) on [− L

2 , L
2 ] satisfies

f ′′ + ( k
L
)

2

f = 0,
σ
L

f L(−
L
2
) − f ′L(−

L
2
) = 0 = σ

L
f L(

L
2
) + f ′L(

L
2
).

Hence, if we define kL;n(σ) ∶= 1
L kn(σ ⋅ L), then the Robin energy levels on [0, L] are

kL;n(σ)2 = 1
L2 (kn(σ ⋅ L))2, n ≥ 0.

Note that the secular equation on [− L
2 , L

2 ] becomes

tan(Lk) = 2σk
k2 − σ2 .

C. Properties of kn(σ)

Lemma 2.1. For every n ≥ 0 and σ ≥ 0, there is a unique solution kn(σ) to the secular equation (2.2) in the range kn(σ) ∈ (nπ, (n + 1)π).
The functions σ ↦ kn satisfy the following:

a. For all n ≥ 0, kn(⋅) are strictly increasing everywhere on [0,+∞), with

kn(0) = n ⋅ π, (2.3)

and furthermore,
lim

σ→∞kn(σ) = (n + 1) ⋅ π.

b. For n ≥ 1, the function σ ↦ kn(σ) is analytic everywhere. Furthermore, for σ < (n + 1/2)π, kn(σ) ∈ (nπ, (n + 1/2)π), and for
σ ≥ (n + 1/2)π, kn(σ) ∈ ((n + 1/2)π, (n + 1)π). Moreover, kn(σ) = (n + 1/2)π if and only if σ = (n + 1/2)π.

c. The function k0(⋅) is analytic everywhere except at (σ, k0) = (0, 0). Furthermore, for σ ∈ (0, π/2), k0(σ) > σ and

k0(σ)2 = 2σ +O(σ2). (2.4)

Proof. We first consider the odd part of the spectrum: note that the function

S−(k) ∶= −k ⋅ cot(k
2
)

is even, and for k ≥ 0, it vanishes at π, 3π, . . . , (2n + 1)π, . . ., n ≥ 0; it has singularities at

k = 2π, 4π, . . . , 2nπ, . . . ,

n ≥ 1; and it is increasing monotonically for k ≥ 0 between the singularities because it has a positive derivative there,

S′−(k) =
k − sin k

2 sin2(k/2) .

See Fig. 1. Thus, for σ > 0, there is a unique solution k2n−1(σ) of S+(k) = σ in each interval ((2n − 1)π, 2nπ), n = 1, 2, . . .. Moreover, by the
analytic implicit function theorem, the solutions k2n−1(σ) are analytic in σ for n ≥ 1.

For the even part of the spectrum, the function

S+(k) ∶= k ⋅ tan(k
2
)

J. Math. Phys. 62, 113503 (2021); doi: 10.1063/5.0061763 62, 113503-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

FIG. 1. Left: The even secular equation k tan( k
2
) = σ. Right: The odd secular equation −k cot k

2
= σ.

is even, and for k ≥ 0, it vanishes at 0, 2π, . . . , 2nπ, . . ., n ≥ 0; it has singularities at k = π, 3π, . . . , (2n + 1)π, . . ., n ≥ 0; and it is increasing
monotonically for k ≥ 0 between the singularities because it has positive derivative there,

S′+(k) =
k + sin k

2 cos2(k/2) .

See Fig. 1. Thus, for σ > 0, there is a unique solution k2n(σ) of S+(k) = σ in each interval (2nπ, (2n + 1)π). Moreover, by the analytic implicit
function theorem, the solutions k2n(σ) are analytic in σ for n ≥ 1.

To see that k0(σ) > σ for σ ∈ (0, π/2), just note that 0 < tan( k
2) < 1 for k ∈ (0, π

2 ) so that σ = k tan( k0(σ)
2 ) < k0(σ) ⋅ 1 in this range. Finally,

to see (2.4), using k0(σ) → 0 as σ → 0, we expand

σ = k tan(k
2
) = k(k

2
+O(k3)) = k2

2
+O(k4)

from which (2.4) follows. ◻

D. Auxiliary computations

Lemma 2.2. For n ≥ 1, the functions kn(⋅) satisfy the following:

a.
k′n(0) =

2
πn

. (2.5)

b.
(kn(σ)2)′′∣σ=0 = 2(kn(σ) ⋅ k′n(σ))′∣σ=0 = −

8
(πn)2 . (2.6)

c. Uniformly, for n ≥ 1, 0 ≤ σ ≤ 1, one has

k′n =
2
kn
⋅ (1 + f 2(σ) ⋅

1
k2

n
) + En(σ) (2.7)

with f 2(σ) = −σ(2 + σ) and

∣En(σ)∣ = O(σ2

n5 ). (2.8)

Proof. We treat the even secular equation, and the odd case is completely analogous. From

S+(k) ∶= k tan(k
2
) = σ,
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we obtain, by implicit differentiation, k′ = 1/S′+(k). Now,

S′+(k) = tan(k
2
) + k

2 cos2( k
2)
= tan(k

2
) + k

2
(1 + tan2(k

2
)). (2.9)

Substituting k2n(0) = 2nπ, we obtain S′+(k2n(0)) = nπ = (2nπ)/2, which gives (2.5) in the even case.
To obtain (2.6), we use

(k2
n)′′ = 2(k′n)2 + 2knk′′n (2.10)

and k′2n = 1/S′+ so that

k′′2n = (
1

S′+
)
′
= − k′2nS′′+
(S′+)2 = −(k

′
2n)3S′′+ .

A computation shows that

S′′+ =
2 + k tan( k

2)
2 cos2( k

2)
.

Evaluating at σ = 0, where k2n(0) = 2nπ, we obtain S′′+(k2n(0)) = 1 and

k′′2n(0) = −k′2n(0)3S′′+(k2n(0)) = −(
2

2nπ
)

3
.

Substituting into (2.10) with k2n(0) = 2nπ and k′2n(0) = 2/(2nπ), we deduce (2.6).
To obtain (2.7), we return to (2.9), use the secular equation to write tan( k

2) =
σ
k for σ > 0, and obtain

S′+(k) =
σ
k
+ k

2
(1 + σ2

k2 ) =
k
2
⋅ (1 − f2(σ)

k2 ).

Hence,

k′ = 1
S′+(k)

= 2
k
(1 + f2(σ)

k2 ) +O( f2(σ)2

k5 ),

which for σ ≤ 1 is (2.7). ◻

III. SPECTRAL DEGENERACIES FOR THE SQUARE: PROOF OF THEOREM 1.1
A. No multiplicities for the square near σ = 0: Proof of Theorem 1.1

A lattice point (n, m) ∈ Z2
≥0 gives rise to the energy [see (1.2)],

Λn,m(σ) = Λ1;n,m(σ) ∶= kn(σ)2 + km(σ)2. (3.1)

In this section, we will use the shorthand Λn,m(⋅) = Λ1;n,m(⋅). For the Proof of Theorem 1.1, we will need the following propositions.

Proposition 3.1. Uniformly, for n, m ≥ 1 and 0 ≤ σ ≤ 1, one has

Λ′n,m(σ) = 4(2 + f2(σ)
π2 (

1
n2 +

1
m2 )) + E(n,m)(σ) (3.2)

with
f2(σ) ∶= −σ(2 + σ), (3.3)

where the error term satisfies

∣E(n,m)(σ)∣ = O(σ2( 1
n4 +

1
m4 )). (3.4)

Proof of Proposition 3.1. This is a direct conclusion of Lemma 2.2(d), except that we have to justify substituting, up to the admissible
error term, πn and πm instead of kn and km, respectively, on the rhs of (2.7). Indeed,
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Λ′n,m(σ) = 2(k′n(σ)kn(σ) + k′m(σ)km(σ)), (3.5)

and by virtue of Lemma 2.2(d), we have

k′n =
2
kn
⋅ (1 + f2(σ) ⋅

1
k2

n
) + En(σ),

with the error term bounded by (2.8), and hence,

kn ⋅ k′n = 2(1 + f2(σ) ⋅
1
k2

n
) + En(σ), (3.6)

where

∣En(σ)∣ = O(σ2

n4 ).

By the secular equation (2.2),
kn(σ) = πn +O(σ/n),

and hence,
1

kn(σ)
= 1
(πn)(1 +O(σ/n2)) =

1
πn
+O( σ

n3 )

and
1

kn(σ)2 =
1

π2n2 +O( σ
n4 ).

Substituting into (3.6) produces, after multiplication by f2(σ), an error term of O( σ2

n4 ) that can be absorbed into En(σ) so that (3.6) reads

kn ⋅ k′n = 2(1 + f2(σ) ⋅
1
(πn)2 ) + En(σ).

The main statement (3.2) with the prescribed error term (3.4) of Proposition 3.1 finally follows upon substituting the latter estimate
corresponding to n and m into (3.5). ◻

Proposition 3.2.

a. For all (n, m) and (n′, m′) so that n, m, n′, m′ ≥ 1 and n2 +m2 = n′2 +m′2, we have

1
n2 +

1
m2 >

1
n′2
+ 1

m′2
⇔ nm < n′m′. (3.7)

b. Uniformly, for all (n, m) and (n′, m′) so that n, m, n′, m′ ≥ 1 and n2 +m2 = n′2 +m′2, nm < n′m′,

1
n4 +

1
m4 +

1
n′4
+ 1

m′4
= O((( 1

n2 +
1

m2 ) − (
1

n′2
+ 1

m′2
))). (3.8)

Note that the rhs of (3.8) is positive by (3.7).

c. As σ → 0, uniformly, for all (n, m) and (n′, m′) so that n, m, n′, m′ ≥ 1, n2 +m2 = n′2 +m′2, and n′m′ > nm,

∣E(n,m)(σ)∣ + ∣E(n′ ,m′)(σ)∣ = oσ→0( f 2(σ) ⋅ ((
1

n′2
+ 1

m′2
) − ( 1

n2 +
1

m2 ))), (3.9)

with the rhs of (3.9) being positive by part (a) and (3.3).

Proof of Proposition 3.2. The first statement (3.7) of Proposition 3.2 is straightforward. For the second one (3.8), we denote K ∶= n2 +m2

= n′2 +m′2 and choose any parameter 0 < ϵ < 1 sufficiently small, whose precise value is irrelevant, except that it will be fixed throughout this
proof. We further assume w.l.o.g. that n ≤ m and n′ ≤ m′ (and nm < n′m′), implying, in particular, that

n, n′ ≤
√

K
2

and m, m′ ≥
√

K
2

(3.10)
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and n < n′. We write
( 1

n2 +
1

m2 −
1

n′2
− 1

m′2
) = ( K

n2m2 −
K

n′2m′2
)

= K
n2m2n′2m′2

(n′2m′2 − n2m2) = K(nm + n′m′)
n2m2n′2m′2

(n′m′ − nm).
(3.11)

First, assume that both n, n′ > ϵ
√

K. Then, using the trivial bound n′m′ − nm ≥ 1 in (3.11) yields

( 1
n2 +

1
m2 −

1
n′2
− 1

m′2
) ≥ 1

n2n′m′
≫ ϵ−2

n4 ≫ ϵ−2 ⋅ ( 1
n4 +

1
m4 +

1
n′4
+ 1

m′4
). (3.12)

Otherwise, we assume (w.l.o.g. thanks to the above assumptions) that n ≤ ϵ
√

K. In this case, we can improve upon the trivial lower bound
n′m′ − nm ≥ 1 in the following way.

Define
f K(n) ∶= n ⋅

√
K − n2 = K ⋅ g(n/

√
K),

where g(y) ∶= y ⋅
√

1 − y2 on y ∈ [0, 1] [in fact, in our context, y ∈ [0, 1/
√

2]; see (3.10)], and under the assumptions mentioned above, if
n < ϵ

√
K, we have

n′m′ − nm = f K(n′) − f K(n) = K(g(n′/
√

K) − g(n/
√

K)) ≥ 1
2

√
K(n′ − n) > 0,

and assuming that ϵ > 0 is sufficiently small (recall that n ≤ ϵ
√

K), we claim that

g(n′/
√

K) − g(n/
√

K) ≥ 1
10

√
K(n′ − n) (3.13)

so that
n′m′ − nm≫

√
K(n′ − n) > 0 (3.14)

improves on the trivial bound.
Indeed, by the mean value theorem, for some ξ ∈ ( n√

K
, n′√

K
),

g(n′/
√

K) − g(n/
√

K) = n′ − n√
K

g′(ξ). (3.15)

Now, n/
√

K < n′/
√

K < 1/
√

2 by (3.10), and so ξ ∈ (0, 1√
2
). In this range, the derivative

g′(u) = 1 − 2u2
√

1 − u2

is positive and decreasing until it vanishes at u = 1√
2

. The upshot is that so long as we stay away from this only zero, (3.15) yields a bound of

the desired type (3.13) (which is why we separately treated the case n > ϵ
√

K in the first place). To this end, we further subdivide the interval
(0, 1/

√
2): first, assuming n√

K
< n′√

K
< 1

2 (allowed since n/
√

K ≤ ϵ), (3.15) reads

g(n′/
√

K) − g(n/
√

K) ≥ 1√
3
⋅ n′ − n√

K
(3.16)

since for ξ ∈ (0, 1/2), one has g′(ξ) ≥ g′(1/2) = 1√
3

as g′(⋅) is decreasing. Otherwise, (3.16) holds true on the full range ξ ∈ (0, 1/
√

2) with

the constant 1/
√

3 replaced by a slightly smaller constant [but still bigger than 1
10 claimed in (3.13)] since g is increasing.

Inserting the nontrivial bound (3.14) into the rhs of (3.11), we have

∣ 1
n2 +

1
m2 −

1
n′2
− 1

m′2
∣ ≫ K3/2(nm + n′m′)(n′ − n)

n2m2n′2m′2

≫ (nm + n′m′)(n′ − n)
n2n′2 m

≫ (n
′ − n)
n2n′

.

However,
(n′ − n)

n2n′
≫ 1

n3
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since the ratio of the lhs. to the rhs is
(n′ − n)/n2n′

1/n3 = n(n′ − n)
n + (n′ − n) =

1
1

n′−n +
1
n
≥ 1

2
.

This yields

∣ 1
n2 +

1
m2 −

1
n′2
− 1

m′2
∣ ≫ 1

n3 ≥
1
n4

≫ 1
n4 +

1
m4 +

1
n′4
+ 1

m′4
.

(3.17)

All in all, in either case, (3.12) or (3.17) yields the second statement (3.8) of Proposition 3.2. The third statement (3.9) of Proposition 3.2
follows directly from (3.8) on recalling (3.4) and (3.3). ◻

Proposition 3.3. There exists σ0 > 0 so that for all σ ∈ (0, σ0), if n, n′, m′ ≥ 1, then Λn,0(σ) ≠ Λn′ ,m′(σ).

Proof. It follows from Proposition 3.1 that

Λn′ ,m′(σ) = π2(n′2 +m′2) + 8σ − ( 1
n′2
+ 1

m′2
) ⋅ (σ2 +O(σ3)) = π2(n′2 +m′2) + 8σ +O(σ2), (3.18)

where the contribution of the error term E(n′ ,m′) is absorbed inside O(σ3), and

Λn,0 = π2n2 + 6σ +O(σ2), (3.19)

with the constant involved in the ‘O′-notation in both (3.18) and (3.19) being absolute. Hence, for σ > 0 sufficiently small, if Λn,0(σ)
= Λn′ ,m′(σ), then necessarily n′2 +m′2 =m2.

Next, if n′2 +m′2 = n2, then from (3.18) and (3.19), we obtain

Λn,0(σ) = k0(σ)2 + km(σ)2 < kn′(σ)2 + km′(σ)2 = Λn′ ,m′(σ).

It follows trivially that for all σ > 0, (n, m) ≠ (0, 0), one has Λ0,0(σ) < Λn,m(σ). ◻

Proof of Theorem 1.1. The statement of Theorem 1.1 is equivalent to having no relations,

Λn,m(σ) = Λn′ ,m′(σ),

for σ sufficiently small, (n, m) ≠ (n′, m′), where, once again, we assume w.l.o.g. that n ≤ m, n′ ≤ m′ [recall that for L = 1, Λn,m(⋅) = Λm,n(⋅)].
By Proposition 3.3, we may further assume that n, m, n′, m′ ≥ 1, so use Proposition 3.1 to write

Λ′n,m(σ) = 4(2 + f 2(σ)
π2 (

1
n2 +

1
m2 )) + E(n,m)(σ), (3.20)

with the error term given by (3.4). Using Lemma 2.2(b), we compute

Λ′′n,m(0) = −8( 1
(πn)2 +

1
(πm)2 ). (3.21)

Writing the analog of (3.21) for (n′, m′) in place of (n, m) and together with Proposition 3.2(a), we deduce that for (n, m) and (n′, m′) with
n2 +m2 = n′2 +m′2 and n′m′ > nm, there exists some [a priori dependent on (n, m) and (n′, m′)] neighborhood of the origin so that

Λn′ ,m′(σ) > Λn,m(σ).

To make this neighborhood absolute, we compare the expansions (3.20) of Λ′n,m(⋅) for (n, m) and (n′, m′) with n2 + m2 = n′2 + m′2.
We have Λ′n,m(0) = Λ′n′ ,m′(0), and Propositions 3.2(a) and 3.2(c), bearing in mind that f 2(σ) < 0 for all σ > 0, imply that there exists some
absolute σ0 > 0 so that

Λ′n,m(σ) < Λ′n′ ,m′(σ)

on σ ∈ (0, σ0], which concludes the Proof of Theorem 1.1 for (n, m) and (n′, m′) on the same circle.
Finally, if (n, m) and (n′, m′) are not on the same circle, then (3.2) shows that Λ′n,m(⋅) −Λ′n′ ,m′(⋅) is bounded by an absolute constant

around the origin (any bound B > 0 could be taken for sufficiently small neighborhood of the origin). Therefore, since
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∣Λn,m(⋅) −Λn′ ,m′(⋅)∣ ≥ 1

for σ > 0 sufficiently small, Λn,m(⋅) −Λn′ ,m′(⋅)maintains its sign. ◻

B. Existence of spectral degeneracies

Proposition 3.4. There exist a number σ > 0 so that Λ3,4(σ) = Λ1,5(σ).

Proof. By Lemma 2.1(a) and recalling the notation (3.1), we have Λ3,4(0) = 25π2 and Λ1,5(0) = 26π2, whereas Λ3,4(+∞) = 41π2 and
Λ1,5(+∞) = 40π2. Therefore, the continuous function σ ↦ Λ3,4(σ) −Λ1,5(σ) changes sign, and so, by the intermediate value theorem, it
vanishes at some σ > 0, i.e., Λ3,4(σ) = Λ1,5(σ), as claimed. ◻

IV. SPECTRAL DEGENERACIES FOR RECTANGLES: PROOF OF THEOREMS 1.2–1.3
A. Existence of multiplicities for irrational L2

The following theorem asserts that, on recalling the notation (1.2), there exist relations of the type

ΛL;n,m(σ) = ΛL;0,m′(σ), (4.1)

with σ > 0 arbitrarily small and n, m, m′ ≥ 1 (depending on σ). This, in particular, implies Theorem 1.2. For some L > 0, spectral degeneracies
of the type (4.1) subject to n, m, m′ ≥ 1 are the only degeneracies, at least for σ > 0 sufficiently small; see Theorem 4.4.

Theorem 4.1. Let L2 be a positive irrational number. Then, there exists a sequence of Robin parameters σj ↘ 0 and triples of positive
integers n, m, m′ ≥ 1 (depending on σj) so that

ΛL;n,m(σ) = ΛL;0,m′(σ). (4.2)

The following result will be required toward giving a Proof of Theorem 4.1.

Lemma 4.2. Let θ > 0 be a positive irrational number. For every ϵ > 0, there are positive integer solutions n, m, m′ > 0 of the inequality

− ϵ < n2θ +m2 −m′2 < 0. (4.3)

Proof. For any irrational θ, Hardy and Littlewood5 proved in 1914 that the sequence of fractional parts {θn2 mod 1 : n = 1, 2, . . .} is
dense in the unit interval [0, 1) (improved to uniform distribution by Weyl shortly afterward). Thus, there are n1 ≫ 1 and j = j(n1) ≫ 1 for
which

− ϵ
4
< θn2

1 − j < 0.

Multiplying by 4, we obtain

−ϵ < θ(2n1)2 − 4j < 0.

Let

n = 2n1, m = j − 1, m′ = j + 1

(which are positive). Then, m′2 −m2 = 4j, and we obtain

−ϵ < θn2 +m2 −m′2 < 0

with n, m, m′ > 0, as required. ◻

Remark 4.3. The Proof of Lemma 4.2 constructs infinitely many triples satisfying (4.3).

Proof of Theorem 4.1. Take any sequence ϵj → 0, and find a triple of positive integers (n, m, m′) (depending on ϵj) as in Lemma (4.2) so
that we have for θ = L2,

− ϵj < ΛL;n,m(0) −ΛL;0,m′(0) =
π2

θ
⋅ (n2θ +m2 −m′2) < 0. (4.4)
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Next note that, for every L > 0 and integers n, m ≥ 1, one has

Λ′L;n,m(σ) = 4((1 + 1
L
) + 1

π2 (
f 2(σ)

n2 + f 2(L ⋅ σ)
Lm2 )) + E(n,m)(σ), (4.5)

where the error term is still bounded by (3.4). Indeed, in accordance with Lemma 2.2, one has

(kL;n(σ)2)′ = 1
L
(kn(⋅)2)′∣Lσ =

4
L
(1 + f 2(Lσ)

π2n2 ) +O(σ4

n4 ),

and the rest follows from the definition of ΛL;n,m(⋅).
Now, comparing (4.5) to (2.4), we have the following expansions:

ΛL;n,m(σ) = ΛL;n,m(0) + 4σ ⋅ (1 + 1
L
) +O(σ2)

and
ΛL;0,m′(σ) = ΛL;0,m′(0) + σ ⋅ (2 + 4

L
) +O(σ2). (4.6)

Therefore, the difference between the Robin eigenvalues is given by

ΛL;n,m(σ) −ΛL;0,m′(σ) = ΛL;n,m(0) −ΛL;0,m′(0) + 2σ +O(σ2). (4.7)

In particular, if we choose σ = ϵj, (4.4) with (4.7) together implies that for j sufficiently large,

ΛL;n,m(σ) −ΛL;0,m′(σ) > 0.

Therefore, by the intermediate value theorem, there is some σj ∈ (0, ϵj) so that the equality (4.2) holds, which is the claimed multiplicity. ◻

B. A bound on multiplicities for badly approximable L2

Theorem 4.4(a) asserts that if θ ∶= L2 is badly approximable in the sense of (1.5), then the only possible spectral degeneracies are either
the type ΛL;n,m(σ) = ΛL;n′ ,0(σ) or ΛL;n,m(σ) = ΛL;0,m′(σ) for some n, m, n′, m′ ≥ 0. Theorems 4.4(b) and 4.4(c) will deduce the bound for the
spectral degeneracies claimed as part of Theorem 1.3.

Theorem 4.4. Assume that L2 is badly approximable.

a. For σ0 > 0 sufficiently small, for all σ ∈ [0, σ0], there are no spectral multiplicities ΛL;n,m = ΛL;n′ ,m′ for (n, m) ≠ (n′, m′) with all
n, m, n′, m′ ≥ 1.

b. For σ ∈ [0, σ0] sufficiently small, all multiplicities are bounded by 3, i.e., all eigenspaces are of dimension at most 3.
c. If, in addition, L is badly approximable, then all multiplicities are bounded by 2.

Proof of Theorem 4.4(a). We will show that, under the hypotheses of Theorem 4.4, the sign of

ΛL;n,m(σ) −ΛL;n′ ,m′(σ),

which does not vanish at the origin, will be maintained in a neighborhood of the origin, which is independent of n, m, n′, m′. At this point, we
will assume for simplicity that n ≠ n′. We will further assume w.l.o.g. that ΛL;n,m(0) > ΛL;n′ ,m′(0). Abbreviating

θ ∶= L2,

then necessarily
ΛL;n,m(0) −ΛL;n′ ,m′(0) = πθ((n2 ⋅ θ +m2) − (n′2 ⋅ θ +m′2))

= πθ((n2 − n′2) ⋅ θ + (m2 −m′2)) ≫ (n2 − n′2)−1 (4.8)

since θ = L2 is badly approximable. On the other hand, (4.5) implies that

ΛL;n,m(σ) −ΛL;n′ ,m′(σ)

= ΛL;n,m(0) −ΛL;n′ ,m′(0) +O(σ2 ⋅ (∣ 1
n2 +

1
n′2
+ 1

m2 +
1

m′2
∣)),

(4.9)
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also following from a more direct argument, i.e., a truncated version of the expansion (2.7), where the error term is of smaller order of
magnitude compared to the secondary term in (2.7). Note that the statement of Theorem 4.4(a) is trivial, unless the lhs of (4.8) is <1, which
will be assumed from now on, so that

∣n2 − n′2∣ ≪ ∣m2 −m′2∣. (4.10)

We claim that
1

∣n2 − n′2∣ ≫ ∣
1
n2 +

1
n′2
+ 1

m2 +
1

m′2
∣

so that, bearing in mind (4.8), the main term on the rhs of (4.9) is at least of the same order of magnitude as the error term on the rhs of (4.9)
not factoring in the factor σ2, implying no multiplicities for σ sufficiently small. First, clearly,

1
∣n2 − n′2∣ ≫

1
n2 +

1
n′2

,

so we are left to deal with bounding
1

∣n2 − n′2∣ ≫
1

m2 +
1

m′2
. (4.11)

To this end, we use (4.10) to obtain
1

∣n2 − n′2∣ ≫
1

∣m2 −m′2∣ ≫
1

m2 +
1

m′2
,

which is (4.11). ◻

Proof of Theorem 4.4(b) and 4.4(c). Thanks to Theorem 4.4(a), for σ sufficiently small, a spectral multiplicity is of the type

kn(σ)2 + 1
θ
⋅ km(σ ⋅ L)2 = k0(σ)2 + 1

θ
⋅ km′(σ ⋅ L)2 (4.12)

or

kn(σ)2 + 1
θ
⋅ km(σ ⋅ L)2 = kn′(σ)2 + 1

θ
⋅ k0(σ ⋅ L)2 (4.13)

or

kn(σ)2 + 1
θ
⋅ k0(σ ⋅ L)2 = k0(σ)2 + 1

θ
⋅ km′(σ ⋅ L)2 (4.14)

for some n, m, n′, m′ ∈ Z≥1 (taking into account that k0(σ)2 + 1
θ ⋅ k0(σ ⋅ L)2 is arbitrarily small for σ sufficiently small). Given (n, m) ∈ Z2

≥1
or m′ ∈ Z≥1, at most one lattice point (n′, 0) can possibly satisfy either (4.13) or (4.14) [respectively, (4.12) or (4.14)], and the same holds
analogously for (0, m′). It follows that the multiplicities are bounded by 3, concluding Theorem 4.4(b).

The above also shows that if multiplicity 3 actually occurs with σ arbitrarily small, then

kn(σ)2 + 1
θ
⋅ km(σ ⋅ L)2 = k0(σ)2 + 1

θ
⋅ km′(σ ⋅ L)2 = kn′(σ)2 + 1

θ
⋅ k0(σ ⋅ L)2 (4.15)

is satisfied. Using only the latter of the two equalities of (4.15), together with (2.7) and (2.4), we obtain

0 = (k0(σ)2 + 1
θ
⋅ km′(σ ⋅ L)2) − (kn′(σ)2 + 1

θ
⋅ k0(σ ⋅ L)2) = π2

θ
(m′2 − n′2θ) +O(σ). (4.16)

In particular, if, as we assumed, (4.15) occurs with σ arbitrarily small [i.e., (4.16) holds for a sequence σj → 0], then the quadratic form

n′2θ −m′2 (4.17)

attains arbitrarily small values. However,

n′2θ −m′2 = (n′L −m′) ⋅ (n′L +m′) ≫ 1
n′
⋅ (n′L +m′) ≫ 1

by the assumption on L being badly approximable, contradicting our conclusion on the quadratic form (4.17) attaining arbitrarily small
values. ◻
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C. A bound on the number of degenerate eigenvalues
Recall Weyl’s law (1.3) for the Robin spectrum of RL and the function Nmult(λ) counting the number of multiple eigenvalues ≤ λ,

including multiplicities. As a corollary of the arguments above, we deduce the bound (1.4) for Nmult(λ), thus concluding the Proof of
Theorem 1.3.

Corollary 4.5. If L2 is badly approximable, then

Nmult(λ) ≪
√

λ.

Proof. Indeed, we saw that the only possible source of multiplicities is when ΛL;n,m = ΛL;n′ ,0 or ΛL;n,m = ΛL;0,m′ and that each source, e.g.,
ΛL;0,m′ , coming from one of the axes can at most contribute a threefold degeneracy because we cannot have ΛL;0,m′ = ΛL;0,m′′ with m′ ≠ m′′.
Moreover, the number of eigenvalues

ΛL;0,m′ = k0(σ)2 + ( 1
L

km′(Lσ))
2
≤ λ

is at most the number of m′ ≥ 0 with km′(Lσ) ≤ L
√

λ, which is O(
√

λ) since km′ = nπ +O(1). ◻

D. An auxiliary result
For future reference, we record the following result concerning the asymptotic behavior of the RN gaps, similar to one used previously,

but simpler in that it has no control over the error term as σ > 0 is varying.

Proposition 4.6. For n, m ≥ 0,

ΛL;n,m(σ) −ΛL;n,m(0) = (1 + 1
L
)4σ +OL,σ(

1
1 + n2 +

1
1 +m2 ).

Note that the “main term” is

(1 + 1
L
)4σ = 2

length∂RL

AreaRL
σ, (4.18)

which is the mean value of the RN gaps, by our general theory.11 For n fixed, m→∞, the corresponding sequence of RN gaps is

ΛL;n,m(σ) −ΛL;n,m(0) = kn(σ)2 − kn(0)2 + 1
L2 (km(σL)2 − km(0)2) →

kn(σ)2 − kn(0)2 + 1
L2 4σL = kn(σ)2 − kn(0)2 + 4

σ
L

by Lemma 2.2(d), and we observe that

kn(σ)2 − kn(0)2 + 4
σ
L
< 4σ(1 + 1/L)

by Lemma 2.2(b), at least, for σ sufficiently small. That is, the RN gaps for this infinite (though rare) sequence of energies are strictly less than
the mean (4.18). In particular, for n = 0, we obtain, recalling Lemma 2.1(b),

k0(σ)2 − kn(0)2 + 4
σ
L
< 2σ + 4

σ
L
= 4σ(1/2 + 1/L),

again at least for σ sufficiently small. Likewise, one may obtain infinite sequences of RN gaps that are asymptotic to a value strictly less than
(4.18) by fixing m and taking n→∞.

Figure 2 illustrates 2000 RN gaps for the square, σ = 1. Here, k0(σ)2 − kn(0)2 + 4 = 5.707 . . . corresponds to the bottom trend line in the
picture and k1(σ)2 − kn(1)2 + 4 = 7.622 75 . . . corresponds to the second to bottom trend line.

Proof. The statement of Proposition 4.6 follows directly from (4.5) for n, m ≥ 1 and from (4.6) for n = 0, m ≥ 1 [and the trivial bound
ΛL;0,0 = O(1)]. ◻

V. BOUNDEDNESS OF ROBIN–NEUMANN GAPS: PROOF OF THEOREM 1.4

Lemma 5.1. There exists an absolute constant C0 > 0 so that for all n ≥ 0 and σ > 0,

kn(σ)2 − kn(0)2 ≤ C0 ⋅ σ. (5.1)
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FIG. 2. 2000 RN gaps for the square, σ = 1. The bulk of the RN gaps tends to mean 8. The secondary curves correspond to lattice points whose minimal coordinate is small,
in particular, lattice points lying on the axes, whose RN gaps are less than 6. Red: mean 8; green: moving average.

Proof. For σ > c0 ⋅ (n + 1) with a c0 sufficiently small parameter to be chosen later, we use the trivial bound

kn(σ)2 − kn(0)2 = (kn(σ) − kn(0)) ⋅ (kn(σ) + kn(0)) ≤ π ⋅ 2(n + 1)π ≤ 2π2

c0
⋅ σ.

Otherwise, for σ ≤ c0 ⋅ (n + 1) with c0 sufficiently small, assume that n ≥ 1, and we will take care of n = 0 separately below. Recall the secular
equation

tan(k) = 2σk
k2 − σ2 . (5.2)

In this case, the denominator on the rhs of (5.2) is bounded away from 0 so that the rhs of (5.2) is ≤ 4 σ
k < 4c0

n+1
nπ arbitrarily small by

appropriately choosing c0, and then, since arctan(x) ≤ x for x > 0,

kn(σ) − kn(0) = kn(σ) − nπ ≤ 4
σ

kn(σ)
.

We then have
kn(σ)2 − kn(0)2 = (kn(σ) − kn(0)) ⋅ (kn(σ) + kn(0)) ≤ 4

σ
kn(σ)

⋅ 2(n + 1)π ≤ 8π
n + 1

nπ
⋅ σ

= 8
n + 1

n
⋅ σ ≤ 16σ.

Finally, we take care of the remaining case of n = 0 under the assumption σ ≤ c0(n + 1) = c0. Recall that [Lemma 2.1(b)] here k0(σ) > σ.
Denote k = k0(σ) < π

2 for σ < π
2 [Proposition 2.1(c)]. Therefore, we can use k < π

2 so that k < tan(k), and (2.2) reads

k < tan k = 2σk
k2 − σ2 ,

and we manipulate with that to write (recall that the denominator is positive)

k2 − σ2 < 2σ,

and then,
k2 < 2σ + σ2 < 3σ,

valid for σ < c0, provided that c0 is sufficiently small. ◻

Lemma 5.2. There exists an absolute constant c0 > 0 so that for all n ≥ 0 and σ ∈ [0, 1],

kn(σ)2 − kn(0)2 ≥ c0 ⋅ σ. (5.3)
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Proof. The main argument behind the Proof of Lemma 5.2 is similar to that of Lemma 5.1. First, assume that n ≥ 1 so that here kn(σ) ≥ π,
and the denominator of the rhs of (2.2) is bounded away from 0. It then follows that tan k > 2σ

k , and then,

kn(σ) − kn(0) = kn(σ) − nπ > c1
σ

kn(σ)

with c1 sufficiently small. We then have for n ≥ 1,

kn(σ)2 − kn(0)2 = (kn(σ) − kn(0)) ⋅ (kn(σ) + kn(0)) > c1
σ

kn(σ)
⋅ kn(σ) = c1 ⋅ σ,

which is (5.3) with c1 > 0 in place of c0. That (5.3) holds with n = 0 follows directly from (2.4) for all σ ∈ [0, 1], at the expense of further
decreasing the constant to some c0. ◻

Proof of Theorem 1.4. Recall that the energies {λL
j (σ)}j≥1 are the sorted list of {ΛL;n,m(σ)}n,m≥0. The main obstacle in inferring the upper

and the lower bounds (1.8) and (1.9) of Theorem 1.4 directly from the corresponding bounds in lemmas 5.1 and 5.2 is that the numbers
ΛL;n,m(σ) can mix so that the gaps dj will not, in general, be equal to ΛL;n,m(σ) −ΛL;n,m(0). We will overcome this obstacle by appealing to an
argument inspired by an idea behind the proof of Ref. 11 (Theorem 1.7) for both (1.8) and (1.9). Recall the spectral function N(λ) = NL;σ(λ)
as in (1.3). Set

aL ∶= 1 + 1
L
= 1

2
length(RL)
Area(RL)

. (5.4)

First, we prove (1.8). Lemma 5.1 yields a number C0 > 0 so that if t ∶= λj(0), then for every σ > 0 and n, m ≥ 0 so that ΛL;n,m(0) = t, one
has

ΛL;n,m(σ) ≤ t + C0 ⋅ σ + C0 ⋅
1
L2 σL = t + C0(1 + 1

L
)σ.

We deduce that Nσ(t + C0aL ⋅ σ) ≥ j with aL as in (5.4), and hence, λj(σ) ≤ t + C0aL ⋅ σ. Finally, we infer dj(σ) = λj(σ) − t ≤ C0aL ⋅ σ, which,
thanks to (5.4) and (1.6), is identified as (1.8).

Next, we show (1.9). Using the same idea as above, Lemma 5.2 gives an absolute c0 > 0 so that if t ∶= λj(0), then for every σ ∈ [0, 1] and
n, m ≥ 0 with ΛL;n,m(0) = t, one has

ΛL;n,m(σ) ≥ t + c0aL ⋅ σ.

Therefore, for every t′ < t + c0 ⋅ σ, Nσ(t′) < j, and thus,

λj(σ) ≥ t + c0aL ⋅ σ.

Finally, we obtain

dj(σ) = λj(σ) − t ≥ c0aLσ,

which is (1.9) on recalling (5.4) and (1.6) again. ◻

VI. PAIR CORRELATION: PROOF OF THEOREM 1.5
Fix f ∈ Cc(R) even. The associated pair correlation function is

Rσ
2( f , N) ∶= 1

N ∑
1≤j≠k≤N

f (λj(σ) − λk(σ)
s̄

),

where the mean spacing s is given by (1.10).

Proposition 6.1. For any rectangle RL and any fixed σ > 0,

∣Rσ
2( f , N) − R0

2( f , N)∣ ≪ N−1/10 → 0.

Proof. For notational convenience, in what follows, we will neglect the asymptotically constant mean spacing (1.10) being equal to 4π
Area RL

and proceed as if {λj} had mean spacing asymptotic to unity. Note that a feature of the pair correlation function is that, by its definition, the
ordering of the eigenvalues is irrelevant. Therefore, we can compute it by taking for some large N ≫ 1,
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Ñ(σ) = #{k : λk(σ) ≤ N} = #{n, m ≥ 0 : ΛL;n,m(σ) ≤ N},

which, by Weyl’s law, is asymptotically Ñ(σ) ≈ N, and then,

Rσ
2( f , Ñ) = 1

Ñ(σ) ∑
ΛL;n,m(σ),ΛL;n′ ,m′ (σ)≤N
(n,m)≠(n′ ,m′)

f (ΛL;n,m(σ) −ΛL;n′ ,m′(σ)).

Since ΛL;n,m(σ) = ΛL;n,m(0) +Oσ(1), we also know that Ñ(σ) ∼ Ñ(0).
Therefore, we can bound the difference between the Neumann and Robin pair correlations as

∣Rσ
2( f , Ñ) − R0

2( f , Ñ)∣ ≪
1
N ∑

ΛL;n,m(0),ΛL;n′ ,m′ (0)≤N
(n,m)≠(n′ ,m′)

∣ f (ΛL;n,m(σ) −ΛL;n′ ,m′(σ)) − f (ΛL;n,m(0) −ΛL;n′ ,m′(0))∣. (6.1)

Set
dn,m(σ) ∶= ΛL;n,m(σ) −ΛL;n,m(0)

[not to be confused with the actual RN gaps λk(σ) − λk(0)]. These are bounded, say dn,m(σ) ≤ C (which depends on L and σ); moreover, by
Proposition 4.6, there is C1 > 0 so that

∣dn,m(σ) − (1 + 1
L
)4σ∣ = ∣ΛL;n,m(σ) −ΛL;n,m(0) − (1 + 1

L
)4σ∣

≤ C1(
1

1 + n2 +
1

1 +m2 ).
(6.2)

Assume that f is supported in [−ρ, ρ]. Take a function g ∈ C∞c (R) that is non-negative: g ≥ 0, and so,

g ≡ max ∣ f ′∣ on [−2(ρ + 2C1), 2(ρ + 2C1)], (6.3)

where C1 is as in (6.2). In particular, g ≥ ∣ f ′∣, as depicted in Fig. 3.
We first show that

∣Rσ
2( f , Ñ) − R0

2( f , Ñ)∣ ≪
1
N ∑ g(ΛL;n,m(0) −ΛL;n′ ,m′(0)) ⋅ (

1
1 + n2 +

1
1 +m2 +

1
1 + n′2

+ 1
1 +m′2

). (6.4)

Indeed, to contribute to Rσ
2( f , Ñ) − R0

2( f , Ñ) in (6.1), it is forced that at least one of the two eigenvalue differences

ΛL;n,m(σ) −ΛL;n′ ,m′(σ), ΛL;n,m(0) −ΛL;n′ ,m′(0) (6.5)

FIG. 3. Sketch of ∣ f ′∣ and g.
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is in supp f ⊆ [−ρ, ρ]. Since the difference between these two expressions (6.5) is

dn,m(σ) − dn′ ,m′(σ) ∈ [−2C1, 2C1]

by (6.2), if one of the expressions (6.5) is in [−ρ, ρ], then both

ΛL;n,m(σ) −ΛL;n′ ,m′(σ), ΛL;n,m(0) −ΛL;n′ ,m′(0) ∈ [−(ρ + 2C1), ρ + 2C1]. (6.6)

For such a pair, we have by the mean value theorem,

f (ΛL;n,m(σ) −ΛL;n′ ,m′(σ)) − f (ΛL;n,m(0) −ΛL;n′ ,m′(0))
= (dn,m(σ) − dn′ ,m′(σ)) f ′(ξ(n, m, n′, m′)) (6.7)

for some ξ(n, m, n′, m′) between ΛL;n,m(σ) −ΛL;n′ ,m′(σ) and ΛL;n,m(0) −ΛL;n′ ,m′(0). Proposition 4.6 implies that

dn,m(σ) − dn′ ,m′(σ) ≤ C1(
1

1 + n2 +
1

1 +m2 +
1

1 + n′2
+ 1

1 +m′2
). (6.8)

In addition, if some summand
∣ f (ΛL;n,m(σ) −ΛL;n′ ,m′(σ)) − f (ΛL;n,m(0) −ΛL;n′ ,m′(0))∣

on the rhs of (6.1) does not vanish, then

∣ f ′(ξ(n, m, n′, m′))∣ ≤ max ∣ f ′∣ = g(ΛL;n,m(0) −ΛL;n′ ,m′(0)) (6.9)

by (6.3) and (6.6). The claimed inequality (6.4) follows upon substituting (6.9) and (6.8) into (6.7) and finally into (6.1).
Next, we claim that the rhs of (6.4) satisfies the inequality

1
N ∑ g(ΛL;n,m(0) −ΛL;n′ ,m′(0)) ⋅ (

1
1 + n2 +

1
1 +m2 +

1
1 + n′2

+ 1
1 +m′2

) ≪ N−
1

10 , (6.10)

where the sum is over all pairs with (n, m) ≠ (n′, m′). To see this, we take a large parameter M > 0 to be chosen later and divide the summands
into two categories: (1) those with min(n, m, n′, m′) >M and (2) the rest. An individual summand with min(n, m, n′, m′) >M is bounded,

1
1 + n2 +

1
1 +m2 +

1
1 + n′2

+ 1
1 +m′2

≪ 1
M2 ,

so that the total contribution of the summands of the first category is bounded by

1
N ∑ g(ΛL;n,m(0) −ΛL;n′ ,m′(0))

1
M2 =

1
M2 R0

2(g, N)

by forgetting the restriction min(n, m, n′, m′) >M. Since the pair correlation function for any rectangle is bounded (Ref. 2, Lemma 3.1) by

R0
2(g, N)≪gNε,

it follows that the contribution to the sum (6.10) of summands of the first category is dominated by

≪ Nϵ

M2 . (6.11)

We next treat the contribution to the sum (6.10) of second category summands, those with at least one of the coordinates small ≤M, say
n ≤M, where we use the trivial bound

1
1 + n2 +

1
1 +m2 +

1
1 + n′2

+ 1
1 +m′2

≪ 1.

Hence, the contribution to the sum (6.10) of the second category summands is bounded by

1
N ∑

0≤n≤M
∑

0≤m≪√N
∑

0≤n′ ,m′≪√N

g(ΛL;n,m(0) −ΛL;n′ ,m′(0))

≪ 1
N ∑

0≤n≤M
∑

0≤m≪√N

#{(n′, m′) ∈ [0,
√

N]2 : ∣ΛL;n,m(0) −ΛL;n′ ,m′(0)∣ ≤ C2} (6.12)
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since supp g ⊆ [−C2, C2] with C2 = ρ + 2C1. Given (n, m), the term

#{(n′, m′) ∈ [0,
√

N]2 : ∣ΛL;n,m(0) −ΛL;n′ ,m′(0)∣ ≤ C2}

is the number of lattice points in a quarter of an elliptic annulus of width≪ 1√
ΛL;n,m(0)

and constant area (both depending on C2).

While we expect the number of points in such a narrow annulus to be very small, say≪ Nϵ, we are unable to show this for irrational L2.
Instead, we give a crude bound of≪ N1/3: We use the classical bound on the number of lattice point in a dilated ellipse (for the circle, this is
due to Sierpinski in 1906),

#{(n′, m′) ∈ Z2 : ΛL;n′ ,m′(0) ≤ x} = Ax +O(x1/3),

where A is the area of the ellipse. Therefore, a crude bound for the number of points in the annulus is

#{(n′, m′) ∈ Z2
≥0 : ∣ΛL;n,m(0) −ΛL;n′ ,m′(0)∣ ≤ C2}

= A(ΛL;n,m(0) + C2) − A(ΛL;n,m(0) − C2) +O(ΛL;n,m(0)1/3) ≪ ΛL;n,m(0)1/3.

Since ΛL;n,m(0) ≪ N, we obtain
#{(n′, m′) ∈ Z2

≥0 : ∣ΛL;n,m(0) −ΛL;n′ ,m′(0)∣ ≤ C2} ≪ N1/3. (6.13)

Summing the inequality (6.13) [whose l.h.s. is clearly greater than or equal to the summands on the rhs of (6.12)] over n ≤M and m≪
√

N
and substituting into (6.12) yield the bound

1
N ∑

0≤n≤M
∑

0≤m≪√N
∑

0≤n′ ,m′≪√N

g(ΛL;n,m(0) −ΛL;n′ ,m′(0))

≪ 1
N ∑

1≤n≤M
∑

0≤m≪√N

N1/3 ≪MN−1/6
(6.14)

for the contribution of the second category summands. Consolidating the contributions (6.11) and (6.14) of the first and the second categories
summands, respectively, we finally obtain a bound for the sum in (6.10),

1
N ∑ g(ΛL;n,m(0) −ΛL;n′ ,m′(0)) ⋅ (

1
1 + n2 +

1
1 +m2 +

1
1 + n′2

+ 1
1 +m′2

)

≪ Nϵ

M2 +MN−1/6 ≪ N−1/10

on taking M = N1/18+ϵ/3. ◻
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