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Abstract

We consider an analogue of Artin’s primitive root conjecture for units
in real quadratic fields. Given such a nontrivial unit, for a rational
prime p which is inert in the field. The maximal order of this unit
modulo p is p+ 1. An extension of Artin’s conjecture is that there are
infinitely many such inert primes for which this order is maximal. This
is known at present only under the Generalized Riemann Hypothesis.
Unconditionally, we show that for any choice of 7 units in different real
quadratic fields satisfying a certain simple restriction, there is at least
one which satisfies the above version of Artin’s conjecture. Likewise, we
consider an analogue of Artin’s primitive root conjecture for nonunits
in real quadratic fields. Given such an element, for a rational prime
p which is inert in the field the maximal order of the unit modulo p
is p? — 1. As before, the extension of Artin’s conjecture is that there
are infinitely many such inert primes for which this order is maximal.
We show that out of any choice of 85 algebraic numbers satisfying a
certain simple restriction, there is at least one which satisfies the above

version of Artin’s conjecture.

Gupta and Murty’s method to attack the former problems raises
question regarding ged (a™ — 1,0" — 1) where a,b are multiplicatively
independent rational positive integers. It is known that there are in-
finitely many integers n with ’big’ ged (a™ — 1,6" — 1). We show the
same property for ged (a™ + 1,0" + 1).

By the principal method which we use for primitive roots we can
obtain another result. Let ¢,(p) (¢,,(p) respectively) denote the small-
est prime which is quadratic residue (non-residue respectively) mod p,
and z(x) any unbounded increasing real function. We show the known
results of Erdos and Elliot with an elementary method, and generalize
this result in the sense that the ¢,(p)’s (¢,-(p)’s) can be chosen from a
specific infinite set which fulfills a certain condition . Then, we present
an interesting application of the proof technique of the result which

relates to the former problem.



1. ABBREVIATIONS AND NOTATIONS

Z - The ring of integers.

Z/p - The ring of integers modulo prime p

7 - Multiplicative group of the field of p elements

< a > - Subgroup of F, which generate by a

gcd(, ) - Greatest common divisor of two integers

ord(g) - Order of element in [y

() - Legendre symbol

Q(n) - Number of prime factors of n (with multiplicity)
f<g(org> forf=0(g))) - The inequality |f(z)| < cg(x).
f(x) =o(g(x)) - Means that % —0

A - The discriminant of the real quadratic field

K = Q(v/A) - A real quadratic field

Ok - Integer ring of K

II(y; m, s) - Number of primes p < y such that p = s (mod m)
Li(y) - The term [ 1;%

E(y;m,s) - The term II(y;m, s) Liw)

p(m)

E(z,m) = max nax |E(y;m, )]

©(m) - Euler totient
Ce(p) -Kernel of a map (Ox/(p))* — (Z/p)*

N - The norm map

v - Function which gives, the number of prime factors of an integer

i - Mobius function

S(A, z,v) — |{ala € A, (a, T[] p)=1}
p<z, ptv

ord(A, N) - Order of the matrix A mod N.

ord(a,b; N) - Order of (a,b) mod N

P,(2) - The product of all odd primes up to z and = a(mod 4)
P(z) = Pi(2)Ps(2).

P; - Integer with at most three prime divisors

l.(p) (nr(p)) - The smallest prime which is a quadratic

residue (non-residue) mod p



2. INTRODUCTION

A natural question to ask is if there are many primes for which 2 is
a primitive root, that is if the subgroup (2) of the multiplicative group
[F5 of the field of p elements generated by 2 is the whole group. Is there
a finite number of such groups F;? Does the same apply for any integer
a?

In 1927 Emil Artin [2] made the following conjecture:

Conjecture 2.1. Let a # —1 be an integer which is not a perfect
square. Then there are infinitely many primes p such that
<a>=TF;.

In addition, for x > 0, the number of primes p < x with this property

18 asymptotic as * — 0o to
x

Ala) log

where A(a) is a constant which depends on a.

In 1967 Hooley [13] proved Artin’s conjecture with the asymptotic
formula under the Generalized Riemann Hypothesis. In 1983 Gupta
and Murty [9] proved that there are 13 specific integers such that at
least one of them fulfills the Artin conjecture. From the proof we can
deduce that Artin’s conjecture is true for almost all integers. R. Murty,
K. Murty and Gupta [10] showed that we can reduce the specific set of
integers from 13 to 7. Improving the analytic part of Gupta and Murty
enabled to give the best result till now:

Theorem 2.2. ([12]) Let q, r and s any three primes. Then at least
one of them is a primitive root mod p for infinitely many primes p.

We note that theorem 5.1 holds for any three non-zero integers, ¢, r
and s which are multiplicatively independent where ¢, r, s, —3qr, —3¢s,
—3rs and ¢rs are not a square. (we say that r integers ay, ..., a, are
multiplicatively independent if for any integers ny,...,n,, ai* ---a}" =
l=n=..=n,=0).

In this work we present an analog of Artin’s conjecture in a quadratic

field and we will prove a result similar to the one just shown (we will
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show that a set which contains a specific number of elements or more
always contains a primitive root) for units (in chapter 2) and for any

algebraic number which is not unit (in chapter 3).

Another interesting problem which was raised from the Gupta and
Murty work is to find an infinite sequence of integers n such that
ged(a™ —1,0" — 1) = 1. Ailon and Rudnick [1] have conjectured that
the answer is true. From this, a natural question to ask is if there exists
an infinite sequence of integers n such that the ged(a™ — 1,0" — 1) is
big. Let a,b be multiplicatively independent. Y. Bugeaud, P. Corvaja
and U. Zannier [4] proved that for all € > 0, ged(a™ — 1,0" — 1) <
c(e)exp(en). L. Adleman, C. Pomerance and R. Rumely [3] proved
that there are infinitely many integers n such that ged(a™—1,0" —1) >
exp(exp(clogn/loglogn)) for any integers a, b.

In chapter 6 we prove the same result as APR found result for
ged(a™ 4+ 1,0" + 1). In addition we note that this is also true for
ged(a™ 4+ 1,0" — 1).

In the last chapter we show an interesting use by elementary sieve
method (the method which we use for the primitive roots result) to
solve two problems from number theory one of them related to the

above mentioned problem.

3. THE WORK OF GUPTA-MURTY AND OF HEATH-BROWN

Since our work is based on the idea of Gupta and Murty with the
advanced version as in the paper of Heath-Brown it will be natural
to present their work. We start with following trivial idea: since the
number of elements in F7 is p — 1, if we show for all integer d, and

infinitely many primes p
dlp—1,d#p—1=a*#1 modp

we will have proven the conjecture.
So our first goal is to find infinitely many primes p with a small
number of prime divisors of p — 1. Heath-Brown proved the following

lemma.



Lemma 3.1. Let q,r and s be any three primes. There exist K =
2%k =1,2,3 such that for any sufficiently large v € RT we have two
numbers €,0 € (0,1/4) and ¢ = c(¢,6) > 0 so that there are at least

x
¢ log? =

primes p < x which satisfy:

FEither p—;(l is prime or I%l = p1p2 for pi1,ps primes > p

p1 < p/?70. Furthermore, p satisfies

1/4+¢ and

G =()=C)=-1

p p p

Now we prove theorem 5.1 from this lemma. Assume for simplicity
that K = 2 and that we have infinitely many primes p < z as in the
Lemma 3.1 such that p%l = [ where [ is a prime. Take one of the
three primes in the lemma, say, ¢. If the order of ¢ equals | we get a
contradiction to the fact that (%) = —1 by the theorem on cyclic groups
(the order of the squares subgroup of I is el =), If ord(q) = 2L we
are done. If not, the only possibility left is ord(q) = 2 but this does
not occur for sufficiently large primes p and hence ¢ is a primitive root.

Assume now that there exist clogi%D primes p < x as in Lemma 3.1
such that p_§1 = p1pa. As before the order of ¢, r and s can be (if they
are not primitive) 2, 2p; or 2py. As before there is only a small number
of cases where ord(q) = 2. Assume that ord(q) = 2p;. For this case we
need some observation. Let n be a natural number and Q(n) denote
the number of prime factors of n (with multiplicity) and write f < g
(or g > for f =0(g)), where g is a positive function, if there exists

a constant ¢ > 0 such that |f(z)| < cg(z). Then

Observation 3.2. (1) For any natural number n, Q(n) < logn.
(2) Given an integer a, The number of primes p such that ord(a) <

y (mod p) is O(y?).

To see (1), use n = ¢ -+ - g% > 201 ... 2% > gutFar — 90(n) Ty
see (2), use Y Qa™ —1) <, Y. log(a™ —1) <, >, m <, y*

m<y m<y m<y
Now, if ord(q) = 2p; < /279 (mod p), then by observation 3.2 this
occurs for at most (z'/279)2 = 2!'=29 primes.

1.1725
cx/log? x
p such that ord(q) = 2p; (mod p). This fact is also true for r and s.
8
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Now, assume that ¢ and r and s have order 2p,. Since F} is a cyclic
group, ord(< ¢, 7, s >) = 2py < 2347, By Lemma 2 in [9] the number
of primes p such that ord(< ¢,r,s >) < y is O(y*?). So the number of
primes p such that ord(< ¢,7,s >) = 2ps < 2347 is O(2'74/3) and as

Cx
2

before, is negligible in comparison to )
log“ x

4. ARTIN’S CONJECTURE IN A REAL QUADRATIC FIELD FOR UNITS

Let d # 1 be a square-free natural number and let A = d if d =
1(mod 4) and A = 4d otherwise. Let K = Q(v/A) be a real quadratic
field and denote the integer ring of K by Of. The principal ideals pOx
that are generated by a rational prime p, take one of the following forms

(1) pOgk = P (inert);

(2) pOx = PPy, P, # P, (splits);

(3) pOx = P? (ramified)
where P and P; are prime ideals in Ox. We note that the option (3)
occurs only in a finite number of cases and so does not interest us.

Now, the norm map

NOKP—)Z

gives a homomorphism

(Ok/(p))" = (Z/p)

For any unit € with A/(¢) = 1 the kernel of this map contains the residue
class € modulo p. Denote this kernel by C¢(p). By Lemma 19 in [15]
(appendix B)

— 1, p splits

ord(C.(p)) = { P

p+1, pinert

Assuming GRH, Cooke and Weinberger ([8]) and Lenstra ([16]) showed
that given a real quadratic field K, there are infinitely many split
primes for which the fundamental unit of the field has maximal or-
der (namely p — 1) in Cc(p).

Using the strong analytic theorem of Heath-Brown [13], Narkiewicz
[19] proved the following unconditional theorem:

Theorem 4.1. Let €1, €9, €3 be units in the integer rings Ok, , Ok,, Ok,

of Ki = Q(WAY), K» = Q(vAy), K3 = Q(v/A3), respectively, which

9



are not roots of unity. There is an index j, 1 < 5 < 3, such that for
infinitely many split primes p, cje;, ¢; = £1, has order p—1 (mod (p)).

For inert primes, one wants similar results. Under GRH, an analogue
of [8] [16] was only proven recently by Roskam ([20]). We want to
extend the result of Narkiewicz for inert primes. In this case the order
of Cc(p) (mod p) is p+ 1. So we cannot use the result of Heath-Brown
on the divisors of p — 1. We shall use a simpler method to get infinitely
many primes p such that ’%1 = P53 (we write P3 for an integer with
at most three prime factors) but with almost same magnitude of the

prime divisors. With this result we obtain:

Theorem 4.2. Let €1,...,e7 be units (assume that they have norm
+1) in the rings of integers Op,,...,0n, of Q(vA1),...,Q(VAr7),
respectively, which are not roots of unity, with Ay, ..., Ar multiplica-

tively independent and distinct from 3. Assume that all the numbers

7 7
(=1)3% [T A%, a;,b; € {0,1}, are not perfect squares if 3 b; is odd.
- :

= i =1
Then there exists an index 1 < j < 7, such that for infinitely many
inert primes p, the unit cje;, (c; = £1), has order p+1 modulo pOa, .

Corollary 4.3. Let €1,...,€e; be units (assume that they have norm
+1) in the rings of integers Op,,...,0n, of Q(WAYL),...,Q(A7),
respectively, which are not roots of unity, with Ay, ..., A7 primes dis-
tinct from 3. Then there exists an inder 1 < j < 7, such that for
infinitely many inert primes p, the unit cjej, (¢; = £1) has order p+1
modulo pOax; .

4.1. Notation and Preliminaries. Now before we prove the theorem
about the prime divisors of p+ 1 (as in Lemma 3.1 for p — 1) we need
to decide on some notation.

Let II(y;m,s) denote the number of primes p < z such that p =
s (mod m) where m and s are some integers, and

Li(y)
p(m)

E(y7 m, S) = H<ya m, 8) -

where Li(y) = [ 1;%. Also set
E(z;m) = max Jnax |E(y;m, s)| .
10



Define A = {p+ 1|p < z,p = u (mod v)} where u, v are some inte-

gers such that (u,v) =1, u = 1( mod 2), 8Jv, (1}, v) = 1 and take

e(v)

For a square-free integer d, (d,v) = 1, let
Ag:={a€A:a=0 modd)}
={p+1l:p<z, p=u modv, p=-1 mod d}
By the Chinese remainder theorem there exists an [ such that
Agl =#{p+1lp<ax,p=1 (mod dv)} .

By the definition of E(z;dv,1),

Lix 1 Lix X
A4l = ——+FE(x;dv,l) = ———+FE(x;dv,l) = —+FE(x;dv, [
A= Gy TP D) = Gy PR D = g R d
Define w(d) := ﬁ and
Ry = | A4l — #X = F(z;dv,l)

Finally, we define two arithmetical functions for a square-free d = p; -
e pr. p(d) = (=1)* and v(d) = k (where u(1) = 1 and v(1) = 0).
Now we want to prove two lemmas.

Lemma 4.4. For any prime q, which is relatively prime to v we have:
1 1
(4.1) 0<—<1——
q—1 1

where ¢; > 1 is some suitable constant.

1
(4.2) 3 qu1 - log% —0(1) 2<w<2)
w<g<z

where O does not depend on z or w.

1 1
(4.3) 11 (1_q—1)>>1ogz'

11



Proof. Since q > 2 it is clear that (7.3) holds.

; logg _ logg g _ logq
As for the second equation, > 2= 3} L= 0+
w<g<z w<g<z

q
A= X My ¥ get—logz+0(1) (X 22 =loga +

w<g<z w<g<z p<x
0(1)).

Hence we get (7.4). Finally,

w(q), 1 1
Hﬂ—ﬁ—H@—ﬁ»Hﬂ——)

2<g<z 2<q<z q- 2<q<z q- 1
qfv gtv
= l 1 e —
exp(log H - 1
2<q<z
= exp( Z log (1 — —))
2<g<z
1 1
> exp( Y (- - )
= a—1 (g1
Since
1 - 1 1 1 1

S
g—1 q ql¢g—1) " q (g—1)?
and > ﬁ converges, we get

[To-—Dsen- 3 1)

2<g<z q- 2<q<z q
Since
1
Z — ~ loglog z
2<g<z
we have

1
exp(— Z —) > exp(—loglog z) =

og z
2<q<z g

U

Lemma 4.5. For any natural square-free number d, (d,v) = 1, given
an A > 0 there exist constants co(> 1) and c3(> 1) such that

X
4.4 23D Ry < c3———, (X >2
(4.4) > k) |d|_0310gAX (X >2)

X2
1< {iog )72

12



Proof. Denote by Sg, the term which we need to estimate:

Sro= > AR,

d< (log z)CQ

By the definitions of Ry and E(x; dv)
S S w3 dv)).

1
X2
(log )2

Since E(z;dv) < - if d < 7, we get that

d<

o 1,21
Sk, < Z d)3"D| B (x; dv)[2(5-)%.
d<W
Hence,
d)3v(d)
Sp, < 17 Z il >7 |E(z; dv)|2
d< %
By Cauchy’s inequality,
M 321/ (d) ) )
Sp, < a2 Z ) () | B(adv))z.
1
d<W < gz

We have,

L 2v(d) L L
Se, < b3 CASTDNC Y B )k

1
d<X2 dv<£

For sufficiently large x we obtain

2(d 32u(d)
Sr, <ot P00 S B,
d<at dv< (10§f>c2

With Bombieri-Vinogradov theorem ([5]) (given any positive con-
stant e, there exist a positive constant ey such that Z E(z;d) =

d< logeQ x

O(=5—)) for the last sum and since ) M < (logw + 1)? (see

log®l x
8 d<w
13



[11], p.115, equation (6.7)) we find that for given constant B there exist
¢y such that

x
Sg, <
fla log?

So, for given A there exist ¢, such that
Sp, K —5—

fia log? X

where < depends on v and c,. O

4.2. Proof of Theorem 4.2 - the sieve part. In this section we
will show that for a sufficiently small 0 < & < 1/4 there exists some
constant ¢(d) > 0 (which depends on §) such that for at least c(d) 2
Xl = Py where g2 = ¢ > z!/470.
Later we will sharpen this result further.

primes p < x, p = u (mod v),

4.2.1. Use of the lower bound linear sieve. In the following subsec-
tion we will show, using the linear sieve, that for a sufficiently small

0 < 0 < 1/4 there exists some constant ¢;(d) > 0 (which depends on

p+1

9) such that for at least 01(5)1 7~ primes p <z, p=u (mod v), 5

has at most four prime divisors all of them greater than 2179,

Define S(A,z,v) = #{ala € A, (a, [[p) = 1} and let f denote
p<z
ptv

the “lower bound function” for the linear sieve which is defined as

f(t) =2e"t"tlog(t—1) for 2 < t <4, where v is Euler constant. Then
(see [11, Theorem 8.4, page 236]):

Lemma 4.6. Assume (7.3), (7.4) and (5.4). Then for X% < z <

X4 we have

43 Sz 2 X[J0- 2GRS L o)
s

where the O-term does not depend on X or on z.

Note 4.7. Obviously z influences the number of primes which divide
the elements of A and their magnitude. Heath-Brown used a stronger
version of this lemma which gives z = 24T where ¢, is a specific

small real number.
14



By Lemmas 5.3 and 4.5, (7.3), (7.4) and (5.4) hold. Hence we can
use Lemma 5.5 with z = X179,

L 1 1 logw 1
X179 > X 1-— Py :
S(A, ) > H ( q_1){f(210gx%_6)+0(10gx)}
q<)€rz‘5
qtv

By Lemma 5.3 (5.3) we have

X 2
logx%_‘sf(l — 45)

S(A, X570 v) >

But for 2 <t <4, f(t) = 2¢"t log(t — 1), and so,

1 X 1—46 1446
S(A,Xa™° 2¢” 1
(A, X U)>>logx1/4—5e( 2 )Og1—45
> " 1+ 40 T (1+ )
o = o .
log” x S1-1 log” x & 1—46

Since log(1 +s)/s ~ 1 as s — 0 and for, 0 < 0 < 1/4, 1 — 46 are

bounded, we have:

Lemma 4.8.
T

S(A, X170 ) > 06—

log” x

where the implied constant in > does not depend on 6.

Note 4.9. By definition of S(A, X179, v), for all sufficiently small 0 <
0 < 1/4, there are > § log%w primes p < x, such that any prime divisor

of p+1 (for a p in our sequence) is greater than X 179 or divides v. Since

by our assumption (“TH, v) = 1 where p = u (mod v) and X = % we
obtain that all odd prime divisor of p—;l are greater than 2179, Hence

there are at most four prime divisors of p—;rl which are greater than
2179 In the next subsection we will show that there are only a small
number of primes p < x such that ’%1 has exactly four prime divisors

all of which are greater than 210,

4.2.2. First use of the Selberg upper bound sieve. In order to prove that
there are only a small number of primes p < x such that exactly four
primes divide ’%1 we need to use Selberg’s upper bound sieve (see [11,

theorem 3.12]):
15



Proposition 4.10. Let a,b be integers satisfying
ab#0, ged(a,b)=1, 2|ab

Then as x — oo we have uniformly in a,b that

Hp:p<z, ap+b= pm’me}\ <

p—1
8H H 210g x{l

p>2 2<p\ab

From this proposition we derive the following:

Lemma 4.11. For any 0 < § < 1/4, there exists co(9)

log log x

O( )}

log x

o (ea(6) > 0)

primes p < x such that 1%1 has at most three prime divisors all of

which are greater than x'/*~9.

Proof. Assume that p—;rl = p1pepsps, P < x where the p; are primes
greater than /479 Instead of counting the elements in this set we can

count the products of primes ppap3ps such that 2p1popsps — 1 =p < x

where the p;s are primes greater than /479,

To count the latter set we use Proposition 4.10. We take a = 2p1paps,

b=—1and Y = 2t (since 2p1papsps — 1 < 2 & py <

2p1p2ps3

By the Proposition 4.10,

Spy = #{ps <Y :aps + b= prime}

x+1 )
2p1p2ps’/”

= #{ps < : 2p1popsps — 1 = prime}
2p1p D3
< x+1
2p1p2ps3 log .

Since the p;’s are big primes, the term [[ 2=

p
pl2p1pap3

p#2
one. Then

r+1

2p1p2p3 log 5
16

Sp4 < x4l

P1p2p3

1

p—l
Il =

2p1p2ps3 p\2p1p2p3

p#2

is approximately



From the fact that for all i = 1,2,3, p; < x'/*t3 we have for a

sufficiently small §

S, <

T

P1P2pP3 10g2m
1 T < 1 5 1 T
pipaps log® 21/4=9 7 21/4— 95" pipops log’w

Now we shall sum-up the last term over all possibilities for py, ps, ps.

This number is bounded by
x 1 1 1
S =4~ NN N
TR F O DD Dl Div
p1 p2 p3

1/4435
9

where the sum is over /4% < p, < z i=1,2,3.

Observation 4.12. We have 11? =log 5 +o(1).

zﬁ<p<:ca

By observation 4.12,
s 1/4436 = 166 x
1/4 -0 log*z 1—46"1log*x
Since log(14+s) = O(s) for 0 < s < 1 and for, 0 < 6 < 1/4,1 -4 is

bounded, we have

¥ 3
S,, <K log < log”(1 +

x
Sy, < 6°
Ppa 1Og2ZL'
where < does not depend on 4. Hence, S, is a small number in
comparison to S(A, X170 v) > Oie?a" O

4.2.3. Second use of Selberg’s upper bound sieve. Up till now we know
that for any sufficiently small number § > 0, there are 02((5)10gL2:D primes
p < x such that I%l has at most three prime divisors all of which are
greater than z'/47%. In this section we want to prove the existence of
03(5)1(%#2:D primes p < x, such that p—;l = P3 and if ’%1 is a product of
exactly three primes ¢ > g2 > ¢y then ¢ > /470, go > xV/*20 g5 >
2349 First we prove the claim about ¢y (by the previous subsections
it is clear that q; > x'/479).

Assume that ¢; and ¢, take values between 2179 and 2172 Instead
t ptl

2

of counting the number of primes p < x such tha = ¢1¢2q3 Where

q1 and ¢o are between 217% and xi”‘s, we shall count the products
17



q192q3 such that 2¢1q2q3 — 1 = p < x where ¢; and ¢y are between 7179

and z1+%.
To count this set we use Proposition 4.10. Define a = 2¢,qo, b = —1

andY = ”1 - (since 2q1gags —1 < 7 4 g3 < 2z+1) " By Proposition 4.10

QQ1Q2

Sgs = #{q3 <Y :ags + b= prime}

1 .
:2¢1q2q3 — 1 = prime}

z+1
< I1 2=
2q102 p|2q1q2
p#2

As in the previous subsection, since the ¢.s are big primes the term

p—1 - .
IT L= is approximately one, so
pl2q1g2
PF#2

r+1
2q1G2 log2 rtl

2q192

Sy <

Now we sum-up the last term over all possibilities for ¢;,qs. This
number is bounded by, (see the previous subsection)
x 1 1 x 1+ 80
St =— — — <K log? .
“ 10g2 T Z L ¢ Z Q2 10g2 T & 1—46

1 1
2T 0<q<aTt®  2170<gy<aT

Since log” 80 = O(6?), Sey = 0(5210;”21). Hence for any ¢ suf-

ficiently small we get a small number of primes p < x such that

ptl
2

most such p, we have ¢o > =

= ¢192q3 where ¢; and g9 are between 2178 and 172 Thus for
1/4425

Finally we prove the claim about ¢3. Assume that p—“ = q1G2q3, q3 >
¢o > ¢ then we have that g3 > (p+1) The followmg lemma sharpens

this result.

Lemma 4.13. For any 0 < 6 < 1/4 there are at most O(6° %)
og® T

primes p < x for which (p—;rl)% < g3 < p%”Q where O does not depend
on o.

: 1 1 1
Proof. Note that if p—;l > > (p—;rl):% > (—%=)3 > z3 8
for z > z(6) (the number of primes p for which Z- < a7 g) I8 o(+=%=)
by the prime number theorem and so may be ignored).

18




Assume now that I%l = q1gaqs with z1/37 < g3 < 2!/31% and
Z/AHB < gy < gB1240+0? (this is the maximum range which ¢y can be
in). Using Proposition 4.10, we take a = 2¢aq3, b = —1, ¥ = ZH

2q2q3’
and so
So =#{q1 <Y :raq + b= prime}
r+1 .
=#{q < —— 1 2q2q3 — 1 = prime}
2q2q3
r+1 p—1
2q2q3 log” L H p—2
29293 p|2q2q3
p#2
Since 223/4T9+20% ig the maximum of 2¢ss (¢ > z1/47%) we obtain

T i

<
2¢2q3 log” —s Q3 log” x

Sy <

Now we sum-up the last term over all possibilities for g, ¢3. this
number is bounded by, (see the proof of Lemma 4.11)

T 1 1

S* = —_ —

q1 10g2 T . Z s q2 ) Z ) q3

ﬂ+26§q2§wﬁ+”52 w§762§q3§w3+52
T 5/12+0+6%, 1/3+62
5— log log 5
log” x 1/4+ 20 1/3—90
x 662 x

< log(1 4+ ——=) = O(¢*
10g2 T Og( 1 o 352) ( 10g2 x)

<

and for a sufficiently small § we can ignore this number. O

By the same method (see Lemma 3 in [13]) there are only O(6%—%-)

log? =
. 1 . .
primes p < x such that ’% = ryry where ris are primes, ¢ = 1,2, 19 >

52
1, p1/2 § S r S (pTH)l/Q
If we summarize this section we conclude that for any sufficiently

small 0 < § < 1/4 there are at least 03(5)1(%%, c3(6) > 0, primes

p <z, p=u (modv) such that we can factor Z- in at least one of

the following ways:

(1) 2 is a prime number.
(2) 1%1 = ri1(p)ra(p) where r1(p),re(p) are some prime numbers,

p1/4*5 < 7”1(29) <p1/2*52, p1/2+52 < Tz(p) <p3/4+5.
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(3) 235 = a1(p)a2(p)as(p) where qi(p) < q2(p) < gs(p) are some

prime numbers, qi(p) > pY*°, q(p) > pY"F, gs(p) >
p1/3+62.

4.3. Proof of Theorem 4.2- The algebraic part.

4.3.1. Construction of the arithmetic sequence. In this section we want
to construct integers u and v, (u,v) = 1 such that for all primes p
such that p = u (mod v), the discriminants Ay, ..., A7, A; # 3 of

Q(VA1), ..., Q(v/A7), respectively, satisfy

== =EH=-1.
p p p
This means that p is inert simultaneously in all of the fields.
In addition we want to insure that p—;rl will be an odd integer and
so we take u = 1 (mod 4) where 8|v. Finally, to get (2, v) = 1 we
shall construct u and v so that (“1,v) = 1 (since after sieving the

small factors of I%l we may be left with small factors which divide v,
see previous section).
In order to fulfill these demands, we will first show that there exist

infinitely many primes p with the following simultaneous conditions

@6  (GH=() =1 and (§)=(3) == (3) = -1
This condition is equivalent to the condition:

-1 3 Ay Ay
Bp)=14+(—)1+(=)A=(—)) - (1 —(— 0.
() = ( (p))( (p))( (p)) ( (p))#

Since the Legendre symbol is a multiplicative function, we obtain,
-1 3 A; AA; Ao A
B(p) = (1+(—=)(1+ ()1 =) +5(—H) — .. — (— 5)

p p p p p

7
Let S be the set of all integers of the form n = (—=1)*3% [] A%, a;,b; €
i=1
{0,1}. Then

(4.7) > Bp) = 3 (1) 32 (2), b €{0,1}

p<Z nes p<Z

By the assumption in the theorem (see the introduction) each n € S
7
is not a square when > b; is odd.
i=1
20



This assumption, together with the fact that for n not a perfect
square (by reciprocity law for Legendre symbol),

> (2)=o(n(Z)) as Z — o0

p<Z

implies that Y  B(p) is asymptotic to at least w(Z) (since all the neg-
p<Z
ative summands contribute o(m(Z)) and at least the natural number 1

contributes 7(Z)). This shows that the simultaneous conditions have
infinitely many solutions p.

We fix some particular pg satisfying the condition. We define us = pq
and for each odd prime [, such that [|A;---A; we define u; = pq if
ltpo+ 1 and u; = 4py otherwise.

Claim 4.14. [ {u; + 1

Proof. 1f u; = po then by the assumption [ t po+1, [ t u;+1. If u; = 4py,
assume, by reductio ad absurdum, that {|u; + 1. Hence [ | 4py + 1.
Because u; = 4pg and [ | pg + 1, we obtain that [ | 3p. On the other
hand, by our condition, (p%) =1s0 (B)=1 (po=1 (mod 4)). Hence
po = 1 (mod 3). Since [ | pg+ 1 and pg = 1 (mod 3) we conclude that
[ 1 3. Using the assumption that [ | pp + 1 we deduce that | # po (if
[ = po then [ 1 po+ 1). Hence [ 3py, a contradiction. O

Let v = 8A; - -+ A7 and u be the common solution of u = uy (mod 8)
and all the congruences u = u; (mod [). Such a solution exists, by the
Chinese Remainder Theorem.

Since [ 1 u+1 for every odd prime I|v and the fact that u = 1 (mod 4)
(by the construction v = uy (mod 8) where uy = py = 1 (mod 4))
we conclude that (“f*,v) = 1. Finally, if p = u (mod v) then p =
po (mod 8) and p = pg or 4py (mod 1) for all odd primes l|v. So,
(%) = (%) = —1, and similarly for all A;’s. This completes the
construction of u and v.

Note that by the construction of the integers u and v we have that
(u,v) = 1. (Take [ an odd prime number, [ | v = 8A;---A; and
assume that [ | . Since u = w; (mod 1), | | u;, hence [ | py or 4py;
in other words [ = pg. But po { Ay -+ A7 (po fulfills the simultaneous

condition (5.6)) and [ | Ay ---A7).
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4.3.2. The last step of the proof. For the last step of the proof we need
to use Lemma 4 from Narkiewicz [18], which generalized Lemma 2 in

[9];

Lemma 4.15. If aq,...a; are multiplicatively independent integers
of an algebraic number-field K, G the subgroup of K* generated by
ai,...ag, and for any prime ideal P not dividing ay,---a, we denote
by Gp the reduction of G (mod P), then for all positive y one can
have #Gp < y for at most O(y”%) prime ideals P, with the implied
constant being dependent on the a;’s and K.

Now, as we saw at the end of section 3, for any sufficiently small
0 < § < 1/4 there is some constant c3(d) > 0 such that for 03(5)1%%
primes p < z, p = u (mod v) at least one of the following occur:

(1) 22 is a prime number.

(2) 1%1 = r1(p)ra(p) where 71(p), r2(p) are primes so that, p'/4=% <
ri(p) < 2, U <y (p) < pP/iHe.

(3) 55 = q1(p)a2(p)gs(p) where qi(p) < 2(p) < gs(p) are some
prime numbers, q;(p) > p/470, g(p) > p/**% ¢3(p) > piTY

It is clear by the construction of u and v that p =1 (mod 4). Because
#C.(p) = p+1 when p is inert in Q(v/A) the unit —1 is a non-square in
the group C¢(p). Hence for any unit € , we can choose constant ¢ = +1
such that ce is a non-square in C,(p). Similarly, since ce is a non-square
and the index of the group of squares is 2, the order of ce is even.

Now we look at our cases:

(1) In this case, by the above note, ce, if not primitive, has or-
der 2 But the number of p’s with this property is O(1) (by
Lemma 5.7).

(2) Let ciey, . . ., ca€q, be units in the orders Oy, ..., Oa, of Q(v/Ay),
QWAL Ay # 3,0 =1,2,3,4, respectively. We will show
that one of them is primitive for infinitely many primes.
If ord(c;e;) mod(p) = 2r1(p) < 22> for some i = 1,2,3,4

by Lemma 5.7 this occurs for at most O(z'/270%)? = z1-2%°
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primes p < x and this is a negligible number compared to
Cg(é)log%m .

Assume ord(c;e;) mod(p) = 2ry(p), ¢ = 1,2,3,4. Consider
the ring of integers O, of the compositum field M of Q(v/A;) i =
1 4.

Proposition 4.16. For any prime ideal P | (p) = pOy;:
(OM/P)* = (OAl/pOAl)* =..= (OA4/pOA4)* :

Proof. Since p is inert in each Q(v/4A;), the order of Ox,/pOa,
is p?, i.e., [Oa,/pOa, : Z/pZ) = 2. Since all these residue fields
are finite fields and two finite fields with the same number of

elements are isomorphic, it is enough to show that,
f=1[0m/P:Z/pZ] = 2.
Consider the Galois group G = Gal[M/Q] and define two

subgroups of G, the decomposition group D and the inertia
group E:

D = D(P|(p)) = {o € G| o(P) = P}
and
E =E(P|(p)) ={0 € G| o(a) =a (mod P), Yo € Z} .
Now, consider the Galois group G,
G = Gal[Oy /P | 7./ pZ)
By [17, beginning of Chapter 4],
D/E~G

By theorem 28 in in [17] (since (p) is inert in all the fields
Q(v4A,), (p) is unramified in all the fields Q(1/4;). Hence (p)

is also unramified in O, i.e., e = the exponent of P in the

decomposition of (p), is equal to 1)
|E|l=e=1

D] = f
23



Immediately we conclude that,
D~(@

Since G is a cyclic group, we get that D is a cyclic group of
order f. But D is a subgroup of G and G = Cj X ... x Cy where
C5 is a group of order 2. So, f < 2. Since

[Oa, /PO, : Z/pZ) =2

we also see that f > 2. Hence f = 2.

Because the compositum of normal extensions is normal, this
claim is true for all the prime ideals P in the decomposition of
(p) (they have the same e and the same f) O

By Proposition 4.16 | < cieq, oo, C3€3, Ca€4 > | = 2r2(p) <
p*/4+9in (O, /P)* for (p)|P (this is a cyclic group). By Lemma 5.7
the number of p < z that have this order is at most O(z¥/49)1 =
O(2'%/16+59/4) but we can choose § to be as small as needed.
Hence the number of primes p, p < x such that c;e; 1 =1, ...,4
have order 2r3(p) is a small in comparison with 03(5)103;—%.
Denote by S, the set {cieq, ..., coen} Where cieq, ..., cre, are
multiplicatively independent units and take four units ¢;, €;,, ..., ¢;, €,
from S(1,,) and assume that g (p), which is greater than /479,

divides [Cc(p) : (ci,€;, )] for k=1,....4.

For any unit € let be € its image in Cc(p). Then |(c; € )| =

i
W < P <« g3 for k= 1,...,7. Since qi(p) di-
K
vides [Ce(p) : (¢, )] for k= 1,...,4 and C(p) is a cyclic group,
[(ci €55 -y Cig€i, )| mod p < 2¥/4%°. By Lemma 5.7 it occurs in
at most O((z%/4+9)%/4) = O(x'5/16+5/4) primes p < 2 which is a

negligible number relatively to c3 (5)@ for sufficiently small 9.

So, for at most three units from ¢;, €;,, ..., ¢i,€;,, q1(p) divides
[Ce(p) : (ciy€ )] for k = 1,..,4. In other words for at most

three from ¢;, €, ..., ¢ €, q1(p) does not divide |(c;, €, )|. Hence
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for at least one unit, say c,€,, ¢1(p) divide |(c,€,)|-

Denote by Sq,-1) the set {cie1, ..., ch_1€,-1}. By repeating
the former process for S ,—1) we obtain that for at least one

integer, say ¢,_1€,-1, q1(p) divide |[{(¢,_1€,-1)|.

We continue this process till we obtain the set Sy ) = {cqéy, ..
where c4é€y, ..., cp€, are multiplicatively independent units such
that ¢;(p) divides |(ci€;)| for t =4, ..., n.

Now, we are repeating the process which we use to ¢;(p) and
Sny for ga(p) > pY*t% and the set Sun) = {Cs€4, .y Crén .
Take three units c¢; €, ..., ci,€,; from S ,) and assume that
¢2(p), which is greater than z'/4+% divides [C.(p) : (ci€;,)]
for k=1,2,3.

— 1 — —
Then \(clke%)| = m <& PP GBI o | =
1,2,3. Since gz(p) divides [Ce(p) : (¢, )] for k= 1,2,3 and
C.(p) is a cyclic group, |{c;,€i,, ..., Ciy€is)| mod p < x3/4+°. By
Lemma 5.7 it occurs in at most O((z%4720)4/3) = O(2!789/3)
primes p < x which is a negligible number relatively to c3(d )log%x

for sufficiently small §.

So, for at most two units from ¢; €, ..., Ci €5, g2(p) divides
[Ce(p) : (ci,€;,)] for k= 1,2,3. In other words for at most two
from ¢ €y, ..., Ciy€iy, qa(p) does not divide [(c¢; €, )|. Hence for
at least one integer, say ¢,€,, g2(p) divide |{¢,€,)].

Denote by Si,,—1) the set csey, ..., cp_16,—1. By repeating the
former process for S,,_; we obtain that for at least one unit, say
€n_1, G2(p) divide |{€,_1)]|.

) Cnen}

We continue this process till we obtain the set S ) = {cg€; -, Cn€n }

where cgé¢g, ..., cp€, are multiplicatively independent units such
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that go(p) divides |(¢i&)], t = 6,...,n and in fact ¢;(p)ga(p) di-
vides [(c¢;€)| for t = 6, ..., n.

2
1/340 and

Finally, We repeating this process for g3(p) > p
the set Si.n) = {co€6, .-, Cn€n }. Take two units ¢; €, ¢, €, from
S(6,n) and assume that gs(p), which is greater than /349 di-

vides [Ce(p) : (ci,€;, )] for k= 1,2.

Then [{e,,)| = ey < 00 < 2205, k=12
Since g3(p) divides [Cc(p) : (ci € )] for k = 1,2 and Cc(p) is a
cyclic group, |(¢; €, ¢iy€i,)| mod p < z*3~% . By Lemma 5.7
it occurs in at most O((22/379%)3/2) = O(x'~3"/2) primes p < z
which is a negligible number relatively to 03((5)1%#21 for suffi-

ciently small §.

So, for at most one unit from ¢;, €;,, ¢, €;,, q3(p) divides [Ce(p) :
(ciy€;, )] for k = 1,2. In other words for at most one from
Ciy €y s Cin€iy q3(p) does not divide |{(¢;, &,)|. Hence for at least

one integer, say c,€,, q3(p) divide |{c,&,)]|.

Denote by Sn-1) the set {cg€s, ..., Cr1€n—1}. By repeating
the former process for S,,_; we obtain that for at least one unit,

say €1, g3(p) divide |(€-1)]-

We continue this process till we obtain the set Sz ) = {crer, ..., cpen}
where crer, ..., ¢ €, are multiplicatively independent units such
that g3(p) divides |{ci€;)| for t = 7,...,n and in fact ¢, (p)g2(p)gs(p)
divides |{ci€)| for t =7, ..., n.

Hence if we take n = 7 multiplicatively independent integers

p+l
1=

we choose the c;s such that the cjeg-s are quadratics non-residue

we obtain that one of them have at least the orde . Since

we obtain that one of them have at least the order p + 1 which
completes the proof of the Theorem 4.2

26



Note that Theorem 4.2 implies Corollary 4.3.

5. ARTIN’S CONJECTURE FOR NONUNITS

In this chapter we want to extend the result of the previous chapter

for any algebraic integer modulo inert primes p. We will prove

Theorem 5.1. Let K = Q(vA) be a quadratic field and {0}, be a
set of 85 integers of K such that

(1) N(oy) = ao(e), the norms of the als, are multiplicatively in-
dependent.

(2) BN(a;)A, N(wy) are not perfect squares.
(3) M(ay) = o(ay)/cy are multiplicatively independent.
Then at least one of the 85 integers has at least order 1?22—21 mod p

for infinitely many inert primes p in K.

Note that in the case of split primes, Narkiewicz ([18]) proved a much
stronger result.

Since in our case the order is p? — 1, which is not “linear”, their
divisors are too big and we can not use the method of [12]. But since
p?—1=(p—1)(p+1) can be factored into two linear factors, with the

following remark we can still use the method of [12]

Remark 5.2. Consider an algebraic number o in K = Q(v/A). Let
p1a be an inert prime in K. Since:

(1) M(a) = =" (mod (p))

(2) N(a) = ot (mod (p))
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We have:
ord(M(«)) | ord(«) (mod (p)) and ord(N(«)) | ord(«) (mod (p))
In addition:

ord(M(«)) | p+1 and ord(N(a)) | p—1
But,

(B p+l)=1or(p-127) =1
So,

ord(M(a))ord(N(e)) | 20rd(c) (mod (p))

Let e; and ey be some integers. If we prove that, M(a) and N(«)

have simultaneously at least orders p@—“ and 221 respectively, then we
1 €2

p*=1

will obtain that o have at least order Seres

With this way we reduce
the problem to a “linear” problem.

As in the former chapter we need to decide on some notation for the
lemma from sieve methods.

5.1. Notation and Preliminaries. Let 7(y;m, s) denote the number
of primes p < y such that p = s (mod m) where m and s are some
integers, and

Li(y)
E(y;m,s) =n(y;m,s) —
(i) = ()~ 212
where Li(y) = [ 15%‘ Also set
E(z;m) := max max |E(y;m,s)|.

1<y<z (s,m)=1

Define A = {p? —1|p < x,p = u (mod v)} where u, v are some given

integers such that (u,v) =1 and take X = f;((;)).
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For a square-free integer d, (d,v) = 1, denote
|Agl =[{a€ A:a=0 mod d}|
={p*—1:p<z,p=u modwv, pP>—~1=0 mod d}|

d
= Z Hplp <z,p=u modwv, p=m mod d}|

m=1
m2—1=0 mod d

d
= Z Hplp <z,p=u modv, p=m mod d}|

m=1
m2—1=0 mod d
(m,d)=1

By the Chinese Remainder Theorem, for each m there exists an
integer [,,, such that

d

Ad = > Hplp<w p=ln (mod dv)};

m=1
m2—1=0 mod d
(m,d)=1

Since |{p|p < z, p = l,, (mod dv)}| is asymptotically independent

of m, there exists some integer [ such that

m=1
m2—1=0 mod d
(m,d)=1
where p(d) = > 1
m2—120:1m0d d
(m,d)=1

We note that for any prime ¢, p(q) = 2 and hence for any square-free
d, p(d) = 2" where v(d) denotes the number of prime divisors of d.

By the definition of E(z;dv,1),

_ pld) Liz e do ) — 2v(d)
A= e A= o

X + 2"DE(x; dv, 1)



For any prime ¢ define w(q) := %, w(d) =[Jwl(q) = % and
ald

d
Ry = |A4| — #X = 2D E(x; dv, 1)

Finally, we define the Mébius function, u(1) = 1 and for a square-free
d=pi- pr, p(d) = (1"

Now we want to prove two lemmas.

Lemma 5.3. For any prime q > 3 which is relatively prime to v we
have:

(5.1) 0<——<

<
|
—
Do | =

(5.2) >

w<g<z

q_llogq—Qlog%:O(l) (2<w<2)

where O does not depend on z or w.

2 1
(5.3) IT - ) > .
2<$<z q- 1 1Og <

qv

Proof. Since q > 3, it is clear that (7.3) holds.

As for the second equation, q%—l logg=2 > loqu%l =2 10§q(1+
w<g<z w<g<z w<g<z

L) =2 ) MEeyo 3oL = 9logZ 4+ O(1) (X e -

w<g<z w<g<z p<zx
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Hence we get (7.4). Finally,

11 (1—— > [ « 1——

2<q<z 2<q<z - 1
qfv
— (1 1-— =
= exp(log H . 1
2<q<z
— log (1 — ——
—oxp( 3 tog(1- 7))
2<q<z
2 4
> exp( Y (- - 5))
2<q<z 7= 1 (Q'_ 1)
Since
2 2 N 2 < 2 n 2
q—1 q ql¢g—1) " q¢ (¢—1)*
and Z 12 converges, we get
2<q<z
2
[[O-—)>ep(= > )
2<q<z q 2<q<z
Since
2
Z — ~ 2loglog 2
2<q<z
we have

2 1
exp(— Z —) > exp(—2loglogz) = —

log” 2
2<q<z g

g

Lemma 5.4. For any square-free natural number d, (d,v) =1, and a
real number A > 0, there exist constants co(> 1) and c3(> 1) such that

X
5.4 2d)3VDIRY < c5———, (X >2
(5.4) > k) |d|_03logAX (X >2)

X2
U< {iog )72

Proof. (See Lemma 4.5) Denote by Sg, the term which we need to
estimate.

Sr= > (D)3 R,

3
X
A< Tog a2
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By the definitions of Ry and E(x; dv)

Sp, < > pA(d)6" Y| E(x;dv).

1
X2
d< (log ) €2

Since E(zr;dv) < I if d < %, we get that

) 2(d)6" @ )
Sp, <12 Y %\E(x;dv)h
N

By Cauchy’s Inequality,

i 2 d 62u(d) 1 1
S, <ot PIEN S B an)t.
d<X? dv<%

For sufficiently large x we obtain

NI

2 2v(d)
1 12 (d)6* 1
5wy < 23 TR S B,
1 1
d<z?2 dv<ﬁ

With Bombieri-Vinogradov Theorem ([5]) (given any positive con-
stant eq, there exists a positive constant e; such that >  E(x;d) =
1

z2
d< log®2 2

O(joer5)) for the last sum and the inequality >° w < (log w +

d<w

1)% (see [11], p.115, equation (6.7)) we find that for given constant B

there exists ¢y such that

Sgr, K .
fia log? z

So, for given A there exists ¢y such that

Sr, < X
fia log? X

where < depends on v and c». O
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5.2. Proof of Theorem 5.1 - the sieve part. In this section we use
the Selberg lower bound sieve and show that there is some small real
number §; and some constant ¢(6;) > 0 (which depends on d;) such
that for at least c(dy)
then either ¢ > /879 or g|v.

Now, define S(A,z,v) = |[{ala € A, (a, [[ p) = 1}| and define a

p<z
pfv
function g by g¢(to) = 1,19 = 4.42 and g(t) < 1 for t > ty. Then (see

[11, Theorem 7.4, page 219]):

primes p < z, p = u (mod v), if ¢|p* — 1

_z
log? =

Lemma 5.5. We have
log X
2log 2

(loglog3 X )®
logX

(55) S(A zv) > X [[(1- @){1 g XL o 3

q<z
qfv

where the O-term does not depend on X or on z.

By Lemmas 5.3 and 4.5, (7.3), (7.4) and (5.4) hold. Hence we can

use Lemma 5.5 with z = X 519
E 2 1 log X (loglog3 X )®
S XlJ”SO > X 1— 2 VMl_g(=———27 (10glogoA )\
R | T et e )
g<X81%
qfv

By Lemma 5.3 (5.3) we have for d, sufficiently small

X T
log? X > log® z

Thus for such dp we obtain that there is a constant ¢(dy) > 0 (which
depends on dg) such that for at least ¢(dg)
u (mod v) if q[p? — 1 then either ¢ > z'/8+% or g|v. Hence we obtain
that for all 0 < §; < & there is a constant ¢(d;) > 0 (which depends

on d1) such that for at least 0(51)1%% primes p < x, p = u (mod v), if

S(A, X5 ) >

primes p < x, p =

_z
log> x

q|p? — 1 then either ¢ > x5 or g|v.
5.3. Proof of Theorem 5.1 - The algebraic part.

5.3.1. Construction of the arithmetic sequence. Let K = Q(v/A) be
any quadratic field, O the integers ring of K, a € O any algebraic

integer and a = N(«). In this section we want to construct integers u
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and v, (u,v) = 1 such that for all primes p such that p = u (mod v),
the discriminant A of Q(v/A) and a satisfy
Cy=(%=-1
p p

This means that p is inert and a is not a quadratic residue (mod p).
In addition we want to obtain by the construction that (1?22—21, v) =1
(since after sieving the small factors of 1?22—21 we may be left with small
factors which divide v, see previous section).

In order to fulfill these demands, we will first show that there exist
infinitely many primes p satisfying the following simultaneous condi-

tions

(56) (=0 =B =) =-1

This condition is equivalent to the condition:

-1 5 a A
B(p) = (1 - (?))(1 - (]—9))(1 - (]—9))(1 - (;)) # 0
Since the Legendre symbol is a multiplicative function, we obtain,
G T R e B ) B B e )y

p p p p p p p p

Let S be the set of all integers of the form n = (—1)b5¢2Abs b, €

{0,1}. Then
_ bo+b1+ba+b n
(5.7) >, B(p) = Yo (=)t 50 (%), bi€{0,1}
p<Z nes p<Z
By the assumption in the theorem each n € S is not a perfect square
3

when > b; is odd.

i=0
This assumption, together with the fact that for n not a perfect

square (by reciprocity law for Legendre symbol)

S (2) = o(n(2)) as Z — oo

p<z ¥

implies that )  B(p) is asymptotic to at least w(Z) (since all the neg-
p<Z

ative summands contribute o(7(Z)) and at least the natural number 1
contributes 7(Z)). This shows that the simultaneous conditions have

infinitely many solutions p.
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We fix some particular py satisfying the condition (5.6) and for each
odd prime [ # 3, such that [|24aA we define u; = py if [ 1 p3 — 1, and

u; = 9pg otherwise.
Claim 5.6. [ fu? — 1

Proof. If w; = po then by the assumption [ { p2 — 1, so [ f u} — 1.
If u; = 9py, assume, by reductio ad absurdum, that I|uf — 1. Hence
[ | 81p% — 1. Since, [ | p2 — 1, we obtain that [ | 80p2. On the other
hand, by our condition, (p%) = —1so (B)=—1 (po =1 (mod 4)).
Hence py = 2 or 3 (mod 5). Since | | p2 —1 and py = 2 or 3 (mod 5)
we conclude that [ 1 5. Using the assumption that [ | p2 — 1 we deduce
that [ # po (if [ = po then [ 1 p2 — 1). Hence (I # 2,3) [ 1 80pZ, which

is a contradiction. O

In addition let uy = po if 8 | po> — 1 and uy = py — 8 if 16 | po? — 1.
Likewise we take uz = po if 3 | po> — 1 and uz = py — 3 if 9| po* — 1.

Let v = 24aA and u be the common solution of u = uy (mod 16),
u = uz (mod 9) and all the congruences u = u; (mod l). Such a solution

exists, by the Chinese Remainder Theorem.

Since [ ¥ u? — 1 for every odd prime [ # 2,3, [ | v, and by the con-

struction (“2221,6) = 1 we conclude that (“2221,1}) = 1.

Finally, if p = w (mod v), then p = py (mod 24) and p = py or

4po (mod 1) for all odd primes [|v. So, (%) = (péo) = —1, and similarly
for a. This completes the construction of u and v.

Note that by the construction of the integers u and v we have that
(u,v) = 1. (take [ an odd prime number, [ | v = 24a/A and assume
that [ | u. Since u = w; (mod 1), [ | w,.. Hence I | py or 9py (in this
case | # 2,3). In other words I = py. But pg 1 24aA (po fulfills the
simultanecous condition (5.6)) and [ | 24aA).

5.3.2. The last step of the proof. As we saw at the previous subsec-

z
log?

primes p < z, p = u (mod v), if q|p* — 1
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then ¢ > x'/8t9% or glv. Since ( v) =1, if q\ L then ¢ > x/8+01,

T
Since by the construction of uw and v, p = 1 (mod 4) and (& 241, v) =1,
we have that 21 and 25} are odd. In addition if p = 1 (mod 3) then
(o) =1 and if p= —1 (mod 3) then (B v) =1
If we conclude the result about p — 1 and p + 1 we have for at least
01(51)1 57— primes p < z, p = u (mod v), if ¢ | L or g | pdi: then
q> x1/8+51, where d_ =4 or 12 and d; = 6 or 2, respectively.

For the last step of the proof we need to use a version of Lemma 4

from Narkiewicz [18], which generalized Lemma 2 in [9].

Lemma 5.7. Ifaq,...ax are multiplicatively independent algebraic num-
bers of an algebraic number-field K, G the subgroup of K* generated by
ai,...ag, and for any prime ideal P not dividing ay,---a, we denote
by Gp the reduction of G (mod P), then for all positive y one can have
|Gp| <y for at most O(yH%) prime ideals P, with the implied constant
being dependent on the a;’s and K.

Proof. According to [18],

For any real number 7" denote by M = M(T') the set of all k-element
sequences (71, ..., ;) of non-negative integers satisfying

||+ |2 + oo 4 | T
It is easy to see that for T tending to infinity |M(T)| = (c+o(1))T*
with suitable positive constant ¢ = ¢;. If now P is a prime ideal for
which |Gp| < y, then select T to be the smallest rational integer with
cT* > 2y and let a; = Ic’—z for ©+ = 1,...,k. There exist two distinct
sequences Z = (z;), W = (w;) in M(T') for which

21 2k w1 W
bl bk _bl bk

21 2l w1 Wi
e bl RN

Hence for sufficient large P (since the a}s are multiplicatively inde-

pendent).
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21 2k w1 Wk
byt bR — b by

[21,w1] (21, w]
Cl « e . Ck

P

=D#0

Thus for sufficient large P

vp(la; ™ —1) >0

2

where vp denotes the P-adic valuation and it follows that for fixed
21 — Wi, ...y 2p — WE We obtain < log (mawx;|a;|*") < T possibilities for
P. Finally we obtain

{PIGpl <y} < THF <yt
0

Look at the p — 1 case (the case of p + 1 is similar). We have for
at least cl(él)logigz primes p < z, p = u (mod v) such that if ¢ | 2=
then ¢ > /8% where d_ = 4 or 12. Let p — 1 = d_q(p)g2(p) - - -
Im(D)s @n(D) > Gm-1(p) > ... > q1(p), m < 7, and let a be some integer
where a its image in F,.

Denote by S, the set S,, = {ay, ..., a,} where ay, ..., a,, are multiplica-
tively independent integers and take seven integers a;,, ..., a;, from S,

and assume that at least one prime, say ¢;(p), which is greater than
o!/310 divides [F7 : (a;,)] for k=1,...,7.

Then [(a;,)| = UF;I?%(;M <L P« T80 k= 1,..,7. Since
qi(p) divides [Fy : (a;,)| for k = 1,...,7 and F; is a cyclic group,

(@i, ..., a:,)| mod p < 27/87%. By Lemma 5.7 it occurs in at most

O((27/8=1)8/T) = O(2'=¥/1) primes p < z which is a negligible num-

ber relatively to 01(51)1%% for sufficiently small ¢;.

So, for at most six integers from a;,, ..., ai;, qi(p) divides [F} : (a3,)]
for k = 1,...,7. In other words for at most six from a;,, ..., a;, ¢1(p)
does not divide |(a;,)|. Hence for at least one integer, say a,, ¢(p)

divide |{(@,)|-.
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Denote by S,,_; the set {ai,...,a,_1}. By repeating the former pro-
cess for S,_1 we obtain that for at least one integer, say a,_1, q1(p)
divide |{(@,_1)|.

We continue this process till we obtain the set 7 = {a, ..., a,,} where
ar, ..., a, are multiplicatively independent integers such that ¢;(p) di-

vides |[(@)| for t =17,...,n.

By repeating this process for ¢ (p) we obtain for the set Ty = {a3, ..., a, }
that go(p) divides [{a;)| for t = 13, ..., n.

Again, by repeating this process for ¢, (p) we obtain for the set
T = {6m+1, -, an} that ¢, (p) divides |(a;) for t = 6m +1,...,n.

Since the maximum value of m is 7, if we take n = 6m + 1 = 43
multiplicatively independent integers we obtain that one of them have
at least the order pd;f

Let us look on the algebraic number M(«). By the same method
we obtain that one of 43 M(«) have at least the order pd—tl. one of
42 + 43 = 85 has, at least, the order 1?22—21. This completes the proof of
Theorem 5.1

6. GCD OF EXPONENT FUNCTIONS

As we mentioned, Gupta and Murty’s method to attack the former
problems raises question regarding ged (@™ — 1,0 — 1) where a,b are
multiplicatively independent rational positive integers. We prove a
result on the divisors of ged (a” + 1, 0™ + 1) which is the same to APR
result [3] for ged (@™ — 1,0" — 1).

Theorem 6.1. Let a and b be two multiplicatively independent integers.

Then there exist infinitely many integers n such that
(@™ +1,0" + 1) > exp(exp(clogn/loglogn))

where ¢ is some positive constant.
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Since the proof is based on the work of APR we now give the prin-
cipal proof of this result.

The proof is based on the following simple fact:

Let a be any integer. By the Little Fermat Theorem, if (a,p) = 1,

where p is a prime number, then

(6.1) a?” ' =1 (mod p) (or p|(a®' —1)).

It is clear that (6.1) is true for all integer n with p — 1|n. So, for all
integers n with p — 1|n the following holds

(6.2) a" =1 (mod p) (or pla™ —1).

Hence, for finding ’big‘ divisor of a™ — 1 it is enough to find a lot of
primes p where p — 1|n.

Let K be a square-free positive integer (which will be a product of
a ”lot” of "small” primes). We want to count the number of integers
m < z and primes p < x such that

(6.3) m(p—1) =0 (mod K)

Let A be the number of solutions of the congruence (6.3) where
m <z and p < z. To estimate A, for all d|K define the integer A, to
be the number of solutions of (6.3) where d|p — 1 and (m, K) = K/d.

Now, we estimate the integer Ay

By APR:

T

< —1 — ddlp—1Y > ————
H{p < zlp square — free and d|p H T0dlog s
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On the other hand,

[{m < z|(m, K) = K/dj]
= [{m < z|(m/(K/d), K/(K/d)) = 1}]

— [{m < @|(m/(K/d),d) = 1}| = [Ki/dwd) > [2/K]o(d)
Hence ) p
Az 1OdTogx[x/K](p(d) ~ 20;1ogx(pii !

We obtain that

x? o(d) z? x? 3
A=S"A _ 2 1/p) > — b (2l
dzI; d>20KlogxdzI; d 20Klong( /P) 2 30K Togz 2

p|lK

Now, the number of integers n < x? such that K|n is at most 22/ K.

Furthermore, each solution, (p, m), represents such n.

Thus there exists some n < x? with K|n which has at least

A 1 3
S
22/K = 20logz 2

representations as m(p — 1).

Now we can choose (See APR) K to be the product of all the primes
till (1/2)0 log z, possibly without one, where § is some computable real
number, 0 < § < 1.

Hence,

A 1 3. (/sloga clogx
2/ K ~ 20 logx(a) e > eap(
where ¢ is some computable constant.

Now we want to prove the theorem.

Proof. Tt is clear that if p — 1|n we obtain a™ + 1 = 2 (mod p), hence
we must modify APR’s technique.
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On the other hand, if () = —1, 21n and n is odd we obtain
that a" + 1 = 0 (mod p) (since n is odd p — 1 1 n). Hence, if
(5) = (%) = —1, Z4|n but p — 1 { n and n is odd we obtain that

plged(a™+1,0" +1).
We construct such p’s in the same way as in the APR’s article.

First, we formulate congruence condition such that (%) = (%) =—1
where ZZ1 is odd, in other words, where p = 3 (mod 4).

So, our condition is equivalent to the condition

W @00

This is equivalent to the condition

=0 (20 (- (2) -
=5)-6)+G)-0)-5)(5)-(5) =
;From the fact that for non-perfect square n it is true that

2. (5) =o(n(z)) as z — oo,

p<z

we obtain that > (B(p)) is asymptotic at least to 7(z). So, for the
p<z
simultaneous condition 6.4 there are infinitely many solutions p. We

fix some py which fulfill’s the simultaneous condition and look at all
the primes p = pg (mod 8ab).

For such primes,
ay _ (a\ _ by _ (b _
(5)= () =—1and () =(;;) = —1.
In addition it is clear that p = 3 (mod 4).

Now, consider the congruence
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(6.5) mf%l =0 (mod K)

with p = py (mod 8ab), m an odd integer and K a multiple of a lot
of small primes. Assume that the divisors of abpy do not divide K.

As before, let A be the number of solutions of the congruence (6.5)
where m < z and p < z. For all d|K define A, as the number of those
solutions where d|25* and (m,2K) = K/d with p = py (mod 8ab)

Let us estimate A . Define

90(1', d, 6) = Z (,U,(p - 1))2l09p

p<z
p=e (mod d)

let 1 denote the multiplicative function whose value at the prime

power p” is Y(p") = pg’i;f - and let a denote Artin’s constant, o =
I1 % = 0.3740. Note that for all K, o < ay(K) < 1.

p
By Remark 6.1 in APR’s paper, for d|K, if (d,e) =1 and [ = (d,e — 1)
then

Oo(z,d,e) ~ Mm

p(d)l
JFrom this, if (d,e) =1 and | = (d,e — 1)

1
7TO(*/L"da 6) = § (:u(p - 1))2 > 1ng90(l',d, 6)
<z
pEep(;LOd d)
b)) a :

Hence



p—1
2

X
= < =t d 8abd —
0 < ol p =t (mod Saba)}| >~

On the other hand, if we denote by d’' the quotient K/d we have

H{p < 2| d|

and p = u (mod 8ab)}|

{m < zl(m,2K) = K/d}| = [{m < z|(m/d’, 2K/d) = 1}|

ﬂﬁﬁﬂ@>WMM@

Hence

T 2

©(8abd) log

A > [/ K]p(d) >

Klogx
We obtain that

2

x? x
A=) A 1= 22K
Z d>>Klong Klogx

d|K d K

Now, the number of integers n < x? such that 2K |n is at most 22 /2K.
Furthermore, each solution (p, m) represents such n.
Thus there exists some n < x? with K |n that has at least

2 QW(K)

A/
/%>

log x

representations as m(p — 1).

Now we can choose (See APR) K to be the product of all the primes
till (1/2)dlogx, with the exception of some finite number of primes,
where § is some real number, 0 < § < 1. So, there exists some n < z?
with K|n that has at least

1'2 /
A/?

representations as m(p — 1). Where ¢’ is some constant.

By taking the product of all this p’s we obtain the result.
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As we saw the condition for using this method, to find prime divi-
sors of ged(a™ + 1,0™ + 1) was that a and b are not perfect squares.
But if a and b does perfect squares and there exists natural number s
such that a'/?%,b'/?* integers which are not perfect squares, we can use
this method to obtain the same result (in the proof, instead of a and b

we take a'/?* and b'/? respectively, and instead of p—gl |n we take p2_—51 In)

Also, we note that we can use this method for ged(a™ + 1,0™ — 1)
and obtain the same result, (instead of the simultaneous condition
(5) = (1—’;) = —1 which is suitable to the case ged(a™ + 1,0 + 1),

we take (1) = —1 and (g) =1).

7. APPLICATION WITH SIEVE METHOD

Let £,.(p) (4-(p)) denote the smallest prime which is quadratic residue
(non-residue) mod p and z(z) any real unbounded increasing function.
In 1965 (See [7]) Erdos proved that there is a set of primes with den-
sity one such that 4,,.(p) < z(p). Two years after that Elliot ( See
[6]) proved this for £.(p). We show this with an elementary method
and generalize this result in the sense that the £,.(p)’s (¢,,(p)’s) can be
chosen from a specific infinite set which fulfills a certain condition .
Then, we present an interesting application with the proof technique

of the result. First, we prove Erdos and Elliot theorems.

Theorem 7.1. There is a set of primes p with density one such that

tr(p) < 2(p) (resp. Ln(p) < 2(p))

The proof is based on an elementary idea, which will be formulated
in Lemma 7.2 and proved in the next section.

Lemma 7.2. For any odd primes p and q we have :
(1) qlp+1, p=3 (mod 4) = (ﬂ)—l
(2)alp—1, p=1 (mod 4) = (—)
(3) qlp+1, p_l(m0d4) andq_3(m0d4) () =-1.
3 ( ) a

(4)qlp—1, p mod 4) and q = 3 (mod 4) = (
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So, if we show that there is a set of odd primes p with density one such
that for all elements in this set there exists some odd prime ¢, ¢ < z(p)
such that ¢|p+ 1 where p = 3 (mod 4) or q|p — 1 where p =1 (mod 4),

then we will get that there is a set of primes p with density one such

that £,(p) < z(p).

Similarly, if we show that there is a set of odd primes p with density
one such that for all elements in this set there exists some odd prime
q, ¢ < z(p), ¢ =3 (mod 4) such that ¢|p + 1 where p =1 (mod 4) or
qlp — 1 where p = 3 (mod 4), then we get that there is a set of primes
p with density one such that £,,.(p) < z(p)

7.1. Proof of The result. Let us Start with proof of Lemma 7.2

Proof. If qlp+1=p= —11(m0d q) = (g) = (_71)1 :1(—1)%. on the
q p a—
p

other hand (2) = (£)(=1)"7 *F". Hence (£)(-1)"7 % = (-1)"7, so

(7.1) dp1= ()= ()T

If p = 3 (mod 4) we have (I) = 1. On the other hand, if p
1 (mod 4) and ¢ = 3 (mod 4) we have (1) =

In the same way we obtain that

q p=1
(7:2) glp—1= ()= (-1
p
and as before, if p = 1 (mod 4) we have (I) = 1. In addition, if

p =3 (mod 4) and ¢ = 3 (mod 4) we have () = —1.
JFrom equations (7.1) and (7.2) we get trivially the result of Lemma 7.2.

We will need the next technical lemma.

1 1 1
Lemma 7.3. pl;[Z (1-5)~ pl;[Z (l1--3)< N(ETE
p=1(mod 4) p=3(mod 4)
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Proof. We prove only the case p =1 (mod 4). The case p = 3 (mod 4)

is similar.
[T 6~ =emos I -9
p—1 p—1
p<z p<z
p=1(mod 4) p=1(mod 4)
1 1
(Y dogll- ) mem( Y -
p<z p_ p<z p_
p=1(mod 4) p=1(mod 4)
1
=eap(— ) 1)
p<z
p=1(mod 4)
Since
1 _ 1 1
=1~ p T -1
and
1
p;g ST converges
p=1(mod 4)
we obtain that
[I (- H)<ep= ¥ ).
p<z p<z
p=1(mod 4) p=1(mod 4)
Since (See [11], p.35)
1 loglogz
I;Z p S o)
p=l (modk)
we have
exp(— Z l) < 6[L‘p(-lleng) — er (_loglogz) — 1
= P (4) p 2 Viogz
p=1(mod 4)

46



Let T1(y; d, 1) be the number of primes p < x such that p = [ (mod d),
P,(z) the product of all odd primes up to z and = a(mod 4) and
P(z) = Pi(2)Ps(2).

Let A= (x, z) be the set of p < x such that p =1 (mod 4), ged(p —
1,P(z)) =1, A™(x, z) be the set of p < x such that p = 3 (mod 4), ged(p+
1,P(z)) =1, and A(x,2) = A~ (z,2) U AT (x, 2).

In a same way let A5 (z,z) be the set of p < x such that p =
3 (mod 4), ged(p—1, P3(2)) = 1, A5 (x, z) be the set of p < x such that
p=1(mod4), ged(p+1, P3(2)) = 1 and As(z, 2) = A3 (v, 2)UAT (z, 2).

The complement of |A(z, z)| is the set of p < x such that either p =
1 (mod 4), ged(p—1,P(z)) # 1 or p =3 (mod 4), gcd(p+1, P(z)) # 1.
In other words (by Lemma 7.2) the complement of |A(z, z)| is the set
of p < x such that there exists a prime ¢ < z(z) () = 1. Hence it is
enough to prove that |A(z, 2)| is o(m(x)).

. From a similar reason, for the non-residue case, it is enough to prove
that |As(z, )| is o(w(x)).

Lemma 7.4. (1) |A%(z,2)| = > wp(d)w(x;4d,F1)

dP(2)
(2) |A (2, 2)| = X w(d)w(x;4d,1s) where I+ are some integers
d| P3(z)
(le,4d) = 1.
Proof |A-(w2)l= Y X ud= ¥ ad) ¥ 1
p<z d|(p—1,P(z)) d|P(z) p<z
p=1 (mod 4) p=1 (mod d)
p=1 (mod 4)

By the Chinese Remainder Theorem

|A™(x, 2)| = ‘Z(: )M(d)ﬂ(ﬂcs 4d,1).
d|P(z
In a similar way we obtain that |AT(z,2)| = > wp(d)w(z;4d,—1).
d|P(z)
The proof is similar for |AF (z, 2)|.
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g

Now, If we restrict z < (1/2)loglogx, then we may use that (PNT

in progressions)

m(x;q,a) = I:;((;)) + O(exp(\f@)) ) Vg < (logx)l_é
to find that
Az, 2)] = Li(z) [T (1-725)+ 02" f=—)

2<q<lz

By Lemma 2.1, The main term is < Li(z)/logz and for z < (1/2)loglog x
the O-term is still negligible relative to z/log .

The result for |As(z, z)| is the same (just replace the logz by /logz

in the main term)

Now, if we take z = z(X) we have that z(X) < z(p) for p > X.Take
X = 557, 80, 2(X) < z(p) for p >
such that p <

of all primes.

@, but, the number of primes p

is at most O(—%—), which have density 0 in the set

x
log x log® =

Note 7.5. If we take P,(z) to be P,(Q,z) where P,(Q,z) is the
product of all odd primes ¢ up to z which = a (mod 4) and ¢ € Q and

assume that

1
11 (1—q_—1)

9<z, q€Q
g=a (mod 4)

is a decreasing function we obtain that £,.(p)’s (¢,(p)’s) can be chosen
from the infinite set Q.

Note 7.6. In fact, what we obtain from the proof is that we have
infinitely many primes p with density 1 such that for any such p there
is a prime ¢|(P(z),p — 1). Let a and b be any integers and P_(z) be
P(z)/ab. By the same proof we have infinitely many primes p with
density 1 such that for any such p there is a prime ¢|(P-(z),p — 1).
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By the Little Fermat Theorem, if (a,p) = 1, where p is any prime

number, then

(7.3) a?~' =1 (mod p) (or pla®).

It is clear that (7.3) is true for all integer n with p — 1|n. So, for all
integer n with p — 1|n the congruence

(7.4) a" =1 (mod p) (or pla™ —1).

holds. From this it is clear that we can find n such that P_(z)|a" —1
and P_(z)|b" — 1 so, P_(2)|(a™ —1,b" — 1). Hence, we obtain infinitely
many primes p with density 1 such that for each p there is ¢| P_(z) such
that

ql(a" —p, 0" —p)
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