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Abstract
We study fluctuations of the matrix coefficients for the quantized cat map. We
consider the sum of matrix coefficients corresponding to eigenstates whose
eigenphases lie in a randomly chosen window, assuming that the length of
the window shrinks with Planck’s constant. We show that if the length of the
window is smaller than the square root of Planck’s constant, but larger than
the separation between distinct eigenphases, then the variance of this sum is
proportional to the length of the window, with a proportionality constant which
coincides with the variance of the individual matrix elements corresponding to
Hecke eigenfunctions.

Mathematics Subject Classification: 81Q50, 11L07, 11M36, 37D20, 37N20

1. Introduction

1.1. Background

Much effort has been expended in recent years to studying quantum wave functions of
classically chaotic systems in the semiclassical limit. One well-known result is that the matrix
elements of smooth observables concentrate around the classical average of the observable, at
least in the mean square [4, 29, 33]; this is known as the ‘quantum ergodicity theorem’ and is
valid in great generality. A harder problem, known as ‘quantum unique ergodicity’ (QUE), is
the question whether all matrix elements converge to the classical average of the observable.
This is expected to hold for any negatively curved surface [28], but unlike the case of quantum
ergodicity, there are no general results available here. The only rigorous results available
concern special arithmetic systems, namely cat maps and some special compact surfaces of
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constant negative curvature, uniformized by unit groups of rational quaternion algebras. In
these cases many quantum symmetries exist, and QUE is now known to hold for eigenfunctions
of the desymmetrized system [17,23]. The complexity of the problem increases as we increase
the number of degrees of freedom and Kelmer [15] found systematic deviations from QUE for
higher dimensional cat maps. Without incorporating the symmetries, QUE is violated for the
two-dimensional cat map [9].

An important problem is to understand the rate of convergence to the classical average.
It has been suggested by Feingold and Peres [10] that for generic systems with D degrees of
freedom, the variance of the matrix elements about their mean decays with Planck’s constant h̄
as h̄D , with a prefactor given in terms of the autocorrelation function of the classical observable.
Several (non-rigorous) arguments were given for this by Eckhardt et al [8]. For an extensive
numerical test of the Feingold–Peres conjecture, see Barnett [1]. Rigorous results towards this
conjecture are only available for arithmetic systems—the modular domain [24,32] and the cat
map [20, 15]. In both cases arithmetic deviations from the conjecture are found.

Once one knows the variance, it is natural to believe that the normalized matrix elements
fluctuate randomly about the mean. In this paper, we study the fluctuations of matrix elements
of the quantized cat map, by studying the variance of sums of the matrix coefficients over
randomly chosen energy windows. Our findings are that indeed there are considerable
cancellations in these sums, consistent with a supposition that the signs of the normalized
matrix elements behave randomly. We will describe the results in detail once we recall the
model.

1.2. The quantum cat map

The quantized cat map is a model quantum system with chaotic classical analogue, first
investigated by Hannay and Berry [12] and studied extensively since, see, e.g. [6,9,13,17,27].
While the classical system displays generic chaotic properties, the quantum system behaves
non-generically in several aspects, such as the statistics of the eigenphases and the value
distribution of the eigenfunctions [19].

We review some of the details of the system in a form suitable for our purposes, see,
e.g. [6, 17, 27]. Let A be a linear hyperbolic toral automorphism, that is, A ∈ SL2(Z) is an
integer unimodular matrix with distinct real eigenvalues. We assume A ≡ I mod 2. Iterating
the action of A on the torus T = R

2/Z
2 gives a dynamical system, which is highly chaotic.

The quantum mechanical system includes an integer N � 1, the inverse Planck constant
(which we will take to be prime), an N -dimensional state space HN � L2(Z/NZ) and a
unitary operator U = UN(A) on HN , which is the quantization A. Fix a smooth real-valued
observable f ∈ C∞(T), which we will assume to have zero mean:

∫
T

f (x) dx = 0, and let
OpN(f ) be its quantization, which is a self-adjoint operator on HN . Let {ψj } be an orthonormal
basis of eigenstates for U with eigenvalues {e2π iθj }: Uψj = e2π iθj ψj and 〈OpN(f )ψj , ψj 〉
the (diagonal) matrix elements.

Let ord(A, N) be the least integer r � 1 for which Ar ≡ I mod N . When N is
prime the distinct eigenphases θj are evenly spaced (with at most one exception) with
spacing 1/ord(A, N), and in fact, the distinct eigenphases are all of the form j/ord(A, N).
The eigenspaces all have the same dimension (again with at most one exception) which is
(N ± 1)/ord(A, N).

For fixed small ε > 0, as N → ∞ through a sequence of values such that ord(A, N) > Nε ,
QUE holds for this subsequence in the sense that all the matrix elements converge to the phase
space average

∫
T

f (x) dx of the observable f [3,18]. Note that this assumption on ord(A, N)

is valid for most values of N ; in fact ord(A, N) > N1/2+o(1) for almost all N , cf [18, lemma 15].
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However, it should also be noted that ‘scars’ are found for values of N where ord(A, N) is
logarithmic in N , see [9].

To study the fluctuations of the matrix elements, we study the sums of diagonal matrix
elements of OpN(f ) over eigenphases lying in windows of length 1/L around θ , with θ chosen
randomly. More generally we consider a window function, constructed by taking a fixed non-
negative and even function h ∈ L2([− 1

2 , 1
2 ]) and setting hL(θ) := ∑

m∈Z h(L(θ − m)),
which is periodic and localized in an interval of length 1/L. We further normalize so that∫ ∞
−∞ h(x)2 dx = 1, and hence

∫ 1
0 hL(θ)2 dθ = 1/L. Then set

P(θ) :=
N∑

j=1

hL(θ − θj )〈OpN(f )ψj , ψj 〉. (1.1)

Note that P(θ) is independent of the choice of basis. If f = g − g ◦A (where g ◦A is defined
by (g ◦ A)(x) = g(Ax)) is a cocycle then, as follows from the ‘exact Egorov’s theorem’, all
matrix elements 〈OpN(f )ψj , ψj 〉 = 0 vanish and so P(θ) ≡ 0 in this case.

The expected value of P(θ), when we pick θ randomly and uniformly in the unit interval, is∫ 1

0
P(θ) dθ = 0,

since we assume that
∫

T
f (x) dx = 0. (Strictly speaking, for f smooth we only have∫ 1

0 P(θ) dθ = Of,R(N−R) for all R > 0, see section 3.1 for more details.)
We will study the variance of P(θ). To describe it, we introduce the quadratic form

associated with the matrix A by

Q(x) = ω(x, xA),

where ω(x, y) = x1y2 −x2y1 is the standard symplectic form. If the Fourier expansion3 of the
observable is f (x) = ∑

k∈Z2 f̂ (k)e(kx), where in what follows we abbreviate e(z) := e2π iz, set

Carith(f ) :=
∑

k, k′ ∈ Z2

Q(k) = Q(k′)

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′). (1.2)

1.3. Results

We can now formulate our main result.

Theorem 1.1. Fix f ∈ C∞(T2) of zero mean. Consider any sequence of primes N for which
ord(A, N)/

√
N → ∞. Assume that L < 2ord(A, N). Then as N → ∞,

Var(P ) = 1

L
Carith(f ) + O

(√
N

L2

)
.

It is easy to check that Carith(f ) vanishes if f = g −g ◦A is a cocycle. In that case P = 0
so theorem 1.1 has no content. In the case Carith(f ) �= 0, if we further assume L/

√
N → ∞

we get the following corollary.

Corollary 1.2. Under the assumptions of theorem 1.1, if Carith(f ) �= 0, and L/
√

N → ∞
then, as N → ∞,

Var(P ) ∼ Carith(f )

L
.

3 With k = (k1, k2), f̂ (k) := ∫ 1
0

∫ 1
0 .f (x1, x2)e−2π i(k1x1+k2x2) dx1 dx2.
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The prefactor Carith(f ) coincides with the asymptotic variance of the normalized matrix
elements of OpN(f ) when computed in the Hecke basis [20]. To explain this, note that if 1/L

is smaller than the minimal separation between distinct eigenphases, that is if L > ord(A, N),
then from definition (1.1) we get

∫ 1

0
P(θ)2 dθ = 1

L

ord(A,N)∑
j=1

∣∣∣∣∣∣∣
∑

k:θk= j

ord(A,N)

〈OpN(f )ψk, ψk〉

∣∣∣∣∣∣∣
2

, (1.3)

the inner sum being over an orthonormal basis of the eigenspace corresponding to a given
eigenphase. In particular, once L exceeds ord(A, N), the dependence of P(θ) on L is
essentially trivial, and thus we may (and shall) restrict L < 2ord(A, N). If in addition we
have ord(A, N) = N ± 1, then (almost) all the inner sums in (1.3) collapse to a single term,
and thus we find that when ord(A, N) = N ± 1 is maximal and L > N + 1, then∫ 1

0
P(θ)2 dθ = 1

L

N∑
j=1

∣∣〈OpN(f )ψj , ψj 〉
∣∣2

+ O

(
1

NL

)
.

Thus we recover the variance of the individual matrix elements (a trick used by Berry [2]),
which in turn was shown to be Carith(f ) in [20].

For comparison of our results with those expected of generic quantum chaotic systems,
consider the case where we take A to be a nonlinear perturbation of a cat map, the perturbation
sufficiently small so that the map remains hyperbolic [25]. The resulting system is expected to
have generic spectral statistics (depending on the symmetries of the map) [14,25]. Arguing as
in [5,8] one then expects that the variance of P(θ) in this case is asymptotic to (1/L)Cgen(f ),
where

Cgen(f ) =
∞∑

t=−∞

∫
T

(f ◦ At)(x)f (x) dx (1.4)

is the classical autocorrelation function. To compare with the arithmetic variance Carith(f ) in
(1.2), note that when A is linear, we may write (1.4) in terms of the Fourier expansion of the
observable f as

Cgen(f ) =
∑

k, k′ ∈ Z2

k′ ∼ k

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′),

where the sum k′ ∼ k is over pairs of frequencies which lie in the same A-orbit: k′ = kAt for
some integer t . This condition implies the condition Q(k′) = Q(k) which enters in sum (1.2)
for the arithmetic variance Carith(f ) (and also implies that (−1)k1k2+k′

1k
′
2 = 1).

1.4. About the proof

As we explain in section 3, the variance of P can be written as

Var(P ) = 1

L2

∑
t∈Z−{0}

ĥ

(
t

L

)2

|tr{OpN(f )U−t }|2. (1.5)

One approach to evaluating (1.5), used in [8], is to use a trace formula expressing
tr{OpN(f )Ut } as a sum over periodic orbits of the map A with certain phases, where the
number of summands grows exponentially in t . This gives Var(P ) as a sum over pairs of
periodic orbits. The averaging over θ produces a sum over ‘diagonal’ pairs where the phases
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cancel and the remaining pairs. The obvious diagonal pairs consist of equal orbits and give
the generic answer Cgen(f ). To reproduce the correct answer Carith(f ) in this case requires
identifying another diagonal family and showing that the contribution of the remaining pairs
is negligible. We have not been able to do that.

Instead, we use a different formula for trOpN(f )U−t , based on a formula for the quantum
propagator UN(A) introduced by Kelmer [15] and an expansion in Fourier modes of f to
rewrite (1.5) as a double sum over Fourier modes

Var(P ) ∼ 1

L2

∑
k,k′

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′)S(k, k′),

where S(k, k′) is a certain incomplete exponential sum, which is trivial for pairs of frequencies
with Q(k) = Q(k′). These pairs of frequencies give the main term of Carith(f )/L; this is our
new diagonal approximation, ‘dual’ in a sense to the standard one using periodic orbits. To
handle the off-diagonal terms, it suffices to give a non-trivial bound for the exponential sum
S(k, k′) when Q(k) �= Q(k′). Using a standard completion technique, we reduce it to giving
a bound for a certain complete exponential sum. When N is a ‘split’ prime, that is, if A is
diagonalizable modulo N , the required bound is a standard result of the Riemann hypothesis
for function fields (proved by Weil). For the remaining ‘inert’ primes, the required bound was
recently established by Gurevich and Hadani [11]. In the appendix, we will give a different
proof that only requires Weil’s original methods [30].

2. Prerequisites on cat maps and their quantization

2.1. The quadratic form associated with A

Let A = (
a b
c d

) ∈ SL2(Z) be hyperbolic and assume that A ≡ I mod 2. Then A preserves the
standard symplectic form

ω(x, y) := x1y2 − x2y1,

and thus A also preserves the quadratic form

Q(x) := ω(x, xA) = bx2
1 + (d − a)x1x2 − cx2

2 , (2.1)

which has discriminant disc(Q) = (tr A)2 − 4 (which is even since A ≡ I mod 2).

Lemma 2.1. Let N be an odd prime, and let A ∈ SL2(Z) so that (tr A)2 − 4 �= 0 mod N .
Then the space of binary quadratic forms preserved by A is one-dimensional.

Proof. Passing if necessary to a quadratic extension F of the base field Z/NZ over which
A is diagonalizable, as we may by our assumption on N , consider the action of A on 2 × 2
matrices over F via M → ATMA (where AT is the transpose of A). The decomposition of
the space of matrices to a direct sum of the one-dimensional space of skew-symmetric and
the three-dimensional space Sym2 of symmetric matrices (identified with quadratic forms) is
preserved by A.

Let λ± be the eigenvalues of A. Since N is coprime to tr(A)2 − 4, A �= ±I mod N and
in particular λ �= ±1. Let v± �= 0 be the corresponding eigenvectors: v±A = λ±v± (note that
our vectors are row vectors). Then the matrices vT

±v± are four eigenvectors for the action of
A on 2 × 2 matrices, with eigenvalues λ2, 1, 1, λ−2. The skew symmetric matrices are fixed
by A and hence the eigenvalues of A on Sym2 are λ2, 1, λ−2. The 1-eigenspace corresponds to
binary quadratic forms which are preserved by A. Since λ �= ±1, we find that the 1-eigenspace
is one dimensional, proving the claim. �
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Thus we find that if N is coprime to disc(Q), then any binary quadratic form preserved
by A is a multiple of Q modulo N .

2.2. Hecke operators

Let N be a prime not dividing disc(Q) = (tr A)2 − 4. In [17] we described a commutative
algebraic group CA(N) ⊂ SL2(Z/NZ), containing A, which in the case at hand is the
centralizer of A in SL2(Z/NZ) and coincides with the special orthogonal group of the quadratic
form Q given in (2.1) over the field Z/NZ. The group CA(N) is isomorphic to either the
multiplicative group of the field (Z/NZ)∗ (the ‘split’ case) or the norm-one elements in a
quadratic extension of Z/NZ (the ‘inert’ case). Thus CA(N) has order N − 1 or N + 1,
respectively. Note that if g ∈ CA(N) and g �= 1, then the matrix g − 1 is invertible.

2.3. Some other invariant quadratic forms

As examples of quadratic forms over Z/NZ preserved by A, consider for g ∈ CA(N), g �= 1,

q(x; g) := ω(x(g − 1)−1, x(g − 1)−1g).

Note that q(•, g) = 0 if g = −I mod N .

Lemma 2.2. If g �= ±I mod N then q(•; g) is a non-zero multiple of Q.

Proof. By lemma 2.1 it suffices to show that q(•; g) is preserved by A and is non-zero. It is
preserved by A since A preserves ω and commutes with both g and (g − I )−1. By lemma 2.1,
q(•; g) is thus a multiple of the form Q. We claim that the multiple is non-zero mod N . To
see this, it suffices to see that q(•; g) is not identically zero. If this were the case, then since ω

is non-degenerate and g − I invertible, we would have that yg is a scalar multiple of y for all
vectors y, which necessarily forces g to be a scalar matrix. Since det g = 1, we must therefore
have g = ±I mod N , contradicting our assumption. �

2.4. Computing Q(x) and q(x; g)

Choose a generator g0 of the cyclic group CA(N). Passing if necessary to a quadratic extension
of Z/NZ, write x = x+ + x−, where x± are eigenvectors of g0, hence of g and of A, with
x±g = λ±1x±, x±A = λ±1

A x± (λA �= ±1 if N is coprime to disc(Q) = (tr a)2 − 4). Then

Q(x) = ω(x, xA) = ω(x+ + x−, λAx+ + λ−1
A x−)

= (λA − λ−1
A )ω(x−, x+) .

Likewise,

q(x; g) = ω(x(g − I )−1, x(g − I )−1g)

= ω

(
1

λ − 1
x+ +

1

λ−1 − 1
x−,

λ

λ − 1
x+ +

λ−1

λ−1 − 1
x−

)

= λ − λ−1

(λ − 1)(λ−1 − 1)
ω(x−, x+) .

In particular we find

q(x; g) = Q(x)
λ − λ−1

λA − λ−1
A

1

(λ − 1)(λ−1 − 1)
= Q(x)

λA − λ−1
A

1 + λ

1 − λ
. (2.2)



Fluctuations in short windows 2295

2.5. Quantum mechanics on the torus

We recall the basic facts of quantum mechanics on the torus which we need in the paper,
see [17,27] for further details. Planck’s constant is restricted to be an inverse integer 1/N , and
the Hilbert space of states HN is N -dimensional, which is identified with L2(Z/NZ) with the
inner product given by

〈φ, ψ〉 := 1

N

∑
Q mod N

φ(Q)ψ(Q).

Classical observables, that is, real-valued functions f ∈ C∞(T), give rise to quantum
observables, that is, self-adjoint operators OpN(f ) on HN . To define these, one starts with
translation operators: for n = (n1, n2) ∈ Z

2 let TN(n) be the unitary operator on HN whose
action on a wave-function ψ ∈ HN is

TN(n)ψ(Q) = e
iπn1n2

N e

(
n2Q

N

)
ψ(Q + n1).

For any smooth function f ∈ C∞(T), define OpN(f ) by

OpN(f ) :=
∑
n∈Z2

f̂ (n)TN(n),

where f̂ (n) are the Fourier coefficients of f . The trace of OpN(f ) is

tr{OpN(f )} = N

∫
T

f (x) dx + Of (N−∞), (2.3)

where the term Of (N−∞) is one that is bounded by N−R for any R > 0, the implied constant
depending on f and R.

2.6. A formula for the quantum propagator

For any B ∈ SL2(Z), B ≡ I mod 2, the quantum propagator UN(B) is a unitary map of HN

satisfying Egorov’s formula

UN(B)∗OpN(f )UN(B) = OpN(f ◦ B)

for all observables f ∈ C∞(T). This property defines the propagator only up to a phase, which
will be of no interest to us.

A useful formula for the propagator, known in the context of the Weil representation
(cf [26]), and introduced for cat maps by Kelmer [15], is the following: for any B ∈ SL2(Z)

and N odd, the quantum propagator UN(B) is given by

UN(B) = 1

N |kerN(B − I )|1/2

∑
n∈(Z/NZ)2

e

(
ω(n, nB)

2N

)
TN(n(I − B)),

where kerN(B − I ) denotes the kernel of the map B − I on Z
2/NZ

2. We apply this when N is
a prime not dividing4 disc(Q), B = At (where At is the t th power of A) so that At �= I mod N .
Note that |kerN(At − I )| = 1 since in the group CA(N), if g �= 1, then the matrix g − 1 is
invertible. Thus

UN(At) = 1

N

∑
n∈(Z/NZ)2

e

(
ω(n, nAt)

2N

)
TN(n(I − At)). (2.4)

4 Since A ≡ I mod 2, disc(Q) is even and hence such N is odd.
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Lemma 2.3. Let A ∈ SL2(Z) be hyperbolic and assume that A ≡ I mod 2. Then for any
prime N not dividing disc(Q) and integer t such that At �= I mod N , we have

tr{OpN(f )UN(At)} =
∑

k

(−1)k1k2 f̂ (k)e

(
2̄q(k; At)

N

)
,

where 2̄ is the inverse of 2 mod N .

Proof. It suffices to show that

tr{TN(k)U(At)} = (−1)k1k2e

(
2̄ω(n, nAt)

N

)
, (2.5)

where n is such that k = n(At − I )(mod N). Using (2.4) we find

tr{TN(k)UN(At)} = 1

N

∑
n∈(Z/NZ)2

e

(
ω(n, nAt)

2N

)
tr{TN(k)TN(n(I − At))}.

As is easy to see from the definition (see lemma 4 and (2.6) in [17])

tr{TN(n)TN(m)} =
{

(−1)m1m2+n1n2N if n ≡ −m(mod N ),

0 otherwise.

Thus tr{TN(k)TN(n(I −At))} = (−1)k1k2N if k = −n(I −At)(mod N) and 0 otherwise. Now
if At �= I mod N , such n as above exists and is unique since At − I is invertible. Therefore

tr{TN(k)U(At)} = (−1)k1k2e

(
ω(n, nAt)

2N

)
. (2.6)

Now if b is an even integer and N is odd then e( b
2N

) = e( 2̄b
N

). Applying this to (2.6) with
b = ω(n, nAt) which is even since A ≡ I mod 2, we end up with formula (2.5). �

3. Proof of theorem 1.1

3.1. A formula for the variance

Fix a non-negative, even, test function h, supported in [− 1
2 , 1

2 ] and normalized so that∫ ∞
−∞ h(x)2 dx = 1. Set

hL(x) :=
∑
k∈Z

h(L(x − k)),

which is then a periodic function, localized on the scale of 1/L, and
∫ 1

0 hL(θ)2 dθ = 1/L. The
Fourier expansion of hL is (in the L2 sense)

hL(x) = 1

L

∑
t∈Z

ĥ

(
t

L

)
e(tx),

where ĥ(y) = ∫ ∞
−∞ h(x)e(−xy) dx.

Let N be a prime which does not divide disc(Q) = (tr A)2 − 4. Let

P(θ) :=
∑

j

hL(θ − θj )〈OpN(f )ψj , ψj 〉,
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which is a sum of matrix elements on a window of size 1/L around θ . Then, in the L2 sense,
and with U = UN(A), we have

P(θ) = 1

L

∑
t∈Z

e(tθ)ĥ

(
t

L

)
tr{OpN(f )U−t }. (3.1)

(Note that |tr{OpN(f )U−t }| is uniformly bounded in t .) The mean value of P(θ) is∫ 1

0
P(θ) dθ = 1

L
ĥ(0)tr{OpN(f )} = Of (N−∞)

according to (2.3). Thus the variance can be written as

Var(P ) = 1

L2

∑
t∈Z−{0}

ĥ

(
t

L

)2

|tr{OpN(f )U−t }|2. (3.2)

3.2. Computing the variance

Let ord(A, N) be the least integer r � 1 so that Ar ≡ I mod N . It is a divisor of |CA(N)|, that
is, of either N − 1 or N + 1. We will rewrite (3.2) as

Var(P ) = 1

L2

∑
τ mod ord(A,N)

	(τ)|tr{OpN(f )U−τ }|2, (3.3)

where

	(τ) =
∑

t ∈ Z − {0}
t ≡ τ mod ord(A, N)

ĥ

(
t

L

)2

. (3.4)

We may omit the term τ ≡ 0 mod ord(A, N) from the sum (3.3) at the cost of introducing an
error of O(N−∞), since then tr{OpN(f )U−τ } = tr{OpN(f )} = O(N−∞) while |	(τ)| � L.

Now we use lemma 2.3 to rewrite tr{OpN(f )UN(At)}, where we replace UN(At) by
UN(A)t after introducing a phase (which can be ignored as we are taking absolute values) and
replacing t by −t in (3.2), as we may since h is even. The result is that

Var(P ) = 1

L2

∑
k,k′

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′)S(k, k′) + O(N−∞), (3.5)

where, in the notation of section 2.3, we have

S(k, k′) =
∑

t �=0 mod ord(A,N)

	(t)e

(
2̄(q(k; At) − q(k′; At))

N

)
. (3.6)

We have |S(k, k′)| � NL since |	(t)| � L. Thus we may, using rapid decay of the Fourier
coefficients f̂ (k), truncate the sum (3.5) at frequencies at most N1/4 to get

Var(P ) = 1

L2

∑
|k|,|k′|<N1/4

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′)S(k, k′) + O(N−∞). (3.7)

3.3. Diagonal terms

The sum S(k, k′) is trivial if the phase difference q(k; At) − q(k′; At) vanishes mod N for
all t . By lemma 2.2, this happens if and only if we have Q(k) ≡ Q(k′)mod N . For the
frequencies appearing in (3.7), we have |Q(k)|, |Q(k′)| � √

N by Cauchy–Schwartz, and
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hence the congruenceQ(k) ≡ Q(k′)mod N forces that this latter condition becomes an equality
Q(k) = Q(k′).

These ‘diagonal’ pairs of frequencies with Q(k) = Q(k′) give a contribution of

1

L2

∑
Q(k)=Q(k′)

(−1)k1k2+k′
1k

′
2 f̂ (k)f̂ (k′)

∑
t �=0 mod ord(A,N)

	(t)

(we may drop the condition |k|, |k′| < N1/4 at a cost of O(N−∞)). We claim that∑
t �=0 mod ord(A,N)

	(t) = L + O(1).

To see this, write ∑
t mod ord(A, N)

t �= 0 mod ord(A, N)

	(t) =
∑
t∈Z

ĥ

(
t

L

)2

−
∑
j∈Z

ĥ

(
ord(A, N)

L
j

)2

.

Now ∑
t∈Z

ĥ

(
t

L

)2

= L2
∫ 1

0
hL(θ)2 dθ = L

and ∑
j∈Z

ĥ

(
ord(A, N)

L
j

)2

= O(1)

since L < 2ord(A, N). Thus the pairs of frequencies with Q(k) = Q(k′) give a total
contribution of

1

L
Carith(f ) + O

(
1

L2

)
. (3.8)

3.4. Off-diagonal terms

For the remaining pairs of frequencies, where Q(k) �= Q(k′), the sum S(k, k′) is a certain
incomplete exponential sum.

Proposition 3.1. If Q(k) �= Q(k′) then

|S(k, k′)| �
√

N.

Assuming we have this, the off-diagonal pairs will then contribute at most O(
√

N/L2).
Thus in combination with (3.8) we get

Var(P ) = Carith(f )

L
+ O

(√
N

L2

)
,

which gives theorem 1.1.
To prove proposition 3.1, we will need the following result.

Lemma 3.2. Let k, k′ ∈ Z
2, Q(k) �= Q(k′). Define

EA(j) =
∑

0 �=t mod ord(A,n)

e

(
j t

ord(A, N)

)
e

(
2̄(q(k; At) − q(k′; At))

N

)
. (3.9)

Then for all j ,

|EA(j)| � 2
√

N.
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Proof. For each multiplicative character χ of CA(N), define the complete sum

E(χ) :=
∑

1�=y∈CA(N)

χ(y)e

(
2̄(q(k; y) − q(k′; y))

N

)
. (3.10)

By appendix A, for each character χ of CA(N) we have

|E(χ)| � 2
√

N. (3.11)

Let r = (|CA(N)|)/(ord(A, N)). Choose a generator A0 of CA(N) such that A =
Ar

0 mod N . Define a character χ1 of CA(N) by setting χ1(A0) = e(1/|CA(N)|). Then

χ1(A
τ ) = e

(
τ

ord(A, N)

)
.

We may write the indicator function of the subgroup of CA(N) generated by A as

1A(y) = 1

r

∑
θ ∈ ĈA(N)
θ(A) = 1

θ(y),

where the sum runs over all r characters of CA(N) which are trivial on A. Then we may rewrite
EA(j) in terms of the complete sums (3.10) as

EA(j) = 1

r

∑
θ ∈ ĈA(N)
θ(A) = 1

E(χ
j

1 θ). (3.12)

Now using the estimate (3.11) gives |EA(j)| � 2
√

N . �

Proof of proposition 3.1. Let k, k′ ∈ Z
2, Q(k) �= Q(k′). Recall definition (3.6)

S(k, k′) =
∑

t �=0 mod ord(A,N)

	(t)e

(
2̄(q(k; At) − q(k′; At))

N

)
.

Expanding

	(τ) =
∑

j mod ord(A,N)

γ (j)e

(
jτ

ord(A, N)

)
, (3.13)

we get

S(k, k′) =
∑

j mod ord(A,N)

γ (j)EA(j),

where EA(j) is given in (3.9).
According to lemma 3.2, if Q(k) �= Q(k′) then

|S(k, k′)| � 2
√

N
∑

j mod ord(A,N)

|γ (j)|,

and so it remains to show that
∑

j |γ (j)| = O(1).
We first note that γ (j) � 0 so we may ignore the absolute value signs: indeed, from

definitions (3.4) and (3.13) we see that

γ (j) = L2

ord(A, N)

∫ 1

0
hL(θ)hL

(
θ +

j

ord(A, N)

)
dθ,

which is non-negative since hL � 0.
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Thus we have∑
j

|γ (j)| =
∑

j

γ (j) = 	(0),

and by definition,

	(0) =
∑

m∈Z−{0}
ĥ

(
ord(A, N)

L
m

)2

,

which is bounded since L < 2ord(A, N). �
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Appendix A. An estimate for a character sum

In this appendix we give a proof for the bound |E(χ)| � 2
√

N stated in (3.11) for the character
sum E(χ) defined in (3.10). This bound is not new; as we explain below, in the ‘split’ case it
follows immediately from Weil’s bound [30]. In the ‘inert’ case, the sum appears in the work
of Gurevich and Hadani [11] who discovered that the matrix coefficients of TN(k) in the Hecke
basis can be written as

1

CA(N)

∑
B∈CA(N)

χ(B)tr{TN(k)UN(B)},

and hence by (2.2), the matrix elements can be expressed in terms of the sum E(χ). Gurevich
and Hadani invoke the full force of Deligne’s Weil II paper [7] to give the bound (3.11).
However, to make the paper more self-contained and perhaps also of independent interest, we
will give another proof that only requires Weil’s original methods [30], together with some
class field theory. Following Li [21, 22], we express the exponential sum in terms of a certain
idèle class character sum (over degree one places) and then derive the bound from the Riemann
hypothesis for curves. (The same argument was used in [16] in a similar context.)

Appendix A.1. E(χ) as a character sum

Using (2.2) we can write E(χ) as follows: in the split case, where the matrix A is diagonalizable
over Z/NZ then

E(χ) =
∑

0,1�=x∈Z/NZ

χ(x)ψ

(
1 + x

1 − x

)
,

where χ is a multiplicative character and ψ a non-trivial additive character of Z/NZ. If χ ≡ 1
is trivial then E(1) = −ψ(1) − ψ(−1) so |E(1)| � 2. For χ �= 1, the bound |E(χ)| � 2

√
N

follows from Weil’s 1948 result [30] (cf [22, chapter 6, theorem 3]).



Fluctuations in short windows 2301

In the inert case, let F be a quadratic extension of Z/NZ, H ⊂ F
× the group of elements

of norm one, ψ a non-trivial additive character of Z/NZ and χ a multiplicative character of
H . Let λA ∈ H , λA �= ±1. Then by (2.2)

E(χ) =
∑

1�=x∈H

χ(x)ψ

(
1

λA − λ−1
A

1 + x

1 − x

)
.

If the multiplicative character χ ≡ 1 is trivial, then E(1) = 0, since x →
(1/(λA − λ−1

A ))((1 + x)/(1 − x)) is a bijection of H\{1} with Z/NZ. From now on assume
χ �= 1 is non-trivial.

Take a quadratic non-residue D mod N and let
√

D be a root of X2 − D in F. We may
write each element 1 �= x ∈ H uniquely as

x = t − √
D

t +
√

D
,

where t ∈ Z/NZ. In particular we have λA = (t0 − √
D)/(t0 +

√
D) with t0 �= 0 since

λA �= ±1. Then for x �= 1,

1

λA − λ−1
A

1 + x

1 − x
= D − t2

0

4t0D
· t

and so

E(χ) =
∑

t∈Z/NZ

χ

(
t − √

D

t +
√

D

)
ψ

(
D − t2

0

4t0D
· t

)
.

Arguing as in [22, chapter 6], we will construct idèle class characters ν̃, ψ̃ of the function
field Z/NZ(X), of finite order, satisfying the following.

(i) The conductors of ψ̃ and ν̃ are

cond(ψ̃) = 2∞, cond(ν̃) = (w),

where w is the degree two place of Z/NZ(X) corresponding to the irreducible polynomial
X2 − D. In particular the product ψ̃ ν̃ is unramified at all finite degree one places v �= ∞.

(ii) Their values at a uniformizer πv for the degree one place v corresponding to the polynomial
X + t are

ψ̃(πv) = ψ

(
D − t2

0

4t0D
· t

)
, ν̃(πv) = χ

(
t − √

D

t +
√

D

)
.

Thus we can write E(χ) as a sum over degree one places v �= ∞ of Z/NZ[X]:

E(χ) =
∑

deg(v) = 1
v �= ∞

(ν̃ψ̃)(πv).

Class field theory and the Riemann hypothesis for curves over a function field give (see
[22, corollary 3 of chapter 6])

|E(χ)| � (deg cond(ψ̃ ν̃) − 2)
√

N.

Since the conductor of the product ν̃ψ̃ is 2∞ + w, which has degree 4, we get

|E(χ)| � 2
√

N

as claimed.
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Appendix A.2. Construction of idèle class characters

We describe the construction of idèle class characters of the function field K = Z/NZ(X).
See [22, 31] for background.

Given a place v of K , let Kv denote the completion of K with respect to the topology
induced by v, and let Uv = {α ∈ Kv : |α|v = 1} be the v-adic units of Kv . Let
Pv = {α ∈ Kv : |α|v < 1} be the maximal ideal and denote by πv a uniformizer. In
particular for the infinite place we may take π∞ = X−1.

Let IK be idèle group of K . IK admits a product decomposition IK = K× · (∏v �=∞ Uv ×
K×

∞), with (
∏

v �=∞ Uv × K×
∞) ∩ K× = (Z/NZ)×. The idèle class group is

IK/K× �

K×

∞ ×
∏
v �=∞

Uv


 /

(Z/NZ)×.

Appendix A.2.1. Constructing ψ̃ . Given a non-trivial additive character ψ0 of Z/NZ, we
will define an idèle class character ψ̃ of finite order such that for the degree one place v

corresponding to the polynomial X + t we have

ψ̃(πv) = ψ0(t).

We first define ψ̃ on U∞ by setting

ψ̃


a + bX−1 +

∑
n�2

cnX
−n


 = ψ0(−b/a)

so that we get a character of U∞/((Z/NZ)×(1 + P2
∞)). Since K×

∞ equals 〈Xn〉n∈Z × U∞, we
may extend ψ̃ to a character of K×

∞ by declaring ψ̃∞(X) = 1. Extend ψ̃ to
∏

v �=∞ Uv × K×
∞

by letting ψ̃ be trivial on
∏

v �=∞ Uv . Since (
∏

v �=∞ Uv × K×
∞) ∩ K× = (Z/NZ)× and ψ̃ is

trivial on (Z/NZ)×, ψ̃ can be regarded as a character of the idèle class group IK/K×.
The conductor of ψ̃ is 2 · ∞, since ψ̃ |Uv

is trivial for v �= ∞ and ψ̃ |1+p∞ is non-trivial.
Finally, the value of ψ̃ at the uniformizer πv for a degree one place v corresponding to the

polynomial X + t equals

ψ̃v(πv) = ψ̃∞

(
1

X + t

)
= ψ̃∞(X · (1 + tX−1))−1

= ψ̃∞(1 + tX−1)−1 = ψ0(−t)−1 = ψ0(t).

Appendix A.2.2. Constructing ν̃. Given a multiplicative character χ of the group H of norm
one elements of F, we define an idèle class character ν̃ of finite order so that

ν̃(πv) = χ

(
t − √

D

t +
√

D

)

if v is the degree one place corresponding to the polynomial X + t (see [22, chapter 6, proof
of theorem 6]): denote by w the degree two place corresponding to the irreducible polynomial
X2 − D. Then Uw/(1 + Pw) � F

× via the map induced by X → √
D. If σ is the Galois

involution of F, then the map x → σ(x)/x gives an isomorphism of F
×/(Z/NZ)× to the

group H ⊂ F
× of norm-one elements. Thus we get a homomorphism

� : Uw → Uw/((Z/NZ)× · (1 + Pw)) � H.
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We define a character ν̃w of Uw by

ν̃w(u) := χ−1(�(u)),

which is trivial on (Z/NZ)×(1 + Pw). Extend it to a character ν̃ of
∏

v �=∞ Uv ×K×
∞ by having

ν̃v trivial if v �= w. Since ν̃ is trivial on (Z/NZ)× = (
∏

v �=∞ Uv × K×
∞) ∩ K×, ν̃ gives a

character of the idèle class group IK/K×.
If χ is non-trivial, then the conductor of ν̃ is w. By construction, for a degree one place

v corresponding to the polynomial X + t , we have

ν̃(πv) = ν̃w

(
1

X + t

)
= χ(�(X + t)) = χ

(
σ(

√
D + t)√
D + t

)
= χ

(
t − √

D

t +
√

D

)
.
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