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Abstract: Quantum systems whose classical counterpart have ergodic dynamics are
quantum ergodic in the sense that almost all eigenstates are uniformly distributed in
phase space. In contrast, when the classical dynamics is integrable, there is concentra-
tion of eigenfunctions on invariant structures in phase space. In this paper we study
eigenfunction statistics for the Laplacian perturbed by a delta-potential (also known as a
point scatterer) on a flat torus, a popular model used to study the transition between inte-
grability and chaos in quantum mechanics. The eigenfunctions of this operator consist
of eigenfunctions of the Laplacian which vanish at the scatterer, and new, or perturbed,
eigenfunctions. We show that almost all of the perturbed eigenfunctions are uniformly
distributed in configuration space.

1. Introduction

Quantum systems whose classical counterpart have ergodic dynamics satisfy Schnir-
elman’s theorem, which asserts that almost all eigenstates are uniformly distributed in
phase space in an appropriate sense [7,21,23]. In contrast, when the classical dynamics
is integrable, there is concentration of eigenfunctions on invariant structures in phase
space. In this paper we study eigenfunction statistics for an intermediate system, that of
a point scatterer on the flat torus.

The use of point scatterers, or δ-potentials, goes back to the Kronig-Penney model
[13] which is an idealized solvable model used to explain conductivity in a solid crystal
and the appearance of electronic band structure. They have also been studied in the
mathematical literature to explain the spurious occurrence of the Riemann zeros in a
numerical experiment [8]. Billiards with a point scatterer have been used extensively in
the quantum chaos literature, starting with Seba [19], to model quantum systems strongly
perturbed in a region smaller than the wavelength of the particle.

The flat torus is a standard example of a system for which the geodesic flow is com-
pletely integrable. Placing a scatterer at a point x0 in the torus does not change the
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classical dynamics except for a measure zero set of trajectories, and gives a quantum
system whose dynamics is generated by an operator formally written as

−� + αδx0 (1.1)

with δx0 being the Dirac mass at x0 and α being a coupling parameter. Mathematically
this corresponds to picking a self-adjoint extension of the Laplacian −� acting on func-
tions vanishing near x0 (see Sect. 3 and Appendix A). Such extensions are parameterized
by a phase φ ∈ (−π, π ], with φ = π corresponding to the standard Laplacian (α = 0
in (1.1)). We denote the corresponding operator by −�x0,φ , whose domain consists of
a suitable space of functions f (x) whose behavior near x0 is given by

f (x) = C

(
cos

φ

2
· log |x − x0|

2π
+ sin

φ

2

)
+ o(1), x → x0 (1.2)

for some constant C . For φ = π the eigenvalues are those of the standard Laplacian.
For φ �= π (α �= 0) the resulting spectral problem still has the eigenvalues from the
unperturbed problem, with multiplicity decreased by one, as well as a new set �φ of
eigenvalues interlaced between the sequence of unperturbed eigenvalues, each appearing
with multiplicity one, and satisfying the spectral equation

∑
n

|ψn(x0)|2( 1

λn − λ
− λn

λ2
n + 1

) = c0 tan
φ

2
(1.3)

for a certain c0 > 0, where {ψn(x)} form an orthonormal basis of eigenfunctions for the
unperturbed problem: −�ψn = λnψn . The eigenfunction corresponding to λ ∈ �φ is
the Green’s function

Gλ(x; x0) = (� + λ)−1δx0 . (1.4)

Our main result is that for almost all λ ∈ �φ , the perturbed eigenfunctions Gλ(•; x0)

are uniformly distributed in position space. To formulate the result precisely, we denote
by

gλ(x) := Gλ(x; x0)

||Gλ||2 (1.5)

the L2-normalized Green’s function:

Theorem 1.1. Fix φ ∈ (−π, π). There is a subset �φ,∞ ⊂ �φ of density one so that
for all observables a ∈ C∞(T2),∫

T2
a(x)gλ(x)

2dx → 1

area(T2)

∫
T2

a(x)dx (1.6)

as λ → ∞ along the subsequence �φ,∞.

Remarks. For the eigenfunctions of the unperturbed Laplacian, there is a variety of
possible limits in the position representation, which were investigated by Jakobson [10].

A result of the same nature as our Theorem 1.1 was recently obtained in [15] for
billiards in rational polygons. There it is shown that for any orthonormal basis of eigen-
functions, there is a density one subsequence which equidistributes in configuration
space. The method of [15] adapts the proof of quantum ergodicity for billiards of [24] to
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work in configuration space and inputs the theorem of Kerckhoff, Masur and Smillie [12]
who showed that for rational polygons, the billiard flow is uniquely ergodic in almost
every direction. Our argument here is completely different and is very specific to this
particular model.

A related, and in some sense complementary, issue was studied by Berkolaiko, Keat-
ing and Winn [2] who predict that for an irrational torus with a point scatterer there is
a subsequence of eigenfuctions which “scar” in momentum space, and this was proved
by Keating, Marklof and Winn [11] to be the case assuming that the eigenvalues of the
Laplacian on the unperturbed irrational torus have Poisson spacing distribution, as is
predicted by the Berry-Tabor conjecture.

It is important to note that we (as well as [2,11]) deal with the limit of large energy
λ → ∞ for a fixed phase φ �= π , which is called the weak coupling limit in the phys-
ics literature. An interesting problem would be to understand the strong coupling limit,
where λ → ∞ together with φ → π while tan(φ/2) ≈ log λ, so that the RHS of
the spectral equation (1.3) blows up. In that range it has been argued that the spectrum
displays intermediate statistics [3–5,17,20].

2. The Flat Torus

2.1. Basic setup. We consider a flat torus T
2 obtained by identifying opposite sides

of a rectangle with side lengths 2π/a, 2πa, so that T
2 = R

2/2πL0, where L0 =
Z(1/a, 0)⊕ Z(0, a) is a unimodular lattice.

An orthonormal basis of eigenfunctions for the Laplacian � on T
2 consists of the

exponentials

1

2π
ei〈x,ξ〉, (2.1)

where ξ ranges over the dual, or reciprocal, lattice

L = {x ∈ R
2 : 〈x, �〉 ∈ Z, ∀� ∈ L0} = {(ma,

n

a
) : m, n ∈ Z}. (2.2)

The eigenvalues of the Laplacian on T
2 are the norms |ξ |2 of the vectors of the dual

lattice L. Weyl’s law for the torus, establishing the asymptotics of the counting function
N (x) of eigenvalues below x , is equivalent to counting the number of points of the lattice
L in a disk (equivalently the number of points of the standard lattice Z

2 in an ellipse),
and therefore reads

N (x) = #{|ξ |2 ≤ x : ξ ∈ L} = πx + O(xθ ). (2.3)

The exponent θ in the remainder term is known to be at least θ > 1/4. The “trivial”
bound on the remainder term, as the length of the boundary, translates into θ ≤ 1/2. A
nontrivial bound uses Poisson summation and the method of stationary phase leads to
θ ≤ 1/3. We will need a better bound

θ <
1

3
(2.4)

such as the one due to van der Corput [22]. The current world record of θ ≤ 131/416 +
o(1) is due to Huxley [9].
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Using the remainder term (2.3), we may deduce a bound for the number of lattice
points in an annulus: Define

A(λ, L) = {ξ ∈ L : λ− L < |ξ |2 < λ + L} (2.5)

Then (2.3) implies

# A(λ, L) = 2πL + O(λθ ). (2.6)

2.2. Multiplicities. Denote by N = {0 < n1 < · · · } the set of norms of the dual lattice
vectors. The multiplicities in the spectrum are

rL(n) = #{ξ ∈ L : |ξ |2 = n}. (2.7)

The lattice L is rational if, after a suitable scaling, the norms |ξ |2 are all rational.
The norm of an arbitrary lattice vector ξ = (ma, n/a) is

|ξ |2 = a2m2 + n2/a2 = 1

a2 (a
4m2 + n2) (2.8)

so that the lattice is rational if and only if a4 ∈ Q is rational.
In the irrational case, the multiplicities are entirely due to the reflection symmetries

(x, y) 
→ (±x,±y) and are given by

rL(n) =

⎧⎪⎨
⎪⎩

1, n = 0
2, n = a2u2 or v2/a2, u, v ∈ Z,

4, otherwise
(2.9)

and in particular are generically equal to 4.
For the rational case the multiplicities are complicated arithmetic functions. For

instance in the case of the standard lattice L = Z
2, the multiplicity r(n) = #{(x, y) ∈

Z
2 : x2 + y2 = n} depends on the prime factorization of the integer n. In any case, it is

well known that we have an upper bound on the multiplicities of the form (see e.g. the
proof of [16, Lem. 7.2])

rL(n) � no(1). (2.10)

The counting function of the norms is

N (x) := #{n ∈ N : n ≤ x}. (2.11)

Since we have the upper bound (2.10) and since we know that the sum over n ≤ x of
the multiplicities is asymptotically πx (2.3), we deduce a lower bound

N (x) � x1−o(1). (2.12)
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2.3. Nearest neighbor gaps. If the norms are ordered by N = {0 < n1 < n2 < · · · }, we
need to understand the spacings (or gaps) nk+1 −nk between successive norms. The indi-
vidual values are difficult to understand. From (2.3) we certainly have nk+1 − nk � nθk .
However one can do better by arguing as follows [1]: First find the largest integer square
u2 < nk+1/a2, which one can do so that nk+1 − a2u2 � √

nk+1. After that find the
largest square v2/a2 < nk+1 − a2u2, which one can do so that nk+1 − a2u2 − v2/a2 �√

nk+1 − a2u2 � n1/4
k+1. Thus we found a norm n = a2u2 + v2/a2 ∈ N with n < nk+1

so that n ≤ nk , giving

nk+1 − nk � n1/4
k . (2.13)

The average spacing for norms up to x is, using (2.13),

1

N (x)

∑
nk≤x

(nk − nk−1) = x(1 + o(1))

N (x)
, (2.14)

and by the lower bound (2.12) we deduce that

1

N (x)

∑
nk≤x

(nk − nk−1) � xo(1). (2.15)

Since we are dealing with averages of positive quantities, we find:

Lemma 2.1. For almost all k, that is on a density one sequence, the spacings satisfy

nk+1 − nk � no(1)
k . (2.16)

3. Point Scatterers and δ-Potentials

In this section we review the theory of point scatterers (see [6]), with some details left
to Appendix A.

3.1. A finite-dimensional model. We want to study the Schrödinger operator with a
delta-potential on the flat D-dimensional torus T

D = R
D/2πL0, where L0 ⊂ R

D is a
unimodular lattice. The operator is formally given by

−� + αδ, (3.1)

where δ is the Dirac delta-function at the point x0.
To make sense of the operator (3.1), we say that for a wave function ψ ∈ C∞(TD),

multiplication by δ should give

δψ = ψ(x0)δ = 〈ψ, δ〉δ (3.2)

which we try to think of as a rank-one operator.
As an approximation, it is useful to examine a finite-dimensional model: a rank one

perturbation of a self-adjoint operator H0 on a finite-dimensional Hilbert space H of the
form

H = H0 + αPv, Pvu = 〈u, v〉v, u ∈ H, (3.3)

where 0 �= v ∈ H and α �= 0 is real. Let φn be an orthonormal basis of H consisting of
eigenvectors H0, with eigenvalues εn : H0φn = εnφn . The eigenvectors φn of H0 with
〈φn, v〉 = 0 are clearly still eigenvectors of H . The new part of the spectrum is given by:
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Lemma 3.1. The eigenvalues E /∈ Spec (H0) of the perturbed operator H are the solu-
tions of the equation

〈(E − H0)
−1v, v〉 = 1

α
(3.4)

or equivalently

∑
n

|〈v, φn〉|2
E − εn

= 1

α
(3.5)

with corresponding eigenfunction

u = (E − H0)
−1v. (3.6)

Proof. We rewrite the eigenvalue equation Hu = Eu for H in the form

(E − H0)u = α〈u, v〉v. (3.7)

If E /∈ Spec(H0) then necessarily 〈u, v〉 �= 0 and we find that

u = α〈u, v〉(E − H0)
−1v. (3.8)

Thus up to a scalar multiple

u = (E − H0)
−1v. (3.9)

Substituting (3.9) in the eigenvalue equation (3.7) gives

v = α〈(E − H0)
−1v, v〉v, (3.10)

that is

〈(E − H0)
−1v, v〉 = 1

α
. (3.11)

Expanding v = ∑
n〈v, φn〉φn in terms of the normalized eigenvectors φn of H0 gives

∑
n

|〈v, φn〉|2
E − εn

= 1

α
. (3.12)

Conversely, if E /∈ Spec(H0) and (3.4) holds, take u = (E − H0)
−1v as in (3.6).

Then

(H − E)u = (H0 − E)u + α〈u, v〉v.
Since (H0−E)u = (H0−E)(E−H0)

−1v = −v andα〈u, v〉v = α〈(E−H0)
−1v, v〉v =

v by (3.4) we find that Hu = Eu. ��
Now take for H0 the free Schrödinger operator H0 = −� acting on C∞(TD) ⊂

L2(TD), and v = δx0 . Then the eigenfunctions (3.6) with eigenvalues E /∈ Spec (H0)

are the Green’s function

G E (•; x0) = (E − H0)
−1δx0 . (3.13)

However the sum (3.5) diverges; indeed, in that case the RHS of (3.5) equals

∑
n

|φn(x0)|2
E − εn

, (3.14)

which is divergent in dimension D > 1, by Weyl’s law. In fact (3.14) is just the Green’s
function evaluated on the diagonal, which is divergent in dimension D > 1. Thus one
needs a regularization procedure.
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3.2. Regularization. One regularization procedure is through the theory of self-adjoint
extensions. A succinct account of this procedure is given in [6]. For the reader’s conve-
nience this will be reviewed in Appendix A. One starts with the standard Laplacian �,
for which an orthogonal basis of eigenfunctions are the exponentials ei〈ξ,x〉, ξ in the dual
lattice L with corresponding eigenvalue |ξ |2. The idea is that for functions vanishing at
the point x0 all candidates have to coincide with the unperturbed operator H0 = −�. We
want to extend it to a bigger space. Denoting by −�x0 the unperturbed operator restricted
to C∞

c (T
D\{x0}), one finds that the adjoint has as its domain Dom(−�∗

x0
) the Sobolev

space H2(TD\{x0}). In dimension D = 2, 3 this equals1 the space of f ∈ L2(TD) for
which ∃A ∈ C s.t.

� f − Aδx0 ∈ L2(TD), (3.15)

and for such f , there is some B ∈ C so that for x near x0,

f (x) = AG(D)(|x − x0|) + B + o(1), (3.16)

where

G(D)(r) =
{ 1

2π log r, D = 2

− 1
4πr , D = 3

. (3.17)

One finds that in dimension D = 2, 3 there is a one-parameter family of extensions,
parameterized by φ ∈ R/2πZ � U (1), denoted by −�φ,x0 with domain given by
f ∈ Dom(−�∗

x0
) for which there is some a ∈ C with

f (x) = a

(
cos

φ

2
· G(D)(|x − x0|) + sin

φ

2

)
+ o(1), x → x0. (3.18)

The action of −�φ,x0 on f satisfying (3.15) is then given by

−�φ,x0 f = −� f + Aδx0 . (3.19)

The divergent equation (3.5) is replaced by the convergent equation for the new eigen-
values λ /∈ σ(�):

∑
ξ∈L

{
1

|ξ |2 − λ
− |ξ |2

|ξ |4 + 1

}
= c0 tan

φ

2
, (3.20)

where

c0 =
∑
ξ∈L

1

|ξ |4 + 1
.

We can rewrite (3.20) as

∑
n∈N

rL(n)
{

1

n − λ
− n

n2 + 1

}
= c0 tan

φ

2
, (3.21)

1 In dimension D = 1 one wants� f −c0δ−c1δ
′ ∈ L2(T1), while in dimensions D ≥ 4, H0 is essentially

self adjoint and there are no self-adjoint extensions.
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18 20 22 24 26 28

Fig. 1. A plot of the spectral function on the LHS of the eigenvalue equation (3.21) for the standard lattice
L = Z

2. The intersections of the plot with the x-axis are the perturbed eigenvalues corresponding to φ = 0,
alternating with the norms

where

rL(n) = #{n = |ξ |2 : ξ ∈ L}
and N is the set of norms of vectors in L (without multiplicity). The corresponding
eigenfunction is a multiple of Gλ(x; x0) = (� + λ)−1δx0 , which has the L2-expansion

Gλ(x, x0) = − 1

4π2

∑
ξ∈L

exp(iξ · (x − x0))

|ξ |2 − λ
, x �= x0. (3.22)

As may be seen from (3.21), the new eigenvalues interlace between the sequence
N = {n1 < n2 < · · · } of norms, see Fig. 1. We may thus label the perturbed eigen-
values λk = λ

φ
k so that

n1 < λ1 < n2 < λ2 < · · · < nk < λk < nk+1 < · · · . (3.23)

3.3. The density of states. The density of states of the perturbed eigenvalues depends
strongly on the particular torus, that is on the lattice it determines.

For the standard lattice Z
2, a theorem of Landau [14] asserts that

#{n ∈ N , n ≤ x} ∼ B
x√

log x
, (3.24)

where B = 1√
2

∏
(1 − p−2)−1/2 = 0.764 . . ., the product over primes p = 3 mod 4.

Consequently we deduce a form of Weyl’s law for the perturbed spectrum �φ of �φ,x0

for the standard lattice:

#{λ ∈ �φ : λ ≤ x} ∼ B
x√

log x
. (3.25)

In the irrational case, the multiplicities are typically 4, see (2.9). Then Weyl’s law in
those cases would read

#{λ ∈ �φ : λ ≤ x} ∼ π

4
x . (3.26)
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4. The Norm of Gλ

We will need a lower bound on the L2-norm of the Green’s function Gλ. We are able
to get a good bound for a sub-sequence of density one. To define this subsequence, we
recall our discussion of the gaps between consecutive norms.

According to Lemma 2.1, for almost all k we have

nk+1 − nk � no(1)
k . (4.1)

We define the set �g ⊂ � of eigenvalues λk (using the labeling (3.23)) so that (4.1)
holds:

�g = {λk ∈ � : nk+1 − nk � λ
o(1)
k }. (4.2)

By the discussion above, this is a set of density one in� (and conjecturally all of�).

Lemma 4.1. For λ ∈ �g (i.e. for almost all λ), we have

||Gλ|| � 1

λo(1)
. (4.3)

Proof. Let nk = nk(λ), nk+1 = nk+1(λ) be consecutive norms so that nk < λ < nk+1.
Then trivially

‖Gλ‖2
2 �

∑
n∈N

rL(n)
(n − λ)2

≥ 1

(nk − λ)2
>

1

(nk+1 − nk)2
. (4.4)

Since for λ ∈ �g we know that nk+1 − nk � no(1)
k , (4.3) follows. ��

It is natural to conjecture that (4.3) holds for all λ.

5. Truncation

For L > 0 let A(λ, L) be the set of lattice points in the annulus λ− L < |x |2 < λ + L:

A(λ, L) = {ξ ∈ L : ||ξ |2 − λ| < L}. (5.1)

We denote the truncated Green’s function by

Gλ,L(x, x0) = − 1

4π2

∑
ξ∈A(λ,L)

exp(iξ · (x − x0))

|ξ |2 − λ
. (5.2)

Let gλ and gλ,L be the L2-normalized Green’s function and its truncation:

gλ = Gλ

||Gλ|| , gλ,L = Gλ,L

||Gλ,L || . (5.3)

We have the following approximation:

Lemma 5.1. Let L = λδ, θ/2 < δ < 1. As λ → ∞ along �g,
∥∥gλ − gλ,L

∥∥
2 → 0.
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Proof. Note that
∥∥∥∥∥

Gλ

‖Gλ‖2
− Gλ,L∥∥Gλ,L

∥∥
2

∥∥∥∥∥
2

≤
∥∥Gλ − Gλ,L

∥∥
2

‖Gλ‖2

+
∥∥Gλ,L

∥∥
2

∣∣∣∣∣
1

‖Gλ‖2
− 1∥∥Gλ,L

∥∥
2

∣∣∣∣∣
≤ 2

∥∥Gλ − Gλ,L
∥∥

2

‖Gλ‖2
. (5.4)

We have

∥∥Gλ − Gλ,L
∥∥2

2 = 1

16π4

∑
||ξ |2−λ|≥λδ

1

(|ξ |2 − λ)2
. (5.5)

We recall how to evaluate lattice sums using summation by parts:
Let n1 < n2 < · · · be the set of norms, and

N (t) =
∑
nk≤t

rL(nk). (5.6)

Then for a smooth function f (t) on R we have

∑
n A<|ξ |2≤nB

f (|ξ |2) = N (nB) f (nB)− N (n A) f (n A+1)−
∫ nB

n A+1

f ′(t)N (t)dt. (5.7)

Now use the lattice count with remainder (2.3) to get

∑
n A<|ξ |2≤nB

f (|ξ |2) = π

∫ nB

n A+1

f (t)dt

+O(nθB f (nB) + nθA+1 f (n A)) + O(
∫ nB

n A+1

| f ′(t)|tθdt). (5.8)

Applying (5.8) with f (t) = 1/(t −λ)2, once with n A = n1 and nB ≤ λ− L < nB+1,
and then with n A−1 < λ + L ≤ n A < n A+1 and nB = ∞ gives

∥∥Gλ − Gλ,L
∥∥2

2 � 1

L
+
λθ

L2 . (5.9)

Since for λ ∈ �g we have ||Gλ||2 � 1/λo(1) by Lemma 4.1, we find

∥∥Gλ − GL
λ

∥∥2
2

‖Gλ‖2
2

� λo(1)
(

1

L
+
λθ

L2

)
,

which tends to zero if δ > θ/2. ��
Consequently we may study the matrix elements by replacing gλ by the truncated

version gλ,L :
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Lemma 5.2. Let f ∈ C∞(T2) and L = λδ, θ/2 < δ < 1. We have

| 〈 f gλ, gλ〉 − 〈
f gλ,L , gλ,L

〉 | → 0

as λ → ∞ along �g.

Proof. Let f ∈ C∞(T2). We define the multiplication operator M f : L2(T2) → L2(T2)

by

M f (g) = f g.

Since M f is a continuous operator on L2(T2), we have that∥∥gλ − gλ,L
∥∥

2 → 0

for λ ∈ �g implies ∥∥M f (gλ − gλ,L)
∥∥

2 → 0,

and hence

| 〈M f gλ, gλ − gλ,L
〉 | ≤ ∥∥M f

∥∥∞
∥∥gλ − gλ,L

∥∥ → 0.

If we repeat this, where we switch gλ and gλ,L , we obtain

| 〈M f gλ, gλ
〉 − 〈

M f gλ,L , gλ,L
〉 | → 0.

��

6. Exceptional Eigenvalues and a Diophantine Inequality

Fix a nonzero vector 0 �= ζ ∈ L, and δ ∈ ( θ2 , 1
2 − θ) (such δ exists because θ < 1/3).

Let Sζ be the set of vectors satisfying

Sζ = {η ∈ L : |〈η, ζ 〉| ≤ |η|2δ}. (6.1)

We define a subset �ζ ⊂ � of eigenvalues

�ζ = {λ ∈ � : A(λ, λδ) ∩ Sζ = ∅} (6.2)

(recall that A(λ, L) are the lattice points η ∈ L in the annulus (5.1)). Our goal in this
section is to show that

Proposition 6.1. �ζ is a subset of density one in �.

Proof. Let

Bζ = �\�ζ = {λ ∈ � : A(λ, λδ) ∩ Sζ �= ∅}. (6.3)

We will show that Bζ has density zero in the set � of all perturbed eigenvalues, in
fact

#{λ ∈ Bζ : λ ≤ X} � X1−δ′

|ζ | (6.4)

for δ′ = 1/2 − θ − δ > 0.
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We first show that

Lemma 6.2.

#{η ∈ Sζ : |η|2 ≤ X} � X
1
2 +δ

|ζ | . (6.5)

Proof. Introduce cartesian coordinates with one of the axes in the direction of the vector
ζ by writing every x ∈ R

2 as

x = u
ζ

|ζ | + v
ζ⊥

|ζ⊥| , (6.6)

where if ζ = (ap, q
a ), then ζ⊥ = (− q

a , pa) is a vector orthogonal to ζ . In these coordi-
nates,

〈x, ζ 〉 = u|ζ | , |x |2 = u2 + v2, (6.7)

and our set of lattice points is thus contained in the rectangle

R = {u ζ

|ζ | + v
ζ⊥

|ζ⊥| : |u| ≤ X δ

|ζ | , |v| ≤ X1/2}. (6.8)

Now estimating the number of lattice points in a rectangle is a simple matter: Putting a
fundamental domain F = {(ax, y/a) : 0 ≤ x, y ≤ 1} for the lattice (which has unit area
for the case at hand) centered around each lattice point in R, we get a figure whose area
is the number of lattice points in question, and which is contained in a slightly bigger
rectangle whose dimensions are expanded by the diameter dL = √

a2 + 1/a2 of F :

R+ = {u ζ

|ζ | + v
ζ⊥

|ζ⊥| : |u| ≤ X δ

|ζ | + dL, |v| ≤ X1/2 + dL}. (6.9)

Thus we see that #L ∩ R is bounded by the area of R+, which is:

area R+ = 2(
X δ

|ζ | + dL)× 2(X1/2 + dL) = 4X1/2+δ

|ζ | + OL(X1/2). (6.10)

Therefore

#{η ∈ Sζ : |η|2 ≤ X} ≤ area R+ = 4X1/2+δ

|ζ | + OL(X1/2) (6.11)

as claimed. ��
Next we define Nζ ⊂ N to be the set of norms |η|2 of η ∈ Sζ , without multiplicities.

We clearly have

#{n ∈ Nζ : n ≤ X} ≤ #{η ∈ Sζ : |η|2 ≤ X} � X1/2+δ

|ζ | (6.12)

by Lemma 6.2.
We have a map

ι : Bζ → Nζ (6.13)
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defined by ι(λ) being the closest n ∈ Nζ to λ; if there are two such elements, i.e.
n− < λ < n+ with n± ∈ Nζ and n+ − λ = λ− n−, then set ι(λ) = n+. Thus we get a
well defined map, whose fibers satisfy

ι−1(n) ⊆ {λ ∈ � : ∃η ∈ Sζ ∩ A(λ, λδ), |η|2 = n} ⊆ � ∩ [n − 2nδ, n + 2nδ]
for n � 1.

Since � is interlaced between the norms N , we have

#� ∩ [n − 2nδ, n + 2nδ] �
∑

n−3nδ<m<n+3nδ

rL(m) = # A(n, 3nδ), (6.14)

which is the number of lattice points in an annulus. By (2.6),

# A(n, 3nδ) � nδ + nθ , (6.15)

and hence (since δ < θ )

#ι−1(n) � nθ . (6.16)

We thus find

#{λ ∈ Bζ : λ ≤ X} =
∑

n∈Nζ

n≤X

#ι−1(n)

� X θ#{n ∈ Nζ : n ≤ X} � X1/2+δ+θ

|ζ | . (6.17)

That is

#{λ ∈ Bζ : λ ≤ X} � X1−δ′

|ζ | (6.18)

with δ′ = 1/2 − θ − δ > 0. ��

7. Proof of Theorem 1.1

7.1. Fixed observables. Fix a nonzero vector ζ ∈ L and recall the definition (6.2), (4.2)
of the sets of eigenvalues �ζ and �g; both are of density one in � and thus

�g,ζ := �g ∩�ζ (7.1)

is still a set of density one in �.
We will show that 〈eζ gλ, gλ〉 → 0 as λ → ∞ along �g,ζ . By Lemma 5.1 it suffices

to show:

Proposition 7.1. Take λ ∈ �g,δ and L = λδ, δ ∈ ( θ2 ,
1
2 − θ). Fix nonzero ζ ∈ L. As

λ → 0 while λ ∈ �g,ζ ,

〈
eζ gλ,L , gλ,L

〉 → 0. (7.2)
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Proof. For ξ ∈ L and λ ∈ �g,ζ , define

c(ξ) = 1

|ξ |2 − λ
.

The L2-norm of the truncated Green’s function Gλ,L (L = λδ) is given by

∥∥Gλ,L
∥∥2

2 = 1

16π4

∑
ξ∈A(λ,L)

c(ξ)2, (7.3)

and hence

〈
eζ Gλ,L ,Gλ,L

〉 = 1

16π4

∑
ξ∈A(λ,L)

c(ξ)c(ξ − ζ ). (7.4)

Cauchy-Schwarz gives

| 〈eζ Gλ,L ,Gλ,L
〉 |2 ≤ ∥∥Gλ,L

∥∥2
2

∑
ξ∈A(λ,L)

c(ξ − ζ )2.

Note that for λ ∈ �ζ,g ,

|c(ξ − ζ )| � 1

L
.

Indeed

|ξ − ζ |2 − λ = |ξ |2 − λ− 2〈ξ, ζ 〉 + |ζ |2, (7.5)

and since for λ ∈ �ζ and ξ ∈ A(λ, L) we have |〈ξ, ζ 〉| > |ξ |2δ ∼ L we find that
∣∣∣|ξ − ζ |2 − λ

∣∣∣ ≥ 2L(1 + o(1))− L − |ζ |2 � L . (7.6)

Using (2.6) gives the bound

∑
ξ∈A(λ,L)

c(ξ − ζ )2 � # A(λ, L)

L2 � λθ

L2 (7.7)

(recall θ ≥ 1/4) so that we find

〈
eζ Gλ,L ,Gλ,L

〉 � ||Gλ||λ
θ/2

L
. (7.8)

The lower bound ||Gλ|| � 1/λo(1) of Lemma 4.1 implies

〈
eζ gλ,L , gλ,L

〉 =
〈
eζ Gλ,L ,Gλ,L

〉
∥∥Gλ,L

∥∥2
2

� λθ/2+o(1)

L
= λθ/2+o(1)

λδ

for λ ∈ �g,ζ , which tends to zero since δ > θ/2. ��
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7.2. A diagonalization argument. We have shown that for each 0 �= ζ ∈ L, there is a
density one subset �g,ζ of eigenvalues so that 〈eζ gλ, gλ〉 → 0 as λ → ∞ along �g,ζ .
It remains to see that there is a density one subset�∞ ⊂ � so that for every observable
a ∈ C∞(T2), we have

〈agλ, gλ〉 → 1

area(T2)

∫
T2

a(x)dx (7.9)

as λ → ∞ along�∞. We recall the argument, which can be found e.g. in [7]. For J ≥ 1,
let �J ⊂ � be of density one so that for all |ζ | ≤ J, 〈eζ gλ, gλ〉 → 0 as λ → ∞ along
�g,ζ , and in particular for every trigonometric polynomial PJ (x) = ∑

|ζ |≤J pζ eζ (x)
we have

〈PJ gλ, gλ〉 → 1

area(T2)

∫
T2

PJ (x)dx . (7.10)

We may assume that �J+1 ⊆ �J for each J . Now choose MJ so that for all X > MJ ,

1

#{λ ∈ � : λ ≤ X}#{λ ∈ �J : λ ≤ X} ≥ 1 − 1

2J
, (7.11)

and let �∞ be such that �∞ ∩ [MJ ,MJ+1] = �J ∩ [MJ ,MJ+1] for all J . Then
�∞ ∩ [0,MJ+1] contains �J ∩ [0,MJ+1], and therefore �∞ has density one in � and
(7.10) holds for λ ∈ �∞. Since the trigonometric polynomials are dense in C∞(T2) in
the uniform norm and the probability measures |gλ(x)|2dx are continuous with respect
to this norm, we find that (7.9) holds.

Acknowledgements. We thank Maja Rudolph for her help with the numerical investigation of some of these
issues, and John Friedlander for discussions concerning sums of two squares. Z.R. was partially supported by
the Israel Science Foundation (grant No. 1083/10). H.U. was supported by a Minerva Fellowship.

Appendix A. A Rigorous Description of the Point Scatterer

Denote by δx0 the Dirac distribution at x0 ∈ T
2. We are interested in solutions to the

equation

(� + λ) f = δx0 , f ∈ C∞(T2\{x0}), ‖ f ‖2 = 1 (A.1)

and its association with the eigenfunctions and eigenvalues of a family of self-adjoint
operators. Consider the domain of C∞-functions which vanish in a neighborhood of x0,

D0 = C∞
0 (T

2\{x0}),
and denote −�x0 = −�|D0 . The operators associated with Eq. (A.1) form the family of
self-adjoint extensions of the positive symmetric operator −�x0 (cf. [6, Sect. 1, p. 277]).
We make the following conventions in the definition of the Green’s function.

Definition 1. Denote by σ(−�) the spectrum of −� on C2(T2). We define the Green’s
function Gλ(x; y) at energy λ ∈ C\σ(−�) on T

2 as the integral kernel of the resolvent
(� + λ)−1, that is

(� + λ)−1 f (y) =
∫

T2
Gλ(x, y) f (x)dx . (A.2)
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In order to give a self-contained presentation of the theory of self-adjoint extensions,
we briefly recall the standard definitions of the adjoint of an operator, symmetry and
self-adjointness.

Definition 2. Let H be a Hilbert space and Dom(B) ⊂ H. Consider the operator
B : Dom(B) → H. We define

Dom(B∗) = {y ∈ H | ∃a ∈ H : ∀x ∈ Dom(B) : 〈Bx, y〉 = 〈x, a〉},

then we define the adjoint B∗ of B as the map B∗ : Dom(B∗) → H,

B∗y = a.

We call B symmetric if

∀x, y ∈ Dom(B) : 〈Bx, y〉 = 〈x, By〉 .

We call B self-adjoint if B is symmetric and

Dom(B) = Dom(B∗).

We have the following well-known results from self-adjoint extension theory which we
summarize briefly. Proofs can be found in [18], Chap. X.1. We will give the relevant
references for each lemma.

Definition 3. Let B be a densely defined symmetric operator on a Hilbert space H.
Denote its adjoint by B∗. Let η ∈ C\R. The deficiency spaces of B at η and η̄ are
defined as

Dη(B) = ker{B∗ − η}, Dη̄(B) = ker{B∗ − η̄}. (A.3)

We refer to the members of a basis of a deficiency space as deficiency elements.

The following lemma is proven as part of Th. X.1, p. 136 in [18].

Lemma A.1. As a function of η, dim Dη(B) is constant on the upper (lower) complex
half-plane.

We proceed with the definition of the deficiency indices of a closed symmetric operator
which indicate if the operator can be extended to a self-adjoint operator.

Definition 4. If dim Dη(B) = m and dim Dη̄(B) = n for nonnegative integers m, n, we
say that the operator B has deficiency indices (m, n).

The following lemma is Corollary (a), p. 141 in [18].

Lemma A.2. B has deficiency indices (0, 0) if, and only if, B is self-adjoint.

If the deficiency indices are nonzero and equal, then a family of self-adjoint extensions
exists and can be constructed as follows. This lemma combines Th. X.2, p. 140 and
Corollary (b), p. 141 in [18].
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Lemma A.3. If a closed positive symmetric operator B has deficiency indices (n, n), n ≥
1, then for each unitary map U : Di(B) → D−i(B), there is a self-adjoint extension
BU : DU → H, where

DU = { f = g + h + Uh | (g, h) ∈ Dom(B)× Di(B)}, (A.4)

and BU acts as follows:

BU f = Bg + ih − iUh. (A.5)

The operator BU has deficiency indices (0, 0). Conversely, every self-adjoint extension
of B is of this form.

We apply Lemma A.3 to construct a one parameter family of self-adjoint extensions of
the operator −�x0 . Denote the domain of the closure of −�x0 by D̃0.

Lemma A.4. The operator −�x0 has deficiency indices (1, 1). The corresponding defi-
ciency elements are the Green’s functions G i(x, x0),G−i(x, x0).
The self-adjoint extensions of −�x0 are given by the one parameter family

−�ϕ : Dϕ → L2(T2), ϕ ∈ (−π, π ], (A.6)

where

Dϕ = {g + cG i + ceiϕG−i : g ∈ D̃0, c ∈ C} (A.7)

and

−�ϕ f = −�g + ciG i − ceiϕ iG−i. (A.8)

Proof. By definition of the Green’s function we have that

ker{(�x0)
∗ ± i} = L{G±i}. (A.9)

Hence −�x0 has deficiency indices (1, 1) and we may apply Lemma A.3 to obtain the
result. ��
Remark A.5. Note that −�π recovers the Laplacian on C∞(T2).

Next we derive an equation for eigenvalues of the operator −�ϕ, ϕ ∈ (−π, π).
Lemma A.6. Let ϕ ∈ (−π, π). We have that λ /∈ σ(−�) is an eigenvalue of −�ϕ if,
and only if,

∑
ξ∈L

(
1

|ξ |2 − λ
− |ξ |2

|ξ |4 + 1

)
= c0 tan(ϕ/2), (A.10)

where

c0 =
∑
ξ∈L

1

|ξ |4 + 1
.

The corresponding eigenfunction is a multiple of Gλ(x; x0).
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Proof. Let f ∈ Dϕ and ‖ f ‖2 = 1. Then f must be of the form

f = g + cG i + ceiϕG−i, g ∈ D0, c ∈ C. (A.11)

Let us first assume that λ /∈ σ(−�) is an eigenvalue of −�ϕ . We have

0 = (�ϕ + λ) f = (� + λ)g + c(λ− i)G i + ceiϕ(λ + i)G−i. (A.12)

We apply the resolvent (� + λ)−1 to both sides to obtain

0 = g + c
λ− i

� + λ
G i + ceiϕ λ + i

� + λ
G−i. (A.13)

In view of the iterated resolvent identity

(λ∓ i)
1

� + λ

1

�± i
= 1

�± i
− 1

� + λ
, (A.14)

we can rewrite Eq. (A.13) as

0 = g(x) + c(G i − Gλ)(x, x0) + ceiϕ(G−i − Gλ)(x, x0). (A.15)

In particular

f = g + c(G i + eiφG−i) = c(1 + eiφ)Gλ, (A.16)

and so f is a multiple of Gλ.
If we now take the limit x → x0 on the r.h.s. of (A.15) we obtain

0 = lim
x→x0

(G i − Gλ)(x, x0) + eiϕ lim
x→x0

(G−i − Gλ)(x, x0), (A.17)

and note that λ /∈ σ(−�) implies c �= 0 so we may drop the constant. A simple rear-
rangement of this equation yields

tan(ϕ/2) lim
x→x0

Im G i(x, x0) = lim
x→x0

(Gλ − Re G i)(x, x0). (A.18)

In order to obtain Eq. (A.10) we require the following L2-identity for the Green’s func-
tion Gλ on T

2:

Gλ(x, x0) = − 1

4π2

∑
ξ∈L

exp(iξ · (x − x0))

|ξ |2 − λ
, x �= x0. (A.19)

We rewrite the r.h.s. of (A.18) as

− 1

4π2

∑
ξ∈L

e(ξ · (x − x0))

{
1

|ξ |2 − λ
− Re

1

|ξ |2 − i

}

= − 1

4π2

∑
ξ∈L

e(ξ · (x − x0))

{
1

|ξ |2 − λ
− |ξ |2

|ξ |4 + 1

}

x→x0−→ − 1

4π2

∑
ξ∈L

{
1

|ξ |2 − λ
− |ξ |2

|ξ |4 + 1

}
. (A.20)
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Finally, note that

lim
x→x0

Im G i(x, x0) = − 1

4π2

∑
ξ∈L

1

|ξ |4 + 1
.

To see the reverse implication assume that λ solves Eq. (A.17), a rearrangement of Eq.
(A.10). The r.h.s. of Eq. (A.17) has singularities at points which are in σ(−�), hence
λ /∈ σ(−�). We define

fλ(x) = (Gλ − G i)(x, x0) + eiϕ(Gλ − G−i)(x, x0)

and observe that

(1 + eiϕ)Gλ = fλ + G i + eiϕG−i ∈ Dϕ (A.21)

because Eq. (A.17) implies fλ(x0) = 0. The iterated resolvent identity (A.14) implies

(�ϕ + λ) fλ = (� + λ) fλ = −(λ− i)G i − (λ + i)G i, (A.22)

and by the definition of the operator �ϕ we have

(1 + eiϕ)(�ϕ + λ)Gλ = (� + λ) fλ + (λ− i)G i + (λ + i)G−i = 0. (A.23)

This concludes the proof. ��
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