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Abstract

We consider an analogue of Artin’s primitive root conjecture for units

in real quadratic fields. Given such a nontrivial unit, for a rational

prime p which is inert in the field. The maximal order of this unit

modulo p is p+ 1. An extension of Artin’s conjecture is that there are

infinitely many such inert primes for which this order is maximal. This

is known at present only under the Generalized Riemann Hypothesis.

Unconditionally, we show that for any choice of 7 units in different real

quadratic fields satisfying a certain simple restriction, there is at least

one which satisfies the above version of Artin’s conjecture. Likewise, we

consider an analogue of Artin’s primitive root conjecture for nonunits

in real quadratic fields. Given such an element, for a rational prime

p which is inert in the field the maximal order of the unit modulo p

is p2 − 1. As before, the extension of Artin’s conjecture is that there

are infinitely many such inert primes for which this order is maximal.

We show that out of any choice of 85 algebraic numbers satisfying a

certain simple restriction, there is at least one which satisfies the above

version of Artin’s conjecture.

Gupta and Murty’s method to attack the former problems raises

question regarding gcd (an − 1, bn − 1) where a, b are multiplicatively

independent rational positive integers. It is known that there are in-

finitely many integers n with ’big‘ gcd (an − 1, bn − 1). We show the

same property for gcd (an + 1, bn + 1).

By the principal method which we use for primitive roots we can

obtain another result. Let `r(p) (`nr(p) respectively) denote the small-

est prime which is quadratic residue (non-residue respectively) mod p,

and z(x) any unbounded increasing real function. We show the known

results of Erdös and Elliot with an elementary method, and generalize

this result in the sense that the `r(p)’s (`nr(p)’s) can be chosen from a

specific infinite set which fulfills a certain condition . Then, we present

an interesting application of the proof technique of the result which

relates to the former problem.
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1. Abbreviations and Notations

Z - The ring of integers.

Z/p - The ring of integers modulo prime p

F?
p - Multiplicative group of the field of p elements

< a > - Subgroup of F?
p which generate by a

gcd(, ) - Greatest common divisor of two integers

ord(q) - Order of element in F?
p

( q
p
) - Legendre symbol

Ω(n) - Number of prime factors of n (with multiplicity)

f � g (or g � f or f = O(g))) - The inequality |f(x)| ≤ cg(x).

f(x) = o(g(x)) - Means that f(x)
g(x)

→ 0

∆ - The discriminant of the real quadratic field

K = Q(
√

∆) - A real quadratic field

OK - Integer ring of K

Π(y;m, s) - Number of primes p ≤ y such that p ≡ s (mod m)

Li(y) - The term
∫ y

2
dt

log t

E(y;m, s) - The term Π(y;m, s) -Li(y)
ϕ(m)

E(x,m) = max
1≤y≤x

max
(s,m)=1

|E(y;m, s)|
ϕ(m) - Euler totient

Cε(p) -Kernel of a map (OK/(p))
∗ 7→ (Z/p)∗

N - The norm map

ν - Function which gives, the number of prime factors of an integer

µ - Möbius function

S(A, z, v) − |{a|a ∈ A, (a, ∏

p<z, p-v

p) = 1}|

ord(A,N) - Order of the matrix A mod N .

ord(a, b;N) - Order of (a, b) mod N

Pa(z) - The product of all odd primes up to z and ≡ a(mod 4)

P (z) = P1(z)P3(z).

P3 - Integer with at most three prime divisors

`r(p) (`nr(p)) - The smallest prime which is a quadratic

residue (non-residue) mod p
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2. Introduction

A natural question to ask is if there are many primes for which 2 is

a primitive root, that is if the subgroup 〈2〉 of the multiplicative group

F?
p of the field of p elements generated by 2 is the whole group. Is there

a finite number of such groups F?
p? Does the same apply for any integer

a?

In 1927 Emil Artin [2] made the following conjecture:

Conjecture 2.1. Let a 6= −1 be an integer which is not a perfect

square. Then there are infinitely many primes p such that

< a >= F?
p .

In addition, for x > 0, the number of primes p ≤ x with this property

is asymptotic as x → ∞ to

A(a)
x

log x

where A(a) is a constant which depends on a.

In 1967 Hooley [13] proved Artin’s conjecture with the asymptotic

formula under the Generalized Riemann Hypothesis. In 1983 Gupta

and Murty [9] proved that there are 13 specific integers such that at

least one of them fulfills the Artin conjecture. From the proof we can

deduce that Artin’s conjecture is true for almost all integers. R. Murty,

K. Murty and Gupta [10] showed that we can reduce the specific set of

integers from 13 to 7. Improving the analytic part of Gupta and Murty

enabled to give the best result till now:

Theorem 2.2. ([12]) Let q, r and s any three primes. Then at least

one of them is a primitive root mod p for infinitely many primes p.

We note that theorem 5.1 holds for any three non-zero integers, q, r

and s which are multiplicatively independent where q, r, s, −3qr, −3qs,

−3rs and qrs are not a square. (we say that r integers a1, ..., ar are

multiplicatively independent if for any integers n1, ..., nr, a
n1
1 · · · anr

r =

1 ⇒ n1 = ... = nr = 0).

In this work we present an analog of Artin’s conjecture in a quadratic

field and we will prove a result similar to the one just shown (we will
6



show that a set which contains a specific number of elements or more

always contains a primitive root) for units (in chapter 2) and for any

algebraic number which is not unit (in chapter 3).

Another interesting problem which was raised from the Gupta and

Murty work is to find an infinite sequence of integers n such that

gcd(an − 1, bn − 1) = 1. Ailon and Rudnick [1] have conjectured that

the answer is true. From this, a natural question to ask is if there exists

an infinite sequence of integers n such that the gcd(an − 1, bn − 1) is

big. Let a, b be multiplicatively independent. Y. Bugeaud, P. Corvaja

and U. Zannier [4] proved that for all ε > 0, gcd(an − 1, bn − 1) <

c(ε)exp(εn). L. Adleman, C. Pomerance and R. Rumely [3] proved

that there are infinitely many integers n such that gcd(an−1, bn−1) >

exp(exp(c log n/ log log n)) for any integers a, b.

In chapter 6 we prove the same result as APR found result for

gcd(an + 1, bn + 1). In addition we note that this is also true for

gcd(an + 1, bn − 1).

In the last chapter we show an interesting use by elementary sieve

method (the method which we use for the primitive roots result) to

solve two problems from number theory one of them related to the

above mentioned problem.

3. The work of Gupta-Murty and of Heath-Brown

Since our work is based on the idea of Gupta and Murty with the

advanced version as in the paper of Heath-Brown it will be natural

to present their work. We start with following trivial idea: since the

number of elements in F?
p is p − 1, if we show for all integer d, and

infinitely many primes p

d | p− 1, d 6= p− 1 ⇒ ad 6≡ 1 mod p

we will have proven the conjecture.

So our first goal is to find infinitely many primes p with a small

number of prime divisors of p − 1. Heath-Brown proved the following

lemma.
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Lemma 3.1. Let q, r and s be any three primes. There exist K =

2k, k = 1, 2, 3 such that for any sufficiently large x ∈ R+ we have two

numbers ε, δ ∈ (0, 1/4) and c = c(ε, δ) > 0 so that there are at least

c x
log2 x

primes p ≤ x which satisfy:

Either p−1
K

is prime or p−1
K

= p1p2 for p1, p2 primes > p1/4+ε and

p1 < p1/2−δ. Furthermore, p satisfies

(
q

p
) = (

r

p
) = (

s

p
) = −1.

Now we prove theorem 5.1 from this lemma. Assume for simplicity

that K = 2 and that we have infinitely many primes p ≤ x as in the

Lemma 3.1 such that p−1
2

= l where l is a prime. Take one of the

three primes in the lemma, say, q. If the order of q equals l we get a

contradiction to the fact that ( q
p
) = −1 by the theorem on cyclic groups

(the order of the squares subgroup of F?
p is p−1

2
= l). If ord(q) = 2l we

are done. If not, the only possibility left is ord(q) = 2 but this does

not occur for sufficiently large primes p and hence q is a primitive root.

Assume now that there exist c x
log2 x

primes p ≤ x as in Lemma 3.1

such that p−1
2

= p1p2. As before the order of q, r and s can be (if they

are not primitive) 2, 2p1 or 2p2. As before there is only a small number

of cases where ord(q) = 2. Assume that ord(q) = 2p1. For this case we

need some observation. Let n be a natural number and Ω(n) denote

the number of prime factors of n (with multiplicity) and write f � g

(or g � f or f = O(g)), where g is a positive function, if there exists

a constant c > 0 such that |f(x)| ≤ cg(x). Then

Observation 3.2. (1) For any natural number n, Ω(n) � logn.

(2) Given an integer a, The number of primes p such that ord(a) <

y (mod p) is O(y2).

To see (1), use n = qα1
1 · · · qαr

r ≥ 2α1 · · · 2αr ≥ 2α1+...+αr = 2Ω(n). To

see (2), use
∑

m<y

Ω(am − 1) �a

∑

m<y

log(am − 1) �a

∑

m<y

m�a y
2.

Now, if ord(q) = 2p1 < x1/2−δ (mod p), then by observation 3.2 this

occurs for at most (x1/2−δ)2 = x1−2δ primes.

Since x1−2δ

cx/ log2 x
→ 0 as x→ ∞ there are a negligible number of primes

p such that ord(q) = 2p1 (mod p). This fact is also true for r and s.
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Now, assume that q and r and s have order 2p2. Since F?
p is a cyclic

group, ord(< q, r, s >) = 2p2 < x3/4−ε. By Lemma 2 in [9] the number

of primes p such that ord(< q, r, s >) < y is O(y4/3). So the number of

primes p such that ord(< q, r, s >) = 2p2 < x3/4−ε is O(x1−4ε/3) and as

before, is negligible in comparison to cx
log2 x

.

4. Artin’s conjecture in a real quadratic field for units

Let d 6= 1 be a square-free natural number and let ∆ = d if d ≡
1(mod 4) and ∆ = 4d otherwise. Let K = Q(

√
∆) be a real quadratic

field and denote the integer ring of K by OK . The principal ideals pOK

that are generated by a rational prime p, take one of the following forms

(1) pOK = P (inert);

(2) pOK = P1P2, P1 6= P2 (splits);

(3) pOK = P 2 (ramified)

where P and Pi are prime ideals in OK . We note that the option (3)

occurs only in a finite number of cases and so does not interest us.

Now, the norm map

N : OK 7→ Z

gives a homomorphism

(OK/(p))
∗ 7→ (Z/p)∗

For any unit ε with N (ε) = 1 the kernel of this map contains the residue

class ε modulo p. Denote this kernel by Cε(p). By Lemma 19 in [15]

(appendix B)

ord(Cε(p)) =

{

p− 1, p splits

p+ 1, p inert

Assuming GRH, Cooke and Weinberger ([8]) and Lenstra ([16]) showed

that given a real quadratic field K, there are infinitely many split

primes for which the fundamental unit of the field has maximal or-

der (namely p− 1) in Cε(p).

Using the strong analytic theorem of Heath-Brown [13], Narkiewicz

[19] proved the following unconditional theorem:

Theorem 4.1. Let ε1, ε2, ε3 be units in the integer rings OK1 ,OK2,OK3

of K1 = Q(
√

∆1), K2 = Q(
√

∆2), K3 = Q(
√

∆3), respectively, which
9



are not roots of unity. There is an index j, 1 ≤ j ≤ 3, such that for

infinitely many split primes p, cjεj , cj = ±1, has order p−1 (mod (p)).

For inert primes, one wants similar results. Under GRH, an analogue

of [8] [16] was only proven recently by Roskam ([20]). We want to

extend the result of Narkiewicz for inert primes. In this case the order

of Cε(p) (mod p) is p+ 1. So we cannot use the result of Heath-Brown

on the divisors of p−1. We shall use a simpler method to get infinitely

many primes p such that p+1
2

= P3 (we write P3 for an integer with

at most three prime factors) but with almost same magnitude of the

prime divisors. With this result we obtain:

Theorem 4.2. Let ε1, . . . , ε7 be units (assume that they have norm

+1) in the rings of integers O∆1 , . . . ,O∆7 of Q(
√

∆1), . . . ,Q(
√

∆7),

respectively, which are not roots of unity, with ∆1, . . . ,∆7 multiplica-

tively independent and distinct from 3. Assume that all the numbers

(−1)a13a2

7
∏

i=1

∆bi
i , ai, bi ∈ {0, 1}, are not perfect squares if

7
∑

i=1

bi is odd.

Then there exists an index 1 ≤ j ≤ 7, such that for infinitely many

inert primes p, the unit cjεj, (cj = ±1), has order p+ 1 modulo pO∆j
.

Corollary 4.3. Let ε1, . . . , ε7 be units (assume that they have norm

+1) in the rings of integers O∆1 , . . . ,O∆7 of Q(
√

∆1), . . . ,Q(
√

∆7),

respectively, which are not roots of unity, with ∆1, . . . ,∆7 primes dis-

tinct from 3. Then there exists an index 1 ≤ j ≤ 7, such that for

infinitely many inert primes p, the unit cjεj, (cj = ±1) has order p+1

modulo pO∆j
.

4.1. Notation and Preliminaries. Now before we prove the theorem

about the prime divisors of p+ 1 (as in Lemma 3.1 for p− 1) we need

to decide on some notation.

Let Π(y;m, s) denote the number of primes p ≤ x such that p ≡
s (mod m) where m and s are some integers, and

E(y;m, s) := Π(y;m, s) − Li(y)

ϕ(m)

where Li(y) =
∫ y

2
dt

log t
. Also set

E(x;m) := max
1≤y≤x

max
(s,m)=1

|E(y;m, s)| .
10



Define A = {p+ 1|p ≤ x, p ≡ u (mod v)} where u, v are some inte-

gers such that (u, v) = 1, u ≡ 1( mod 2), 8|v, (u+1
2
, v) = 1 and take

X = Li(x)
ϕ(v)

.

For a square-free integer d, (d, v) = 1, let

Ad := {a ∈ A : a ≡ 0 mod d)}
= {p+ 1 : p ≤ x, p ≡ u mod v, p ≡ −1 mod d}

By the Chinese remainder theorem there exists an l such that

|Ad| = #{p+ 1|p ≤ x, p ≡ l (mod dv)} .

By the definition of E(x; dv, l),

|Ad| =
Lix

ϕ(dv)
+E(x; dv, l) =

1

ϕ(d)

Lix

ϕ(v)
+E(x; dv, l) =

X

ϕ(d)
+E(x; dv, l)

Define ω(d) := d
ϕ(d)

and

Rd := |Ad| −
ω(d)

d
X = E(x; dv, l)

Finally, we define two arithmetical functions for a square-free d = p1 ·
· · pk. µ(d) = (−1)k and ν(d) = k (where µ(1) = 1 and ν(1) = 0).

Now we want to prove two lemmas.

Lemma 4.4. For any prime q, which is relatively prime to v we have:

(4.1) 0 ≤ 1

q − 1
≤ 1 − 1

c1

where c1 > 1 is some suitable constant.

(4.2)
∑

w≤q<z

log q

q − 1
− log

z

w
= O(1) (2 ≤ w ≤ z)

where O does not depend on z or w.

(4.3)
∏

2<q<z
q-v

(1 − 1

q − 1
) � 1

log z
.
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Proof. Since q > 2 it is clear that (7.3) holds.

As for the second equation,
∑

w≤q<z

log q
q−1

=
∑

w≤q<z

log q
q

q
q−1

=
∑

w≤q<z

log q
q

(1+

1
q−1

) =
∑

w≤q<z

log q
q

+
∑

w≤q<z

log q
q(q−1)

= log z
w

+ O(1) (
∑

p<x

log p
p

= log x +

O(1)).

Hence we get (7.4). Finally,

∏

2<q<z
q-v

(1 − ω(q)

q
) =

∏

2<q<z
q-v

(1 − 1

q − 1
) �

∏

2<q<z

(1 − 1

q − 1
)

= exp(log
∏

2<q<z

(1 − 1

q − 1
))

= exp(
∑

2<q<z

log (1 − 1

q − 1
))

� exp(
∑

2<q<z

(− 1

q − 1
− 1

(q − 1)2
))

Since
1

q − 1
=

1

q
+

1

q(q − 1)
≤ 1

q
+

1

(q − 1)2

and
∑

2<q<z

1
(q−1)2

converges, we get

∏

2<q<z

(1 − 1

q − 1
) � exp(−

∑

2<q<z

1

q
).

Since
∑

2<q<z

1

q
∼ log log z

we have

exp(−
∑

2<q<z

1

q
) � exp(− log log z) =

1

log z

�

Lemma 4.5. For any natural square-free number d, (d, v) = 1, given

an A > 0 there exist constants c2(≥ 1) and c3(≥ 1) such that

(4.4)
∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|Rd| ≤ c3
X

logAX
, (X ≥ 2)

12



Proof. Denote by SRd
the term which we need to estimate:

SRd
=

∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|Rd|.

By the definitions of Rd and E(x; dv)

SRd
≤

∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|E(x; dv)|.

Since E(x; dv) � x
dv

if d ≤ x
v
, we get that

SRd
�

∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|E(x; dv)| 12 ( x
dv

)
1
2 .

Hence,

SRd
� x

1
2

∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)

d
1
2

|E(x; dv)| 12 .

By Cauchy’s inequality,

SRd
� x

1
2 (

∑

d< X
1
2

(log x)c2

µ2(d)32ν(d)

d
)

1
2 (

∑

d< X
1
2

(log x)c2

|E(x; dv)|) 1
2 .

We have,

SRd
� x

1
2 (

∑

d<X
1
2

µ2(d)32ν(d)

d
)

1
2 (

∑

dv< vX
1
2

(log x)c2

|E(x; dv)|) 1
2 .

For sufficiently large x we obtain

SRd
� x

1
2 (

∑

d<x
1
2

µ2(d)32ν(d)

d
)

1
2 (

∑

dv< x
1
2

(log x)c2

|E(x; dv)|) 1
2 .

With Bombieri-Vinogradov theorem ([5]) (given any positive con-

stant e1, there exist a positive constant e2 such that
∑

d< x
1
2

loge2 x

E(x; d) =

O( x
loge1 x

)) for the last sum and since
∑

d<w

µ2(d)9ν(d)

d
≤ (logw + 1)9 (see

13



[11], p.115, equation (6.7)) we find that for given constant B there exist

c2 such that

SRd
� x

logB x
So, for given A there exist c2 such that

SRd
� X

logAX

where � depends on v and c2. �

4.2. Proof of Theorem 4.2 - the sieve part. In this section we

will show that for a sufficiently small 0 < δ < 1/4 there exists some

constant c(δ) > 0 (which depends on δ) such that for at least c(δ) x
log2 x

primes p ≤ x, p ≡ u (mod v), p+1
2

= P3 where q|p+1
2

⇒ q > x1/4−δ.

Later we will sharpen this result further.

4.2.1. Use of the lower bound linear sieve. In the following subsec-

tion we will show, using the linear sieve, that for a sufficiently small

0 < δ < 1/4 there exists some constant c1(δ) > 0 (which depends on

δ) such that for at least c1(δ)
x

log2 x
primes p ≤ x, p ≡ u (mod v), p+1

2

has at most four prime divisors all of them greater than x
1
4
−δ.

Define S(A, z, v) = #{a|a ∈ A, (a, ∏

p<z
p-v

p) = 1} and let f denote

the “lower bound function” for the linear sieve which is defined as

f(t) = 2eγt−1 log(t−1) for 2 ≤ t ≤ 4 , where γ is Euler constant. Then

(see [11, Theorem 8.4, page 236]):

Lemma 4.6. Assume (7.3), (7.4) and (5.4). Then for X1/8 < z <

X1/4 we have

(4.5) S(A, z, v) ≥ X
∏

q<z
q-v

(1 − ω(q)

q
){f(

log x

2 log z
) +O(

1

log x
)}

where the O-term does not depend on X or on z.

Note 4.7. Obviously z influences the number of primes which divide

the elements of A and their magnitude. Heath-Brown used a stronger

version of this lemma which gives z = x1/4+ε0 where ε0 is a specific

small real number.
14



By Lemmas 5.3 and 4.5, (7.3), (7.4) and (5.4) hold. Hence we can

use Lemma 5.5 with z = X
1
4
−δ.

S(A, X 1
4
−δ, v) ≥ X

∏

q<X
1
4−δ

q-v

(1 − 1

q − 1
){f(

1

2

log x

log x
1
4
−δ

) +O(
1

log x
)}.

By Lemma 5.3 (5.3) we have

S(A, X 1
4
−δ, v) � X

log x
1
4
−δ
f(

2

1 − 4δ
).

But for 2 ≤ t ≤ 4, f(t) = 2eγt−1 log(t− 1), and so,

S(A, X 1
4
−δ, v) � X

log x1/4−δ
2eγ(

1 − 4δ

2
) log

1 + 4δ

1 − 4δ

� x

log2 x
log

1 + 4δ

1 − 4δ
=

x

log2 x
log(1 +

8δ

1 − 4δ
).

Since log(1 + s)/s ∼ 1 as s → 0 and for, 0 < δ < 1/4, 1 − 4δ are

bounded, we have:

Lemma 4.8.

S(A, X 1
4
−δ, v) � δ

x

log2 x

where the implied constant in � does not depend on δ.

Note 4.9. By definition of S(A, X 1
4
−δ, v), for all sufficiently small 0 <

δ < 1/4, there are � δ x
log2 x

primes p ≤ x, such that any prime divisor

of p+1 (for a p in our sequence) is greater thanX
1
4
−δ or divides v. Since

by our assumption (u+1
2
, v) = 1 where p ≡ u (mod v) and X = Li(x)

ϕ(v)
we

obtain that all odd prime divisor of p+1
2

are greater than x
1
4
−δ. Hence

there are at most four prime divisors of p+1
2

which are greater than

x
1
4
−δ. In the next subsection we will show that there are only a small

number of primes p ≤ x such that p+1
2

has exactly four prime divisors

all of which are greater than x
1
4
−δ.

4.2.2. First use of the Selberg upper bound sieve. In order to prove that

there are only a small number of primes p ≤ x such that exactly four

primes divide p+1
2

we need to use Selberg’s upper bound sieve (see [11,

theorem 3.12]):
15



Proposition 4.10. Let a, b be integers satisfying

ab 6= 0, gcd(a, b) = 1, 2 | ab

Then as x→ ∞ we have uniformly in a, b that

|{p : p ≤ x, ap + b = prime}| ≤

8
∏

p>2

(1 − 1

(p− 1)2
)

∏

2<p|ab

p− 1

p− 2

x

log2 x
{1 +O(

log log x

log x
)}

From this proposition we derive the following:

Lemma 4.11. For any 0 < δ < 1/4, there exists c2(δ)
x

log2 x
(c2(δ) > 0)

primes p ≤ x such that p+1
2

has at most three prime divisors all of

which are greater than x1/4−δ.

Proof. Assume that p+1
2

= p1p2p3p4, p ≤ x where the pi are primes

greater than x1/4−δ. Instead of counting the elements in this set we can

count the products of primes p1p2p3p4 such that 2p1p2p3p4 − 1 = p ≤ x

where the pis are primes greater than x1/4−δ.

To count the latter set we use Proposition 4.10. We take a = 2p1p2p3,

b = −1 and Y = x+1
2p1p2p3

(since 2p1p2p3p4 − 1 ≤ x⇔ p4 ≤ x+1
2p1p2p3

).

By the Proposition 4.10,

Sp4 = #{p4 ≤ Y : ap4 + b = prime}

= #{p4 ≤
x+ 1

2p1p2p3
: 2p1p2p3p4 − 1 = prime}

� x+ 1

2p1p2p3 log2 x+1
2p1p2p3

∏

p|2p1p2p3
p 6=2

p− 1

p− 2

Since the pi’s are big primes, the term
∏

p|2p1p2p3

p 6=2

p−1
p−2

is approximately

one. Then

Sp4 �
x+ 1

2p1p2p3 log2 x+1
2p1p2p3

16



From the fact that for all i = 1, 2, 3, pi < x1/4+3δ we have for a

sufficiently small δ

Sp4 �
1

p1p2p3 log2 x
(x1/4+3δ)3

� 1

p1p2p3
· x

log2 x1/4−9δ
� (

1

1/4 − 9δ
)2 1

p1p2p3
· x

log2 x

Now we shall sum-up the last term over all possibilities for p1, p2, p3.

This number is bounded by

S∗
p4

= 4
x

log2 x

∑

p1

1

p1

∑

p2

1

p2

∑

p3

1

p3

where the sum is over x1/4−δ < pi < x1/4+3δ , i = 1, 2, 3.

Observation 4.12. We have
∑

xβ<p<xα

1
p

= log α
β

+o(1).

By observation 4.12,

S∗
p4

� log3 1/4 + 3δ

1/4 − δ

x

log2 x
� log3(1 +

16δ

1 − 4δ
)

x

log2 x

Since log(1 + s) = O(s) for 0 < s < 1 and for, 0 < δ < 1/4, 1− 4δ is

bounded, we have

S∗
p4

� δ3 x

log2 x

where � does not depend on δ. Hence, S∗
p4

is a small number in

comparison to S(A, X 1
4
−δ, v) � δ x

log2 x
. �

4.2.3. Second use of Selberg’s upper bound sieve. Up till now we know

that for any sufficiently small number δ > 0, there are c2(δ)
x

log2 x
primes

p ≤ x such that p+1
2

has at most three prime divisors all of which are

greater than x1/4−δ. In this section we want to prove the existence of

c3(δ)
x

log2 x
primes p ≤ x, such that p+1

2
= P3 and if p+1

2
is a product of

exactly three primes q3 ≥ q2 ≥ q1 then q1 > x1/4−δ, q2 > x1/4+2δ , q3 >

x1/3+δ2
. First we prove the claim about q2 (by the previous subsections

it is clear that q1 > x1/4−δ).

Assume that q1 and q2 take values between x
1
4
−δ and x

1
4
+2δ. Instead

of counting the number of primes p ≤ x such that p+1
2

= q1q2q3 where

q1 and q2 are between x
1
4
−δ and x

1
4
+2δ, we shall count the products

17



q1q2q3 such that 2q1q2q3 − 1 = p ≤ x where q1 and q2 are between x
1
4
−δ

and x
1
4
+2δ.

To count this set we use Proposition 4.10. Define a = 2q1q2, b = −1

and Y = x+1
2q1q2

(since 2q1q2q3−1 ≤ x⇔ q3 ≤ x+1
2q1q2

). By Proposition 4.10

Sq3 = #{q3 ≤ Y : aq3 + b = prime}

= #{q3 ≤
x+ 1

2q1q2
: 2q1q2q3 − 1 = prime}

� x+ 1

2q1q2 log2 x+1
2q1q2

∏

p|2q1q2

p 6=2

p− 1

p− 2

As in the previous subsection, since the q′is are big primes the term
∏

p|2q1q2

p 6=2

p−1
p−2

is approximately one, so

Sq3 �
x+ 1

2q1q2 log2 x+1
2q1q2

.

Now we sum-up the last term over all possibilities for q1, q2. This

number is bounded by, (see the previous subsection)

S∗
q3

=
x

log2 x

∑

x
1
4−δ≤q1≤x

1
4+2δ

1

q1

∑

x
1
4−δ≤q2≤x

1
4+2δ

1

q2
� x

log2 x
log2 1 + 8δ

1 − 4δ
.

Since log2 1+8δ
1−4δ

= O(δ2), S∗
q3

= O(δ2 x
log2 x

). Hence for any δ suf-

ficiently small we get a small number of primes p ≤ x such that
p+1
2

= q1q2q3 where q1 and q2 are between x
1
4
−δ and x

1
4
+2δ. Thus for

most such p, we have q2 > x1/4+2δ.

Finally we prove the claim about q3. Assume that p+1
2

= q1q2q3, q3 ≥
q2 ≥ q1 then we have that q3 ≥ (p+1

2
)

1
3 . The following lemma sharpens

this result.

Lemma 4.13. For any 0 < δ < 1/4 there are at most O(δ2 x
log2 x

)

primes p ≤ x for which (p+1
2

)
1
3 ≤ q3 ≤ p

1
3
+δ2

where O does not depend

on δ.

Proof. Note that if p+1
2

≥ x
log2 x

then q3 ≥ (p+1
2

)
1
3 ≥ ( x

log2 x
)

1
3 ≥ x

1
3
−δ2

for x ≥ x(δ) (the number of primes p for which p+1
2

≤ x
log2 x

, is o( x
log2 x

)

by the prime number theorem and so may be ignored).
18



Assume now that p+1
2

= q1q2q3 with x1/3−δ2 ≤ q3 ≤ x1/3+δ2
and

x1/4+2δ ≤ q2 ≤ x5/12+δ+δ2
(this is the maximum range which q2 can be

in). Using Proposition 4.10, we take a = 2q2q3, b = −1, Y = x+1
2q2q3

,

and so

Sq1 = #{q1 ≤ Y : aq1 + b = prime}

= #{q1 ≤
x+ 1

2q2q3
: 2q2q3 − 1 = prime}

� x+ 1

2q2q3 log2 x+1
2q2q3

∏

p|2q2q3

p 6=2

p− 1

p− 2
.

Since 2x3/4+δ+2δ2
is the maximum of 2q2q3 (q1 > x1/4−δ) we obtain

Sq1 �
x

2q2q3 log2 x
x3/4+δ

� x

q2q3 log2 x

Now we sum-up the last term over all possibilities for q2, q3. this

number is bounded by, (see the proof of Lemma 4.11)

S∗
q1

=
x

log2 x

∑

x
1
4 +2δ≤q2≤x

5
12 +δ+δ2

1

q2

∑

x
1
3−δ2≤q3≤x

1
3+δ2

1

q3

� x

log2 x
log

5/12 + δ + δ2

1/4 + 2δ
log

1/3 + δ2

1/3 − δ2

� x

log2 x
log(1 +

6δ2

1 − 3δ2
) = O(δ2 x

log2 x
)

and for a sufficiently small δ we can ignore this number. �

By the same method (see Lemma 3 in [13]) there are only O(δ2 x
log2 x

)

primes p ≤ x such that p+1
2

= r1r2 where r′is are primes, i = 1, 2, r2 ≥
r1, p1/2−δ2 ≤ r1 ≤ (p+1

2
)1/2.

If we summarize this section we conclude that for any sufficiently

small 0 < δ < 1/4 there are at least c3(δ)
x

log2 x
, c3(δ) > 0, primes

p ≤ x, p ≡ u (mod v) such that we can factor p+1
2

in at least one of

the following ways:

(1) p+1
2

is a prime number.

(2) p+1
2

= r1(p)r2(p) where r1(p), r2(p) are some prime numbers,

p1/4−δ < r1(p) < p1/2−δ2
, p1/2+δ2

< r2(p) < p3/4+δ.
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(3) p+1
2

= q1(p)q2(p)q3(p) where q1(p) ≤ q2(p) ≤ q3(p) are some

prime numbers, q1(p) > p1/4−δ, q2(p) > p1/4+2δ, q3(p) >

p1/3+δ2
.

4.3. Proof of Theorem 4.2- The algebraic part.

4.3.1. Construction of the arithmetic sequence. In this section we want

to construct integers u and v, (u, v) = 1 such that for all primes p

such that p ≡ u (mod v), the discriminants ∆1, ...,∆7, ∆i 6= 3 of

Q(
√

∆1), ...,Q(
√

∆7), respectively, satisfy

(
∆1

p
) = (

∆2

p
) = ... = (

∆7

p
) = −1 .

This means that p is inert simultaneously in all of the fields.

In addition we want to insure that p+1
2

will be an odd integer and

so we take u ≡ 1 (mod 4) where 8|v. Finally, to get (p+1
2
, v) = 1 we

shall construct u and v so that (u+1
2
, v) = 1 (since after sieving the

small factors of p+1
2

we may be left with small factors which divide v,

see previous section).

In order to fulfill these demands, we will first show that there exist

infinitely many primes p with the following simultaneous conditions

(4.6) (−1
p

) = (3
p
) = 1 and (∆1

p
) = (∆2

p
) = ... = (∆7

p
) = −1

This condition is equivalent to the condition:

B(p) = (1 + (
−1

p
))(1 + (

3

p
))(1 − (

∆1

p
)) · · · (1 − (

∆7

p
)) 6= 0.

Since the Legendre symbol is a multiplicative function, we obtain,

B(p) = (1+ (
−1

p
))(1+ (

3

p
))(1−Σ(

∆i

p
)+Σ(

∆i∆j

p
)− ...− (

∆1 · · · ∆7

p
))

Let S be the set of all integers of the form n = (−1)a13a2

7
∏

i=1

∆bi
i , ai, bi ∈

{0, 1}. Then

(4.7)
∑

p≤Z

B(p) =
∑

n∈S

(−1)b1+...+b7
∑

p≤Z

(n
p
), bi ∈ {0, 1}

By the assumption in the theorem (see the introduction) each n ∈ S

is not a square when
7

∑

i=1

bi is odd.
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This assumption, together with the fact that for n not a perfect

square (by reciprocity law for Legendre symbol),

∑

p≤Z

(n
p
) = o(π(Z)) as Z → ∞

implies that
∑

p≤Z

B(p) is asymptotic to at least π(Z) (since all the neg-

ative summands contribute o(π(Z)) and at least the natural number 1

contributes π(Z)). This shows that the simultaneous conditions have

infinitely many solutions p.

We fix some particular p0 satisfying the condition. We define u2 = p0

and for each odd prime l, such that l|∆1 · · ·∆7 we define ul = p0 if

l - p0 + 1 and ul = 4p0 otherwise.

Claim 4.14. l - ul + 1

Proof. If ul = p0 then by the assumption l - p0+1, l - ul+1. If ul = 4p0,

assume, by reductio ad absurdum, that l|ul + 1. Hence l | 4p0 + 1.

Because ul = 4p0 and l | p0 + 1, we obtain that l | 3p0. On the other

hand, by our condition, ( 3
p0

) = 1 so (p0

3
) = 1 (p0 ≡ 1 (mod 4)). Hence

p0 ≡ 1 (mod 3). Since l | p0 + 1 and p0 ≡ 1 (mod 3) we conclude that

l - 3. Using the assumption that l | p0 + 1 we deduce that l 6= p0 (if

l = p0 then l - p0 + 1). Hence l - 3p0, a contradiction. �

Let v = 8∆1 · · ·∆7 and u be the common solution of u ≡ u2 (mod 8)

and all the congruences u ≡ ul (mod l). Such a solution exists, by the

Chinese Remainder Theorem.

Since l - u+1 for every odd prime l|v and the fact that u ≡ 1 (mod 4)

(by the construction u ≡ u2 (mod 8) where u2 = p0 ≡ 1 (mod 4))

we conclude that (u+1
2
, v) = 1. Finally, if p ≡ u (mod v) then p ≡

p0 (mod 8) and p ≡ p0 or 4p0 (mod l) for all odd primes l|v. So,

(∆1

p
) = (∆1

p0
) = −1, and similarly for all ∆i’s. This completes the

construction of u and v.

Note that by the construction of the integers u and v we have that

(u, v) = 1. (Take l an odd prime number, l | v = 8∆1 · · ·∆7 and

assume that l | u. Since u ≡ ul (mod l), l | ul, hence l | p0 or 4p0;

in other words l = p0. But p0 - ∆1 · · ·∆7 (p0 fulfills the simultaneous

condition (5.6)) and l | ∆1 · · ·∆7).
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4.3.2. The last step of the proof. For the last step of the proof we need

to use Lemma 4 from Narkiewicz [18], which generalized Lemma 2 in

[9];

Lemma 4.15. If a1, . . . ak are multiplicatively independent integers

of an algebraic number-field K, G the subgroup of K? generated by

a1, . . . ak, and for any prime ideal P not dividing a1, · · ·ak we denote

by GP the reduction of G (mod P), then for all positive y one can

have #GP < y for at most O(y1+ 1
k ) prime ideals P, with the implied

constant being dependent on the ai’s and K.

Now, as we saw at the end of section 3, for any sufficiently small

0 < δ < 1/4 there is some constant c3(δ) > 0 such that for c3(δ)
x

log2 x

primes p ≤ x, p ≡ u (mod v) at least one of the following occur:

(1) p+1
2

is a prime number.

(2) p+1
2

= r1(p)r2(p) where r1(p), r2(p) are primes so that, p1/4−δ <

r1(p) < p1/2−δ2
, p1/2+δ2

< r2(p) < p3/4+δ.

(3) p+1
2

= q1(p)q2(p)q3(p) where q1(p) ≤ q2(p) ≤ q3(p) are some

prime numbers, q1(p) > p1/4−δ, q2(p) > p1/4+2δ, q3(p) > p1/3+δ2

It is clear by the construction of u and v that p ≡ 1 (mod 4). Because

#Cε(p) = p+1 when p is inert in Q(
√

∆) the unit −1 is a non-square in

the group Cε(p). Hence for any unit ε , we can choose constant c = ±1

such that cε is a non-square in Cε(p). Similarly, since cε is a non-square

and the index of the group of squares is 2, the order of cε is even.

Now we look at our cases:

(1) In this case, by the above note, cε, if not primitive, has or-

der 2 But the number of p’s with this property is O(1) (by

Lemma 5.7).

(2) Let c1ε1, . . . , c4ε4, be units in the orders O∆1 , . . . ,O∆4 of Q(
√

∆1),

. . . ,Q(
√

∆4), ∆i 6= 3, i = 1, 2, 3, 4, respectively. We will show

that one of them is primitive for infinitely many primes.

If ord(ciεi) mod(p) = 2r1(p) < 2x1/2−δ2
for some i = 1, 2, 3, 4

by Lemma 5.7 this occurs for at most O(x1/2−δ2
)2 = x1−2δ2
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primes p ≤ x and this is a negligible number compared to

c3(δ)
x

log2 x
.

Assume ord(ciεi) mod(p) = 2r2(p), i = 1, 2, 3, 4. Consider

the ring of integers OM of the compositum fieldM of Q(
√

∆i) i =

1, ..., 4.

Proposition 4.16. For any prime ideal P | (p) = pOM :

(OM/P)? ' (O∆1/pO∆1)
? ' ... ' (O∆4/pO∆4)

? .

Proof. Since p is inert in each Q(
√

∆i), the order of O∆i
/pO∆i

is p2, i.e., [O∆i
/pO∆i

: Z/pZ] = 2. Since all these residue fields

are finite fields and two finite fields with the same number of

elements are isomorphic, it is enough to show that,

f = [OM/P : Z/pZ] = 2.

Consider the Galois group G = Gal[M/Q] and define two

subgroups of G, the decomposition group D and the inertia

group E:

D = D(P |(p)) = {σ ∈ G| σ(P ) = P}

and

E = E(P |(p)) = {σ ∈ G| σ(α) ≡ α (mod P ), ∀α ∈ Z} .

Now, consider the Galois group Ḡ,

Ḡ = Gal[OM/P / Z/pZ]

By [17, beginning of Chapter 4],

D/E ' Ḡ

By theorem 28 in in [17] (since (p) is inert in all the fields

Q(
√

∆i), (p) is unramified in all the fields Q(
√

∆i). Hence (p)

is also unramified in OM , i.e., e = the exponent of P in the

decomposition of (p), is equal to 1)

|E| = e = 1

|D| = f
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Immediately we conclude that,

D ' Ḡ

Since Ḡ is a cyclic group, we get that D is a cyclic group of

order f . But D is a subgroup of G and G = C2 × ...×C2 where

C2 is a group of order 2. So, f ≤ 2. Since

[O∆i
/pO∆i

: Z/pZ] = 2

we also see that f ≥ 2. Hence f = 2.

Because the compositum of normal extensions is normal, this

claim is true for all the prime ideals P in the decomposition of

(p) (they have the same e and the same f) �

By Proposition 4.16 | < c1ε1, c2ε2, c3ε3, c4ε4 > | = 2r2(p) �
p3/4+δ in (OM/P)? for (p)|P (this is a cyclic group). By Lemma 5.7

the number of p ≤ x that have this order is at mostO(x3/4+δ)
5
4 =

O(x15/16+5δ/4) but we can choose δ to be as small as needed.

Hence the number of primes p, p ≤ x such that ciεi i = 1, ..., 4

have order 2r2(p) is a small in comparison with c3(δ)
x

log2 x
.

(3) Denote by S(1,n) the set {c1ε1, ..., cnεn} where c1ε1, ..., cnεn are

multiplicatively independent units and take four units ci1εi1 , ..., ci4εi4
from S(1,n) and assume that q1(p), which is greater than x1/4−δ,

divides [Cε(p) : 〈cik ε̄ik〉] for k = 1, ..., 4.

For any unit ε let be ε̄ its image in Cε(p). Then |〈cik ε̄ik〉| =
p+1

[Cε(p):〈cik
ε̄
ik
〉] � p3/4+δ � x3/4+δ for k = 1, ..., 7. Since q1(p) di-

vides [Cε(p) : 〈cik ε̄ik〉] for k = 1, ..., 4 and Cε(p) is a cyclic group,

|〈ci1εi1 , ..., ci4εi4〉| mod p � x3/4+δ. By Lemma 5.7 it occurs in

at most O((x3/4+δ)5/4) = O(x15/16+5δ/4) primes p ≤ x which is a

negligible number relatively to c3(δ)
x

log2 x
for sufficiently small δ.

So, for at most three units from ci1εi1 , ..., ci4εi4 , q1(p) divides

[Cε(p) : 〈cik ε̄ik〉] for k = 1, ..., 4. In other words for at most

three from ci1εi1 , ..., ci4εi4 q1(p) does not divide |〈cik ε̄ik〉|. Hence
24



for at least one unit, say cnεn, q1(p) divide |〈cnε̄n〉|.

Denote by S(1,n−1) the set {c1ε1, ..., cn−1εn−1}. By repeating

the former process for S(1,n−1) we obtain that for at least one

integer, say cn−1εn−1, q1(p) divide |〈cn−1ε̄n−1〉|.

We continue this process till we obtain the set S(4,n) = {c4ε4, ..., cnεn}
where c4ε4, ..., cnεn are multiplicatively independent units such

that q1(p) divides |〈ctε̄t〉| for t = 4, ..., n.

Now, we are repeating the process which we use to q1(p) and

S(1,n) for q2(p) > p1/4+2δ and the set S(4,n) = {c4ε4, ..., cnεn}.
Take three units ci1εi1 , ..., ci3εi3 from S(4,n) and assume that

q2(p), which is greater than x1/4+2δ, divides [Cε(p) : 〈cik ε̄ik〉]
for k = 1, 2, 3.

Then |〈cik ε̄ik〉| = p+1
[Cε(p):〈cik

ε̄
ik
〉] � p3/4−2δ � x3/4−2δ for k =

1, 2, 3. Since q2(p) divides [Cε(p) : 〈cik ε̄ik〉] for k = 1, 2, 3 and

Cε(p) is a cyclic group, |〈ci1εi1 , ..., ci3εi3〉| mod p � x3/4+δ. By

Lemma 5.7 it occurs in at most O((x3/4−2δ)4/3) = O(x1−8δ/3)

primes p ≤ x which is a negligible number relatively to c3(δ)
x

log2 x

for sufficiently small δ.

So, for at most two units from ci1εi1 , ..., ci3εi3 , q2(p) divides

[Cε(p) : 〈cik ε̄ik〉] for k = 1, 2, 3. In other words for at most two

from ci1εi1 , ..., ci3εi3 , q2(p) does not divide |〈cik ε̄ik〉|. Hence for

at least one integer, say cnεn, q2(p) divide |〈cnε̄n〉|.

Denote by S(4,n−1) the set c4ε4, ..., cn−1εn−1. By repeating the

former process for Sn−1 we obtain that for at least one unit, say

εn−1, q2(p) divide |〈ε̄n−1〉|.

We continue this process till we obtain the set S(6,n) = {c6ε6, ..., cnεn}
where c6ε6, ..., cnεn are multiplicatively independent units such
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that q2(p) divides |〈ctε̄t〉|, t = 6, ..., n and in fact q1(p)q2(p) di-

vides |〈ctε̄t〉| for t = 6, ..., n.

Finally, We repeating this process for q3(p) > p1/3+δ2
and

the set S(6,n) = {c6ε6, ..., cnεn}. Take two units ci1εi1 , ci2εi2 from

S(6,n) and assume that q3(p), which is greater than x1/3+δ2
, di-

vides [Cε(p) : 〈cik ε̄ik〉] for k = 1, 2.

Then |〈cik ε̄ik〉| = p+1
[Cε(p):〈cik

ε̄
ik
〉] � p2/3−δ2 � x2/3−δ2

, k = 1, 2.

Since q3(p) divides [Cε(p) : 〈cik ε̄ik〉] for k = 1, 2 and Cε(p) is a

cyclic group, |〈ci1εi1 , ci2εi2〉| mod p � x2/3−δ2
. By Lemma 5.7

it occurs in at most O((x2/3−δ2
)3/2) = O(x1−3δ2/2) primes p ≤ x

which is a negligible number relatively to c3(δ)
x

log2 x
for suffi-

ciently small δ.

So, for at most one unit from ci1εi1 , ci2εi2 , q3(p) divides [Cε(p) :

〈cik ε̄ik〉] for k = 1, 2. In other words for at most one from

ci1εi1 , ci2εi2 q3(p) does not divide |〈cik ε̄ik〉|. Hence for at least

one integer, say cnεn, q3(p) divide |〈cnε̄n〉|.

Denote by S(6,n−1) the set {c6ε6, ..., cn−1εn−1}. By repeating

the former process for Sn−1 we obtain that for at least one unit,

say εn−1, q3(p) divide |〈ε̄n−1〉|.

We continue this process till we obtain the set S(7,n) = {c7ε7, ..., cnεn}
where c7ε7, ..., cnεn are multiplicatively independent units such

that q3(p) divides |〈ctε̄t〉| for t = 7, ..., n and in fact q1(p)q2(p)q3(p)

divides |〈ctε̄t〉| for t = 7, ..., n.

Hence if we take n = 7 multiplicatively independent integers

we obtain that one of them have at least the order p+1
2

. Since

we choose the c′js such that the cjε
′
js are quadratics non-residue

we obtain that one of them have at least the order p+ 1 which

completes the proof of the Theorem 4.2
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Note that Theorem 4.2 implies Corollary 4.3.

5. Artin’s conjecture for nonunits

In this chapter we want to extend the result of the previous chapter

for any algebraic integer modulo inert primes p. We will prove

Theorem 5.1. Let K = Q(
√

∆) be a quadratic field and {αi}85
i=1 be a

set of 85 integers of K such that

(1) N(αi) = αiσ(αi), the norms of the α′
is, are multiplicatively in-

dependent.

(2) 5N(αi)∆, N(αi) are not perfect squares.

(3) M(αi) = σ(αi)/αi are multiplicatively independent.

Then at least one of the 85 integers has at least order p2−1
24

mod p

for infinitely many inert primes p in K.

Note that in the case of split primes, Narkiewicz ([18]) proved a much

stronger result.

Since in our case the order is p2 − 1, which is not “linear”, their

divisors are too big and we can not use the method of [12]. But since

p2 − 1 = (p− 1)(p+1) can be factored into two linear factors, with the

following remark we can still use the method of [12]

Remark 5.2. Consider an algebraic number α in K = Q(
√

∆). Let

p - α be an inert prime in K. Since:

(1) M(α) ≡ αp−1 (mod (p))

(2) N(α) ≡ αp+1 (mod (p))
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We have:

ord(M(α)) | ord(α) (mod (p)) and ord(N(α)) | ord(α) (mod (p))

In addition:

ord(M(α)) | p+ 1 and ord(N(α)) | p− 1

But,

(p−1
2
, p+ 1) = 1 or (p− 1, p+1

2
) = 1

So,

ord(M(α))ord(N(α)) | 2ord(α) (mod (p))

Let e1 and e2 be some integers. If we prove that, M(α) and N(α)

have simultaneously at least orders p+1
e1

and p−1
e2

, respectively, then we

will obtain that α have at least order p2−1
2e1e2

. With this way we reduce

the problem to a “linear” problem.

As in the former chapter we need to decide on some notation for the

lemma from sieve methods.

5.1. Notation and Preliminaries. Let π(y;m, s) denote the number

of primes p ≤ y such that p ≡ s (mod m) where m and s are some

integers, and

E(y;m, s) := π(y;m, s)− Li(y)

ϕ(m)

where Li(y) =
∫ y

2
dt

log t
. Also set

E(x;m) := max
1≤y≤x

max
(s,m)=1

|E(y;m, s)| .

Define A = {p2−1|p ≤ x, p ≡ u (mod v)} where u, v are some given

integers such that (u, v) = 1 and take X = Li(x)
ϕ(v)

.
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For a square-free integer d, (d, v) = 1, denote

|Ad| := |{a ∈ A : a ≡ 0 mod d}|
= |{p2 − 1 : p ≤ x, p ≡ u mod v, p2 − 1 ≡ 0 mod d}|

=
d

∑

m=1
m2−1≡0 mod d

|{p|p ≤ x, p ≡ u mod v, p ≡ m mod d}|

=

d
∑

m=1
m2−1≡0 mod d

(m,d)=1

|{p|p ≤ x, p ≡ u mod v, p ≡ m mod d}|

By the Chinese Remainder Theorem, for each m there exists an

integer lm such that

|Ad| =

d
∑

m=1
m2−1≡0 mod d

(m,d)=1

|{p|p ≤ x, p ≡ lm (mod dv)}|;

Since |{p|p ≤ x, p ≡ lm (mod dv)}| is asymptotically independent

of m, there exists some integer l such that

|Ad| = π(x; dv, l)

d
∑

m=1
m2−1≡0 mod d

(m,d)=1

1 = π(x; dv, l)ρ(d)

where ρ(d) =
d

∑

m=1
m2−1≡0 mod d

(m,d)=1

1.

We note that for any prime q, ρ(q) = 2 and hence for any square-free

d, ρ(d) = 2ν(d) where ν(d) denotes the number of prime divisors of d.

By the definition of E(x; dv, l),

|Ad| =
ρ(d)

ϕ(d)

Lix

ϕ(v)
+ ρ(d)E(x; dv, l)) =

2ν(d)

ϕ(d)
X + 2ν(d)E(x; dv, l)
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For any prime q define ω(q) := 2q
ϕ(q)

, ω(d) =
∏

q|d
ω(q) = 2ν(d)d

ϕ(d)
and

Rd := |Ad| −
ω(d)

d
X = 2ν(d)E(x; dv, l)

Finally, we define the Möbius function, µ(1) = 1 and for a square-free

d = p1 · · · pk, µ(d) = (−1)k.

Now we want to prove two lemmas.

Lemma 5.3. For any prime q > 3 which is relatively prime to v we

have:

(5.1) 0 ≤ 2

q − 1
≤ 1

2
.

(5.2)
∑

w≤q<z

2

q − 1
log q − 2 log

z

w
= O(1) (2 ≤ w ≤ z)

where O does not depend on z or w.

(5.3)
∏

2<q<z
q-v

(1 − 2

q − 1
) � 1

log2 z
.

Proof. Since q > 3, it is clear that (7.3) holds.

As for the second equation,
∑

w≤q<z

2
q−1

log q = 2
∑

w≤q<z

log q
q

q
q−1

= 2
∑

w≤q<z

log q
q

(1+

1
q−1

) = 2
∑

w≤q<z

log q
q

+ 2
∑

w≤q<z

log q
q(q−1)

= 2 log z
w

+ O(1) (
∑

p<x

log p
p

=

log x+O(1)).
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Hence we get (7.4). Finally,

∏

2<q<z
q-v

(1 − 2

q − 1
) �

∏

2<q<z

(1 − 2

q − 1
)

= exp(log
∏

2<q<z

(1 − 2

q − 1
))

= exp(
∑

2<q<z

log (1 − 2

q − 1
))

� exp(
∑

2<q<z

(− 2

q − 1
− 4

(q − 1)2
))

Since
2

q − 1
=

2

q
+

2

q(q − 1)
≤ 2

q
+

2

(q − 1)2

and
∑

2<q<z

2
(q−1)2

converges, we get

∏

2<q<z

(1 − 2

q − 1
) � exp(−

∑

2<q<z

2

q
)

Since
∑

2<q<z

2

q
∼ 2 log log z

we have

exp(−
∑

2<q<z

2

q
) � exp(−2 log log z) =

1

log2 z

�

Lemma 5.4. For any square-free natural number d, (d, v) = 1, and a

real number A > 0, there exist constants c2(≥ 1) and c3(≥ 1) such that

(5.4)
∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|Rd| ≤ c3
X

logAX
, (X ≥ 2)

Proof. (See Lemma 4.5) Denote by SRd
the term which we need to

estimate.

SRd
=

∑

d< X
1
2

(log x)c2

µ2(d)3ν(d)|Rd|
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By the definitions of Rd and E(x; dv)

SRd
≤

∑

d< X
1
2

(log x)c2

µ2(d)6ν(d)|E(x; dv)|.

Since E(x; dv) � x
dv

if d ≤ x
v
, we get that

SRd
� x

1
2

∑

d< X
1
2

(log x)c2

µ2(d)6ν(d)

d
1
2

|E(x; dv)| 12 .

By Cauchy’s Inequality,

SRd
� x

1
2 (

∑

d<X
1
2

µ2(d)62ν(d)

d
)

1
2 (

∑

dv< vX
1
2

(log x)c2

|E(x; dv)|) 1
2 .

For sufficiently large x we obtain

SRd
� x

1
2 (

∑

d<x
1
2

µ2(d)62ν(d)

d
)

1
2 (

∑

dv< x
1
2

(log x)c2

|E(x; dv)|) 1
2 .

With Bombieri-Vinogradov Theorem ([5]) (given any positive con-

stant e1, there exists a positive constant e2 such that
∑

d< x
1
2

loge2 x

E(x; d) =

O( x
loge1 x

)) for the last sum and the inequality
∑

d<w

µ2(d)36ν(d)

d
≤ (logw +

1)36 (see [11], p.115, equation (6.7)) we find that for given constant B

there exists c2 such that

SRd
� x

logB x
.

So, for given A there exists c2 such that

SRd
� X

logAX

where � depends on v and c2. �
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5.2. Proof of Theorem 5.1 - the sieve part. In this section we use

the Selberg lower bound sieve and show that there is some small real

number δ1 and some constant c(δ1) > 0 (which depends on δ1) such

that for at least c(δ1)
x

log3 x
primes p ≤ x, p ≡ u (mod v), if q|p2 − 1

then either q > x1/8+δ1 or q|v.
Now, define S(A, z, v) = |{a|a ∈ A, (a, ∏

p<z
p-v

p) = 1}| and define a

function g by g(t0) = 1, t0 = 4.42 and g(t) < 1 for t > t0. Then (see

[11, Theorem 7.4, page 219]):

Lemma 5.5. We have

(5.5) S(A, z, v) ≥ X
∏

q<z
q-v

(1− ω(q)

q
){1− g(

logX

2 log z
) +O(

(loglog3X)8

logX
)}

where the O-term does not depend on X or on z.

By Lemmas 5.3 and 4.5, (7.3), (7.4) and (5.4) hold. Hence we can

use Lemma 5.5 with z = X
1
8
+δ0

S(A, X 1
8
+δ0 , v) ≥ X

∏

q<X
1
8 +δ0

q-v

(1− 2

q − 1
){1−g(1

2

logX

logX
1
8
+δ0

)+O(
(loglog3X)8

logX
)}.

By Lemma 5.3 (5.3) we have for δ0 sufficiently small

S(A, X 1
8
+δ0 , v) � X

log2X
� x

log3 x

Thus for such δ0 we obtain that there is a constant c(δ0) > 0 (which

depends on δ0) such that for at least c(δ0)
x

log3 x
primes p ≤ x, p ≡

u (mod v) if q|p2 − 1 then either q > x1/8+δ0 or q|v. Hence we obtain

that for all 0 < δ1 < δ0 there is a constant c(δ1) > 0 (which depends

on δ1) such that for at least c(δ1)
x

log3 x
primes p ≤ x, p ≡ u (mod v), if

q|p2 − 1 then either q > x1/8+δ1 or q|v.

5.3. Proof of Theorem 5.1 - The algebraic part.

5.3.1. Construction of the arithmetic sequence. Let K = Q(
√

∆) be

any quadratic field, O the integers ring of K, α ∈ O any algebraic

integer and a = N(α). In this section we want to construct integers u
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and v, (u, v) = 1 such that for all primes p such that p ≡ u (mod v),

the discriminant ∆ of Q(
√

∆) and a satisfy

(
∆

p
) = (

a

p
) = −1.

This means that p is inert and a is not a quadratic residue (mod p).

In addition we want to obtain by the construction that (p2−1
24
, v) = 1

(since after sieving the small factors of p2−1
24

we may be left with small

factors which divide v, see previous section).

In order to fulfill these demands, we will first show that there exist

infinitely many primes p satisfying the following simultaneous condi-

tions

(5.6) (−1
p

) = (5
p
) = (a

p
) = (∆

p
) = −1

This condition is equivalent to the condition:

B(p) = (1 − (
−1

p
))(1 − (

5

p
))(1 − (

a

p
))(1 − (

∆

p
)) 6= 0

Since the Legendre symbol is a multiplicative function, we obtain,

(1 − (
−1

p
))(1 − (

a

p
) − (

∆

p
) + (

a∆

p
) − (

5

p
) + (

5a

p
) + (

5∆

p
) − (

5a∆

p
))

Let S be the set of all integers of the form n = (−1)b05b1ab2∆b3 , bi ∈
{0, 1}. Then

(5.7)
∑

p≤Z

B(p) =
∑

n∈S

(−1)b0+b1+b2+b3
∑

p≤Z

(n
p
), bi ∈ {0, 1}

By the assumption in the theorem each n ∈ S is not a perfect square

when
3

∑

i=0

bi is odd.

This assumption, together with the fact that for n not a perfect

square (by reciprocity law for Legendre symbol)
∑

p≤Z

(n
p
) = o(π(Z)) as Z → ∞

implies that
∑

p≤Z

B(p) is asymptotic to at least π(Z) (since all the neg-

ative summands contribute o(π(Z)) and at least the natural number 1

contributes π(Z)). This shows that the simultaneous conditions have

infinitely many solutions p.
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We fix some particular p0 satisfying the condition (5.6) and for each

odd prime l 6= 3, such that l|24a∆ we define ul = p0 if l - p2
0 − 1, and

ul = 9p0 otherwise.

Claim 5.6. l - u2
l − 1

Proof. If ul = p0 then by the assumption l - p2
0 − 1, so l - u2

l − 1.

If ul = 9p0, assume, by reductio ad absurdum, that l|u2
l − 1. Hence

l | 81p2
0 − 1. Since, l | p2

0 − 1, we obtain that l | 80p2
0. On the other

hand, by our condition, ( 5
p0

) = −1 so (p0

5
) = −1 (p0 ≡ 1 (mod 4)).

Hence p0 ≡ 2 or 3 (mod 5). Since l | p2
0 − 1 and p0 ≡ 2 or 3 (mod 5)

we conclude that l - 5. Using the assumption that l | p2
0 − 1 we deduce

that l 6= p0 (if l = p0 then l - p2
0 − 1). Hence (l 6= 2, 3) l - 80p2

0, which

is a contradiction. �

In addition let u2 = p0 if 8 | p0
2 − 1 and u2 = p0 − 8 if 16 | p0

2 − 1.

Likewise we take u3 = p0 if 3 | p0
2 − 1 and u3 = p0 − 3 if 9 | p0

2 − 1.

Let v = 24a∆ and u be the common solution of u ≡ u2 (mod 16),

u ≡ u3 (mod 9) and all the congruences u ≡ ul (mod l). Such a solution

exists, by the Chinese Remainder Theorem.

Since l - u2 − 1 for every odd prime l 6= 2, 3, l | v, and by the con-

struction (u2−1
24

, 6) = 1 we conclude that (u2−1
24

, v) = 1.

Finally, if p ≡ u (mod v), then p ≡ p0 (mod 24) and p ≡ p0 or

4p0 (mod l) for all odd primes l|v. So, (∆
p
) = ( ∆

p0
) = −1, and similarly

for a. This completes the construction of u and v.

Note that by the construction of the integers u and v we have that

(u, v) = 1. (take l an odd prime number, l | v = 24a∆ and assume

that l | u. Since u ≡ ul (mod l), l | ul. Hence l | p0 or 9p0 (in this

case l 6= 2, 3). In other words l = p0. But p0 - 24a∆ (p0 fulfills the

simultaneous condition (5.6)) and l | 24a∆).

5.3.2. The last step of the proof. As we saw at the previous subsec-

tions, for at least c(δ1)
x

log3 x
primes p ≤ x, p ≡ u (mod v), if q|p2 − 1
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then q > x1/8+δ1 or q|v. Since (p2−1
24
, v) = 1, if q|p2−1

24
then q > x1/8+δ1 .

Since by the construction of u and v, p ≡ 1 (mod 4) and (p2−1
24
, v) = 1,

we have that p−1
4

and p+1
2

are odd. In addition if p ≡ 1 (mod 3) then

(p−1
12
, v) = 1 and if p ≡ −1 (mod 3) then (p+1

6
, v) = 1

If we conclude the result about p− 1 and p+ 1 we have for at least

c1(δ1)
x

log3 x
primes p ≤ x, p ≡ u (mod v), if q | p−1

d−
or q | p+1

d+
then

q > x1/8+δ1 , where d− = 4 or 12 and d+ = 6 or 2, respectively.

For the last step of the proof we need to use a version of Lemma 4

from Narkiewicz [18], which generalized Lemma 2 in [9].

Lemma 5.7. If a1, . . . ak are multiplicatively independent algebraic num-

bers of an algebraic number-field K, G the subgroup of K? generated by

a1, . . . ak, and for any prime ideal P not dividing a1, · · ·ak we denote

by GP the reduction of G (mod P), then for all positive y one can have

|GP| < y for at most O(y1+ 1
k ) prime ideals P, with the implied constant

being dependent on the ai’s and K.

Proof. According to [18],

For any real number T denote by M = M(T ) the set of all k-element

sequences (r1, ..., rk) of non-negative integers satisfying

|r1| + |r2| + ... + |rk| ≤ T

It is easy to see that for T tending to infinity |M(T )| = (c+ o(1))T k

with suitable positive constant c = ck. If now P is a prime ideal for

which |GP | < y, then select T to be the smallest rational integer with

cT k > 2y and let ai = bi

ci
for i = 1, ..., k. There exist two distinct

sequences Z = (zi), W = (wi) in M(T ) for which

P |b
z1
1 · · · bzk

k

cz1
1 · · · czk

k

− bw1
1 · · · bwk

k

bw1
1 · · · cwk

k

Hence for sufficient large P (since the a′is are multiplicatively inde-

pendent).
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P |b
z1
1 · · · bzk

k − bw1
1 · · · bwk

k

c
[z1,w1]
1 · · · c[zk,wk]

k

= D 6= 0

Thus for sufficient large P

νP (Πazi−wi
i − 1) ≥ 0

where νP denotes the P -adic valuation and it follows that for fixed

z1 − w1, ..., zk − wk we obtain � log (maxj |āj |2T ) � T possibilities for

P . Finally we obtain

|{P | |GP | < y}| � T 1+k � y1+ 1
k

�

Look at the p − 1 case (the case of p + 1 is similar). We have for

at least c1(δ1)
x

log3 x
primes p ≤ x, p ≡ u (mod v) such that if q | p−1

d−

then q > x1/8+δ1 where d− = 4 or 12. Let p − 1 = d−q1(p)q2(p) · · ·
qm(p), qm(p) > qm−1(p) > ... > q1(p), m ≤ 7, and let a be some integer

where ā its image in F∗
p.

Denote by Sn the set Sn = {a1, ..., an} where a1, ..., an are multiplica-

tively independent integers and take seven integers ai1 , ..., ai7 from Sn

and assume that at least one prime, say q1(p), which is greater than

x1/8+δ1 , divides [F∗
p : 〈āik〉] for k = 1, ..., 7.

Then |〈āik〉| = p−1
[F∗

p:〈āik
〉] � p7/8−δ1 � x7/8−δ1 , k = 1, ..., 7. Since

q1(p) divides |F∗
p : 〈āik〉| for k = 1, ..., 7 and F∗

p is a cyclic group,

|〈ai1, ..., ai7〉| mod p � x7/8−δ1 . By Lemma 5.7 it occurs in at most

O((x7/8−δ1)8/7) = O(x1−8/7δ1) primes p ≤ x which is a negligible num-

ber relatively to c1(δ1)
x

log3 x
for sufficiently small δ1.

So, for at most six integers from ai1 , ..., ai7, q1(p) divides [F∗
p : 〈āik〉]

for k = 1, ..., 7. In other words for at most six from ai1 , ..., ai7 q1(p)

does not divide |〈āik〉|. Hence for at least one integer, say an, q1(p)

divide |〈ān〉|.
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Denote by Sn−1 the set {a1, ..., an−1}. By repeating the former pro-

cess for Sn−1 we obtain that for at least one integer, say an−1, q1(p)

divide |〈ān−1〉|.

We continue this process till we obtain the set T1 = {a7, ..., an} where

a7, ..., an are multiplicatively independent integers such that q1(p) di-

vides |〈āt〉| for t = 7, ..., n.

By repeating this process for q2(p) we obtain for the set T2 = {a13, ..., an}
that q2(p) divides |〈āt〉| for t = 13, ..., n.

Again, by repeating this process for qm(p) we obtain for the set

Tm = {a6m+1, ..., an} that qm(p) divides |〈āt〉 for t = 6m+ 1, ..., n.

Since the maximum value of m is 7, if we take n = 6m + 1 = 43

multiplicatively independent integers we obtain that one of them have

at least the order p−1
d−

Let us look on the algebraic number M(α). By the same method

we obtain that one of 43 M(α) have at least the order p+1
d+

. one of

42 + 43 = 85 has, at least, the order p2−1
24

. This completes the proof of

Theorem 5.1

6. Gcd of exponent functions

As we mentioned, Gupta and Murty’s method to attack the former

problems raises question regarding gcd (an − 1, bn − 1) where a, b are

multiplicatively independent rational positive integers. We prove a

result on the divisors of gcd (an + 1, bn + 1) which is the same to APR

result [3] for gcd (an − 1, bn − 1).

Theorem 6.1. Let a and b be two multiplicatively independent integers.

Then there exist infinitely many integers n such that

(an + 1, bn + 1) > exp(exp(c log n/ log logn))

where c is some positive constant.
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Since the proof is based on the work of APR we now give the prin-

cipal proof of this result.

The proof is based on the following simple fact:

Let a be any integer. By the Little Fermat Theorem, if (a, p) = 1,

where p is a prime number, then

(6.1) ap−1 ≡ 1 (mod p) (or p|(ap−1 − 1)).

It is clear that (6.1) is true for all integer n with p− 1|n. So, for all

integers n with p− 1|n the following holds

(6.2) an ≡ 1 (mod p) (or p|an − 1).

Hence, for finding ’big‘ divisor of an − 1 it is enough to find a lot of

primes p where p− 1|n.

Let K be a square-free positive integer (which will be a product of

a ”lot” of ”small” primes). We want to count the number of integers

m ≤ x and primes p ≤ x such that

(6.3) m(p− 1) ≡ 0 (mod K)

Let A be the number of solutions of the congruence (6.3) where

m ≤ x and p ≤ x. To estimate A, for all d|K define the integer Ad to

be the number of solutions of (6.3) where d|p− 1 and (m,K) = K/d.

Now, we estimate the integer Ad

By APR:

|{p ≤ x|p− 1 square− free and d|p− 1}| > x

10d log x
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On the other hand,

|{m ≤ x|(m,K) = K/d}|
= |{m ≤ x|(m/(K/d), K/(K/d)) = 1}|

= |{m ≤ x|(m/(K/d), d) = 1}| = [
x

K/d
]ϕ(d) > [x/K]ϕ(d)

Hence

Ad ≥ x

10d log x
[x/K]ϕ(d) >

x2

20K log x

ϕ(d)

d
We obtain that

A =
∑

d|K
Ad >

x2

20K log x

∑

d|K

ϕ(d)

d
=

x2

20K log x

∏

p|K
(2 − 1/p) ≥ x2

20K log x
(
3

2
)ω(K)

Now, the number of integers n ≤ x2 such that K|n is at most x2/K.

Furthermore, each solution, (p,m), represents such n.

Thus there exists some n ≤ x2 with K|n which has at least

A

x2/K
>

1

20 log x
(
3

2
)ω(K)

representations as m(p− 1).

Now we can choose (See APR) K to be the product of all the primes

till (1/2)δ log x, possibly without one, where δ is some computable real

number, 0 < δ < 1.

Hence,

A

x2/K
>

1

20 logx
(
3

2
)

(1/4)δ log x
log log x � exp(

c log x

log log x
)

where c is some computable constant.

Now we want to prove the theorem.

Proof. It is clear that if p − 1|n we obtain an + 1 ≡ 2 (mod p), hence

we must modify APR’s technique.
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On the other hand, if (a
p
) = −1, p−1

2
|n and n is odd we obtain

that an + 1 ≡ 0 (mod p) (since n is odd p − 1 - n). Hence, if

(a
p
) = ( b

p
) = −1, p−1

2
|n but p − 1 - n and n is odd we obtain that

p|gcd(an + 1, bn + 1).

We construct such p′s in the same way as in the APR’s article.

First, we formulate congruence condition such that (a
p
) = ( b

p
) = −1

where p−1
2

is odd, in other words, where p ≡ 3 (mod 4).

So, our condition is equivalent to the condition

(6.4)

(−1

p

)

=

(

a

p

)

=

(

b

p

)

= −1

This is equivalent to the condition

B(p) = (1 −
(−1

p

)

)(1 −
(

a

p

)

)(1 −
(

b

p

)

) =

1 −
(−1

p

)

−
(

a

p

)

+

(−a
p

)

−
(

b

p

)

+

(−b
p

)

+

(

ab

p

)

−
(−ab

p

)

6= 0

¿From the fact that for non-perfect square n it is true that

∑

p≤z

(n
p
) = o(π(z)) as z → ∞,

we obtain that
∑

p≤z

(B(p)) is asymptotic at least to π(z). So, for the

simultaneous condition 6.4 there are infinitely many solutions p. We

fix some p0 which fulfill’s the simultaneous condition and look at all

the primes p ≡ p0 (mod 8ab).

For such primes,

(a
p
) = ( a

p0
) = −1 and ( b

p
) = ( b

p0
) = −1.

In addition it is clear that p ≡ 3 (mod 4).

Now, consider the congruence
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(6.5) m
p− 1

2
≡ 0 (mod K)

with p ≡ p0 (mod 8ab), m an odd integer and K a multiple of a lot

of small primes. Assume that the divisors of abp0 do not divide K.

As before, let A be the number of solutions of the congruence (6.5)

where m ≤ x and p ≤ x. For all d|K define Ad as the number of those

solutions where d|p−1
2

and (m, 2K) = K/d with p ≡ p0 (mod 8ab)

Let us estimate Ad. Define

θ0(x, d, e) =
∑

p≤x
p≡e (mod d)

(µ(p− 1))2logp

let ψ denote the multiplicative function whose value at the prime

power pr is ψ(pr) = p2−p
p2−p−1

and let α denote Artin’s constant, α =
∏

p

p2−p−1
p2−p

= 0.3740. Note that for all K, α ≤ αψ(K) < 1.

By Remark 6.1 in APR’s paper, for d|K, if (d, e) = 1 and l = (d, e− 1)

then

θ0(x, d, e) ∼
αψ(d)ϕ(l)

ϕ(d)l
x

¿From this, if (d, e) = 1 and l = (d, e− 1)

π0(x, d, e) :=
∑

p≤x
p≡e (mod d)

(µ(p− 1))2 ≥ 1

log x
θ0(x, d, e)

∼ αψ(d)ϕ(l)

ϕ(d)l

x

log x
� x

ϕ(d) log x

Hence
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|{p ≤ x| d|p− 1

2
and p ≡ u (mod 8ab)}|

= |{p ≤ x| p ≡ t (mod 8abd)}| > x

ϕ(8abd) log x

On the other hand, if we denote by d′ the quotient K/d we have

|{m ≤ x|(m, 2K) = K/d}| = |{m ≤ x|(m/d′, 2K/d′) = 1}|

= [
x

K/d
]ϕ(d) > [x/K]ϕ(d)

Hence

Ad � x

ϕ(8abd) log x
[x/K]ϕ(d) � x2

K log x

We obtain that

A =
∑

d|K
Ad � x2

K log x

∑

d|K
1 =

x2

K log x
2ω(K)

Now, the number of integers n ≤ x2 such that 2K|n is at most x2/2K.

Furthermore, each solution (p,m) represents such n.

Thus there exists some n ≤ x2 with K|n that has at least

A/
x2

K
� 2ω(K)

log x

representations as m(p− 1).

Now we can choose (See APR) K to be the product of all the primes

till (1/2)δ log x, with the exception of some finite number of primes,

where δ is some real number, 0 < δ < 1. So, there exists some n ≤ x2

with K|n that has at least

A/
x2

K
� exp(

c′ log x

log log x
)

representations as m(p− 1). Where c′ is some constant.

By taking the product of all this p’s we obtain the result.

�
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As we saw the condition for using this method, to find prime divi-

sors of gcd(an + 1, bn + 1) was that a and b are not perfect squares.

But if a and b does perfect squares and there exists natural number s

such that a1/2s, b1/2s integers which are not perfect squares, we can use

this method to obtain the same result (in the proof, instead of a and b

we take a1/2s and b1/2s respectively, and instead of p−1
2
|n we take p−1

2s |n)

Also, we note that we can use this method for gcd(an + 1, bn − 1)

and obtain the same result, (instead of the simultaneous condition

(a
p
) = ( b

p
) = −1 which is suitable to the case gcd(an + 1, bn + 1),

we take (a
p
) = −1 and ( b

p
) = 1).

7. Application with sieve method

Let `r(p) (`nr(p)) denote the smallest prime which is quadratic residue

(non-residue) mod p and z(x) any real unbounded increasing function.

In 1965 (See [7]) Erdös proved that there is a set of primes with den-

sity one such that `nr(p) < z(p). Two years after that Elliot ( See

[6]) proved this for `r(p). We show this with an elementary method

and generalize this result in the sense that the `r(p)’s (`nr(p)’s) can be

chosen from a specific infinite set which fulfills a certain condition .

Then, we present an interesting application with the proof technique

of the result. First, we prove Erdös and Elliot theorems.

Theorem 7.1. There is a set of primes p with density one such that

`r(p) < z(p) (resp. `nr(p) < z(p))

The proof is based on an elementary idea, which will be formulated

in Lemma 7.2 and proved in the next section.

Lemma 7.2. For any odd primes p and q we have :

(1) q|p+ 1, p ≡ 3 (mod 4) ⇒ ( q
p
) = 1.

(2) q|p− 1, p ≡ 1 (mod 4) ⇒ ( q
p
) = 1.

(3) q|p+ 1, p ≡ 1 (mod 4) and q ≡ 3 (mod 4) ⇒ ( q
p
) = −1.

(4) q|p− 1, p ≡ 3 (mod 4) and q ≡ 3 (mod 4) ⇒ ( q
p
) = −1.
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So, if we show that there is a set of odd primes p with density one such

that for all elements in this set there exists some odd prime q, q < z(p)

such that q|p+ 1 where p ≡ 3 (mod 4) or q|p− 1 where p ≡ 1 (mod 4),

then we will get that there is a set of primes p with density one such

that `r(p) < z(p).

Similarly, if we show that there is a set of odd primes p with density

one such that for all elements in this set there exists some odd prime

q, q < z(p), q ≡ 3 (mod 4) such that q|p+ 1 where p ≡ 1 (mod 4) or

q|p− 1 where p ≡ 3 (mod 4), then we get that there is a set of primes

p with density one such that `nr(p) < z(p)

7.1. Proof of The result. Let us Start with proof of Lemma 7.2

Proof. If q|p + 1 ⇒ p ≡ −1 (mod q) ⇒ (p
q
) = (−1

q
) = (−1)

q−1
2 . on the

other hand (p
q
) = ( q

p
)(−1)

p−1
2

q−1
2 . Hence ( q

p
)(−1)

p−1
2

q−1
2 = (−1)

q−1
2 , so

(7.1) q|p+ 1 ⇒ (
q

p
) = (−1)

p+1
2

q−1
2

If p ≡ 3 (mod 4) we have ( q
p
) = 1. On the other hand, if p ≡

1 (mod 4) and q ≡ 3 (mod 4) we have ( q
p
) = −1.

In the same way we obtain that

(7.2) q|p− 1 ⇒ (
q

p
) = (−1)

p−1
2

q−1
2

and as before, if p ≡ 1 (mod 4) we have ( q
p
) = 1. In addition, if

p ≡ 3 (mod 4) and q ≡ 3 (mod 4) we have ( q
p
) = −1.

¿From equations (7.1) and (7.2) we get trivially the result of Lemma 7.2.

�

We will need the next technical lemma.

Lemma 7.3.
∏

p<z
p≡1(mod 4)

(1 − 1
p−1

) ∼ ∏

p<z
p≡3(mod 4)

(1 − 1
p−1

) � 1√
logz
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Proof. We prove only the case p ≡ 1 (mod 4). The case p ≡ 3 (mod 4)

is similar.

∏

p<z
p≡1(mod 4)

(1 − 1

p− 1
) = exp(log

∏

p<z
p≡1(mod 4)

(1 − 1

p− 1
))

= exp(
∑

p<z
p≡1(mod 4)

log(1 − 1

p− 1
)) ' exp(

∑

p<z
p≡1(mod 4)

− 1

p− 1
)

= exp(−
∑

p<z
p≡1(mod 4)

1

p− 1
).

Since

1
p−1

= 1
p

+ 1
p(p−1)

and

∑

p<z
p≡1(mod 4)

1
p(p−1)

converges

we obtain that

∏

p<z
p≡1(mod 4)

(1 − 1
p−1

) � exp(− ∑

p<z
p≡1(mod 4)

1
p
).

Since (See [11], p.35)

∑

p<z
p≡l (modk)

1
p
� loglogz

ϕ(k)
,

we have

exp(− ∑

p<z
p≡1(mod 4)

1
p
) � exp(− loglogz

ϕ(4)
) = exp(− loglogz

2
) = 1√

logz

�
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Let Π(y; d, l) be the number of primes p ≤ x such that p ≡ l (mod d),

Pa(z) the product of all odd primes up to z and ≡ a(mod 4) and

P (z) = P1(z)P3(z).

Let A−(x, z) be the set of p ≤ x such that p ≡ 1 (mod 4), gcd(p−
1, P (z)) = 1, A+(x, z) be the set of p ≤ x such that p ≡ 3 (mod 4), gcd(p+

1, P (z)) = 1, and A(x, z) = A−(x, z) ∪A+(x, z).

In a same way let A−
3 (x, z) be the set of p ≤ x such that p ≡

3 (mod 4), gcd(p−1, P3(z)) = 1, A+
3 (x, z) be the set of p ≤ x such that

p ≡ 1 (mod 4), gcd(p+1, P3(z)) = 1 and A3(x, z) = A−
3 (x, z)∪A+

3 (x, z).

The complement of |A(x, z)| is the set of p ≤ x such that either p ≡
1 (mod 4), gcd(p−1, P (z)) 6= 1 or p ≡ 3 (mod 4), gcd(p+1, P (z)) 6= 1.

In other words (by Lemma 7.2) the complement of |A(x, z)| is the set

of p ≤ x such that there exists a prime q < z(x) ( q
p
) = 1. Hence it is

enough to prove that |A(x, z)| is o(π(x)).

¿From a similar reason, for the non-residue case, it is enough to prove

that |A3(x, z)| is o(π(x)).

Lemma 7.4. (1) |A±(x, z)| =
∑

d|P (z)

µ(d)π(x; 4d,∓1)

(2) |A±
3 (x, z)| =

∑

d|P3(z)

µ(d)π(x; 4d, l±) where l± are some integers

(l±, 4d) = 1.

Proof. |A−(x, z)| =
∑

p<x
p≡1 (mod 4)

∑

d|(p−1,P (z))

µ(d) =
∑

d|P (z)

µ(d)
∑

p<x
p≡1 (mod d)
p≡1 (mod 4)

1.

By the Chinese Remainder Theorem

|A−(x, z)| =
∑

d|P (z)

µ(d)π(x; 4d, 1).

In a similar way we obtain that |A+(x, z)| =
∑

d|P (z)

µ(d)π(x; 4d,−1).

The proof is similar for |A±
3 (x, z)|.
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�

Now, If we restrict z < (1/2)log log x, then we may use that (PNT

in progressions)

π(x; q, a) = Li(x)
φ(q)

+O( x
exp(

√
log x)

) , ∀q < (log x)1−δ

to find that

|A(x, z)| = Li(x)
∏

2<q≤z

(1 − 1
q−1

) +O(2π(z) x
exp(c

√
log x)

)

By Lemma 2.1, The main term is � Li(x)/logz and for z < (1/2)log log x

the O-term is still negligible relative to x/ log x.

The result for |A3(x, z)| is the same (just replace the logz by
√
logz

in the main term)

Now, if we take z = z(X) we have that z(X) < z(p) for p > X.Take

X = x
log x

, so, z(X) < z(p) for p > x
log x

, but, the number of primes p

such that p ≤ x
log x

is at most O( x
log2 x

), which have density 0 in the set

of all primes.

Note 7.5. If we take Pa(z) to be Pa(Q, z) where Pa(Q, z) is the

product of all odd primes q up to z which ≡ a (mod 4) and q ∈ Q and

assume that

∏

q<z, q∈Q
q≡a (mod 4)

(1 − 1

q − 1
)

is a decreasing function we obtain that `r(p)’s (`nr(p)’s) can be chosen

from the infinite set Q.

Note 7.6. In fact, what we obtain from the proof is that we have

infinitely many primes p with density 1 such that for any such p there

is a prime q|(P (z), p − 1). Let a and b be any integers and P−(z) be

P (z)/ab. By the same proof we have infinitely many primes p with

density 1 such that for any such p there is a prime q|(P−(z), p− 1).
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By the Little Fermat Theorem, if (a, p) = 1, where p is any prime

number, then

(7.3) ap−1 ≡ 1 (mod p) (or p|ap−1).

It is clear that (7.3) is true for all integer n with p− 1|n. So, for all

integer n with p− 1|n the congruence

(7.4) an ≡ 1 (mod p) (or p|an − 1).

holds. From this it is clear that we can find n such that P−(z)|an−1

and P−(z)|bn − 1 so, P−(z)|(an − 1, bn − 1). Hence, we obtain infinitely

many primes p with density 1 such that for each p there is q|P−(z) such

that

q|(an − p, bn − p)
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