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A PROOF OF SIEGEL’S WEIGHT FORMULA

ALEX ESKIN, ZElV RUDNICK, AND PETER SARNAK

1. Introduction. In this note we apply our orbit-counting method [DRS] to give
a simple and conceptual proof of Siegel’s weight (or "mass") formula. We begin by
recalling this fundamental result. Let A and B be symmetric, nondegenerate (half)
integral matrices of size rn x rn and n x n, respectively. The formula counts the
number of integral solutions to

(1.1) tXAX B

where X is an m x n matrix (m > n) in terms of p-adic solutions to (1.1) (or
equivalently, solutions of (1.1) as a congruence). Let G be the orthogonal group
O(A). Now G acts on the variety V consisting of solutions of (1.1). G(R) acts
transitively on V(R) and the stabilizer He of V is an orthogonal group in rn n
variables. V(R) carries a normalized G(R)-invariant measure # coming from the
Hardy-Littlewood integral [ERS]

(1.2) ,uoo(E)-- f, e(tr((tXAX B)rl) dx dq.
Sym(n) E

Here, e(z) e2iz, Sym(n) consists of symmetric n x n matrices, and E c R xn. This
measure may also be described in terms of the map X tXAX as is done in IS 1].

Let do be a Haar measure on G(R). In what follows we normalize Haar measure
dh on He for any V(R) by requiring that it satisfy

(1.3) dg dh d#.

We can now state a special case of the weight formula IS 1]. Let (r, rn r) be the
signature of A and suppose

(1.4) n < min(r, rn- r), 2n + 2 < m.

Let X1, Xv be a complete set of G(Z)-inequivalent integral solutions to (1.1) and
let H be the stabilizer of Xj. Then

(1.5)
1

vol(Hi(Z)\Hi(R))= 1-Ivol(G(Z)\G(R)) =1 p
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where p is the local density

(1.6) p lim p-a {X mod pa: tXAX =_ B mod pa}[
a-

and d mn n(n + 1)/2 is the dimension of V.
Note that the left-hand side of (1.5) is independent of the choice of Haar measure

dg. The general weight formula (that is, without the restrictions (1.4)) is similar to
(1.5) except that an extra averaging over classes in the genus of A is necessary [$2].
If A is indefinite in 3 or more variables and is of square-free determinant, then by
a well-known result of Meyer [Me] there is only one class in the genus of A,
explaining the form of (1.5) in this case.
We give a new proof of Siegel’s mass formula for indefinite quadrics (n 1) in 4

or more variables and then observe that this, together with Dirichlet’s class number
formula, is sufficient for proving that the Tamagawa number of any special or-
thogonal group is 2. The general case of Siegel’s formula then follows from a formal
computation of adelic volumes with respect to the Tamagawa measure, for example
as in Weil’s paper [W1]. Our proof is by comparing two methods for counting the
asymptotic number of integer points on the intersection of the quadric with a ball
in Rm.

2. Siegel’s formula for quadrics. Let F be an indefinite, nondegenerate integral
form in rn > 4 variables, A the matrix of the form with respect to a suitable basis.
For k Z {0} consider the quadric

(2.1) V- {XIF(X)- k} {XI’XAX k}.

Let N(T, V) be the number of integral points in V, lying in a ball BT of radius
T about the origin in Rm. The asymptotic behaviour of N(T, V) can be computed
in two different ways.

First, by the classical Hardy-Littlewood method, which in its simplest form is
valid when m > 5 and for rn 4 requires Kloosterman’s method of"leveling" [E],
we have

(2.2) N(T, V)
p<oo

The local densities are given by (1.6), while the density "at infinity" is given by the
singular integral (1.2).

Second, we can count N(T, V) using the orbit counting method of [DRS], which
counts asymptotically the contributions of each G(Z)-orbit in V(Z). This method
basically uses nonabelian harmonic analysis on G(Z)\G(R); see [EM] for another
proof using ergodic theory. If X1, X are the representatives of the G(Z)-orbits
in V(Z) and HI,..., H are their stabilisers in G (for k -- 0 these are orthogonal
groups in rn 1 variables), then with the normalizations in Section 1 we have for



A PROOF OF SIEGEL’S WEIGHT FORMULA 67

each orbit xjG(Z)

1
vol(Hj(Z)\H(R))

z) vol(G(Z)\G(R))
#(Br).

x. Br

Hence, summing over the representatives, we find

(2.3)
vol(Hi(Z)\H(R))

N(T, K)" Z,= vol(G(Z)\G(R))
"#o(Br).

Comparing (2.2) and (2.3), we conclude

(2.4)
1

vol(H,(Z)\H,(R))= I #,vol(G(Z)\G(R)) ,= p<oo

which is exactly Siegers formula (1.5) for these quadrics.
Siegel’s formula for forms in 2 variables is equivalent to Dirichlers class number

formula, and for forms in 3 variables which are isotropic over Q it is again equivalent
to Dirichlers class number formula, since any such form is rationally equivalent to
F, where 7 Q* and F is the determinant form

(2.5) F(a, b, c) det
b/2

3. The Tamagawa number of the special orthogonal group. Tamagawa dis-
covered that Siegers formula for representing a form by itself is equivalent to
knowing that the volume of the adelic homogeneous space G(Q)\G(A) with repect
to the "Tamagawa measure" v equals 2: v(G(Q)\G(A))= 2, where G is now the
special orthogonal group. Kneser [K] and Weil [Wl] then showed that z(G) 2
implies the general case of Siegel’s mass formula. We will now show that the mass
formula (2.4) for indefinite quadrics, derived in the previous section, suffices to show
that r(G) 2 for all orthogonal groups and hence implies the general mass formula.
We will assume the reader is familiar with the contents of [W1].
The proof is by induction on the number of variables m. We first deal with

Q-isotropic forms. It is enough to deal with square-free discriminants since
orthogonal groups of forms whose discriminants differ by a rational square are
isomorphic over Q. The case m 2 requires special consideration and is equivalent
to Dirichlet’s class number formula (which we assume--see [$2]).
Now assume m > 3; pick k Z {0} and a vector X Z for which F(X) k,

so that F restricted to the orthocomplement of X is still isotropic over Q. The
stabiliser H ofX is then the special orthogonal group of an isotropic form in m 1
variables, and so by induction "r(H) 2.
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Proceeding now as in [Wl], but without assuming the value of z(G), we obtain
the mass formula (2.4) save for a factor of z(G)/2 on the left-hand side. Since we have
already established (2.4) and both sides are nonzero, we conclude that z(G) 2.
To deal with anisotropic forms over Q (for m > 5 this is equivalent to being

definite), take c Z {0} square-free, odd, represented by F, and relatively prime
to disc(F). (Such a c is easily seen to exist.) Consider the form

(3.1) F*(Xl, Xr,,+) F(Xl, Xm) CX2m+l

Then disc(F*) -c disc(F) and F* is now isotropic and still has one class in its
genus by Meyer’s theorem.

Consider now the mass formula (2.4) for the quadric F*(xl,..., Xm+) -c; in
this formula all stabilisers appearing are Q-equivalent (e.g., by Witt’s theorem) and
so have the same Tamagawa number z(SO(F))= 2. The formal computation of
volumes in [Wl] gives the mass formula (2.4) upon using z(SO(F*)) 2, save for
a factor of 2/z(SO(F)). Therefore, z(SO(F)) 2.

Remarks. The above proof that z(G)= 2 follows the standard inductive pro-
cedure as in [M] or [W2] though the beginning of the induction above uses
Dirichlet’s class number formula rather than resorting to accidental isomorphisms.
The new feature is that, by using [DRS] and the classical Hardy-Littlewood method
[E], we avoid the use of Poisson summation or, equivalently, the zeta-functions
that are introduced when summing over all values of k. In sticking to one quadric
Vk, our proof is along the lines of Dirichlet’s proof of his class number formula.
Siegel’s proof in IS1] also has this feature, but it relies heavily on theta-functions
and Siegel modular forms.
Our result (2.3) is valid in much greater generality, with the quadric Vk being

replaced by any affine symmetric variety. In [ERS] we investigate the extent to
which the general homogeneous variety is Hardy-Littlewood in the sense that the
asymptotic count (2.2) is (or is not) valid.

REFERENCES

[DRS] W. DUKE, Z. RUDNICK, AND P. SARNAK, The density of integer points on affine homogeneous
varieties, preprint.

[E]

[EM]
[ERS]
[K]
[M]

[Me]

IS1]
[$2]

T. ESTERMANN, A new application of the Hardy-Littlewood-Kloosterman method, Proc. London
Math. Soc. (3) 12 (1962), 425-444.

A. ESKIN AND C. MCMULLEN, in preparation.
A. ESKIN, Z. RUDNICK, AND P. SARNAK, in preparation.
M. KNESER, Darstellungsmasse indefiniter quadratischer Formen, Math. Zeit. 77 (1961), 188-194.
J. G. M. MARS, "The Siegel formula for orthogonal groups, I" in Algebraic Groups And

Discontinuous Subgroups, ed. by A. Borel and G. D. Mostow, Proc. Sympos. Pure Math.
9, Amer. Math. Soc., Providence, 1966, 133-137.

A. MEYER, Zur Theorie der indefiniten quadratischen Formen, J. Peine Angew. Math. 108,
125-139.

C. L. SIEGEL, On the theory of indefinite quadratic forms, Ann. of Math. 45 (1944), 577-622.
,Lectures On The Analytic Theory Of Quadratic Forms, Peppermiiller, G6ttingen, 1963.



A PROOF OF SIEGEL’S WEIGHT FORMULA 69

[W1]

[W2]

A. WEIL, "Sur la th6orie des formes quadratiques" in Colloq. Thorie des Groupes Algdbriques,
Bruxelles, 1962, 9-22.
,Adeles And Algebraic Groups, Birkhafiser, Boston, 1982.

ESKIN: DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544
RUDNICK: DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305-2125
SARNAK." DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544 AND

IBM RESEARCH DIVISION, ALMADEN RESEARCH CENTER, 650 HARRY ROAD, SAN JOsl, CALIFORNIA 95120


