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1. Introduction

One of the themes of the summer school is the distribution of “special
points” on varieties. In Heath Brown’s lectures we study rational points
on projective hyper-surfaces; in Ullmo’s course we study Galois orbits
and Duke’s lectures deal with CM-points on the modular curve. This
lecture concerns one of the earliest examples, namely torsion points on
group varieties.

Definition 1. For a group A, the torsion points are

Tor(A) = {x ∈ A : xn = 1 for some n ≥ 1}

(we write the group law as multiplication).

If A is abelian then Tor(A) is a subgroup of A.
Examples: i) The multiplicative group A = Gm is the algebraic

group whose points over a field are the nonzero elements of the field.
Then for any field K, TorGm(K) are the roots of unity contained in
K.

ii) A = Gm ×Gm then Tor(A) = Tor(Gm) × Tor(Gm) = {(x, y) :
x, y ∈ K are roots of unity}.

iii) Let A be an elliptic curve. Over the complex numbers we can
uniformize A as A = C/L where L is a lattice. Then Tor(A(C)) =
Q⊗ L/L.

More generally we can study division points:

Definition 2. If Γ ⊂ A is a finitely generated group, let

Tor(A, Γ) = {x ∈ A : xn ∈ Γ for some n 6= 0}

Thus Tor(A, {1}) = Tor(A) are the torsion points of A.
Motivated by Mordell’s conjecture, Lang [2] made the following

Conjecture A. If V is irreducible curve on an abelian group variety
(e.g. A = (Gm)n or an abelian variety) and Γ ⊂ A is a finitely gener-
ated subgroup such that Tor(A, Γ)∩ V is infinite, then V is a translate
of a subgroup of A by a division point.
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See Ullmo’s lectures for the statement of the Manin-Mumford con-
jecture, which generalizes this statement, and the survey [5] for more
background.

The first instance of Lang’s conjecture is for torsion points on (Gm)r,
which turns out to be quite elementary. We will present two proofs of
Lang’s conjecture for that case.

2. A proof using Galois theory

The first proof is that which appears in the original paper by Lang
[2] where it is attributed to Ihara, Serre and Tate. The result is

Theorem 3. Let V/C be an irreducible curve in A = Gm × Gm. If
V contains infinitely many torsion points then V is a translate of a
subgroup of A = Gm ×Gm by a torsion point, i.e.

V = {(x, y) : xr = ζys}
for some root of unity ζ.

To highlight the ideas we will only consider a special case: V ⊂
Gm ×Gm is a rational curve of the forms {(f(t), g(t))} where f and g
are polynomials, which for added simplicity we assume to have rational
coefficients: f, g ∈ Q[t]. Then

V ∩ Tor(A) = {(f(t), g(t)) are both roots of unity}
The subgroups of Gm ×Gm are {(x, y) : xr = ys} for some integers r,
s. So we need to show

Theorem 4. Let f, g ∈ Q[t] be polynomials. If there are infinitely
many values of t for which both f(t) and g(t) are roots of unity then
there are nonzero integers r, s 6= 0 so that f r = gs.

Proof. We assume there are infinitely many t so that both f(t), g(t)
are roots of unity and want to force the relation f r = gs.

Take n � 1 so that there is some z1 with

f(z1) = ζα
n , g(z1) = ζβ

n

where ζn denotes a primitive n-th root of unity and that this is the
minimal way of writing such an expression, that is gcd(n, α, β) = 1
(exercise). Note that z1 ∈ Q̄ is algebraic. Then we have a relation

f(z1)
β = g(z1)

α

( and both sides equal ζαβ
n ), but this relation holds for only one point

z1 and we want it to hold for all points z.
Now apply the Galois group Gal(Q̄/Q), which acts transitively on

the primitive n-th roots of unity (see Ullmo’s lectures). Hence if σj is
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a Galois automorphism so that σj(ζn) = ζj
n, gcd(j, n) = 1 and zj :=

σj(z1) then because we assume f, g have rational coefficients we get

σj(f(z1)) = f(σj(z1)) = f(zj), σj(g(z1)) = g(zj)

and so

f(zj)
β = σj(f(z1)) = ζjαβ

n = g(zj)
α .

Now we have the relation fβ = gα holding for φ(n) distinct points1

rather than just one point (exercise: why are the points zj distinct ?).
However we still need it to hold for all z.

Consider the polynomial

F (t) = f(t)β − g(t)α .

It has φ(n) distinct roots so if deg F < φ(n) then we would have F ≡ 0
as required. Now if F 6= 0 then

deg F = max(β deg f, α deg g)

can be as large as const·n. which is still (slightly) too big relative to
φ(n).

The remedy us to raise the relation f(zj)
β = g(zj)

α = ζαβ
n to an

m-th power:

f(zj)
mβ = g(zj)

mα

(both sides equal ζmαβ
n ). We get a new polynomial fmβ − gmα with

φ(n) distinct roots; it looks like we raised the degree which is certainly
useless! However, since f(zj), g(zj) are n-th roots of unity, we have
f(zj)

n = 1 = g(zj)
n and if we substitute

mβ ≡ r mod n, mα ≡ s mod n

with |r|, |s| ≤ n/2 then we find f(zj)
r = g(zj)

s for all j coprime
to n. This is still not useful as we have just showed that deg F ≤
max(deg f, deg g)n/2 instead of showing that deg F < φ(n). However
we will be done if we can show that there is some m ≥ 1 so that
the residues (mβ,mα) mod n are both small! This is given by the
following

Exercise. Given a primitive vector (α, β) ∈ (Z/nZ)2, that is gcd(α, β, n) =
1, there is some 1 ≤ m ≤ n so that both residues mα mod n and mβ
mod n are at most n2/3 (and are different than (0, 0) mod n).

See also Venkatesh’s lecture and [4] where it is shown that typically
the size of both residues is about

√
n.

1φ(n) is the number of residues coprime to n
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Consequently we find a relation f(zj)
r = g(zj)

s with |r|, |s| < n2/3

and hence deg F � n2/3. Since φ(n) � n1−ε for all ε > 0, the assump-
tion that there are infinitely many torsion points (that is we can take
n arbitrarily large) implies the identity f r = gs as required. �

3. Polynomials vanishing at roots of unity

In this section we present a proof of the following strong version of
Lang’s conjecture for torsion points on a variety V in Cm. We denote
by Utors be the set of roots of unity.

Corollary 5. Let V be an algebraic variety embedded in Cm. There
exists an explicitly computable, finite list B of `B-by-m integer matrices
B, with each `B ≥ 1, such that if ζ ∈ V (Utors) then ζ ∈ ∪B∈B WB(Utors)

where WB = ∩`B
j=1{ζ : ζ

bj,1

1 ζ
bj,2

2 . . . ζ
bj,m
m = 1}.

It is not difficult to give an explicit description of W (Utors) — see at
the end.

To prove this result we shall develop a simple understanding of van-
ishing sums of roots of unity – see [1] and [3] for far more. We begin
by considering a linear form a1X1 + a2X2 + · · ·+ akXk where each ai is
an integer. We are interested in finding all sets (ξ1, ξ2, . . . , ξk) ∈ Uk

tors

such that a1ξ1 + a2ξ2 + · · · + akξk = 0. We call such a sum minimal
if no proper subsum equals zero (that is, there does not exist a proper
subset I of {1, . . . , k} for which

∑
i∈I aiξi = 0); it occurs no loss of

generality in our calculations to partition any such sum into minimal
subsums. Given any such minimal solution there are equivalent so-
lutions (ξξ1, ξξ2, . . . , ξξk) for any root of unity ξ. Two solutions are
equivalent if they can be partitioned (in the same way) into minimal
subsums, where the the corresponding subsums are equivalent.

For any set (ξ1, ξ2, . . . , ξk) ∈ Uk
tors there is a minimal n = n(ξ1, ξ2, . . . , ξk)

for which (ξi/ξj)
n = 1 for each pair 1 ≤ i, j ≤ k. Note that any

minimal sum
∑k

i=1 aiξi = 0 is thus equivalent to a minimal solution∑k
i=1 aiξ

′
i = 0 where each (ξ′)n = 1, with n = n(ξ1, ξ2, . . . , ξk). Our key

result is the following:

Proposition 6. Suppose that a1ξ1 + a2ξ2 + · · ·+ akξk = 0 is minimal.
Then n(ξ1, ξ2, . . . , ξk) is squarefree, and if prime p divides n then p ≤ k.
Therefore n divides Nk :=

∏
p≤k p.

Given non-zero integers a1, a2, . . . , ak, let X = X(a1, . . . , ak) be the
set

{(ξ1, . . . , ξk) : ξNk
j = 1 for each j, and a1ξ1 + · · ·+ akξk = 0},



TORSION POINTS ON CURVES 5

which is finite and computable, simply by trying all possible values for
each ξj. One consequence of Proposition 6 is the following result:

Corollary 7. Suppose a1, . . . , ak ∈ Z∗. For given (ξ1, ξ2, . . . , ξk) ∈
Uk

tors we have a1ξ1 + a2ξ2 + · · ·+ akξk = 0 if and only if (ξ1, ξ2, . . . , ξk)
is equivalent to an element of X.

Proof. Given a1ξ1 +a2ξ2 + · · ·+akξk = 0, split the sum up into minimal
subsums, each one of which (according to the remarks above) is equiv-
alent to one where each ξi is an nth root of unity. Moreover n divides
N` =

∏
p≤` p by Proposition 5.1, where ` is the length of the subsum,

and the result follows since ` ≤ k. On the other hand if (ξ1, ξ2, . . . , ξk)
is equivalent to an element of X then a1ξ1 + a2ξ2 + · · · + akξk = 0 by
the definition of X. �

With that preparation we can prove Corollary 5:

Proof of Corollary 5: An algebraic variety can be described as the set
of points in Cm satisfying certain equations with algebraic coefficients;
and this is a subset of the algebraic variety given by the set of points in
Cm satisfying the norms of these equations, which are equations with
integer coefficients. So without loss of generality we will assume the
coefficients of the polynomials defining V are integers.

Now suppose that

fj(x1, . . . , xm) =

kj∑
i=1

aj,ix
sj,i,1

1 x
sj,i,2

2 . . . xsj,i,m
m ∈ Z[x1, . . . , xm]

for 1 ≤ j ≤ J . We are interested in ζ ∈ Um
tors for which fj(ζ) = 0 for

each j; evidently these induce solutions to

aj,1ξj,1 + aj,2ξj,2 + · · ·+ aj,kj
ξj,kj

= 0

with each ξj,i = ζ
sj,i,1

1 ζ
sj,i,2

2 . . . ζ
sj,i,m
m . Now each of these vanishing sums

can be partitioned into minimal vanishing subsums; let us relabel one of
these minimal vanishing subsums to be a1ξ1 +a2ξ2 + · · ·+akξk = 0. As
we saw in Proposition 1, each ξr/ξ1 = ζ

sr,1−s1,1

1 ζ
sr,2−s1,2

2 . . . ζ
sr,m−s1,m
m

must be an Nkth root unity, so ζ
br,1

1 ζ
br,2

2 . . . ζ
br,m
m = 1 where br,j =

N(sr,j − s1,j) for each j. We get sets of such vectors br for each min-
imal vanishing subsum (and from each fj) and we can concatenate
these all together to form one large matrix B (with, say, ` rows), and
so ζ ∈ WB(Utors).

Finally, since there are only finitely many possible partitions into
minimal subsums, the set B of such matrices B, is finite and com-
putable. �
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Proof of Proposition 6: Write each ξj = e(kj/n) with 0 ≤ kj ≤ n− 1.
Suppose that integer r divides n, and let βj ≡ kj (mod n/r) with

0 ≤ βj ≤ n/r−1, and γj = (kj−βj)/(n/r) so that 0 ≤ γj ≤ r−1. Thus
ξj = e(βj/n)e(γj/r). Now, for each 0 ≤ i ≤ r− 1 and 0 ≤ ` ≤ n/r− 1,
let Ai,` be the sum of the aj with βj = ` and γj = i so that

0 = a1ξ1 + a2ξ2 + · · ·+ akξk =
k∑

j=0

aje(βj/n)e(γj/r)

=

n/r−1∑
`=0

(
r−1∑
i=0

Ai,` e(i/r)

)
e(`/n).

Let r = r(n) =
∏

p|n p and recall that [Q(e(1/n)) : Q(e(1/r))] = n/r

(by elementary Galois theory) and so e(`/n), 0 ≤ ` ≤ n/r − 1 are
linearly independent over Q(e(1/r)). In particular this implies that
each of the subsums

∑r−1
i=0 Ai,` e(i/r) = 0 above, which contradicts

our assumption of minimality, unless Ai,` = 0 for all i for all ` 6=
`0 for some `0; in other words βj = `0 for all j. But then ξi/ξj =
e(`0/n)e(γj/r)/e(`0/n)e(γj/r) = e((γi − γj)/r) and so n(ξ1, ξ2, . . . , ξk)
divides r. Thus n = r(n) is squarefree.

Since n is squarefree we may write n = mp with (m, p) = 1. Then,
by the Chinese Remainder theorem there exists 0 ≤ βj ≤ p − 1 and
0 ≤ γj ≤ m − 1 such that kj ≡ mβj (mod p) and kj ≡ pγj (mod m)
and thus ξj = e(βj/p)e(γj/m). Letting Ai,` now be the sum of the aj

with βj = ` and γj = i we obtain

0 = a1ξ1 + a2ξ2 + · · ·+ akξk =
k∑

j=0

aje(βj/p)e(γj/m)

=

p−1∑
`=0

(
m−1∑
i=0

Ai,` e(i/m)

)
e(`/p).

Recall that [Q(e(1/n)) : Q(e(1/m))] = p − 1 (by elementary Galois
theory), so that the only linear dependencies between e(`/p), 0 ≤ ` ≤
p − 1, over Q(e(1/m)), are multiples of

∑p−1
`=0 e(`/p) = 0. Therefore

from the equation above we see that
∑m−1

i=0 Ai,` e(i/m) = λ for some
λ ∈ Q(e(1/m)). Evidently λ 6= 0 else, by the argument from the
paragraph above we see that n|m. Therefore for each ` there exists i
with Ai,` 6= 0 and in particular some j = j` with βj`

= `; and so p ≤ k
as claimed. �

Determining WB(Utors)
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Suppose that the `-by-m integer matrix B is given and we write each
ζj = e(vj), so the points in WB correspond exactly to those v ∈ (Q/Z)m

satisfying Bv ≡ 0 (mod 1). Note that if y ∈ B⊥(Q) (mod 1) then
By ≡ 0 (mod 1), so we call two solutions v, v′ equivalent if v − v′ ∈
B⊥(Q) (mod 1). We will prove that there are no more than finitely
many inequivalent solutions, which are effectively computable:

We wish to use the tools of linear algebra to solve this equation
but there are many zero divisors in Q (mod 1) (indeed if a/q ∈ Q
then q · (a/q) ≡ 0 (mod 1)), so we avoid any division! In Gaussian
elimination one diagonalizes as much of the matrix as possible, dividing
non-zero elements in a given row by the “pivot element” (that is if
B1,1 6= 0 is the pivot element then one replaces the current row i by the
current row i minus Bi,1/B1,1 times the first row). This can be reworked
to avoid division simply by introducing multiples (that is we replace
the current row i by B1,1 times the current row i minus Bi,1 times the
first row). Note that any solution of the original linear algebra problem
is also a solution of the new problem; and vice-versa whenever B1,1 is
invertible, though if this is not so (as may be the case here) this process
may well introduce several bogus solutions. Nonetheless at the end of
the Gaussian elimination process we have an l-by-m integer matrix
B′ (with l ≤ ` after deleting rows of 0s), in which the left-most l-
by-l submatrix is diagonal with non-zero diagonal entries (if necessary
by swapping various rows and columns), for which B′v ≡ 0 (mod 1).
Solving this is easy: there are m−l free variables vl+1, vl+2, . . . , vm and,
writing βi = B′

i,i, we have vi ≡ (ui−
∑m

j=l+1 B′
i,jvj)/βi (mod 1), where

ui is any integer with 0 ≤ ui ≤ βi − 1.
For l + 1 ≤ j ≤ m let yj be the vector with ith entry −B′

i,j/βi for
1 ≤ i ≤ `, and δi,j otherwise (where δ is the Dirac delta function). The
solutions to B′v ≡ 0 (mod 1) all take the form v = u +

∑m
j=l+1 vjyj

where u ∈ U ′ a finite computable set. If we trace through the proof
above then we find that Byj = 0 for each j, that is each yj ∈ B⊥.
Thus there is a set U of representatives of the equivalence classes of
solutions inside U ′ which can be determined by testing whether they
satisfy Bu ≡ 0 (mod 1).
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