
Abstract

We study the zeros of L-functions over the rational function field. We consider
the number N(β, χ) of zeros of an L-function L(u, χ) in an angular interval
[−β, β], where χ is an even primitive character modulo some monic polynomial
Q, as a random variable by picking χ randomly. Our main interest is the limiting
distribution of N(β, χ) as deg Q → ∞. We consider both the macroscopic
scale (fixed β) and the mesoscopic scale (β → 0 but β deg Q → ∞). We show
that the fluctuating term has a gaussian limiting distribution as deg Q → ∞,
when scaled by its standard deviation, which is calculated to be asymptotic
to
√

log(β deg Q), and obtain a bound on the fluctuations of N(β, χ) for fixed
Q. Then we turn to the family of quadratic characters, and show that it, too,
has gaussian limiting distribution of the fluctuating term in the zeros counting
function.
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1 Introduction

Let N(t) be the number of zeros of the Riemann zeta function up to height t,
and set S(t) = 1

π arg ζ
(

1
2 + it

)
. The Riemann - von Mangoldt formula asserts:

N(t) =
1
2π

t log
t

2πe
+

7
8

+ S(t) + O

(
1
t

)
so that S(t) measures the fluctuations of N(t) around its mean value. A well-
known result of Selberg [Se1][Se2] states, that choosing t uniformly from [0, T ]
induces standard gaussian distribution of

S(t)√
1

2π2 log log T

in the limit as T →∞.
A similar result was proved by Selberg [Se3] for the fluctuations in the num-

ber of zeros of Dirichlet L-functions up to a fixed height, for different primitive
characters modulo k, as k →∞.

We will be concerned with L-functions associated with the polynomial ring
over a finite field. Our goal is to prove a result fully analogous to that of Selberg,
and then a similar result for the family of quadratic characters.
We work with the finite field Fq, where q is a prime power, and we let Q ∈ Fq[x]
be a monic polynomial.

A primitive Dirichlet character χ modulo Q is a group homomorphism
χ : (Fq[x]/QFq[x])∗ → C∗, which is not ”induced” by a character modulo
some proper divisor of Q. Assume χ is primitive and even (i.e. equals 1
on constant polynomials). The associated L-function L(u, χ) =

∑
n udeg n =∏

p prime

(
1− χ(p)udeg p

)−1 is a polynomial of degree deg Q − 1, which has
deg Q− 2 roots of absolute value 1√

q and one trivial root which equals 1.
We write the number of non-trivial zeros of L(u, χ) in the angular interval

[−β, β] as:

πN(β, χ) = β(deg Q− 2) + 2arg
(

1− 1
√

q
eiβ

)
+ S(β, χ)

S(β, χ) is treated as the fluctuating term of the counting function. The rea-
son for this is explained in section 2 by a simple application of the argument
principle.

Our first main result is a bound on the size of S(β, χ):

Theorem 1.

S(β, χ) = O

(
deg Q

log deg Q

)
as q is fixed and deg Q →∞.
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The theorem is in complete agreement with the bound S(T, χ) = O
(

log k
log log k

)
as T is fixed, and the conductor k →∞, obtained by Selberg [Se3] under GRH.
It implies

Corollary 1. The multiplicity of a non-trivial zero of L(u, χ) is O
(

deg Q
log deg Q

)
.

Then we investigate the fluctuations of S(β, χ) as χ varies.
We study at the same time both the macroscopic scale (fixed β) and the meso-
scopic scale (β → 0 but β deg Q →∞).

Our goal is to prove the two theorems:

Theorem 2. Let Q be a prime polynomial, deg Q = D → ∞. Let χ be a
random non-principal character modulo Q.
(1) Fix 0 < β < π. The sequence of random variables

S(β, χ)√
log D

has a standard gaussian limiting distribution.
(2) Let β = β(D) s.t. 0 6= β → 0 and βD →∞. Then the sequence of r.v.

S(β, χ)√
log(βD)

has a standard gaussian limiting distribution.

Theorem 3. Let D →∞ assume even values. Let χQ be the quadratic character
modulo a random square-free monic polynomial Q of degree D.
(1) Fix 0 < β < π. The sequence of random variables

S(β, χQ)√
2 log D

has a standard gaussian limiting distribution.
(2) Let β = β(D) s.t. 0 6= β → 0 and βD →∞. Then the sequence of r.v.

S(β, χQ)√
2 log(βD)

has a standard gaussian limiting distribution.

The paper is organized as follows: In section 2 we review the basic definitions
and facts concerning L-functions over rational function fields, and introduce the
notation which will later be used.

In section 3 we sketch and motive the derivation of the approximation for-
mula for S(β, χ), which has the form

S(β, χ) = −
∑

deg n≤2m

Λ(n)udeg n
0 sin(β deg n)Wm(deg n)

deg n

(
χ(n) + χ(n)

)
+ Error
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where u0 = q−1/2e−1/m, and Wm is some particular function (precise definition
is given later) which decreases from 1 to 0 between m and 2m. Then in sub-
section 3.2 we give a full and detailed proof of this approximation formula. We
obtain, as an intermediate result, theorem 1 and corollary 1.

Afterwards in section 4 we first calculate the moments of Tm(β, χ), which is
defined as a sum over prime polynomials p :

Tm(β, χ) =
∑

deg p≤2m

sin(β deg p)
√

qdeg p
(χ(p) + χ(p))

and then show that Tm(β, χ) is a good approximation of S(β, χ) for a suitable
choice of m, and therefore they possess the same moments. This will imply that,
in the limit deg Q → ∞, S(β, χ) has gaussian moments, and hence a gaussian
value distribution, with variance asymptotic to log(β deg Q).

Finally in section 5 we investigate a similar problem in a quadratic charac-
ters setting: instead of fixing Q and picking a random non-principal character
modulo Q, we fix a degree D and take the quadratic character corresponding to
a randomly chosen square-free polynomial Q of degree D. Then we study the
fluctuations in the number of zeros of the corresponding L-function in the angu-
lar interval [−β, β] as Q varies. In this case, too, a limiting gaussian distribution
occurs.

2 Background

A complete survey of number theory over function fields can be found in [Ro1].
Let q be a power of a prime number. A monic irreducible polynomial will

be called a prime polynomial. Choose a monic polynomial Q ∈ Fq[x] of degree
D, and examine the ring Fq[x]/(QFq[x]).
A Dirichlet character modulo Q is a homomorphism

χ : (Fq[x]/(QFq[x]))∗ → C∗

We often will think of χ as acting on Fq[x], by extending it to equal 0 on poly-
nomials not coprime to Q.
The number of different Dirichlet characters equals Φ(Q) = # (Fq[x]/(QFq[x]))∗.
The orthogonality relations state that∑

χ

χ(n) =
{

Φ(Q) , n ≡ 1 modQ
0 , otherwise

∑
n

χ(n) =
{

Φ(Q) , χ ≡ 1
0 , otherwise

An ”even” Dirichlet character χ is a character s.t. χ(c) = 1 for all constant
polynomials 0 6= c ∈ Fq[x]. The total number of even characters equals

Φe(Q) =
∣∣(Fq[x]/QFq[x])∗/F∗q

∣∣ = Φ(Q)
#F∗q

=
Φ(Q)
q − 1
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The orthogonality relation for even characters reads∑
χ even

χ(n) =
{

Φe(Q) , n ≡ const modQ
0 , otherwise

A character χ modulo Q is called non-primitive (and primitive otherwise) if it
is induced by some character χ̂ modulo a divisor Q̂ of Q, i.e.

χ(n) =
{

χ̂(n), gcd(n, Q) = 1
0, otherwise

The L-function L(u, χ) associated with χ is defined as L(u, χ) =
∑

n χ(n)udeg n,
the sum taken over monic polynomials. For a primitive character χ, L(u, χ)
is actually a polynomial of degree D − 1. We denote the roots of L(u, χ) by
ηj(χ) = αj(χ)−1, j = 1, ..., D − 1. For even χ, ηD−1(χ) = 1 is always a root of
L(u, χ).
The Euler product formula states that for |u| < 1

q

L(u, χ) =
∏

p prime

(
1− χ(p)udeg p

)−1

and the product converges absolutely and locally uniformly.
Taking logarithmic derivative of this yields

L′

L
(u, χ) =

∑
n

Λ(n)χ(n)udeg n−1

where

Λ(n) =
{

deg p , n = pk, p prime
0 , otherwise

By a theorem of Weil [We1], for a primitive character χ, all zeros of L(u, χ)
have absolute value q−1/2, except for one zero which equals 1 when χ is even.

From now on, we will be concerned only with even characters. Denote the
roots of L(u, χ) by ηj(χ) = 1√

q eiφj , j = 1, ..., D − 2 and ηD−1(χ) = 1.
Let N(β, χ) be the number of ηj 6= 1 with argument lying between −β and β,
where zeros of argument equal to ±β count one-half only.

Define ξ(u, χ) = u1− deg Q
2

1−u L(u, χ). Then [We2] ξ satisfies the functional equa-
tion

ξ(u, χ) = cχξ(
1
qu

, χ), |cχ| = 1

By the argument principle,

2πN(β, χ) = ∆Γ arg ξ = =
∫

Γ

ξ′

ξ
(u)du

6



where Γ is the curve comprised of the two circular arcs of radii R, r obeying
r < q−1/2 < R and rR = 1

q , and the straight radial intervals of arguments β
and −β, traversed counter-clockwise. Now define

S(β, χ) = =
∫

γ

L′

L
(u, χ)du

where γ = γ1 + γ2 + γ3 is defined in figure 1 below.

Figure 1: Integration curve γ

If some zeros have argument ±β, define

S(β, χ) = lim
δ→0

S(β + δ, χ) + S(β − δ, χ)
2

(2.1)

By the functional equation, we can write

πN(β, χ) = =
∫

γ

ξ′

ξ
(u)du = β(D − 2) + 2arg

(
1− 1

√
q
eiβ

)
+ S(β, χ)

In the entire paper, sums over polynomials are understood as sums over
monic polynomials.

3 The Approximation Formula

3.1 A Sketch of The Derivation

Here we present the ideas which lead to the approximation formula for S(β, χ),
which will then be rigorously proved in subsection 3.1.
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Write S(β, χ) = −A(β, χ) + A(−β, χ), where

A(β, χ) = =
∫ 1√

q eiβ

0

L′

L
(u)du

The approximation formula can then be written in the following way:

A(β, χ) =
∑

deg n≤2m

Wm(deg n)Λ(n)udeg n
0 eiβ deg nχ(n)

deg n
+

+O

(
D

m
+

1
m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n−1
0 eiβ(deg n−1)Wm(deg n)

∣∣∣∣∣
)

We take a point u0e
iβ near 1√

q eiβ where u0 = 1√
q e−1/m (m = m(D) ap-

proaches infinity), and try to approximate A(β, χ) by truncating the integral at
that point:

A(β, χ) = J1 + J2 + J3 (3.1)

J1 = =
∫ u0eiβ

0

L′

L
(u)du

J2 = =
(

(1/
√

q − u0)eiβ L′

L
(u0e

iβ)
)

J3 = =
∫ 1√

q eiβ

u0eiβ

L′

L
(u)du

Both J2 and J3 should be error terms. From

L′

L
(u) =

∑ 1
u− ηj

we get by an elementary calculation (which is done in part 3.2 - see (3.13)),

J3 �
1

m2

∑
j

1
|u0eiβ − ηj |2

Next we need to approximate the logarithmic derivative of L(u, χ) on [0, u0e
iβ ].

Start by writing for |u| < 1/q the absolutely convergent series

L′

L
(u, χ) =

∑
n

Λ(n)χ(n)udeg n−1

We integrate L′

L

(
u
z

)
against some function fm(z) over a circle of radius R > q|u|:

1
2πi

∫
|z|=R

L′

L
(
u

z
)fm(z)dz =

∑
n

Λ(n)χ(n)udeg n−1 1
2πi

∫
|z|=R

fm(z)
zdeg n−1

dz
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and require fm to have a simple pole at z = 1. We will denote

Mm(k) =
1

2πi

∫
|z|=R

fm(z)
zk−1

dz

and
Am = −Res(fm, 1)

The value of Am can be arbitrarily chosen; we prefer to leave it intact for now.
Since

Res

(
L′

L

(u

z

)
, z = uαj

)
= −uα2

j

by Cauchy’s residues theorem

−Am
L′

L
(u)−

∑
j

uα2
jfm(uαj) =

∑
n

Λ(n)χ(n)udeg n−1Mm(deg n)

For the approximation formula to be finite, Mm(k) has to be zero for large k.
If we expand fm into Taylor series around 0: fm(z) =

∑
ajz

j , we get

Mm(k) = ak−2 −Am

In particular, all ak are equal for k ≥ d(m), which implies

fm(z) = Pd−1(z) +
ad

1− z
=

Bd(z)
1− z

where Bd = b0 + ...+ bdz
d is a polynomial of degree d = d(m), and Am = Bd(1).

It holds that ak = b0 + ... + bk, and bk = ak − ak−1.
The approximation now reads

L′

L
(u) =

∑
n

Λ(n)χ(n)udeg n−1Wm(deg n)− 1
Am

∑
j

uα2
j

Bd(uαj)
1− uαj

(3.2)

where

Wm(k) = −Mm(k)
Am

= 1− ak−2/Am

We will treat the truncated series as the main term, and the sum over zeros as
the remainder term.

Returning to (3.1),

J2 �
1
m

∣∣∣∣L′L (u0e
iβ)
∣∣∣∣�

� 1
m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n−1
0 eiβ(deg n−1)Wm(deg n)

∣∣∣∣∣+ 1
m|Am|

∣∣∣∣∣∣
∑

j

u0e
iβα2

j

Bd(u0e
iβαj)

1− u0eiβαj

∣∣∣∣∣∣
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The first term is what is supposed to estimate L′

L (u0e
iβ), so only a good choice

of m = m(D) will make it small. The second term we require to be same order
of magnitude as the bound for J3:

1
m|Am|

∣∣∣∣∣∣
∑

j

u0e
iβα2

j

Bd(u0e
iβαj)

1− u0eiβαj

∣∣∣∣∣∣� 1
m2

∑
j

1
|u0eiβ − ηj |2

This would certainly be satisfied if we had

|b0|+
d+1∑
k=1

|bk − bk−1|e−k/m � |Am|
m

(3.3)

We want to use (3.2) to approximate J1. To achieve this we first need to bound
the error term of it, again we require it to be the same bound of J3:∣∣∣∣∣∣ 1

Am

∑
j

∫ u0eiβ

0

uα2
j

Bd(uαj)
1− uαj

du

∣∣∣∣∣∣� 1
m2

∑
j

1
|u0eiβ − ηj |2

We will simplify this requirement for the polynomial Bd into a stronger but
simpler one: It is enough to require

1
|Am|

∫ u0

0

t|Bd(teiβαj)(1− teiβαj)|dt � 1
m2

which would hold if

|b0|
2

e−2/m +
d+1∑
k=1

|bk − bk−1|e−
k+2
m

k + 2
� |Am|

m2
(3.4)

We have obtained the approximation formula for A(β, χ):

A(β, χ) =
∑

deg n<d

Wm(deg n)Λ(n)udeg n
0 eiβ deg nχ(n)

deg n
+O

 1
m2

∑
j

1
|u0eiβ − ηj |2


Now we want to choose fm so that the error term would be small compared to
the main term, for a suitable choice of m = m(D).

Since
D−1∑
j=1

1
1− αju

= −u
L′

L
(u) + D − 1

we can rewrite formula (3.2) as following

D−1∑
j=1

1
1− αju

= D−1−u
∑

n

Λ(n)χ(n)udeg n−1Wm(deg n)− u2

Am

∑
j

α2
j

Bd(uαj)
1− αju

(3.5)
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It is straightforward to get the inequality

1
|1− αju0eiβ |2

≤ 1
1− e−1/m

< 1
1− u0eiβαj

Substituting u = u0e
iβ and taking real parts of both sides in (3.5) yields

<
D−1∑
j=1

1
1− αju0eiβ

≤ D−1+O

(∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n−1
0 eiβ(deg n−1)Wm(deg n)

∣∣∣∣∣
)

+

+

∣∣∣∣∣∣u
2
0e

2iβ

Am

∑
j

α2
j

Bd(u0e
iβαj)

1− αju0eiβ

∣∣∣∣∣∣
Now ∣∣∣∣u2

0e
2iβ

Am
α2

j

Bd(u0e
iβαj)

1− αju0eiβ

∣∣∣∣ = e−2/m

|Am|
|Bd(u0e

iβαj)|1− u0e
iβαj |

|1− u0eiβαj |2
≤

≤ e−2/m

1− e−1/m

1
|Am|

|Bd(u0e
iβαj)||1− u0e

iβαj |<
1

1− αju0eiβ
≤

≤ m

|Am|
|Bd(u0e

iβαj)||1− u0e
iβαj |<

1
1− αju0eiβ

So if we refine condition (3.3) to be

m

|Am|
|Bd(u0e

iβαj)||1− u0e
iβαj | < c ≤ 1

for some absolute constant c, which is certainly true when

|b0|+
d+1∑
k=1

|bk − bk−1|e−k/m ≤ c
|Am|
m

(3.6)

then this would guarantee

1
m

∑
j

1
|u0eiβ − ηj |2

� <
∑

j

1
1− u0eiβαj

�

� D +

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n−1
0 eiβ(deg n−1)Wm(deg n)

∣∣∣∣∣
Conditions (3.4) and (3.6) suggest that most bk should equal. Also, we want

the main term of A(β, χ) (which has degree d(m) − 1 in u0) to be as short a
sum as possible. Choosing d = 2m− 1, Bd(z) = zm + ... + z2m−1 would satisfy
all requirements.
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3.2 A Rigorous Derivation

In the following m will be denoting some natural number, and u0 = q−1/2e−1/m.
We also will use the notation αj(χ) = ηj(χ)−1.
Throughout this section, we assume φj 6= ±β, ∀1 ≤ j ≤ D− 2. This restriction
is removed in the end of the section.

The approximation formula will be based on a formula derived by Soundarara-
jan as an analogue to Selberg’s formula. This is precisely formula (3.2) with
Bd(z) = zm + ... + z2m−1:

Lemma 3.1. Let m be a natural number, and define

Wm(k) =

 1 if k ≤ m + 1
2− (k − 1)/m if m + 1 < k ≤ 2m
0 if k > 2m

Then
L′

L
(u, χ) =

∑
n

Λ(n)udeg n−1Wm(deg n)χ(n) + R(u, χ)

where R(u, χ) is given by

R(u, χ) =
D−1∑
j=1

αj(χ)2u
(αj(χ)u− 1)2

[αj(χ)u]2m − [αj(χ)u]m

m

Figure 2: A plot of Wm

Now we bound the error term R(u, χ):

Lemma 3.2. Let |u| ≤ u0, arg u = β. Then∣∣∣∣∣L′L (u, χ)−
∑

n

Λ(n)χ(n)udeg n−1Wm(deg n)

∣∣∣∣∣ ≤ 2qm/2|u|m−1<
D−1∑
j=1

1
1− αj(χ)u0eiβ

Proof. From lemma 3.1 we have∣∣∣∣∣L′L (u, χ)−
∑

n

Λ(n)χ(n)udeg n−1Wm(deg n)

∣∣∣∣∣ ≤
D−1∑
j=1

2q1+m/2|u|m−1

m

∣∣∣∣ 1u − αj(χ)
∣∣∣∣−2

≤

12



≤ 2q1+m/2|u|m−1

m

D−1∑
j=1

∣∣∣∣ 1
u0eiβ

− αj(χ)
∣∣∣∣−2

The last inequality is true since all αj(χ) have absolute value
√

q or 1, and
√

q < u−1
0 ≤ |u|−1.

Finally,

< 1
1− αj(χ)u0eiβ

=
<(1− αj(χ)u0e

−iβ)
|1− αj(χ)u0eiβ |2

≥ 1− e−1/m

|1− αj(χ)u0eiβ |2
=

=
q(1− e−1/m)

e−2/m

∣∣∣∣ 1
u0eiβ

− αj(χ)
∣∣∣∣−2

≥ q

m

∣∣∣∣ 1
u0eiβ

− αj(χ)
∣∣∣∣−2

i.e. ∣∣∣∣ 1
u0eiβ

− αj(χ)
∣∣∣∣−2

≤ m

q
< 1

1− αj(χ)u0eiβ
(3.7)

Next we derive an estimate

Lemma 3.3.

<
D−1∑
j=1

1
1− αj(χ)u0eiβ

= O

(
D +

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)
(3.8)

Proof. We observe that

D−1∑
j=1

1
1− αj(χ)u

= −u
L′

L
(u, χ) + D − 1

and
< 1

1− αj(χ)u0eiβ
> 0

By taking u = u0e
iβ and using lemma 3.2 we can obtain

<
D−1∑
j=1

1
1− αj(χ)u0eiβ

≤ D−1+

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣+2
e
<

D−1∑
j=1

1
1− αj(χ)u0eiβ

which implies

<
D−1∑
j=1

1
1− αj(χ)u0eiβ

≤ 4

(
D − 1 +

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

(3.9)
and the lemma is proved.
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A simple substitution of (3.9) into lemma 3.2 gives

Corollary 3.4. Let |u| ≤ u0, arg u = β. Then

L′

L
(u, χ) =

∑
n

Λ(n)χ(n)udeg n−1Wm(deg n) + O
(
qm/2|u|m−1D

)
+

+O

(
qm/2|u|m−1

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

(3.10)

and in particular

L′

L
(u0e

iβ , χ) = O(D) + O

(∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

(3.11)

Next we prove a lemma which will be used in the proof of the approximation
formula for S(β, χ) (specifically, it is used to bound J3 from subsection 3.1):

Lemma 3.5. Let ηj = µj + iνj, 1 ≤ j ≤ D − 1. Then

I =
∫ q−1/2

u0

|νj cos β − µj sinβ||t− u0|
∣∣t + u0 − 2<(ηje

iβ)
∣∣

|teiβ − ηj |2
dt = O

(
1

m2

)
(3.12)

Proof. If ηj = 1, the denominator is Ω(1), and the numerator is O( 1
m ).

Since t − u0 = O(1/m), integration over the interval [u0, q
−1/2] provides the

required bound.
Otherwise, ηj = q−1/2eiφj . It holds for t ∈ [u0, q

−1/2] that

|teiβ − ηj | ≥
1
√

q
sin |β − φj |

Fix some ε0 = 0.01. Then if |β − φj | ≥ ε0, we’ll have |teiβ − ηj |2 ≥ 1
q sin2 ε0,

and the integrand in (3.12) is O(q−1/2−u0), and therefore the entire integral is
O
(

1
m2

)
.

Assume now that |β − φj | < ε0.

|t + u0 − 2<(ηje
iβ)| ≤ |t− 1

√
q

cos(β − φ)|+ |u0 −
1
√

q
cos(β − φ)|

Now∣∣∣∣u0 −
1
√

q
cos(β − φ)

∣∣∣∣ = 1
√

q
|e− 1

m−cos(β−φj)| ≤
1
√

q
(|1−e−

1
m |+|1−cos(β−φj)|) ≤

≤ 1
√

q

(
1
m

+
(β − φ)2

2

)

14



Similarly ∣∣∣∣t− 1
√

q
cos(β − φ)

∣∣∣∣ ≤ 1
√

q

(
1
m

+
(β − φ)2

2

)
and thus

|t + u0 − 2<(ηje
iβ)| ≤ 1

√
q

(
2
m

+ (β − φ)2
)

Putting everywhere t− u0 � 1
m , we obtain

I = O

(
1

m2

)∫ q−1/2

u0

|νj cos β − µj sinβ|
|teiβ − ηj |2

dt+O

(
(β − φj)2

m

)∫ q−1/2

u0

|νj cos β − µj sinβ|
|teiβ − ηj |2

dt

To estimate the second term, we simply note that |νj cos β − µj sinβ| = O(1)
and that

|teiβ − ηj |2 ≥
1
q

sin2 |β − φj | ≥
1
2q
|β − φj |2

so that the second term is O
(

1
m

)
O(q−1/2 − u0) = O

(
1

m2

)
.

We are left to show that

I1 =
∫ q−1/2

u0

|νj cos β − µj sinβ|
|teiβ − ηj |2

dt = O(1)

Rewrite I1 as

I1 =
∫ q−1/2

u0

|νj cos β − µj sinβ|
(t− (µj cos β + νj sinβ))2 + 1

q − (µj cos β + νj sinβ)2
dt =

=
∫ q−1/2

u0

1√
q sin |φj − β| dt

(t− 1√
q cos(φj − β))2 + 1

q sin2(φj − β)
≤
∫ ∞

−∞

dt

t2 + 1
= π

We now state and prove the approximation formula for S(β, χ). Denote

Em(β) =
∑

n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

Theorem 3.6.

S(β, χ) = −
∑

deg n≤2m

Λ(n)udeg n
0 sin(β deg n)Wm(deg n)

deg n

(
χ(n) + χ(n)

)
+

+O

(
1
m

(|Em(β)|+ |Em(−β)|)
)

+ O

(
D

m

)

15



Proof. First we will shrink γ2 to the origin, therefore obtaining

S(β, χ) = =
∫

γ

L′

L
(u, χ)du

where
γ =

[
q−1/2eiβ , 0

]
∪
[
0, q−1/2e−iβ

]
Thus S(β, χ) = −A(β, χ) + A(−β, χ), where

A(β, χ) = =
∫ 1√

q eiβ

0

L′

L
(u)du

Write A(β, χ) = J1 + J2 + J3

J1 = =
∫ u0eiβ

0

L′

L
(u)du

J2 = =
((

1
√

q
− u0

)
eiβ L′

L
(u0e

iβ)
)

J3 = =
∫ 1√

q

u0

(
L′

L
(teiβ)− L′

L
(u0e

iβ)
)

eiβdt

To calculate J1, we apply (3.4)

J1 = =
∑

n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

deg n
+ O

(
D

m

)
+

+O

(
1
m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

Next, q−1/2 − u0 = O(1/m), and so by (3.11)

J2 = O

(
1
m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

+ O

(
D

m

)
We now bound J3. Since du = cos βdt + i sinβdt, we have

J3 = J3x cos β + J3y sinβ

where

J3x =
∫ 1√

q

u0

=
(

L′

L
(teiβ)− L′

L
(u0e

iβ)
)

dt

and

J3y =
∫ 1√

q

u0

<
(

L′

L
(teiβ)− L′

L
(u0e

iβ)
)

dt

16



Note that
L′

L
(u, χ) =

D−1∑
j=1

1
u− ηj(χ)

Therefore

J3x =
∑

j

∫ q−1/2

u0

−t sinβ + νj

|teiβ − ηj |2
− −u0 sinβ + νj

|u0eiβ − ηj |2
=

= −
∑

j

∫ q−1/2

u0

sinβ(t− u0)
|u0eiβ − ηj |2

+
∑

j

∫ q−1/2

u0

(νj − t sinβ)(|u0e
iβ − ηj |2 − |teiβ − ηj |2)

|u0eiβ − ηj |2|teiβ − ηj |2

the first summand is simply

−
∑

j

∫ q−1/2

u0

sinβ(t− u0)
|u0eiβ − ηj |2

= −
∑

j

sinβ

|u0eiβ − ηj |2

∫ q−1/2

u0

(t− u0)dt =

= −
∑

j

(q−1/2 − u0)2 sinβ

2|u0eiβ − ηj |2
= O

 1
m2

∑
j

1
|u0eiβ − ηj |2


Similarly,

J3y =
∑

j

∫ q−1/2

u0

t cos β − µj

|teiβ − ηj |2
− u0 cos β − µj

|u0eiβ − ηj |2
=

=
∑

j

∫ q−1/2

u0

cos β(t− u0)
|u0eiβ − ηj |2

+
∑

j

∫ q−1/2

u0

(t cos β − µj)(|u0e
iβ − ηj |2 − |teiβ − ηj |2)

|u0eiβ − ηj |2|teiβ − ηj |2

and again the first summand is

O

 1
m2

∑
j

1
|u0eiβ − ηj |2


Therefore, up to this error, J3 is given by

∑
j

1
|u0eiβ−ηj |2

∫ q−1/2

u0

(|u0e
iβ − ηj |2 − |teiβ − ηj |2) ((νj − t sinβ) cos β + (t cos β − µj) sinβ)

|teiβ − ηj |2
=

=
∑

j

1
|u0eiβ−ηj |2

∫ q−1/2

u0

(t− u0)(t + u0 − 2<(ηje
iβ))(νj cos β − µj sinβ)

|teiβ − ηj |2

since
|teiβ − ηj |2 − |u0e

iβ − ηj |2 = (t− u0)
(
t + u0 − 2<(ηje

iβ)
)
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By lemma 3.5, we have proved that

J3 = O

 1
m2

D−1∑
j=1

1
|u0eiβ − ηj |2

 (3.13)

Now we use inequality (3.7):

1
|u0eiβ − ηj |2

� 1∣∣∣αj − 1
u0eiβ

∣∣∣2 � m< 1
1− αju0eiβ

and by (3.8) conclude that
D−1∑
j=1

1
|u0eiβ − ηj |2

= O

(
mD + m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

i.e,

J3 = O

(
D

m
+

1
m

∣∣∣∣∣∑
n

Λ(n)χ(n)udeg n
0 eiβ deg nWm(deg n)

∣∣∣∣∣
)

Finally, since S(β, χ) = −A(β, χ) + A(−β, χ) and

=
(
χ(n)

(
−eiβ deg n + e−iβ deg n

))
= − sin(β deg n)

(
χ(n) + χ(n)

)
we can conclude the proof.

We note that if there are zeros of argument ±β, theorem 3.6 is still valid,
from definition (2.1), since the estimate of S(β, χ) in theorem 3.6 is continuous
in β.

Following Selberg, we will use theorem 3.6 to establish the bound on S(β, χ):

Theorem 1.

S(β, χ) = O

(
D

log D

)
Proof. We start by observing that∫ x

1

etdt

t
=
∫ ex

e

ds

log s
= O

(
ex

x

)
Now we take m = logq D and use theorem 3.6 The main term can be bounded
by

2
∑

k≤2m

q−k/2e−k/m| sin(βk)|
k

∑
deg n=k

Λ(n) ≤ 2
∑

k≤2m

qk/2

k
�
∫ m

1

qtdt

t
= O

(
D

log D

)
The error terms in theorem 3.6 are easily seen to satisfy this bound.

Since N(β, χ) = 1
π

(
β(deg Q− 2) + 2arg

(
1− 1√

q eiβ
)

+ S(β, χ)
)
, we have

Corollary 1. The multiplicity of a non-trivial zero of L(u, χ) does not exceed
O
(

D
log D

)
.
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4 The Moments of S(β, χ)

In the following,
∑

χ denotes a sum over even primitive characters, and
∑

p

denotes a sum over prime polynomials. Q will be a prime polynomial of degree
D. Next we prove:

Lemma 4.1. Fix k ≥ 1 and let m = m(D) < D
k .

(1) Let {ap} ⊂ C be a set of coefficients indexed by prime polynomials p which
satisfy |ap| < Adeg p

m for some constant A. Then

∑
χ

∣∣∣∣∣∣
∑

deg p≤m

ap√
‖p‖

χ(p)

∣∣∣∣∣∣
2k

= O(qD)

(2) Let {a′p} ⊂ C be a set of coefficients indexed by prime polynomials p which
satisfy |ap| < A for some constant A. Then

∑
χ

∣∣∣∣∣∣
∑

deg p≤m

a′p
‖p‖

χ(p2)

∣∣∣∣∣∣
2k

= O(qD)

Proof. (1) Define bn by ∑
deg p≤m

ap√
‖p‖

χ(p)

k

=
∑

deg n≤km

bn√
‖n‖

χ(n)

Then

∑
χ

∣∣∣∣∣∣
∑

deg p≤m

ap√
‖p‖

χ(p)

∣∣∣∣∣∣
2k

=
∑

deg nj≤km

bn1bn2√
‖n1‖

√
‖n2‖

∑
χ

χ(n1)χ(n2)

Since deg nj < D, n1 ≡ n2 (modQ) iff n1 = n2. Also, |bn| < Ak. Thus this
expression becomes

(Φe(Q)− 1)
∑

deg n≤km

|bn|2

‖n‖
−

∣∣∣∣∣∣
∑

deg n≤km

bn√
‖n‖

χ1(n)

∣∣∣∣∣∣
2

≤

≤ AkqD
∑

deg n≤km

|bn|
‖n‖

= AkqD

 ∑
deg p≤m

|ap|
‖p‖

k

� qD

(
m∑

d=1

d/m

qd

qd

d

)k

� qD

(2) Similarly, we get

∑
χ

∣∣∣∣∣∣
∑

deg p≤m

a′p
‖p‖

χ(p2)

∣∣∣∣∣∣
2k

≤ AkqD

 ∑
deg p≤m

|a′p|
‖p‖2

k

� qD

(
m∑

d=1

qd

d

1
q2d

)k

� qD
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Now we calculate the moments of an expression which will later be shown
to approximate S(β, χ) well. Define

Tm(β, χ) =
∑

deg p≤2m

sin(β deg p)
√

qdeg p
(χ(p) + χ(p))

Lemma 4.2. Let m = m(Q) → ∞, fix r ≥ 0, and assume 0 < β < π (in
mesoscopic scale we assume that for all Q). Then for both scales
(1) When 2m(2r + 1) < D

∑
χ

Tm(β, χ)2r+1 � qm(2r+1)

m2r+1

(2) Assume 4mr < D, and mβ →∞ (for mesoscopic scale). Then∑
χ

Tm(β, χ)2r = Φe(Q)
(2r)!
2rr!

logr(mβ) + O(qD logr−1(mβ))

Proof. The inequalities on m ensure that

∑
χ

χ

∏
j≤v

pj

χ

 ∏
j≥v+1

pj

 =
{

Φe(Q)− 1,
∏

j≤v pj =
∏

j≥v+1 pj

−1, otherwise

(1)

∑
χ

Tm(β, χ)2r+1 �
∑

deg pj ≤ 2m
j = 1..2r + 1

∏
j

1
√

qdeg pj
�

 ∑
deg p≤2m

1
√

qdeg p

2r+1

� qm(2r+1)

m2r+1

(2) We will use induction on r. The case of r = 0 is trivial. Write∑
χ

Tm(β, χ)2r = Tdiag + Tnon-diag

where

Tdiag = (Φe(Q)− 1)
∑

S⊂{1,...,2r}

∑
∏

j∈S pj =
∏

j∈S pj

deg pj ≤ 2m

2r∏
j=1

sin(β deg pj)
√

qdeg pj

and

Tnon-diag = −
∑

S⊂{1,...,2r}

∑
∏

j∈S pj 6=
∏

j∈S pj

deg pj ≤ 2m

2r∏
j=1

sin(β deg pj)
√

qdeg pj
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The non-diagonal term is easy to bound:

Tnon-diag �

 ∑
deg p≤2m

1
√

qdeg p

2r

� q2mr

m2r
� qD

To calculate the diagonal term, we will take all pj to be different, and bound
the sum of the remaining terms:

Tdiag = (Φe(Q)− 1)
(

2r
r

) ∑
∏r

j=1 pj =
∏2r

j=r+1 pj

all pj different

2r∏
j=1

sin(β deg pj)
√

qdeg pj
+ Error1

where

Error1 � qD
∑

p1=p2=p2r−1=p2r

sin4(β deg p1)
q2 deg p1

∑
∏r

j=3 pj=
∏2r−2

j=r+1 pj

2r−2∏
j=3

sin(β deg pj)
√

qdeg pj
�

� qD
∑

∏r
j=3 pj=

∏2r−2
j=r+1 pj

2r−2∏
j=3

sin(β deg pj)
√

qdeg pj
�
∑

χ

Tm(β, χ)2r−4 � qD logr−2(mβ)

The last inequality was obtained by induction on r. Also notice that the products
of the form

∏ sin(β deg p)√
qdeg p are always positive, since the p-s come in equal pairs.

Also,

∑
∏r

j=1 pj =
∏2r

j=r+1 pj

all pj different

2r∏
j=1

sin(β deg pj)
√

qdeg pj
= r!

∑
deg pj ≤ 2m
j = 1, ..., r
all pj different

r∏
j=1

sin2(β deg pj)
qdeg pj

=

= r!

 ∑
deg p≤2m

sin2(β deg p)
qdeg p

r

+ Error2

and

Error2 �
∑

deg pj ≤ 2m
j = 1, ..., r
p1 = p2

r∏
j=1

sin2(β deg pj)
qdeg pj

�
∑

deg pj ≤ 2m
j = 3, ..., r

r∏
j=3

sin2(β deg pj)
qdeg pj

=

=

 ∑
deg p≤2m

sin2(β deg p)
qdeg p

r−2
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By PNT and lemma A.1

∑
deg p≤2m

sin2(β deg p)
qdeg p

=
2m∑
d=1

sin2(βd)
d

+ O

(
2m∑
d=1

sin2(βd)
qd/2

)
=

1
2

log(mβ) + O(1)

Therefore, ∑
deg p≤2m

sin2(β deg p)
qdeg p

r

=
1
2r

logr(mβ) + O(logr−1(mβ))

and summarizing∑
χ

Tm(β, χ)2r = Φe(Q)
(2r)!
r!2r

logr(mβ) + O(qD logr−1(mβ))

In particular, for 4m < D it holds for both scales that∑
χ

Tm(β, χ)2 = (1 + o(1))Φe(Q) log(mβ)

Next we want to estimate how good an approximation of S(β, χ) is−Tm(β, χ).
Apply theorem 3.6 to write:

|S(β, χ) + Tm(β, χ)| = O

(
1 + E1 + E2 + E3 + E4 + E+

5 + E−
5 + E+

6 + E−
6 +

D

m

)
where

E1 =

∣∣∣∣∣∑
p

Wm(deg p)
(

1
(
√

q)deg p
− udeg p

0

)
sin(β deg p) (χ(p) + χ(p))

∣∣∣∣∣
E2 =

∣∣∣∣∣∣
∑

deg p≤2m

(1−Wm(deg p))
1

(
√

q)deg p
sin(β deg p)(χ(p) + χ(p))

∣∣∣∣∣∣
E3 =

∣∣∣∣∣∑
p

Wm(2 deg p)
1

(
√

q)2 deg p
sin(2β deg p)(χ(p2) + χ(p2))

∣∣∣∣∣
E4 =

∣∣∣∣∣∑
p

Wm(2 deg p)
(

1
(
√

q)2 deg p
− u2 deg p

0

)
sin(2β deg p)(χ(p2) + χ(p2))

∣∣∣∣∣
E±

5 =

∣∣∣∣∣ 1
m

∑
p

Wm(deg p) deg(p)udeg p
0 e±iβ deg pχ(p)

∣∣∣∣∣
E±

6 =

∣∣∣∣∣ 1
m

∑
p

Wm(2 deg p) deg(p)u2 deg p
0 e±2iβ deg pχ(p2)

∣∣∣∣∣
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Observe that

|E4| �

∣∣∣∣∣∣
∑

deg p≤m

1
(
√

q)2 deg p

(
1− e−2 deg p/m

)∣∣∣∣∣∣�
∣∣∣∣∣∣
∑
d≤m

1
qd

(
1− e−2d/m

) qd

d

∣∣∣∣∣∣ ≤
≤
∑
d≤m

2
m
� 1

and

|E±
6 | �

1
m

∑
deg p≤m

deg(p)u2 deg p
0 � 1

m

∑
d≤m

d
1
qd

qd

d
� 1

Also

|E1| =

∣∣∣∣∣
∫ q−1/2

u0

∑
p

deg(p)tdeg p−1Wm(deg p) sin(β deg p)(χ(p) + χ(p))

∣∣∣∣∣
≤
∫ q−1/2

u0

dt

∣∣∣∣∣∑
p

tdeg p−1 deg(p)Wm(deg p) sin(β deg p)(χ(p) + χ(p))

∣∣∣∣∣ =
= O

(
1
m

) ∣∣∣∣∣∑
p

tdeg p deg(p)Wm(deg p) sin(β deg p)(χ(p) + χ(p))

∣∣∣∣∣
For u0 ≤ t ≤ q−1/2, we want to estimate

S∗ =

∣∣∣∣∣∑
p

tdeg p deg(p)Wm(deg p)eiβ deg pχ(p)

∣∣∣∣∣
Write

tdeg p = (t
√

q)−m(deg p + m)
∫ t

0

q
m
2 sdeg p+m−1ds

Then

S∗ = (t
√

q)−m

∣∣∣∣∣
∫ t

0

(s
√

q)m
∑

p

sdeg p−1Wm(deg p) deg(p)(m + deg p)eiβ deg pχ(p)ds

∣∣∣∣∣ ≤
≤ (u0

√
q)−m

∫ q−1/2

0

(s
√

q)m

∣∣∣∣∣∑
p

sdeg p−1Wm(deg p) deg(p)(m + deg p)eiβ deg pχ(p)

∣∣∣∣∣ ds

and (u0
√

q)−m = e. Denote this last estimate by eE0(χ), and the internal sum
by Up(s, χ):

E0(χ) =
∫ q−1/2

0

(s
√

q)m |Up(s, χ)| ds

And so it holds that E1(χ) = 1
mO(E0(χ)) and also E±

5 (χ) = 1
mO(E0(χ)).
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Conclusion. We have proved that

|S(β, χ) + Tm(β, χ)| = O(1) + O

(
D

m

)
+ O(E2(χ)) + O(E3(χ)) +

1
m

O(E0(χ))

Theorem 4.3. Fix r ≥ 0. For εD < m < D
2r∑

χ

|S(β, χ) + Tm(β, χ)|2r = O(qD)

Proof. By Jensen’s inequality for x 7→ x2r, we have

E0(χ)2r ≤

(∫ q−1/2

0

(s
√

q)mds

)2r−1 ∫ q−1/2

0

(s
√

q)m |Up(s, χ)|2r
ds =

=
(

q−1/2

m + 1

)2r−1 ∫ q−1/2

0

(s
√

q)m |Up(s, χ)|2r
ds

Denote

ap =
1

m2

√
q(
√

qs)deg p−1Wm(deg p) deg(p)(m + deg p)eiβ deg p

Then
|ap| ≤ 6

√
q
deg p

2m

and when 2m < D
r from lemma 4.1 part (1) we get,

∑
χ

|Up(s, χ)|2r = m4r
∑

χ

∣∣∣∣∣∣
∑

deg p≤2m

ap√
‖p‖

χ(p)

∣∣∣∣∣∣
2r

� m4rqD

so ∑
χ

E0(χ)2r � 1
m2r−1

m4rqD(
√

q)m q−(m+1)/2

m + 1
� m2rqD

and finally ∑
χ

(
1
m

E0(χ)
)2r

� qD

From lemma 4.1 part (1) follows also that

∑
χ

∣∣∣∣∣∣
∑

deg p≤2m

(1−Wm(deg p))
1

√
qdeg p

eiβ deg pχ(p)

∣∣∣∣∣∣
2r

� qD
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which implies ∑
χ

E2(χ)2r = O(qD)

and similarly from lemma 4.1 part (2)∑
χ

E3(χ)2r = O(qD)

Finally ∑
χ

(
D

m

)2r

�
∑

χ

1
ε2r

� qD

Theorem 4.4. Fix r ≥ 0, and assume 0 < β < π. Then for both scales
(1) ∑

χ

S(β, χ)2r+1 = O(qD logr(βD))

(2) ∑
χ

S(β, χ)2r = Φe(Q)
(2r)!
2rr!

logr(βD) + O(qD logr−1/2(βD))

Proof. (1) Take m =
⌊

D
8r+4

⌋
. Then∑

χ

S(β, χ)2r+1 =
∑

χ

(−Tm(β, χ) + S(β, χ) + Tm(β, χ))2r+1 =

= −
∑

χ

Tm(β, χ)2r+1 + O

(∑
χ

Tm(β, χ)2r|S(β, χ) + Tm(β, χ)|2r+1

)
By lemma 4.2 ∑

χ

Tm(β, χ)2r+1 � qD

and by Cauchy-Schwartz inequality and lemma 4.2+theorem 4.3 we have∑
χ

Tm(β, χ)2r|S(β, χ)+Tm(β, χ)|2r+1 �
√∑

χ

Tm(β, χ)4r

√∑
χ

|S(β, χ) + Tm(β, χ)|4r+2 �

�
√

qD log2r(mβ)
√

qD = qD logr(mβ) � qD logr(βD)

and we proved part (1).
(2) Take m =

⌊
D
8r

⌋
. As in part (1), and then using lemma 4.2 and theorem 4.3 ,

∑
χ

S(β, χ)2r =
∑

χ

Tm(β, χ)2r+O

√∑
χ

Tm(β, χ)4r−2

√∑
χ

|S(β, χ) + Tm(β, χ)|4r

 =
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Now this implies

∑
χ

S(β, χ)2r = Φe(Q)
(2r)!
2rr!

logr(mβ)+O(qD logr−1(mβ))+O(qD logr−1/2(mβ)) =

= Φe(Q)
(2r)!
2rr!

logr(βD) + O(qD logr−1/2(βD))

In particular, it holds for both scales that∑
χ

S(β, χ) = O(qD)

and ∑
χ

S(β, χ)2 = (1 + o(1))Φe(Q) log(βD)

As a consequence, we deduce:

Theorem 2. Let D →∞.
(1) Fix 0 < β < π. The sequence of random variables

S(β, χ)√
log D

has a standard gaussian limiting distribution.
(2) Let β = β(D) s.t. 0 6= β → 0 and βD →∞. Then the sequence of r.v.

S(β, χ)√
log(βD)

has a standard gaussian limiting distribution.

5 The Family of Real Characters

In this section we establish an analogous result for the family of real quadratic
characters. A detailed introduction can be found in [Ro1].

A monic polynomial Q ∈ Fq[x] is called separable if it has no multiple roots
in some algebraic closure of Fq, or, equivalently, if it is square-free. Let Ks(D)
denote the number of separable polynomials of degree D.

Lemma 5.1. For D ≥ 2, Ks(D) = qD
(
1− 1

q

)
Proof. We will exploit the following fact:∑

A2|Q

µ(A) =
{

1, Q separable
0, otherwise (5.1)
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where µ(A) is the Mobius function for polynomials. The sum over monic poly-
nomials of fixed degree satisfies

∑
deg n=m

µ(n) =

 1, m = 0
−q, m = 1
0, m ≥ 2

Ks(D) =
∑

deg Q=D

∑
A2|Q

µ(A) =
∑

deg A≤D/2

µ(A)
∑

deg B=D−2 deg A

1 =

= qD
∑

deg A≤D/2

µ(A)
q2 deg A

= qD
1∑

deg A=0

µ(A)
q2 deg A

= qD(1− 1/q)

The quadratic reciprocity law states that for prime P1, P2(
P1

P2

)
= (−1)

q−1
2 deg P1 deg P2

(
P2

P1

)
We can generalize the Legendre symbol (the so called Jacobi symbol) by

extending it multiplicatively to all monic polynomials N in

χN =
( ·

N

)
which makes χN a real character modulo N . In the case when N is separable,
χN is a primitive character. We also note that χN is an even character precisely
when deg N is even. The quadratic reciprocity law still holds, namely(

N1

N2

)
= (−1)

q−1
2 deg N1 deg N2

(
N2

N1

)
for monic polynomials N1, N2.

Next we state a lemma which is analogous to the Polya-Vinogradov inequal-
ity.

Lemma 5.2. Let χ be a non-principal character modulo N of degree D, and
m ≥ 0. Then ∣∣∣∣∣∣

∑
deg n=m

χ(n)

∣∣∣∣∣∣�
(

D
m

)
q

m
2

Proof. This is straightforward from RH. Let L(u, χ) =
∏k

j=1(1 − αju), with
k ≤ D − 1. Then |αj | =

√
q or |αj | = 1 for all j, and the coefficient at um is

O

((
k
m

)
q

m
2

)
on the other hand, this coefficient is exactly

∑
deg n=m χ(n).
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Remark. For m ≥ D,
∑

deg n=m χ(n) = 0.
Now we apply this result to quadratic characters.

Lemma 5.3. Let N be a monic polynomial of positive degree, and D > 0 even.
Then ∣∣∣∣∣∣∣∣∣

∑
deg Q = D
Q separable

(
N

Q

)∣∣∣∣∣∣∣∣∣ =
{

O(qD), N perfect square
O
(
qD/22deg N

)
, otherwise

Proof. If N is a perfect square, it is clear.
Assume otherwise. Then

( ·
N

)
is a non-principal character modulo N .

We use quadratic reciprocity law and formula (5.1) to obtain∑
deg Q = D
Q separable

(
N

Q

)
=

∑
deg Q=D

(
Q

N

) ∑
A2|Q

µ(A) =

=
∑

deg A≤D/2

µ(A)
(

A2

N

) ∑
deg B=D−2 deg A

(
B

N

)
from lemma 5.2 we get∣∣∣∣∣∣∣∣∣

∑
deg Q = D
Q separable

(
N

Q

)∣∣∣∣∣∣∣∣∣�
D/2∑
j=0

qj

(
deg N
D − 2j

)
qD/2−j � qD/22deg N

We will be studying the distribution of N(β, χQ), where Q ranges over all
separable polynomials of even degree D, in the limit D →∞. We again consider
both macroscopic and mesoscopic scales for β.
Through the rest of the section,

∑
Q will denote a sum over (monic) separable

polynomials Q.
Next we formulate a lemma analogous to lemma 4.1:

Lemma 5.4. Fix k ≥ 1 and let m = m(D) < D
6k . Let {ap} ⊂ C be a set of

coefficients indexed by prime polynomials p which satisfy |ap| < Adeg p
m for some

constant A. Then

∑
deg Q=D

∣∣∣∣∣∣
∑

deg p≤m

ap√
‖p‖

χQ(p)

∣∣∣∣∣∣
2k

= O(qD)

Proof. Write ∑
deg Q=D

∣∣∣∣∣∣
∑

deg p≤m

ap√
‖p‖

χ(p)

∣∣∣∣∣∣
2k

= Asq + Ansq
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where

Asq =
∑

p1, ..., p2k∏
pj is a square

∏k
j=1 apj

apk+j√∏2k
j=1 ‖pj‖

∑
Q

(∏2k
j=1 pj

Q

)

Ansq =
∑

p1, ..., p2k∏
pj is not a square

∏k
j=1 apj

apk+j√∏2k
j=1 ‖pj‖

∑
Q

(∏2k
j=1 pj

Q

)

By Lemma 5.2,

Ansq � qD/2

 ∑
deg p≤m

|ap|2deg p√
‖p‖

2k

� qD/2

 ∑
deg p≤m

|ap|qdeg p√
‖p‖

2k

�

� qD/2

 m∑
j=0

qj

jqj/2

qjj

m

2k

� qD/2+3mk

m2k
� qD

And

Asq � qD

 ∑
deg p≤m

|ap|2

‖p‖

k

� qD

 m∑
j=0

qj

jqj

j2

m2

k

� qD

Following the scheme of section 4, we define for separable Q

Tm(β, Q) = 2
∑

deg p≤2m

sin(β deg p)
√

qdeg p

(
p

Q

)
We will require a lemma:

Lemma 5.5. For any k ≥ 0 define

W (k, D) =
∑

deg Q = D
Q separable

∑
p|Q

1
qdeg p

k

Then W (k,D) � qD.

Proof.

W (k,D) =
∑

p1,...,pk

1
q

∑
deg pj

#{deg Q = D : ∀j, pj |Q}

Separate this into two sums, a sum over all k-tuples with all pj distinct Sdist,
and the remainder Srem. First bound Srem:

Srem �
∑

p1=p2

1
q2 deg p1

#{deg Q = D : ∀j ≥ 3, pj |Q} =
∑

p

1
q2 deg p

W (k−2, D) �
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� W (k − 2, D)

Next,

Sdist ≤
∑

deg pj ≤ D
all different

Ks (D −
∑

deg pj)
q

∑
deg pj

� qD
∑

deg pj≤D

1
q2

∑
deg pj

�

� qD

 ∑
deg p≤D

1
q2 deg p

k

� qD

 D∑
j=1

1
jqj

k

� qD

Since for k = 0 the claim is obvious, and for k = 1 Srem is an empty sum,
induction completes the proof.

Next we prove an analogue of lemma 4.2 for the family of quadratic charac-
ters:

Lemma 5.6. Let m = m(D) → ∞, fix r ≥ 0, and assume 0 < β < π (in
mesoscopic scale we assume that for all D). Then for both scales
(1) ∑

deg Q=D

Tm(β, Q)2r+1 � qD/2 q3m(2r+1)

m2r+1

(2) Assume 12mr < D, and that mβ →∞ (for mesoscopic scale). Then∑
Q

Tm(β, Q)2r = Ks(D)
(2r)!
r!

logr(mβ) + O(qD logr−1(mβ))

Proof. ∑
deg Q=D

χQ

(∏
pj

)
=
{

O(qD),
∏

pj = square
O
(
qD/22

∑
deg pj

)
, otherwise

(1) The product of an odd number of primes is not a perfect square, hence∑
deg Q=D

Tm(β, Q)2r+1 = 22r+1
∑

p1, ..., p2r+1
deg pj ≤ 2m

∏
j

sin(β deg pj)
√

qdeg pj

∑
deg Q=D

(∏
pj

Q

)
�

� qD/2
∑

p1,...,p2r+1

(
2
√

q

)∑
deg pj

= qD/2

 ∑
deg p≤2m

(
2
√

q

)deg p
2r+1

�

� qD/2

 2m∑
j=1

qj

j

qj

√
qj

2r+1

� qD/2 q3m(2r+1)

m2r+1
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(2) Write ∑
Q

Tm(β, χQ)2r = 22r(Tsq + Tnsq)

where Tsq and Tnsq are the terms for which
∏

pj is a perfect square, or not a
perfect square, respectively. Now Tnsq is estimated as in part (1):

Tnsq =
∑

p1, ..., p2r

deg pj ≤ 2m∏
pj 6= square

∏
j

sin(β deg pj)
√

qdeg pj

∑
deg Q=D

(∏
pj

Q

)
� qD/2 q6mr

m2r

Turning to Tsq, we have

Tsq =
∑

p1, ..., p2r

deg pj ≤ 2m∏
pj = square

∏
j

sin(β deg pj)
√

qdeg pj

∑
deg Q = D
(Q,

∏
pj) = 1

1

Notice all summands are non-negative, as primes appear in equal pairs. We will
use lemma 5.5 to show that the restriction (Q,

∏
pj) = 1 can be neglected:∑

p1, ..., p2r

deg pj ≤ 2m∏
pj = square

∏
j

sin(β deg pj)
√

qdeg pj

∑
deg Q = D
(Q,

∏
pj) 6= 1

1 �

�
∑

p1, ..., pr

deg pj ≤ 2m

∏
j

sin2(β deg pj)
qdeg pj

∑
deg Q = D
(Q,

∏
pj) 6= 1

1 �

�
∑

deg Q=D

∑
p1|Q

1
qdeg p1

∑
p2,..,pr

∏
j

sin2(β deg pj)
qdeg pj

� qD logr−1(mβ)

We are left to calculate

T =
∑

p1, ..., p2r

deg pj ≤ 2m∏
pj = square

∏
j

sin(β deg pj)
√

qdeg pj

Induction shows that we can assume every prime pair appears exactly once, and
the error introduced will be O(qD logr−2(mβ)). Thus up to this error

T =
(2r)!
r!2r

∑
p1,...,pr

∏
j

sin2(β deg pj)
qdeg pj

=
(2r)!
r!2r

 ∑
deg p≤2m

sin2(β deg p)
qdeg p

r

This was already calculated during the proof of lemma 4.2:

T =
(2r)!
r!2r

(
1
2

log(mβ) + O(1)
)r
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Bringing all together,∑
Q

Tm(β, Q)2r = Ks(D)
(2r)!
r!

logr(mβ) + O(qD logr−1(mβ))

In particular, for 12m < D it holds for both scales that∑
deg Q=D

Tm(β, Q)2 = 2(1 + o(1))Ks(D) log(mβ)

Now we proceed as in section 4 and prove the real version of theorem 4.3.

Theorem 5.7. Fix r ≥ 0. For εD < m < D
12r∑

deg Q=D

|S(β, χQ) + Tm(β, χQ)|2r = O(qD)

Proof. The only difference would be in bounding
∑

Q |E3(χQ)|2r by qD, where

E3(χQ) = 2

∣∣∣∣∣∣
∑

deg p≤m

Wm(2 deg p)
1

(
√

q)2 deg p
sin(2β deg p)χQ(p2)

∣∣∣∣∣∣
In section 4 we have used part (2) of lemma 4.1 for this purpose, which we don’t
have in the real case. However, a simple calculation gives the required bound:∑

Q

|E3(χQ)|2r �

�
∑
Q

∣∣∣∣∣∣∣∣∣
∑

deg p≤m/2

sin(2β deg p)
qdeg p

+ O

 ∑
deg p ≤ m/2
p|Q

1
qdeg p

+ O

 m∑
deg p=m/2

1
qdeg p


∣∣∣∣∣∣∣∣∣
2r

Now
m∑

deg p=m/2

1
qdeg p

�
m∑

j=m/2

1
j

= O(1)

and ∑
deg p≤m/2

sin(2β deg p)
qdeg p

�
m/2∑
j=1

sin(2βj)
j

� 1

for both scales by lemma A.1. Therefore,

∑
Q

|E3(χQ)|2r �
∑
Q


 ∑

deg p ≤ m/2
p|Q

1
qdeg p

+ O(1)


2r
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and by lemma 5.5 ∑
Q

|E3(χQ)|2r � qD

Applying the exact same reasoning used in the proof of theorem 4.4 , we
obtain

Theorem 5.8. Assume D even, fix r ≥ 0, and let 0 < β < π. Then in both
scales:
(1) ∑

Q

S(β, χQ)2r+1 = O(qD logr(βD))

(2) ∑
Q

S(β, χQ)2r = Ks(D)
(2r)!
r!

logr(βD) + O(qD logr−1/2(βD))

This implies

Theorem 3. Let D →∞ assume even values.
(1) Fix 0 < β < π. The sequence of random variables

S(β, χQ)√
2 log D

has a standard gaussian limiting distribution.
(2) Let β = β(D) s.t. 0 6= β → 0 and βD →∞. Then the sequence of r.v.

S(β, χQ)√
2 log(βD)

has a standard gaussian limiting distribution.
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A Appendix

Here we prove a technical lemma that was used in various places. It concerns
the convergence of certain series in macroscopic and mesoscopic scales.

Lemma A.1. Let m → ∞. Take β to be either fixed or β = β(m) → 0 such
that 0 < β < π and mβ →∞. Then
(1)

m∑
k=1

sin(2βk)
k

= O(1)

(2)
m∑

k=1

sin2(2βk)
k

=
1
2

log(mβ) + O(1)

Proof. (1) By a straighforward calculation,

n∑
j=0

sin(2βj) =
sin(nβ) sin((n + 1)β)

sinβ

The case of fixed β is a direct application of Dirichlet’s criterion for convergence
of sums. Assume now that β → 0. Summation by parts implies for all n ≥ 1

n∑
k=1

sin(2βk)
k

=
n∑

k=1

 k∑
j=1

sin(2βj)

(1
k
− 1

k + 1

)
+

1
n + 1

n∑
j=1

sin(2βj) =

=
1

sinβ

n∑
k=1

sin(mβ) sin((n + 1)β)
k(k + 1)

+
1

n + 1
sin(nβ) sin((n + 1)β)

sinβ

In particular, for N < n ≤ ∞∣∣∣∣∣
n∑

k=N

sin(2βk)
k

∣∣∣∣∣ ≤ 1
sinβ

n∑
k=N

1
k(k + 1)

+
2

N sinβ
≤ 3

N sinβ

Now for every c > 0∣∣∣∣∣∣
∞∑

k=1

sin(2βk)
k

−
c/β∑
k=1

sin(2βk)
2βk

2β

∣∣∣∣∣∣ ≤ 3β

c sinβ
≤ 4

c

As β → 0
c/β∑
k=1

sin(2βk)
2βk

2β →
∫ 2c

0

sin t

t
dt

This implies by letting c →∞

lim
β→0

∞∑
k=1

sin(2βk)
k

=
∫ ∞

0

sin t

t
dt =

π

2
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and finally

m∑
k=1

sin(2βk)
k

=
∞∑

k=1

sin(2βk)
k

+ O

(
1

m sinβ

)
= O(1)

(2)

m∑
k=1

sin2(2βk)
k

=
1
2

m∑
k=1

1
k
− 1

2

m∑
k=1

cos(2βk)
k

=
1
2

log m + O(1)− 1
2

m∑
k=1

cos(2βk)
k

We have the identity

m∑
j=0

cos(2βj) =
cos(mβ) sin((m + 1)β)

sinβ

And so the case of fixed β is again proved by Dirichlet’s criterion. Assume
β → 0. The integral ∫ ∞

1

cos t

t
dt

converges, and so by exactly the same reasoning of part (1)

m∑
k=1/2β

cos(2βk)
k

= O(1)

Now for t ∈ (0, 1] (
cos t

t

)′
� 1

t2

This implies that

1/2β∑
k=1

cos(2βk)
2βk

2β =
∫ 1

2β

cos t

t
dt + O

β

1/2β∑
k=1

1
4β2k2

2β


The error term is O(1), while cos t = 1 + O(t2) and so∫ 1

2β

cos t

t
dt =

∫ 1

2β

dt

t
+ O(1) = − log β + O(1)

Putting it together,

m∑
k=1

sin2(2βk)
k

=
1
2

log m +
1
2

log β + O(1) =
1
2

log(mβ) + O(1)
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