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Abstract

We investigate SL2(Z) matrices and look for a criterion when such
matrix is conjugate to its inverse.
A correspondence is set-up between SL2(Z) matrices with trace t and
quadratic forms with discriminant D = t2 − 4. We describe an ef-
fective algorithm to find all classes of quadratic forms with a given
discriminant, hence all conjugacy classes of matrices in SL2(Z) with
the corresponding positive trace t. Moreover, the algorithm can deter-
mine if a form q is equivalent to its inverse, hence determines whether
the corresponding matrix is conjugate to its inverse.
A correspondence is also set-up between SL2(Z) matrices with trace
t, |t| > 2, and ideals of orders of quadratic fields, such that conjugate
matrices correspond to strictly equivalent ideals. We investigate the
connections between the ideal Ig corresponding to a matrix g, its con-
jugate I ′g, and the ideal Ig−1 corresponding to g−1. For matrices with

trace t such that |t| > 3, g is conjugate to g−1 if and only if Ig ∼ I ′g,
and when Ig is an invertible ideal, then Ig 6≈ I ′g.
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1. Introduction

The study of matrices, their conjugates and their inverses, goes back
a long way. In this thesis we will examine the following question: When
is a matrix in the modular group SL2(Z) conjugate to its inverse?
This question may be considered as purely arithmetical problem, inter-
esting in its own right in the context of algebraic number theory, but
has also had some recent impact on questions arising in the theory of
dynamical systems. In a recent paper [PR], Polterovich and Rudnick
studied ”kicked systems” arising from perturbing the action of a hyper-
bolic element g ∈ SL2(Z) on the torus R2/Z2 by the action (”kicks”)
of elements of SL2(Z) having bounded trace. They showed that the
resulting dynamics is ”stably mixing” if and only if the matrix g is
conjugate to its inverse in SL2(Z).
In [BR], Baake and Roberts provide classification of the symmetry and
reverse symmetry group (elements by which a matrix is conjugate to
itself or to its inverse, respectively) by trace values for GL2(Z) and
PGL2(Z) matrices. Another recent paper by Long, describes a re-
duction of the conjugacy determination to the problem of solving a
corresponding Pell equation (see [Long]).

The discussion in this paper is two-fold: on one hand, it formulates
relations between binary integral quadratic forms and SL2(Z) matri-
ces, while on the other hand it investigates the relationship between
SL2(Z) matrices and ideals of orders in real quadratic extensions of Q.
The correspondence to quadratic forms reveals an algorithmic method
by which we can effectively find out which matrices with a given trace
belong to the same SL2(Z) conjugacy class as their inverse. This pro-
vides a deterministic tool by which specific questions about conjugacy
classes of matrices, or equivalence classes of quadratic forms, can be
answered.
The correspondence to ideals of orders of quadratic fields shows that
for SL2(Z) matrices with trace t such that |t| > 3, a matrix that is
conjugate to its inverse and corresponds to an invertible ideal, then
that ideal is weakly but not strictly equivalent to its conjugate. More
explicitly, a matrix g ∈ SL2(Z) with trace t such that |t| > 2, is con-
jugate to its inverse g−1 exactly when the corresponding ideals Ig and
Ig−1 are strictly equivalent, denoted Ig ≈ Ig−1 . For a matrix g with
trace t where |t| > 3 which is conjugate to its inverse, then we also
have Ig ∼ I ′g, and when Ig is an invertible ideal then Ig 6≈ I ′g.
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1.1. Quadratic Forms. The classical theory of quadratic forms was
developed by Lagrange and Gauss (see [ScOp]). A quadratic form is a
function

q(x, y) = ax2 + bxy + cy2

where a, b and c are integers. The discriminant of a quadratic form
is D = b2 − 4ac. Two binary quadratic forms are called (strictly)
equivalent, denoted p ≈ q, if there exists an integral transformation

h =

(
α β

γ δ

)
∈ SL2(Z) such that

(q ◦ h)(x, y) := q((x, y)ht) = q(αx + βy, γx + δy) = p(x, y)

When det h = −1 the forms are called weakly equivalent, denoted p ∼
q. Equivalent forms have the same discriminant. The totality of forms
with discriminant D therefore falls into classes of strictly equivalent
forms, and the number of classes is denoted by H+(D).
The correspondence between SL2(Z) matrices with trace t such that
|t| 6= 2, to quadratic forms with discriminant D where D = t2 − 4, is
defined in Section 2.8 as follows:

g =

(
α β

γ δ

)
→ Qg(x, y) = γx2 + (δ − α)xy − βy2

Q(x, y) = ax2 + bxy + cy2 → g(Q) =

(
−b+t

2
−c

a b+t
2

)

This correspondence guarantees that conjugate matrices correspond to
equivalent forms. Simple calculation shows that for a matrix g that
corresponds to form Q, the inverse matrix g−1 corresponds to −Q.
Forms can be roughly divided into definite forms with discriminant
D < 0, and indefinite forms with D > 0. Matrices with trace t such
that |t| > 2 imply that D > 0, i.e. correspond to indefinite forms.
The notion of definite reduced form can be defined for definite forms
such that a single reduced form exists in each class. For definite forms,
it is always true that Q 6≈ −Q. Section 2.3.2 uses this fact in order to
find all reduced forms with a given discriminant D < 0 , hence calculate
the number of equivalence classes of such forms.
Indefinite reduced forms can also be defined, so that each indefinite
form is equivalent to a reduced form.

Theorem 1. There is an effective algorithm to reduce an indefinite
form. The complexity of reducing an indefinite form [a, b, c] with dis-

criminant D = b2 − 4ac is O(max(1, log(a2

D
))). When |a| <

√
D
3

then

the complexity is O(1).
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For indefinite forms, multiple reduced forms may exist in each class.
These equivalent reduced forms are related to each other in so-called
chains, and each class contains a single chain. For indefinite forms it
is possible that Q ≈ −Q, implying that the corresponding matrices,
which would be some matrix g and its inverse g−1, are conjugates in
SL2(Z).
For an indefinite form Q = [a, b, c] with discriminant D, the complexity

of determining whether Q ≈ −Q is bounded by O(log(a2

D
) · D) from

above.

Section 2 uses reduced forms and chain calculations, to gain the fol-
lowing result:

Theorem 2. Given a trace t, |t| 6= 2:

(1) There is an effective algorithm to determine whether a given
SL2(Z) matrix is conjugate to its inverse. Given a form Q, it
can be effectively found whether Q ≈ −Q.

(2) There is an effective algorithm to find representatives for SL2(Z)
matrices with trace t. There is an effective algorithm to find all
non-equivalent reduced forms with discriminant D = t2 − 4.
This allows to find the class number, H+(D).

(3) The number of classes of SL2(Z) matrices with trace t in which
matrices are conjugate to their inverse can be effectively calcu-
lated. This is also the number of classes of forms with discrim-
inant D = t2− 4 in which forms are equivalent to their inverse.
The complexity of this algorithm is O(D log D).

1.2. Ideal Theory in Quadratic Fields. The classical ideal theory
was developed by Gauss and then by Dedekind.
Let K be a quadratic extension of Q, K = Q(

√
d0), d0 6= 0 ∈ Z, d0 is

square free. OK denotes the ring of integers of K, which is a Dedekind
Ring. By On we denote orders of OK , where n is the index of On in
OK .
As we shall see, the units of OK and On are of special importance and
in particular, the sign of the norm of the fundamental units η1 of OK

and ηn of On.
For quadratic extensions of Q it is not always true that unique factor-
ization to integers exists, however there is always unique factorization
to ideals. Furthermore, an equivalence relation can be defined between
ideals, and it is well known that the classes of ideals of OK under
this equivalence form a group. When this group has a single element,
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meaning there is a single class of ideals of OK , then OK has unique
factorization of integers. Hence the class group can be used to ”mea-
sure” the failure of unique factorization to integers.
The unit element in the class group of OK is the class of all principal
ideals, meaning the ideals that are created via a single element. Each
ideal I of OK belongs to a class CI in the class group of OK , and has
an inverse ideal I−1, which resides in the inverse class C−1

I = CI−1 , so
that I · I−1 is a principal ideal.
When turning to On the situation is somewhat more complicated. Not
all ideals of On are invertible, but only those which contain an element
α such that (N(α), n) = 1. This creates a more complex situation,
where classes of ideals do not necessarily form a group anymore.
Usually weak equivalence between ideals is used. In order to use strict
equivalence a new concept is needed - an ordered ideal. An ideal
I = [α, β] is called ordered when ∆K/Q(α, β) = αβ′ − βα′ > 0 holds.
This also effects the definition of ideal equivalence: for ideals I, J of
an integral domain O, I ∼ J meant that there exist ζ1, ζ2 ∈ O such
that ζ1I = ζ2J . Now for strict equivalence I ≈ J it is also required
that N(ζ1ζ2) > 0.

A correspondence can be set-up between SL2(Z) matrices with trace
t and ordered ideals of an integral domain O of a quadratic field,
such that an eigenvalue λ of the matrix generates O over Z, mean-
ing O = Z[λ]. An alternative way to obtain O is by looking at
D = t2−4 = n2 ·d, where d is a field discriminant of the field K = Q(d0)
(d0 = d when d ≡ 1 (mod 4), d0 = d/4 when d ≡ 0 (mod 4)), then we
have O = On ⊆ OK .

The exact correspondence is as follows: Let g =

(
α β

γ δ

)
∈ SL2(Z).

The corresponding ideal is

(1) Ig = [v1, v2] =

{
[γ, (δ−α)−n

√
d

2
] when γ > 0

[γ
√

d, (δ−α)−n
√

d
2

√
d] when γ < 0

This is an On ideal with an ordered basis. For a conjugate matrix
hgh−1, h ∈ SL2(Z), the corresponding ideal is received by (v1, v2)h

−1,
which is also an On ordered ideal.
Conversely, for an ordered ideal I = [v1, v2] there is a corresponding
matrix g(I) ∈ SL2(Z) such that for J = [w1, w2], where (w1, w2) =
(v1, v2) ◦ h, h ∈ SL2(Z) the corresponding matrix is h−1gh.
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The main result of Section 4 is as follows:

Theorem 3. Let g ∈ SL2(Z) with trace t such that |t| > 2, and an
eigenvalue λ. Denote D = t2 − 4 = n2d > 0, where d is a field
discriminant. Let K denote the quadratic field with discriminant d.
Then:

• The following are equivalent:
(1) g is conjugate to its inverse g−1 (there exists a matrix h ∈

SL2(Z) such that g−1 = hgh−1).
(2) The corresponding forms Qg and Qg−1 = −Qg (with dis-

criminant D) are strictly equivalent: Qg ≈ −Qg.
(3) The ideal J(g) in the order Z[λ] = On of OK, is strictly

equivalent to J(g−1): J(g) ≈ J(g−1).
(4) The ideal J(g) in the order Z[λ] = On of OK, is weakly

equivalent to J(g)′: J(g) ∼ J(g)′.
Let η be the fundamental unit of the order Z[λ]. Then we
have{
J(g) ≈ J(g)′ if N(η) < 0

J(g) 6≈ J(g)′ if N(η) > 0, J(g) is invertible

• The norm of the fundamental unit of the order Z[λ] is negative
for |t| = 3, and is always positive for |t| > 3. This implies that
for a matrix g with | tr(g)| > 3 for which g is conjugate to g−1 in
SL2(Z) then always J(g) ∼ J(g)′. When J(g) is an invertible
ideal of Z[λ], then J(g) 6≈ J(g)′.
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2. Integral Binary Quadratic Forms

This section provides an exposition of the classical theory of qua-
dratic forms. We freely quote from [Di] and [Lan].

Definition 1. Let a, b, c be constant integers, x, y are independent
variables. The function q(x, y) = ax2 + bxy + cy2 is called a binary
quadratic form, or, in brevity, a form, and is also written: q = [a, b, c].
The discriminant of the form is the number D = b2 − 4ac.

It is always true that D ≡ 0 or 1 (mod 4).

Lemma 1. There exists an integral factorization for q exactly when D
is a perfect square.

Proof. Let R =
√

D =
√

b2 − 4ac.

q(x, y) = ax2 + bxy + cy2

4aq(x, y) = 4a2x2 + 4abxy + 4acy2 =

= (2ax + by)2 + y2(−(b2 − 4ac)) =

= (2ax + by)2 − y2R2 =(2)

= (2ax + (b + R)y)(2ax + (b−R)y)

We need to show this is an integral factorization when D is a perfect
square, meaning R ∈ Z. b and D are of the same parity, therefore also
b and R are of the same parity, and b+R

2
, b−R

2
∈ Z. We have:

4ac = b2 −D = b2 −R2 = (b + R)(b−R)
ac = b+R

2
∗ b−R

2

Let a = a1a2, such that a1| b+R
2

and a2| b−R
2

, and so:

q(x, y) = (
2a

2a1

x +
b + R

2a1

y)(
2a

2a2

x +
b−R

2a2

y)

is an integral factorization of q.
In the other direction, if we have q(x, y) = ax2 + bxy + cy2 = (rx +
sy)(tx+uy) where r,s,t,u are integers, then D = b2−4ac = (ru+st)2−
4(rt)(su) = (ru− st)2. ¤

From now on, let D be non square, and ≡ 0 or 1 (mod 4). Conse-
quently, for each form having discriminant D we certainly have a 6= 0
and c 6= 0.
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2.1. Classes of Forms. Binary quadratic forms are called properly
equivalent (or strictly equivalent) and denoted p ≈ q if there exists an

integral transformation h =

(
α β

γ δ

)
with det h = 1 such that

(q◦h)(x, y) := q((x, y)ht) = q((x, y)

(
α γ

β δ

)
) = q(αx+βy, γx+δy) = p(x, y)

We say: q goes into p by the matrix h.
When det h = −1 the forms are called weakly equivalent, denoted
p ∼ q.

Lemma 2. Reflexivity, symmetry and transitivity of strict and weak
form equivalence.

Proof. (1) Reflexivity: q ≈ q; for q goes into q by the unit matrix,
which has determinant 1.

(2) Symmetry: When q(x, y) = p(αx + βy, γx + δy) then we also
have p(x, y) = q(δx − βy,−γx + αy), and the corresponding
matrices have the same determinant.

(3) Transitivity: When q goes into p by

(
α β

γ δ

)
and p goes into r

by

(
α1 β1

γ1 δ1

)
then q goes into r by the product matrix

(
α β

γ δ

)(
α1 β1

γ1 δ1

)
=

(
αα1+βγ1 αβ1+βδ1

γα1+δγ1 γβ1+δδ1

)

With the appropriate determinant (+1 if both original matrices
have determinant +1, ±1 if the original matrices have determi-
nant ±1).

¤
Lemma 3. Properly or weakly equivalent forms always have the same
discriminant.

Proof. Let q(x, y) = ax2 + bxy + cy2, Q(x, y) = Ax2 + Bxy + Cy2, and
q(αx + βy, γx + δy) = Q(x, y).
By evaluating q(αx + βy, γx + δy) = Ax2 + Bxy + Cy2 we have the
Coefficient Transformation Formula:

(3)





A = aα2 + bαγ + cγ2,

B = 2aαβ + b(αδ + βγ) + 2cγδ,

C = aβ2 + bβδ + cδ2

The discriminant of Q is then B2− 4AC = (b2− 4ac)(αδ− βγ)2. As q
is properly or weakly equivalent to Q, then (αδ − βγ)2 = 1, therefore
the discriminant of q equals the discriminant of Q. ¤
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The totality of forms with discriminant D therefore fall into classes
of properly equivalent forms, the class number is denoted H+(D).
A form q is said to represent an integer A if there exist integers x and
y such that q(x, y) =A. Equivalent forms represent the same integers,
as q(x, y) = Q(αx + βy, γx + δy) and Q(x, y) = q(δx− βy,−γx + αy).

2.2. Definite and Indefinite Forms. We saw earlier in (2) that for
q = [a, b, c]:

4aq(x, y) = (2ax + by)2 + y2(−(b2 − 4ac)) = (2ax + by)2 + y2(−D)

For D < 0, 4aq(x, y) is always positive, and therefore the sign of q(x, y)
is dependent only on the sign of a, and not on the values of x and y.

• A form with D < 0 and a > 0, takes positive values for all x
and y not both zero, and is called a positive form.

• A form with D < 0 and a < 0, takes negative values for all x
and y not both zero, and is called a negative form.

• A form with D < 0 is called a definite form and is always either
negative or positive.

• A form with D > 0 takes both positive and negative values and
is called an indefinite form.

A Positive form can be equivalent only to positive forms, a negative
form can be equivalent only to negative forms. This implies that for
q = [a, b, c] with D < 0, all equivalent forms Q = [A,B, C] must have
sign(A)=sign(a).

2.3. Definite Forms. A definite form is a form [a, b, c] with discrim-
inant D = b2 − 4ac < 0, and is either a positive form with a > 0 or
a negative form with a < 0. It suffices to explore the properties of
positive forms, as the properties of negative forms follow immediately.

2.3.1. Positive Reduced Forms.

Definition 2. A positive definite form is called reduced if −a < b ≤ a,
c ≥ a and b ≥ 0 if c = a.

Theorem 4. (1) Every positive form is equivalent to a reduced form.
(2) No two positive reduced forms are equivalent.

Proof. (1) Fix a form q = [a, b, c]. Let A be the smallest positive
number, which is representable by q. Then we have

A = q(α, γ) = aα2 + bαγ + cγ2

for suitable α and γ. We certainly have (α, γ) = 1, for other-
wise A

(α,γ)2
would be representable and smaller than A. We can

therefore find numbers β and δ such that αδ − βγ = 1. By the
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Coefficient Transformation Formula (in (3) above) the transfor-

mation

(
α β

γ δ

)
takes [a, b, c] to [A, b′, c′]. The transformation

(
1 h

0 1

)
with determinant 1, takes [A, b′, c′] to Q = [A,B,C]

where B = 2Ah + b′. We can choose an integer h so that
−A ≤ B ≤ A. Since C is the value for Q when x = 0, y = 1,
it is representable by the equivalent form q, hence C is not less
than the minimum A of q. In case C=A, if B < 0 we can use

the transformation

(
1 −1

1 0

)
with determinant 1 to replace Q

with [A,−B, A].
(2) Let q = [a, b, c] be equivalent to Q = [A, B, C], both reduced.

We need to show q = Q. We have

−a < b ≤ a, c ≥ a and b ≥ 0 if c = a
−A < B ≤ A, C ≥ A and B ≥ 0 if C = A

We may take a ≥ A. q ≈ Q so there is an integral transforma-
tion of determinant unity such that

Q(x, y) = q(αx + βy, γx + δy)

and the Coefficient Transformation Formula (in (3) above) holds.
Since (α± γ)2 ≥ 0, then α2 + γ2 ≥ 2|αγ|. Hence

A = aα2 + bαγ + cγ2 ≥ aα2 − a|αγ|+ aγ2 ≥ a|αγ|

1 ≥ A

a
≥ |αγ|

But α and γ are integers, so either α = 0 or γ = 0.

a ≥ A = aα2 + bαγ + cγ2 = aα2 + cγ2 ≥ aα2 + aγ2 ≥ a

So it must be that A = a. Now we have 2 cases: either one of
c > a or C > A holds, or c = a and C = A. First let one of
c > a or C > A hold. By interchanging q and Q if necessary,
we may take c > a without disturbing a = A.
If γ 6= 0 then cγ2 > aγ2. Similarly to above:

A = aα2 + bαγ + cγ2 > aα2 − a|αγ|+ aγ2 ≥ a|αγ|

1 =
A

a
> |αγ|

Thus |αγ| = 0, α = 0, a = A = cγ2 ≥ c. This is a contradiction,
hence γ = 0. By αδ− βγ = 1 we have αδ = 1, α = δ = ±1. By
the Coefficient Transformation Formula (in (3) above):

B = 2aαβ + b(αδ + βγ) + 2cγδ = 2aαβ + b(1 + 0) + 0
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B − b = 2aαβ

We know that −a < b ≤ a, −A < B ≤ A, a ≥ A, so
|B − b| ≤ 2a, |β| ≤ 1. If |β| = 1 then |B − b| = 2a, and
so one of b and B is a and the other is −a. But as both forms
are reduced we cannot have b = −a nor B = −A, so β = 0,
b = B, therefore also c = C and then q = Q.
Second, let c = a, C = A. Then b = ±√D + 4ac = ±√D + 4AC,
but only positive values are possible for b (B) in a reduced form
with a = c (A = C), therefore q = Q.

¤

All positive reduced forms must have a ≤ c and b ≤ a, therefore they
also satisfy:

4a2 ≤ 4ac = −D + b2 ≤ −D + a2

3a2 ≤ −D

Positive forms always have D < 0 and a > 0, and so we conclude:

a ≤
√
−D

3

There is a finite number of possible combinations where |b| ≤ a ≤
√

−D
3

(and c can be calculated given a, b and D), and so this shows that there
is a finite number of positive reduced forms for a fixed discriminant D.
We conclude that the class number for positive forms is finite, and there
is a single reduced form in each class. Finding all positive reduced forms
presents a way to calculate the number of classes of positive forms with
a given negative discriminant D. The correspondence between positive
and negative forms allows us to calculate the class number H+(D) for
all definite forms, positive and negative.

2.3.2. An Algorithm to Find All Positive Reduced Forms. Let L be the

largest integer ≤
√

−D
3

. −D ≡ 0 or 3 (mod 4), and from this we can

conclude the parity of b (b is even if −D ≡ 0 (mod 4), odd otherwise).

|b| is between 0 to L. For each such integer b, ac = b2+D
4

is an integer.
Consider every a such that |b| ≤ a ≤ L, check if 4a divides b2 + D.

For such a, we then have c = b2+D
4a

, make sure c ≥ a ≥ |b|. When b is
negative, omit cases where c = a or a = −b.
Clearly, the number of required steps is < 2D.

Proposition 1. The complexity of this algorithm is O(D).
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In order to calculate H+(D) for D < 0, the algorithm can be used
to find the number of reduced positive forms, and then multiply it by
2, as for each positive reduced [a,b,c], [-a,b,-c] is a representative of a
different class of negative forms.
Remark: The above use of the reduction theory gives a bound of
H+(D) = O(D). However, Dirichlet’s Class Number formula gives

H+(D) = O(
√

D · logD), which one assumes to be the correct expo-
nent of D.

2.4. Indefinite Forms. An indefinite reduced form is a form q =
[a, b, c] with discriminant D = b2 − 4ac > 0. Let R denote the positive
square root of D. Now, x− ωy is a factor of q if and only if

aω2 + bω + c = 0

Its first and second roots are respectively

(4) f =
R− b

2a
, s =

−R− b

2a

2.4.1. Indefinite Reduced Forms.

Definition 3. An indefinite form is called reduced when

0 < R− b < 2|a| < R + b

or, equivalently, when |f | = |R−b
2a
| < 1, |s| = |−R−b

2a
| > 1, and

fs = (R−b
2a

)(−R−b
2a

) < 0.

Note that f has the same sign as a, and c the opposite sign, since for
a reduced form 4ac = b2−R2 = −(R− b)(R+ b) < 0. For an indefinite
reduced form it holds that 0 < b < R.

Lemma 4. If one of [a, b, c] and [c, b, a] is reduced, the other is reduced.

Proof. In view of (R − b)(R + b) = 4|ac|, a can be replaced in 0 <
R− b < 2|a| < R + b so we have 0 < R− b < 2|c| < R + b. ¤
Lemma 5. Every indefinite form is equivalent to a form [a, b, c] in

which |b| ≤ |a| ≤
√

D
3
.

Proof. We first show how to secure the second inequality. If |a| >
√

D
3

in a given [a,b,c], we apply the transformation

(
h 1

−1 0

)
with determi-

nant unity and obtain [a1, b1, a], where by the Coefficient Transforma-
tion Formula (in (3) above)) b1 = 2ah + b(−1) + 0 = 2ah − b. We
choose an integer h such that |b1| ≤ |a|. Then

4a1a = b2
1 −D < b2

1 ≤ a2
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−4a1a = D − b2
1 ≤ D < 3a2

(by our assumption
√

D
3

< |a|). Hence 4|a1a| < 3a2, |a1| < 3
4
|a|.

If |a1| >
√

D
3
, we repeat the process and obtain an equivalent form

[a2, b2, a1], having |a2| < 3
4
|a1| < (3

4
)2|a|. Since (3

4
)n may be made as

small as we please by taking n sufficiently large, we ultimately obtain

an equivalent form [a′, b′, c′] in which |a′| ≤
√

D
3
, sufficing the second

inequality. Now we still need to secure the first inequality. Replacing

x by x + ky, using the matrix

(
1 k

0 1

)
, we obtain [a′, B, C] where B =

b′ + 2ka′ (by the Coefficient Transformation Formula). We can choose
an integer k such that |B| ≤ |a′|. ¤
Theorem 5. Every indefinite form is equivalent to a reduced form.

Proof. By the above lemma we may assume that b2 ≤ D
3
, but we make

use only of b2 ≤ D. Then 4|ac| = D − b2 ≤ D, whence not both 2|a|
and 2|c| are > R, when R denotes the positive square root of D. If

necessary we use the transformation

(
0 1

−1 0

)
and we have 2|c| ≤ R.

Also, c 6= 0 as D is not a perfect square. In [a, b, c] replace y by y−kx,
where k ∈ Z. We get [a′, b′, c], where b − b′ = 2kc, where k is an
integer. We can choose k so that R− 2|c| ≤ b′ ≤ R. Therefore we have
0 ≤ R − b′ ≤ 2|c| ≤ R + b′. None of the signs can be =, as D is not a
perfect square. We have 0 < R − b′ < 2|c| < R + b′ and so [c, b′, a′] is
reduced. By a previous theorem [a′, b′, c] is also reduced. ¤
Proposition 2. The complexity of reducing an indefinite form [a, b, c]

with D = b2 − 4ac is O(max(1, log(a2

D
))). When |a| <

√
D
3

then the

complexity is O(1).

Proof. Given a definite form [a, b, c], then by Lemma 5 and Theorem 5
above the steps for its reduction are:

(1) Find h ∈ Z such that |2ah − b| ≤ |a|. Using h we find an
equivalent form [a1, b1, c1]. Complexity is O(1).

(2) If |a1| >
√

D
3
, we repeat the process till |an| ≤

√
D
3
. By Lemma

5, the number of steps n should satisfy:

|an| < (
3

4
)n|a| ≤

√
D

3

n ≤ log 3
4

√
D

3a2
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The complexity of this step is O(log a2

D
). At the end of this

process we have an equivalent form [a′, b′, c′] where |a′| ≤
√

D
3
.

(3) Find k ∈ Z such that |b′ − 2ka′| ≤ |a′|, the complexity is O(1).
Using k we find an equivalent form [a′′, b′′, c′′].

(4) By Theorem 5, we find l ∈ Z such that
√

D−2|c′′| ≤ b′′−2lc′′ ≤√
D. The complexity of this step is O(1).

Hence, the overall complexity of reducing an indefinite form [a, b, c] is

O(max(1, log a2

D
)).

¤

2.4.2. Chains of Equivalent Indefinite Reduced Forms. It is possible
that different indefinite reduced forms would be equivalent, and then
they form a chain of such forms. Every element in a chain has a left
neighbor and a right neighbor within the chain. The right neighbor of
[a, b, a1] is [a1, b1, a2], where

(5) b1 = −b− 2δa1

and is received using the transformation

(6)

(
0 1

−1 δ

)

where δ is chosen so that [a1, b1, a2] is reduced.
For example, take the form [-2,1,2] with discriminant 17. Its right
neighbor is [2, b1, a2] = [2,−1 − 2δ · 2, a2]. δ should be selected to
satisfy definition 3:

0 < R− b < 2|a| < R + b

0 <
√

17− (−1− 4δ) < 4 <
√

17 + (−1− 4δ)

Therefore δ = −1, b1 = 3, and we find a2 by discriminant calculation:
32 − 4 · 2 · a2 = 17, a2 = −1, and so the right neighbor of [-2,1,2] is [2,
3, -1].

Lemma 6. Each indefinite reduced form q = [a, b, a1] has exactly one
reduced, right neighbor.

Proof. Let f = R−b
2a

, let |δ| denote the largest integer < 1
|f | , and δ has

the same sign as f and a, hence opposite sign to a1. The form is re-
duced so we have 0 < R − b < 2|a| < R + b, so |f | < 1, and |δ| > 0.
The right neighbor of [a, b, a1] is q1 = [a1, b1, a2] where b1 = −b− 2δa1

and by the discriminant we can find that a2 = D2a1 + bδ + a. We need
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to show this form is reduced, we will use the second definition and show:

|f1| = |R− b1

2a1

| < 1, |s1| = |−R− b1

2a1

| > 1, f1s1 = (
R− b1

2a1

)(
−R− b1

2a1

) < 0

The first root f1 of the form q1 is:

f1 = R−b1
2a1

= R−(−b−2δa1)
2a1

= (R+b
2a1

)(R−b
R−b

)+δ = R2−b2

2a1(R−b)
+δ = D−b2

2a1(R−b)
+δ =

−4aa1

2a1(R−b)
+ δ = −2a

R−b
+ δ = − 1

f
+ δ

Hence f1 is numerically < 1, and has the opposite sign to δ and f .
The second root s1 of q1 is:

s1 = −R−b1
2a1

= −R−(−b−2δa1)
2a1

= (−R+b
2a1

)( b+R
b+R

) + δ = −D+b2

2a1(b+R)
+ δ =

4aa1

2a1(b+R)
+ δ = 2a

b+R
+ δ = −1

s
+ δ

Since the sign of s is opposite to that of f and δ, s1 has the same
sign as δ (assuring f1s1 < 0) and is numerically > 1. Hence q1 is a
reduced form.
Moreover, q1 is reduced only when δ is chosen as indicated. For, if q
and q1 are reduced, f1 has the same sign as a1, and f has a sign oppo-
site to a1. Thus |f | < 1, |f1| < 1, and F = − 1

f
+ δ requires that δ be

of same sign as f and that |δ| be the largest integer < 1
|f | . ¤

Lemma 7. Each indefinite reduced form q = [a, b, a1] has exactly one
reduced, left neighbor.

Proof. If [a, b, a1] is reduced, then [a1, b, a] is also reduced. It has a
unique reduced, right neighboring form [a, l, m], with l = −b + 2δa.
Hence the reduced form [m, l, a] has [a, b, a1] as a right neighboring
form, with b = −l + 2δa. ¤

Let Φ0 be any reduced form. Let Φ1 and Φ−1 be its unique reduced
left and right neighboring forms. In this manner we obtain a chain of
equivalent, reduced forms:

(7) ..., Φ−2, Φ−1, Φ0, Φ1, Φ2, ...

An example of a chain of reduced forms: for discriminant 221 the
following chain can be found: Φ0 = [7, 9,−5], Φ1 = [−5, 11, 5], Φ2 =
[5, 9,−7], Φ3 = [−7, 5, 7], with δ0 = 2 to find Φ1 from Φ0, δ1 = −2,
δ2 = 1, and δ3 = −1 to find the right neighbor of Φ3 which is is again
Φ0.
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2.4.3. An Algorithm to Find All Indefinite Reduced Forms. D ≡ 0 or
1 (mod 4), and from this we can conclude the parity of b (b is even

when D ≡0 (mod 4), odd otherwise). 0 < b < R =
√

D. For each

such integer b, |ac| = D−b2

4
is an integer. For each a such that R−b

2
≤

a ≤ R+b
2

, check if c = D−b2

4a
is an integer. This ensures that also

R−b
2
≤ c ≤ R+b

2
. Prefix opposite signs to the factors a and c that were

found. This leads to a finite number of reduced forms. Consider only
a single form of every chain. There is a finite number of elements in
each chain, as the total number of reduced forms is finite.

Proposition 3. The complexity of this algorithm is O(D · logD).

Proof. In order to find all reduced forms O(D) operations are needed.

For each 0 < b <
√

D, O(b) forms may be found. As b ∼ √
D, the total

number of forms found for a given discriminant D is O(
√

D)·O(
√

D) =
O(D). In order to ignore reduced forms which are in the same chain
O(D2) operations are needed, as for each reduced form its right neigh-
bor is calculated and must be searched among all other reduced forms.
This complexity can be improved to O(D · logD) by using a data struc-
ture in which the forms are kept sorted. Thus searching for a right
neighbor of a form among all other reduced forms requires O(logD)
operations, yielding total of O(DlogD) operations when searching for
all O(D) forms. ¤

Remark: Dirichlet’s class number formula gives a bound of h(D) =

O(
√

D). It is a conjecture of Gauss that h(D) = 1 infinitely often for
D > 0.

Corollary 1. Given an indefinite form Q = [a, b, c] with discriminant
D = b2 − 4ac > 0, the complexity of determining whether Q ≈ −Q is
bounded by O(log(a2

D
) ·D) from above.

Proof. In order to determine whether Q ≈ −Q, Q is reduced to q, −Q
is reduced to q′, then we check if q and q′ are in the same chain of
reduced forms.
By Proposition 2, the complexity of reducing Q (or −Q) is O(log(a2

D
)).

Finding the right neighbor of a form q has complexity O(1) (see (5)). By
proposition 3 the total number of reduced forms for a given discriminant
D is O(D). Hence the complexity of checking whether the reduced
forms q and q′ are in the same chain is at most O(D), and we conclude

the total complexity is bounded from above by O(log(a2

D
) ·D). ¤

2.5. Indefinite Reduced Forms and Continued Fractions. Purely
periodic continued fractions are precisely the real (irrational) roots w
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of a quadratic equation that satisfies

w > 1,−1 < w′ < 0

Recall that for a quadratic form Q = [a, b, c] with D = b2 − 4ac > 0,
we have defined (in (4)): f = −b+R

2a
, s = −b−R

2a
, where R denotes the

positive square root of D. By Definition 3, a form Q is reduced when
|f | < 1, |s| > 1 and fs < 0, or, more explicitly, when:

0 < f < 1, s < −1 or 0 > f > −1, s > 1

Following (7), it is convenient to write

(8) Φi = [(−1)iAi, Bi, (−1)i+1Ai+1]

Let transformation (6) with δ = δi replace Φi by Φi+1, then by (5) we
have

(9) Bi + Bi+1 = 2giAi+1, gi = (−1)iδi

Since the chain (7) is determined by any one of its members, we may
choose Φ0 so that A0 is positive. Then Ai, Bi, gi are positive for every
i. Let fi and si denote f and s for Φi.

In general, for a form qi+1 = [ai+1, bi+1, ci+1] related to qi = [ai, bi, ci]
by the transformation

xi+1 = αxi + βyi, yi+1 = γxi + δyi, αδ − βγ = 1

the first roots fi of qi and fi+1 of qi+1 and the second roots si and si+1

are related by

(10) fi+1 =
αfi + β

γfi + δ
, si+1 =

αsi + β

γsi + δ

For a complete proof see [Di]. In the case of neighboring forms, the
transformation is

xi+1 = yi, yi+1 = −xi + δyi

hence we have

(11) fi+1 = δ − 1

fi

, si+1 = δ − 1

si

Denote:

(12) Fi =
(−1)i

fi

, Si =
(−1)i+1

si

Using (11) we have:

(13) Fi =
R + Bi

2Ai+1

, Si =
R−Bi

2Ai+1
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Note that using Fi and Si instead of f and s, we can guarantee that
Fi > 1, 0 < Si < 1.
By multiplying (11) by (−1)i we have

Fi = gi +
1

Fi+1

,
1

Si

= gi−1 + Si−1

after the subscripts of the second are reduced by one.
For example, for D = 221 as in the example in section 2.4.2, g0 = 2,
g1 = 2,g2 = 1, g3 = 1, Φ4 = Φ0, whence

F0 = 2 +
1

F1

, F1 = 2 +
1

F2

, F2 = 1 +
1

F3

, F3 = 1 +
1

F1

or, F0 = [2, 2, 1, 1], the first root of Φ0 = [7, 9,−5] is f0 = 1
F0

=

[0, 2, 2, 1, 1]. We easily see that, for example, F1 = [2, 1, 1, 2] = −1
f1

,

where f1 is the first root of Φ1 = [−5, 11, 5]. Similarly, F2 = [1, 1, 2, 2] =
1
f2

, and F3 = [1, 2, 2, 1] = −1
f3

.

In general, recalling that the Fi come from a cycle of period n we
obtain the continued fraction expansion

Fi = [gi, ..., gn, g1, ..., gi−1]

Corollary 2. A quadratic form q = [a, b, c] with a first root f =
√

D−b
2a

is a reduced form if and only if F = (sign(a)) 1
f

is a purely periodic

continued fraction.

Corollary 3. (1) Let Φ0, Φ1, ... be a chain of n indefinite reduced
forms, with δi used in transformation (6) to replace Φi by Φi+1,
and such that the first coefficient of Φ0, A0 > 0. Then the
periodic continued fractions of Fi are consecutive ”shifts” of
the same digits cycle, so that for Fi = [x1, ...xn] then Fi+1 =
[x2, ...xn, x1].

(2) The opposite is also true, for a reduced indefinite quadratic form
q = [a, b, c], if Fq = [x1, ...xn] = (sign(a)) 1

f
, then Q, the right

neighbor of q, has FQ = [x2, ...xn, x1], and there are exactly n
reduced forms in the chain of q.

2.6. Primitive Forms and Inverse Forms.

2.6.1. Primitive Forms and h+(D). Recall that Class Number of prop-
erly equivalent binary quadratic forms with discriminant D is denoted
H+(D).

Definition 4. A form [a,b,c] is called primitive if gcd(a,b,c)=1, oth-
erwise it is called imprimitive.
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When gcd(a, b, c) = g > 1 then g2 | D and the form [a
g
, b

g
, c

g
] is a

primitive integral form with discriminant D
g2 .

Denote the class number of properly equivalent primitive binary forms
with discriminant D by h+(D). Then H+(D) =

∑
g2|D, g>0 h+( D

g2 ).

Note that when D = 4d0 such that d0 ≡ 2 or 3 (mod 4) and is square
free, then d0 is not a discriminant, therefore h+(d0) = 0 and H+(D) =
h+(D).

2.6.2. Inverse Forms and I(D). For a form Q=[a,b,c], we introduce its
inverse -Q=[-a,-b,-c]. (The reason for this arises from the correspon-
dence to matrices, described in section 2.8.2). When q ≈ Q, then by
the Coefficient Transformation Formula (in (3)) also −q ≈ −Q. There-
fore, if a form q is equivalent to its inverse −q, then for any other form
Q which is in the same class as q, we have Q ≈ q ≈ −q ≈ −Q. Denote
the number of classes in which reduced forms are equivalent to their
inverse by I(D).
When D < 0, for a positive form [a,b,c], [-a,-b,-c] is a negative form,
therefore a definite form can never be equivalent to its inverse. There-
fore for D < 0 we always have I(D) = 0.
When D > 0, in order to find if a form Q is equivalent to its inverse,
one should reduce -Q and see if the result is in the same chain with Q.
if Q=[a,b,c] is reduced, then -Q=[-a,-b,-c] is equivalent to the reduced
form [-c,b,a], and all left is to see whether [a,b,c] and [-c,b,a] are in the
same chain.

2.7. An Algorithm to calculate H+(D) and I(D).

Make sure D is a legal discriminant (not a perfect square, D ≡ 0 or 1 (mod4))
if D < 0:

Find positive reduced forms (use algorithm described in Section 2.3.2)
Multiply number of reduced forms by 2 to find H+(D)
I(D) = 0, as D < 0

if D > 0:
Find indefinite reduced forms, consider a single form in every chain (use
algorithm described in Section 2.4.3)
For each reduced form Q: reduce -Q and check if in the same chain with Q
Calculate I(D)

The complexity of this algorithm is O(DlogD).
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2.8. SL2(Z) Matrices and Quadratic Forms.

2.8.1. SL2(Z) Matrices. SL2(Z) denotes the group of matrices

(
α β

γ δ

)

with integral coefficients, such that the determinant αδ − βγ = 1.
Consider the following action SL2(Z) defines on R:

g =

(
α β

γ δ

)
∈ SL2(Z), τ ∈ R, then g(τ) = ατ+β

γτ+δ
.

We are interested in τ ∈ R which is fixed under the operation of g, i.e.
g(τ) = ατ+β

γτ+δ
= τ , which results in

τ± =
α− δ ±

√
tr(g)2 − 4 det(g)

2γ
=

α− δ ±
√

tr(g)2 − 4

2γ

2.8.2. Correspondence to Quadratic Forms. We define a corresponding

quadratic form Qg(x, y) to the matrix g =

(
α β

γ δ

)
as follows:

Qg(x, y) = γ(x− τ+y)(x− τ−y) = γ(x2 − (τ+ + τ−)xy + τ+τ−y2) =

= γx2 + (δ − α)xy − βy2

Note that for g−1 =

(
δ −β

−γ α

)
, the corresponding form is

Qg−1(x, y) = −γx2 + (α− δ)xy + βy2 = −Qg(x, y)

The discriminant D for Qg is

D = (δ − α)2 − 4γ(−β) = (δ + α)2 − 4(αδ − βγ) = tr(g)2 − 4

Conjugate matrices in SL2(Z) have the same trace, and therefore cor-
respond to forms with the same discriminant.
The discriminant satisfies D = tr(g)2 − 4 ≡ 0 or 1 (mod 4). Also,
for | tr(g)| 6= 2, D is not a perfect square. This can be easily checked
for | tr(g)| = 0, 1. For | tr(g)| > 2, suppose D = k2. It is enough to
consider positive tr(g) and k. We have

4 = tr(g)2 − k2 = (tr(g) + k)(tr(g)− k)

As (tr(g) + k) and (tr(g) − k) are of the same parity, the only way to
factor 4 is 2 · 2, implying tr(g) = 2, k = 0, but | tr(g)| > 2.

Recall that for h =

(
a b

c d

)
:

(Q ◦ h)(x, y) := Q((x, y)ht) = Q(ax + by, cx + dy)

For h ∈ SL2(Z) we say that Q is strictly equivalent to Q ◦ h, for
h ∈ GL2(Z) we say that Q and Q ◦ h are weakly equivalent.
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Theorem 6. Let h ∈ SL2(Z), then Qh−1gh = Qg ◦ h. This means that
conjugate matrices correspond to equivalent forms, and vice versa.

Proof. Let g =

(
α β

γ δ

)
with αδ − βγ = 1, and h =

(
a b

c d

)
with

ad− bc = 1. Then h−1 =

(
d −b

−c a

)
, and

h−1gh =


 A=αad+βcd−γab−δbc B=αbd+βd2−γb2−δbd

C=−αac−βc2+γa2+δac D=−αbc−βcd+γab+δad




Qh−1gh(x, y) = Cx2 + (D − A)xy −By2 =

= [(δ − α)ac− βc2 + γa2]x2

+[(δ − α)(ad + bc)− 2βcd + 2γab]xy

+[(δ − α)bd− βd2 + γb2]y2

On the other hand, Qg(x, y) = γx2 + (δ − α)xy − βy2,

(Qg ◦ h)(x, y) = Qg((x, y)ht) = Qg((x, y)

(
a c

b d

)
) =

= Qg(ax + by, cx + dy) =

= γ(ax + by)2 + (δ − α)(ax + by)(cx + dy)− β(cx + dy)2

which is exactly the same as Qh−1gh(x, y) above. ¤
The correspondence also allows us to find the matrix to which a

given form corresponds, as long as the trace t is also provided: let
Q(x, y) = Ax2 + Bxy + Cy2, with discriminant D = B2 − 4AC such
that t =

√
D + 4 ∈ Z, or t = −√D + 4 ∈ Z. Then, the corresponding

matrix is g(Q) =

(
α −C

A δ

)
, where δ−α = B, det(g(Q)) = αδ+AC = 1

and α + δ = t = ±√D + 4 = ±
√

(B2 − 4AC) + 4. The only solution
for these equations is δ = B+t

2
, α = −B+t

2
.

To summarize, we have the following bidirectional correspondence be-
tween matrices with trace t, |t| 6= 2, and forms discriminant D where
D = t2 − 4:

(14)

g =

(
α β

γ δ

)
→ Qg(x, y) = γx2 + (δ − α)xy − βy2

Q(x, y) = Ax2 + Bxy + Cy2 → g(Q) =

(
−B+t

2
−C

A B+t
2

)
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With this correspondence, and by the Theorem 6, the number of conju-
gate classes for matrices in SL2(Z) with trace t is equal to H+(D), the
number of equivalence classes of forms with discriminant D = t2 − 4.

2.8.3. Characteristic Polynomial and Eigenvalues for an SL2(Z) Ma-

trix. The characteristic polynomial of g =

(
α β

γ δ

)
is:

|
(

x−α β

γ x−δ

)
| = x2 − tr(g)x + det(g) = x2 − tr(g)x + 1

The eigenvalues of g, which are the roots of the characteristic polyno-
mial, are:

λ =
tr(g)±

√
tr(g)2 − 4

2

2.9. Examples. Table 1 lists, for different trace values, the respective
discriminant D = trace2− 4, H+(D) (the number of strict equivalence
classes), and I(D) (the number of classes in which reduced forms are
equivalent to their inverse).
Table 2 shows, for different trace values, an example of a matrix which
is conjugate to its inverse, and an example of a matrix which is not,
when available. For each matrix g, the corresponding form is also listed.

Table 1. H+(D) and I(D) for trace values

|trace| D H+(D) I(D)
3 5 1 1
4 12 2 0
5 21 2 0
6 32 3 1
7 45 3 1
8 60 4 0
9 77 2 0
10 96 6 0
11 117 3 1
12 140 4 0
13 165 4 0
14 192 8 0
15 221 4 2
16 252 6 0
17 285 4 0
18 320 8 2



22 SL2(Z) MATRICES, QUADRATIC FORMS AND QUADRATIC FIELDS

Table 2. Matrices and forms for trace values

trace g ≈ g−1 g 6≈ g−1

3

(
1 −1

−1 2

)
≈

(
2 1

1 1

)
None

Qg = [−1, 1, 1]

4 None

(
1 −2

−1 3

)
6≈

(
3 2

1 1

)

Qg = [−1, 2, 2]

5 None

(
1 3

1 4

)
6≈

(
4 −3

−1 1

)

Qg = [1, 3,−3]

6

(
1 −2

−2 5

)
≈

(
5 2

2 1

) (
1 4

1 5

)
6≈

(
5 −4

−1 1

)

Qg = [−2, 4, 2] Qg = [1, 4,−4]

7

(
2 −3

−3 5

)
≈

(
5 3

3 2

) (
1 5

1 6

)
6≈

(
6 −5

−1 1

)

Qg = [−3, 3, 3] Qg = [1, 5,−5]

15

(
3 5

7 12

)
≈

(
12 −5

−7 3

) (
1 13

1 14

)
6≈

(
14 −13

−1 1

)

Qg = [7, 9,−5] Qg = [1, 13,−13]

-3

(
−2 −1

−1 −1

)
≈

(
−1 1

1 −2

)
None

Qg = [−1, 1, 1]

-4 None

(
−3 −2

−1 −1

)
6≈

(
−1 2

1 −3

)

Qg = [−1, 2, 2]
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3. Ideal Theory in Quadratic Fields

3.1. Survey.

3.1.1. Quadratic Fields. Let K be a quadratic extension of Q, K =
Q(
√

d0), d0 ∈ Z. Note that when d = n2 · d0, then Q(
√

d) = Q(
√

d0).
OK denotes the ring of all quadratic integers of K, which is a Dedekind
Ring.

3.1.2. Discriminant of Quadratic Fields. For α = a+ b
√

m ∈ K, a, b ∈
Q, denote α′ = a − b

√
m, the conjugate of α. For α, β ∈ K, let

∆K/Q(α, β) := αβ′ − βα′. DK/Q(α, β) := ∆K/Q(α, β)2, is called the
discriminant of α, β in K over Q. DK/Q(α, β) = 0 if and only if α, β
are linearly dependent over Q. It appears that DK/Q is invariant to
different bases [α, β] of OK as a module over Z. Let d = d(OK) = d(K)
denote the discriminant of the field, it is the discriminant of any basis
of OK (over Z). For d0 ∈ Z square free we have:

(15)
d0 ≡ 2 ,3 (mod 4) then OK = Z[

√
d0], d = d(K) = 4d0

d0 ≡ 1 (mod 4) then OK = Z[1+
√

d0

2
], d = d(K) = d0

For n ∈ N we define the following integral domain (contained in OK):

(16) On =





Z[n1+
√

d0

2
] = Z[n

2

√
d0] if d0 ≡ 1(mod 4), n even

Z[n1+
√

d0

2
] = Z[1+n

√
d0

2
] if d0 ≡ 1(mod 4), n odd

Z[n
√

d0] if d0 6≡ 1(mod 4)

Such integral domain is called an order of OK . Note that O1 = OK .
On for n 6= 1 is not a Dedeking ring, as it is not integrally closed in K.
The discriminant of On is d(On) = n2d(OK).

3.1.3. Elements of On. For α = a + b
√

d0 ∈ On, a, b ∈ Q, denote
N(α) = αα′ the norm of α. The norm of elements of On is multiplica-
tive, as (αβ)′ = α′β′. We say that α ∈ On divides an element π in On,
if there exists β ∈ On such that π = αβ. A unit in On is an element
which divides 1 in On, and N(π) = ±1 if and only if π is a unit in
On. We define a prime in On as a nonunit element π ∈ On with the
property that if π divides the product of two elements α and β in On,
then π divides α or β in On. It is not always true that every element
of On has a unique factorization into primes.

3.1.4. Fundamental Units of OK and On. There exists a special unit
η1 > 1 in OK such that all units ρ in OK are given by ρ = ±ηj

1,
j = 0,±1,±2 . . . .
This unit η1 is called the fundamental unit of OK . The answer to the



24 SL2(Z) MATRICES, QUADRATIC FORMS AND QUADRATIC FIELDS

question whether N(η1) = +1 or N(η1) = −1 in an arbitrary OK is
not known completely.
Note that when N(η1) = +1 then for any unit ρ, N(ρ) = +1.
Similarly, ηn > 1 denotes the fundamental unit for the order On.
Clearly ηn = ηu

1 for some u, where η1 is the fundamental unit of OK ,
since ηn is also a unit of OK .

3.1.5. Ideals of On. An ideal of a ring is a module over the ring which is
contained in the ring and is closed under multiplication with elements
of the ring. An ideal J of On is a module over Z, meaning there
is a basis [w1, w2] for J over Z. If another such basis [v1, v2] exists
then there is a transformation matrix A between the bases, such that
det A ∈ Z∗ = {±1}, meaning A ∈ GL2(Z).
An ideal J is called a prime ideal if whenever αβ ∈ J (α, β ∈ On) then
either α ∈ J or β ∈ J . For ideals I 6= 0, J of On, we say that I divides
J and write I|J if there exists an ideal H of On such that J = IH =
{ih | i ∈ I, h ∈ H}. We denote (1) = On, which divides (and contains)
any other ideal of On. Ideals I,J of On are said to be relatively prime
when I + J = {∑ ai + bj | a, b ∈ On, i ∈ I, j ∈ J} = On.
A norm of an ideal I of OK , denoted N(I), is its index in OK , [OK : I],
the ideal norm is multiplicative. Let J be an ideal of OK , with a basis
[α, β] as a module over Z. Then:

(17) |∆K/Q(α, β)| = |αβ′−βα′| = [OK : J ]·
√

d(OK) = N(J)·
√

d(K)

For an ideal I of On we similarly denote N(I) = [On : I]. Let I be an
ideal of On, with a basis [α, β] as a module over Z. Then we have the
following generalization of (17):

(18) |∆K/Q(α, β)| = |αβ′−βα′| = [On : J ]·
√

d(On) = N(J)·n
√

d(K)

For ideals I, J ∈ On, if I|J , meaning there exists ideal L ∈ On such
that J = IL, then I ⊇ J . Conversely, for ideals I 6= 0, J of On, with
α ∈ I such that (N(α), n) = 1, I ⊇ J then I|J .
Some attributes are unique to ideals of OK : For ideals I 6= 0, J of OK ,
I|J if and only if I ⊇ J (”to divide is to contain”). Any non-zero ideal
J of OK can be expressed uniquely as a finite product of prime ideals:
J =

∏k
i=1 P ei

i where Pi prime ideals of OK , ei ∈ N. OK has unique
factorization if and only if all ideals of OK are principal.

3.1.6. The Class Group for OK. We say that two ideals, I,J of OK fall
into the same class, written I ∼ J , if I(β) = J(α), for α, β ∈ OK not
both zero. The classes of ideals of OK form a finite (multiplicative,
commutative) group, called the Class Group. The number of elements
in the class group is denoted h(d(K)). The unit of this group, is the
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class of the principal ideals (α), α ∈ OK . If there are h elements in the
class group, then for any ideal I is is true that Ih is a principal ideal,
and Ih−1 is the inverse of I. For any ideal I of OK , we can find ideal
I∗ and a non-zero element α ∈ OK such that II∗ = (α).
Elements of OK have unique factorization if and only if the class group
is 1, meaning all ideals of OK are principal.

3.1.7. Class Number for On. A unique factorization theorem for On

could be developed, by considering only ideals I for which exists α ∈ I
such that N(α) is prime to n.
Another possible approach for unique factorization in On is to restrict
the ideal theory to O1 = OK and find the ideals of On by a ”projection”
procedure afterwards.
Ideals of On do not necessarily have an inverse ideal. For example,
consider K = Q(

√−35), O2 = Z[
√−35], the ideal [2, 1 +

√−35] is
equivalent to its square, implying it has no inverse [Tau2].

Corollary 4. If n > 1 then the classes of ideals of On do not neces-
sarily form a group.

For an ideal I of On for which there exists α ∈ I such that N(α) is
prime to n, we can find ideal I∗ and a non-zero element β ∈ On such
that II∗ = (β). Such ideals are called invertible ideals of On, where all
ideals of OK are invertible.

3.1.8. Factorization of Rational Primes in Q(
√

d0). Each prime ideal
℘ of OK can arise only from a rational prime p, determined uniquely by
℘|(p). Also, the prime ideals completely determine the class structure

in that every equivalence class, say that of J =
∏k

i=1 ℘ei
i is determined

by the equivalence classes of the ℘i. We need to know how to construct
the ℘i from the rational primes.
The Legendre Symbol is defined for d ≡ 0 or 1 (mod 4), d is not a
perfect square, and p prime where (p, d) = 1 as follows:

(d
p
) =

{
1 if d is a quadratic residue (mod p),

−1 if d is not a quadratic residue (mod p),

The Kronecker symbol is defined for d ≡ 0 or 1(mod 4), d is not a
perfect square, d0 > 0 as follows:

(d
p
) = 0 if p|d

(d
2
) =

{
1 if d ≡ 1 (mod 8)

−1 if d ≡ 5 (mod 8)

(d
p
) = Legendre Symbol if p > 2

( d
m

) =
∏k

i=1(
d
pi

) m =
∏k

i=1 pi
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A rational prime p ∈ Z factors in the quadratic field K = Q(
√

d0)
(with d0 ∈ Z square free) according to the following rules, based on

the discriminant of the field, d(K) and (d(K)
p

), the Kronecker symbol:



(p) = (p), or p does not factor if and only if (d(K)
p

) = −1

(p) = ℘℘′, or p splits into two different factors if and only if (d(K)
p

) = +1

(p) = ℘2 (and ℘ = ℘′),or p ramifies if and only if (d(K)
p

) = 0

Corollary 5. For every non-zero ideal J in OK, it is true that JJ ′ is
a principal ideal. This means that ideal classes C(J) of J and C(J ′)
of J ′ are inverses of each other: C(J)−1 = C(J ′).

3.2. Strict Equivalence of Ordered Ideals. This section follows
closely [Cohn], Chapter XII.

We have defined weak equivalence between ideals of On: I ∼ J when
αI = βJ for α, β ∈ On. We would like to set up a strict equivalence
relation between bases of ideals of On.
First we define an ordered ideal basis: for an ideal basis [α, β] of On

to be considered ordered, the ratio
∆K/Q(α,β)√

(d(On))
must be positive:

(19)
∆K/Q(α, β)√

(d(On))
=

αβ′ − βα′

n
√

(d(K))
= N([α, β]) > 0

(By (17) and (18) above). If this ratio is negative, then the ideal basis
should be reordered to [β, α] to be an ordered ideal basis.
Consider a change of basis, for ordered bases of ideals, [α, β] = [γ, δ]
holds if and only if:

(20)

{
α = Pγ + Qδ, PS −QR = +1

β = Rγ + Sδ,

In other words - two ordered bases of an ideal are equivalent under a
strictly unimodular transformation, and conversely.
The conjugate relationship for an ordered ideal can be formed as:

(21) for J = [α, β], its conjugate is J ′ = [β′, α′]

3.2.1. Strictly Equivalent ideals. Once introducing the notion of an or-
dered ideal basis, we must revise our notion of equivalence of ideals.
For ideals I, J of On:
(22)

I ≈ J if αI = βJ for α, β ∈ On not both zero and N(αβ) > 0
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When I ≈ J we say the two ideals are strictly equivalent. Also,

(23)

{
ρJ = ρ[α, β] = [ρα, ρβ] if N(ρ) > 0

[ρβ, ρα] if N(ρ) < 0

Theorem 7. Two ideals in an integral ring On of K = Q(
√

d0) are
strictly equivalent if they are equivalent in the ordinary sense, when:

(1) d0 < 0 or
(2) d0 > 0 while the fundamental unit of On has negative norm.

In the remaining case, in which d0 > 0 while the fundamental unit of
On has positive norm:

• If I ∼ J , then either I ≈ J or I ≈ n
√

d0J .
• When J is an invertible ideal of On, then only one of these

equivalence relations holds, but not both.

Proof. Let I, J be ideals of On such that I ∼ J .

(1) d0 < 0. This case is obvious, since norms in a field with d0 < 0

are always positive: N(α + βn
√

d0) = α2 − β2n2d0 > 0.
(2) d0 > 0, let ηn be the fundamental unit of On, N(ηn) = −1. It

is easy to guarantee I ≈ J from αI = βJ when N(αβ) < 0, by
using ηnαI = βJ instead, with N(ηnαβ) > 0.

For the remaining case, let d0 > 0, ηn is the fundamental unit of On,
N(ηn) = +1.

• When I ∼ J whereas I 6≈ J , it must follow that

αI = βJ, N(αβ) < 0

We set n
√

d0J = J∗, and it follows that n
√

d0 ·αI = βJ∗, where

N(αβ · n
√

d0) = N(αβ)N(n
√

d0) = N(αβ)(−n2d0) > 0

Thus, if I ∼ J and I 6≈ J then I ≈ n
√

d0J .
This proves that at least one of I ≈ J or I ≈ n

√
d0J holds.

• Show that (1) 6≈ (n
√

d0). For, if (1) ≈ (n
√

d0), then α(1) =

β(n
√

d0), whereas N(αβ) > 0, meaning N(α) and N(β) have

the same sign. For some unit η∗, αη∗ = βn
√

d0, but N(α)N(η∗) =

N(αη∗) = N(βn
√

d0) = N(β)(−n2d0). Hence, N(η∗) < 0 if

(1) ≈ (n
√

d0).

Now show that (1) 6≈ (n
√

d0) means for an invertible J that

J 6≈ n
√

d0J , meaning that the equivalences cannot both hold.
Assume J is invertible and J ≈ n

√
d0J . When J is an invertible
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ideal of On, then there exists J∗ of On and 0 6= α ∈ On such
that JJ∗ = (α) (by Section 3.1.7). Then

α(1) = (α) = JJ∗ ≈ n
√

d0JJ∗ = n
√

d0(α) = α(n
√

d0)

As N(αα) = N(α)2 > 0 we have (1) ≈ (n
√

d0), which is a
contradiction. Hence, under such conditions, only one of the
above equivalences holds.

¤
Note: It is always true that (n

√
d0) ≈ (n

√
d), as either d = d0, and

then (n
√

d0) = (n
√

d), or d = 4d0, and then

(n
√

d0) ≈ 2(n
√

d0) = (n
√

4d0) = (n
√

d)

Therefore the last part of the previous theorem can be rephrased:
When d0 > 0 while the fundamental unit of On has positive norm, if
I ∼ J , either I ≈ J or I ≈ n

√
dJ , and when J is an invertible ideal

then only one of these holds.

For example, consider I = [3, 9−3
√

13
2

], J = I ′ = [9+3
√

13
2

, 3]. I and J

are ideals of O3 in K = Q(
√

13). I is non-invertible in O3, as a general

element of I has the form 3a + 9−3
√

13
2

b = (6a+9b)−3b
√

13
2

= 3 (2a+3b)−b
√

13
2

,
hence its norm is not relatively prime to 3. Similarly, J is non-invertible
in O3. We have

I

(
3 1

−1 0

)
= J

Where the matrix has determinant +1. This shows that I = J , hence
I ∼ J and I ≈ J . On the other hand:

I

(
0 −1

1 0

)
· (−3

13 + 3
√

13

2
) = J · 3

√
13

The transformation matrix

(
0 −1

1 0

)
has determinant +1, and N(−313+3

√
13

2
) =

117 > 0, hence I ≈ J · 3√13.
Therefore we have I ∼ J , and J ≈ I ≈ J · 3√13.

Recall that all OK ideals are invertible, hence the following Corollary:

Corollary 6. Let h+(d(K)) denote the number of strict equivalence
classes of ideals in OK, with discriminant d(K). Then we have:

(24)

{
h+(d(K)) = h(d), if d0 < 0, or if d0 > 0 and N(η1) < 0,

h+(d(K)) = 2h(d), if d0 > 0 and N(η1) > 0
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3.3. A Correspondence Between Matrices and Ideals. We now
set up a precise correspondence between matrices in SL2(Z) and ideals
of orders of OK .

Let g =

(
α β

γ δ

)
∈ SL2(Z), with | tr(g)| > 2. Denote

D = tr(g)2 − 4 = n2d

where d is a field discriminant, meaning that either d ≡ 0 (mod 4) and
then d = 4d0, d0 square free, or d 6≡0 (mod 4), and then d = d0 square
free. As D ≡ 0 or 1 (mod 4), and d is a field discriminant, then such
factorization exists, and is unique.
The characteristic polynomial of g is

x2 − tr(g)x + det(g) = x2 − tr(g) + 1

Its roots, the eigenvalues of g, are λ =
tr(g)±

√
tr(g)2−4

2
, which generate a

field extension

K = Q(λ) = Q(
√

tr(g)2 − 4) = Q(
√

d0)

This is a real quadratic field as tr(g)2 > 4. The eigenvalues λ, λ−1(= λ′)
of g are units in OK . Adjoining λ to Z gives an order O = Z[λ] ⊆ OK

in K. Note that O = Z[λ] = On, and O = OK exactly when D is a
field discriminant (meaning n = 1 and D = d).

Theorem 8. Let g =

(
α β

γ δ

)
∈ SL2(Z), | tr(g)| > 2. The correspond-

ing ideal is:

(25) Ig = [v1, v2] =

{
[γ, (δ−α)−n

√
d

2
] when γ > 0

[γn
√

d, (δ−α)−n
√

d
2

n
√

d] when γ < 0

This is an On ideal with an ordered basis. For a conjugate matrix
hgh−1, h ∈ SL2(Z), the corresponding ideal is received by [v1, v2]h

−1,
which is also an On ordered ideal, and is strictly equivalent to [v1, v2].
Conversely, given an eigenvalue λ of an SL2(Z) matrix, an ordered
ideal I = [v1, v2] has a corresponding matrix g(I) ∈ SL2(Z) such that
λ is an eigenvalue of g and for J = [w1, w2] ≈ I, where [w1, w2] =
[v1, v2] ◦ h, h ∈ SL2(Z), the corresponding matrix is h−1gh.
This establishes a 1-1 correspondence between SL2(Z) matrix classes
with the same characteristic polynomial (meaning - with the same trace,
see Section 2.8.3) to ideal classes in the order Z[λ].

Proof. Let λ be an eigenvalue of g, then the (unique) characteristic
vector of a matrix g corresponding to λ can be chosen to lie in Z[λ]:

(v1, v2)g = λ(v1, v2), v1, v2 ∈ Z[λ] = On
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This implies that a Z-combination of vi is equal to λvi for i = 1, 2.
Similarly, p(λ)vi, i = 1, 2, is a Z-combination of vi for any integral
polynomial p(x) via p(g):

(v1, v2)p(g) = p(λ)(v1, v2)

This shows that v1, v2 form a Z-basis for an ideal in Z[λ] = On. Let
Ig = [v1, v2], an ideal of On.

Explicitly, g =

(
α β

γ δ

)
∈ SL2(Z), with characteristic polynomial x2 −

(α + δ)x + 1, and eigenvalues λ, λ−1. Let λ be the eigenvalue with the

− sign, λ =
(α+δ)−

√
(α+δ)2−4

2
= (α+δ)−n

√
d

2
. Now solve

(26) (v1, v2)

(
α β

γ δ

)
= λ(v1, v2)

(27) v2 =
(δ − α)− n

√
d

2γ
v1

We have the following ordered ideal Ig of On:

(28)

{
[γ, (δ−α)−n

√
d

2
] when γ > 0, (v1 = γ)

[γn
√

d, (δ−α)−n
√

d
2

n
√

d] when γ < 0, (v1 = γn
√

d)

Recall (16), and notice that the basis elements of Ig are indeed in On:

• If d0 ≡ 1 (mod 4) and n is even, then d = d0, δ − α is even,
n
√

d0

2
∈ On and so (δ−α)−n

√
d0

2
= δ−α

2
− n

2

√
d0 ∈ On.

• If d0 ≡ 1 (mod 4) and n is odd, then d = d0, δ − α is odd,
1+n

√
d0

2
∈ On, and so (δ−α)−n

√
d0

2
∈ On,

• If d0 6≡ 1 (mod 4), then d = 4d0, D = n2d = n24d0 ≡ 0

(mod 4), then δ − α must be even, (δ−α)−n
√

d
2

= (δ−α)−n
√

4d0

2
=

δ−α
2
− n

√
d0 ∈ On.

For γ < 0 the ideal is the same as for γ > 0, multiplied by n
√

d ∈ On.
Next, show this is an ordered ideal:

∆K/Q(v1, v2) =

{
γ · (δ−α)+n

√
d

2
− (δ−α)−n

√
d

2
· γ′ = γn

√
d

(γn
√

d) · n−nd−(δ−α)
√

d
2

− n−nd+(δ−α)
√

d
2

· (−γn
√

d) = γn
√

d(−n2d)

(remember that γ = γ′ ∈ Z), and so by (19) we calculate:

N(Ig) =
∆K/Q(v1,v2)√

D
=

∆K/Q(v1,v2)

n
√

d
=

{
γ > 0 γ > 0

−γn2d > 0 γ < 0



SL2(Z) MATRICES, QUADRATIC FORMS AND QUADRATIC FIELDS 31

Hence the basis is ordered.
The ideal is unique apart from possible common factor of v1, v2. Hence,
only the ideal class of this ideal corresponds to g. If instead of g a
conjugate matrix is considered, hgh−1 where h ∈ SL2(Z), this matrix
has the same characteristic polynomial, as hgh−1 has the same trace
and determinant as g, then (v1, v2)h

−1 would turn up as characteristic
vector corresponding to λ:

((v1, v2)h
−1)(hgh−1) = λ((v1, v2)h

−1)

Since h ∈ SL2(Z), this gives the same ideal referred to a different basis
(see (20)).
Conversely, let [v1, v2] be an ordered basis over Z for an ideal of On in

Q(
√

d0), d0 square free. Then there exist α, β, γ, δ ∈ Z such that{
λv1 = αv1 + γv2

λv2 = βv1 + δv2

Then g =

(
α β

γ δ

)
has the property that (v1, v2) is a characteristic

vector with respect to the characteristic root λ. g ∈ SL2(Z) and has the
required trace, by the selection of λ to be its eigenvalue, as λ dictates
the characteristic polynomial, which fixes the trace and determinant of
g. If instead of [v1, v2] another basis [v1, v2]h with h ∈ SL2(Z), had been
considered, then g would be replaced by h−1gh: ((v1, v2)h)(h−1gh) =
((v1, v2)h). ¤

Recall that in On not all ideals are invertible (Section 3.1.7). Hence,
it may occur that the ideal corresponding to a matrix is not invertible.
A non-invertible ideal may correspond to a matrix which is or is not
conjugate to its inverse. For example, consider the following matrices,
both with trace 6:

• g =

(
1 1

4 5

)
, det(g) = 1, tr(g)2 − 4 = 32 = 22 · 8, n = 2, d = 8,

d0 = 2. This matrix is not conjugate to its inverse. The corre-

sponding ideal is: Ig = [γ, (δ−α)−n
√

d
2

] = [4, 2− 2
√

2], which is a
non-invertible ideal of O2.

• g =

(
1 2

2 5

)
, det(g) = 1, tr(g)2 − 4 = 32 = 22 · 8, n = 2, d = 8,

d0 = 2. It is easy to see that this matrix conjugate to its inverse,

as it is symmetric. Taking h =

(
0 −1

1 0

)
, we have hgh−1 =

g−1. The corresponding ideal is: Ig = [γ, (δ−α)−n
√

d
2

] = [2, 2
√

2],
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which is not invertible in O2. Here we can also calculate directly
I2
g = 2Ig ≈ Ig, implying Ig has no inverse.

3.4. A Correspondence Between Quadratic Forms and Ideals.
Another approach is to set up a correspondence between quadratic
forms and ideals of integral rings of quadratic fields. However, this
approach is limited to ideals of OK , rather then ideals of any order,
hence we must have D = d field discriminant, n = 1. This also implies
that only primitive quadratic forms are used, rather then all quadratic
forms with a given discriminant.
Recall that a quadratic form Q is called primitive when its coefficients
are not all divisible by any rational integer except ±1. The form dis-
criminant D always satisfies D ≡ 0 or 1 (mod 4). When D = d is also
a discriminant of a quadratic field, then either D is square free, or D

4

is square free and then D
4
≡ 2 or 3 (mod 4) (by (15)).

• When D ≡ 1 (mod 4) square free, the form is primitive.
• When D ≡ 0 (mod 4), then D

4
is square free, we must have

D
4
≡ 2 or 3 (mod 4).
– If gcd(a, b, c) = 1, b even, so the form is primitive.
– If gcd(a, b, c) = 2, then [a

2
, b

2
, c

2
] is a primitive form, with

discriminant D
4
≡ 0 or 1 (mod 4), which contradicts D = d

is a field discriminant.

We conclude that if a form Q has discriminant D = d which is a field
discriminant, then Q must be a primitive form.
As is shown below, the same ideal corresponds to a matrix (using cor-
respondence between matrices and ideals) and to the form that corre-
sponds to that matrix, meaning the two methods coincide.
The correspondence between quadratic forms and ideals of OK is de-
scribed in detail in [Cohn].

Theorem 9. K = Q(
√

d0), d0 square free, is a quadratic field with
discriminant d (either d ≡ 0 (mod 4) and then d = 4d0, or d 6≡0 (mod
4), and then d = d0).
The following defines a correspondence between primitive quadratic forms
with discriminant d and ordered ideals of OK:

(1) If J = [α, β] is an (ordered) ideal of OK, then the corresponding
form is:

Q(J) = Q(x, y) = N(αx + βy)/N(J) = ax2 + bxy + cy2

This form has integral coefficients and is a primitive form of
discriminant d.
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If J1 ≈ J2 are ideals of OK, then the corresponding forms Q(J1)
and Q(J2) satisfy Q(J1) ≈ Q(J2).

(2) Given a quadratic form, not necessarily primitive, which we
write as:

Q(x, y) = Ax2 + Bxy + Cy2 = t(ax2 + bxy + cy2)

where ±t is the greatest common divisor of A, B and C. We
let t > 0 if B2− 4AC > 0, but if B2− 4AC < 0, we choose t so
that a > 0. Denote d = b2 − 4ac. Then the corresponding ideal
is:

J(Q) = [α, β] =

{
[a, b−

√
d

2
], a > 0, any d,

[ b−
√

d
2

, a]
√

d = [a
√

d, −d+b
√

d
2

] a < 0, d > 0

This is an ordered ideal of OK; J(Q) is primitive when a > 0,

whereas J(Q)/
√

d is primitive when a < 0.
If two forms Q1 and Q2 with discriminant d satisfy Q1 ≈ Q2,
then J(Q1) ≈ J(Q2) in OK.

3.4.1. The Approaches Coincide. For a matrix g =

(
α β

γ δ

)
∈ SL2(Z)

we have defined a corresponding quadratic form:

Qg(x, y) = γx2 + (δ − α)xy − βy2

The discriminant D for Qg is tr2(g) − 4. We assume that D > 0,
meaning that | tr(g)| > 2. Here we also assume the D = d is a field
discriminant, such that d = d0 when d ≡ 1 (mod 4), or d0 = d/4 when
d ≡ 0 (mod 4), and d0 is square free. This implies that Qg is a primitive
form. To this form we have defined the following corresponding ideal
of OK , K = Q(

√
d0) (d > 0):

J(Qg) =

{
[γ, (δ−α)−

√
d

2
], γ > 0

[ (δ−α)−
√

d
2

, γ]
√

d, γ < 0

On the other hand, in Theorem 8 we have defined a correspondence
between matrices and ideals of On ⊆ OK where K = Q(

√
d0) (D =

n2d, d is a field discriminant, and d0 as above). In this case n = 1,
hence D = d and On = OK . For the matrix g as above corresponds
the OK ideal:

J(g) =

{
[γ, (δ−α)−

√
d

2
], γ > 0

[ (δ−α)−
√

d
2

, γ]
√

d, γ < 0

It can be easily verified that J(Qg) = J(g) for any value of γ.
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3.5. Norm of The Fundamental Unit of Z[λ]. There is no complete
answer for the sign of the norm of the fundamental unit in the general
case. However, when the discussion is limited to orders O = Z[λ] where
λ is an eigenvalue of an SL2(Z) matrix, the answer is definite.
For a matrix with trace = ±3, then D = 5, K = Q(

√
5), and Z[λ] =

Z[
√

5] = OK . The fundamental unit is 1+
√

5
2

, and its norm is -1. We
now show that this is the only case for which the corresponding order
has a unit with a negative norm.

Theorem 10. Let g ∈ SL2(Z) with trace t such that |t| > 3, and

eigenvalue λ = t+
√

t2−4
2

. Then the sign of the norm of the fundamental
unit of Z[λ] is positive. In other words, any unit in Z[λ] has a positive
norm.

Proof. We can take t > 0, as λ = t+
√

t2−4
2

, Z[λ] is not effected by the
sign of t. There are 2 cases, t is either odd or even.

(1) t is odd. In this case t2 − 4 ≡ 1 (mod 4), this means that none
of the factors of D = t2 − 4 is even. D = t2 − 4 = n2d where
d is a field discriminant, in this case it must be that d ≡ 1

(mod 4), hence d = d0, n is odd, and we have Z[λ] = Z[1+
√

D
2

].

A general unit of Z[λ] is then x+y
√

D
2

such that N(x+y
√

D
2

) =
x+y

√
D

2
· x−y

√
D

2
= x2−y2D

4
= ±1, implying x2 − y2D = ±4. We

can always take x = t, y = 1 to receive a unit ρ = t+
√

D
2

with

norm of +1: N(ρ) = N( t+
√

t2−4
2

) = t2−(t2−4)
4

= 1. It may still
happen that the fundamental unit of the relevant order has a
negative norm, so that ρ is a power of that fundamental unit.
By Section 3.1.4, the fundamental unit η satisfies 1 < η < ρ.

Let η = a+b
√

D
2

, such that a2 − b2D = −4, a, b > 0. We have

η < ρ = t+
√

D
2

, and as b ≥ 1, we have a ≤ t. Take a = t − k,
b = 1 + l, k, l ∈ N. t > 3 and odd, meaning t ≥ 5 and
D = t2 − 4 ≥ 21. We have

−4 = a2 − b2D = (t− k)2 − (1 + l)2D =
= t2 −D − k(2t− k)−D(2l + l2) =
= 4− k(2t− k)−D(2l + l2)

8 = k(2t− k) + D(2l + l2) ≥ k(10− k) + 21(l + l2)

with no integral solutions, except k = l = 0, but then ρ = η,
with norm +1. Therefore, for any odd t, the fundamental unit
of Z[λ] must have a positive norm.

(2) t is even. Then λ = t+
√

t2−4
2

= t
2

+
√

D
2

, and O = Z[
√

D
2

]. This

can be solved as above, noting that ρ = t
2
+

√
D
2

is always a unit
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with a positive norm. If a fundamental unit η = a + b
√

D
2

with
a negative norm exists, then 1 < η < ρ, and 0 < a ≤ t

2
, b ≥ 1.

Let a = t
2
− k, b = 1 + l, k, l ∈ Z. We have, with t > 3:

−1 = ( t
2
− k)2 − (1 + l)2 D

4

2 = k(t− k) + lD
4
(2 + l) > k · t

2
+ lD

4
2

Which has no integral solutions, except k = l = 0, but then
ρ = η, with norm +1.

Another approach uses a Pell equation: a general element in

Z[λ] is a + b
√

D
2

= 2a+b
√

D
2

. There are always elements with
norm of +1, we look for an element with norm -1:

(2a)2 − b2D = −4

t is even, hence s = t
2
∈ Z, D

4
= t2−4

4
= ( t

2
)2 − 1 = s2 − 1 ∈ Z.

We can divide the equation by 4 and we have

a2 − b2(s2 − 1) = −1

We need to determine if this Pell equation is solvable. To do so,
we find the representation of

√
s2 − 1 by continued fractions:√

s2 − 1 = [s− 1, 1, 2(s− 1)]

The cycle length is even, indicating that the Pell equation is
unsolvable. This means that for any odd t there is no unit with
a negative norm.

¤

4. Summary and Examples

For a matrix g =

(
α β

γ δ

)
∈ SL2(Z) we have defined a corresponding

quadratic form Qg(x, y) = γx2 +(δ−α)xy−βy2. For g−1 =

(
δ −β

−γ α

)
,

the corresponding form is Qg−1(x, y) = −γx2 + (α − δ)xy + βy2 =
−Qg(x, y). The discriminant D for Qg is tr2(g) − 4. We assume that
D > 0, meaning that | tr(g)| > 2.
Also, we have defined a correspondence between matrices and ideals of
On ⊆ OK where K = Q(

√
d0) (D = n2d, d0 = d when d ≡ 1 (mod 4),

d0 = d/4 when d ≡ 0 (mod 4)). To the matrix g above corresponds the
ideal:

J(g) =

{
[γ, (δ−α)−n

√
d

2
], γ > 0

[ (δ−α)−n
√

d
2

, γ]n
√

d, γ < 0
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And for the inverse matrix g−1, corresponds the ideal:

J(g−1) =

{
[ (α−δ)−n

√
d

2
,−γ]n

√
d = [ (δ−α)+n

√
d

2
, γ](−n

√
d), −γ < 0

[−γ, (α−δ)−n
√

d
2

] = [γ, (δ−α)+n
√

d
2

](−1), −γ > 0
in the same integral ring On of K.
Let us take a look at the equivalence relations between J(g−1) and
J(g)′, the conjugate of J(g), which, for the case OK = On, or n = 1,
is also the inverse of J(g), by Corollary 5. It is enough to look at the
case γ > 0, as if γ < 0 we can replace g with g−1. For γ > 0, by the
correspondence formulas we have:{

J(g) = [γ, (δ−α)−n
√

d
2

]

J(g−1) = [ (δ−α)+n
√

d
2

, γ](−n
√

d)

By (21) above:

J(g)′ = [
(δ − α) + n

√
d

2
, γ]

and so we have J(g)′(−n
√

d) = J(g−1), which means J(g)′ ∼ J(g−1).
For strict equivalence, we use Theorem 7:

(1) For d0 < 0, J(g)′ ∼ J(g−1) implies J(g)′ ≈ J(g−1). However,
we have D = n2d > 0, as d0 > 0, so this case is irrelevant.

(2) When d0 > 0 and the fundamental unit of On has a negative
norm, then J(g)′ ∼ J(g−1) implies J(g)′ ≈ J(g−1).

(3) When d0 > 0 and the fundamental unit of On has positive norm,
then for two (weakly) equivalent ideals I ∼ J , one of I ≈ J and

I ≈ (n
√

d)J must hold. For J invertible we also know that only
one of these holds, but not both.
We use this to show that for an invertible J(g)′, J(g)′ 6≈ J(g−1).
Obviously, when I = J = J(g)′ the case is J(g)′ ≈ J(g)′

and J(g)′ 6≈ (n
√

d)J(g)′. We can always multiply by (−1), as
N(−1) = (−1)(−1) = 1 > 0, without losing strict equivalence

(by (22)), so (n
√

d)J(g)′ ≈ (−n
√

d)J(g)′ and so we conclude

J(g)′ 6≈ (−n
√

d)J(g)′ = J(g−1).

When J(g)′ is non-invertible, it may happen that J(g)′ ≈ (−n
√

d)J(g)′ =
J(g−1). Note that J(g) and J(g)′ are either both invertible or
both non-invertible, as the elements in them have the same
norms.

An example for J(g)′ ≈ (−n
√

d)J(g)′ = J(g−1) where J(g)′ is non-
invertible:

Let g =

(
1 3

3 10

)
, then I(g) = [3, 9−3

√
13

2
], I(g−1) = [9+3

√
13

2
, 3](−3

√
13).

Denote I(g)′ = J , then I(g−1) = J(−3
√

13).
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By the example that follows Theorem 7, I(g) and I(g)′ are non invert-
ible ideals of O3 in K = Q(

√
13), I(g) = I(g)′, and I(g)′ = J ≈ I(g) ≈

J · 3√13 = J · (−3
√

13) = I(g−1).

Corollary 7. For any SL2(Z) matrix g with trace t such that |t| > 2,
implying that d0 > 0, J(g)′ ∼ J(g−1) and{

J(g)′ ≈ J(g−1) if N(η) < 0

J(g)′ 6≈ J(g−1) if N(η) > 0, J(g) is invertible

In the remaining case where N(η) > 0 and J(g) is a non-invertible
ideal, then the strict equivalence relation between J(g)′ and J(g−1) is
not determined.

By what we had shown till now, it is easy to verify the next theorem.

Theorem 11. Let g ∈ SL2(Z) with trace t such that |t| > 2, and
an eigenvalue λ. Denote D = t2 − 4 = n2d > 0, where d is a field
discriminant, and let K denote the quadratic field with discriminant d.
The following are equivalent:

(1) g is conjugate to its inverse g−1 (there exists a matrix h ∈
SL2(Z) such that g−1 = hgh−1).

(2) The corresponding forms Qg and Qg−1 = −Qg (with discrimi-
nant D) are strictly equivalent: Qg ≈ −Qg.

(3) The ideal J(g) in the order Z[λ] = On of OK, is strictly equiv-
alent to J(g−1): J(g) ≈ J(g−1).

(4) The ideal J(g) in the order Z[λ] = On of OK, is weakly equiv-
alent to J(g)′: J(g) ∼ J(g)′.
Let η be the fundamental unit of the order Z[λ]. Then we have{

J(g) ≈ J(g)′ if N(η) < 0

J(g) 6≈ J(g)′ if N(η) > 0, J(g) is invertible

Proof. The equivalence of (1), (2) and (3) was shown above.

• (3) ⇒ (4): By Corollary 7 we always have J(g−1) ∼ J(g)′.
By (3) in this theorem we have J(g) ∼ J(g−1), therefore all
three ideals J(g), J(g−1) and J(g)′ are weakly equivalent to
each other, and in particular we have J(g) ∼ J(g)′.
When N(η) < 0 then weak equivalence implies strong equiva-
lence, hence J(g) ≈ J(g)′. When N(η) > 0, each weak equiva-
lence class is composed of exactly two strict equivalence classes.
In this case, J(g) ≈ J(g−1), and and for J(g) invertible, from
Corollary 7, J(g−1) 6≈ J(g)′, hence it must be that J(g) 6≈ J(g)′.
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• (4) ⇒ (3): When N(η) < 0 then J(g) ≈ J(g)′, and from Corol-
lary 7: J(g)′ ≈ J(g−1), hence J(g) ≈ J(g−1).
When N(η) > 0, each weak equivalence class is composed of
exactly two strict equivalence classes. When J(g) is invertible
then J(g) 6≈ J(g)′, and by Corollary 7 J(g−1) 6≈ J(g)′, hence it
must be that J(g) ≈ J(g−1).

¤
Corollary 8. Under the above conditions, when Z[λ] = OK, then
J(g)2 ∼ (1) and {

J(g)2 ≈ (1) if N(η) < 0

J(g)2 6≈ (1) if N(η) > 0

Proof. This results from (4) of Theorem 11 above:

J(g) ∼ J(g)′ ⇔ J(g)J(g) ∼ J(g)′J(g) ⇔ J(g)2 ∼ (1)

The last step is due to Corollary 5, by which we have JJ ′ ∼ (1) in
OK . For strict equivalence we use the same steps, remembering that
all ideals in OK are invertible. ¤
Corollary 9. Let g ∈ SL2(Z) a matrix with trace t satisfying |t| > 3,
such that g is conjugate to g−1 in SL2(Z). Then when J(g) is an
invertible ideal, then J(g) ∼ J(g)′ but J(g) 6≈ J(g)′.

Proof. Follows immediately from theorems 10 and 11. ¤
Note: Considering ideals of OK , and by Corollary 8, we can use the

following theorem of Gauss to determine the number of ideal classes of
OK with order of 2 (for a proof see, for example, [Moll]).

Theorem 12. (Gauss) Let K be a quadratic number field, with dis-
criminant d. Suppose that d has N distinct prime factors. Let CK,2

denote the maximum elementary abelian 2-subgroup of the ideal class
group of OK , meaning the maximal subgroup in which any element is
of order 2. Then CK,2 has order 2tK , where:

tK =

{
N − 2 if d > 0 and p | d for some prime p ≡ 3(mod 4)

N − 1 otherwise

We can conclude that in most cases there is at least one ideal class
with order of 2, and by the proof of [Moll], each such class has at least
one ideal with order of 2.
If an ideal J of OK of order 2 corresponds to a matrix g(J) with trace
t = ±3 then the matrix is conjugate to its inverse, if the trace of the
g(J) satisfies |t| > 3 then such matrix is not conjugate to its inverse.



SL2(Z) MATRICES, QUADRATIC FORMS AND QUADRATIC FIELDS 39

4.1. Examples.

(1) Find representatives for quadratic forms and for matrices with
a positive trace, which correspond to the trivial ideal (1) of On.

(1) = On =





[1,−n
2

√
d0] if d0 ≡ 1(mod 4), n even, d0 = d

[1,−1+n
√

d0

2
] if d0 ≡ 1(mod 4), n odd, d0 = d

[1,−n
√

d0] if d 6≡ 1(mod 4), d0 = d
4

By the correspondence between matrices and ideals (Theorem
8 in Section 3.3), we look for matrices with trace t =

√
D + 4,

D = n2d, where d is the field discriminant. We calculate:
{

λv1 = αv1 + γv2

λv2 = βv1 + δv2

where λ = t−n
√

d
2

, v1 = 1 and v2 as in the relevant ideal as
detailed above. We find:

g(On) =








t
2 n2d0

4

1 t
2


 if d ≡ 1(mod 4), n even




t+1
2 n2d0−1

4

1 t−1
2


 if d ≡ 1(mod 4), n odd




t
2 n2d0

1 t
2


 if d 6≡ 1(mod 4)

We can easily verify that these matrices are indeed integral:
• d ≡ 1(mod 4), n even, then d = d0, 4|n2d0 = tr(g)2 − 4,

hence we also have t
2
∈ Z.

• d ≡ 1(mod 4), n odd, then d = d0. n2d0 = tr(g)2 − 4 ≡
1(mod 4) hence n2d0−1

4
∈ Z. This also implies that t is odd,

and so t+1
2

, t−1
2
∈ Z.

• d 6≡ 1(mod 4), then d ≡ 0(mod 4), d = 4d0. n2d = tr(g)2−
4 ≡ 0 (mod 4), hence t

2
∈ Z.

It is also easy to verify the discriminants of the above matrices
are indeed 1, and so these matrices belong to SL2(Z).

By correspondence between matrices and forms (Section 2.8.2),
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for a matrix g =

(
α β

γ δ

)
the corresponding form is γx2 + (δ −

α)xy − βy2. The corresponding forms in this case are:

Q(x, y) =





x2 − n2d0

4
y2 if d ≡ 1(mod 4), n even

x2 − xy − n2d0−1
4

y2 if d ≡ 1(mod 4), n odd

x2 − n2d0y
2 if d 6≡ 1(mod 4)

Alternatively, the forms can be calculated directly from the
ideals, using Theorem 9:

Q(x, y) =





(N(x− n
2

√
d0y)/N(1) = x2 − n2d0

4
y2 d ≡ 1(mod 4), n even

(N(x + −1−n
√

d0

2
y)/N(1) = x2 − xy − n2d0−1

4
y2 d ≡ 1(mod 4), n odd

(N(x− n
√

d0y)/N(1) = x2 − n2d0y
2 d 6≡ 1(mod 4)

Which provides exactly the same result.
Note that any matrix with trace t for which |t| > 3 that cor-
responds to an order, cannot be conjugate to its inverse: by
Theorem 11 and Corollary 9, for a matrix conjugate to its in-
verse with trace t, |t| > 3, the ideal J(g) corresponding to g
satisfies J(g) 6≈ J(g)′. But for O it is always true that O ≈ O′

(O is always invertible as it must contain an element relatively
prime to its index).
Examples:
• d ≡ 1(mod 4), n = 1: d = d0 = 5, t = 3. The matrix

g =

(
2 1

1 1

)
, corresponds to OK . This is a symmetric

matrix, for h =

(
0 −1

1 0

)
we have hgh−1 = g−1.

• d ≡ 1(mod 4), n even: D = 320 = (23)2 ·5, d = d0 = 5, n =

23, t = 18. The matrix g =

(
9 80

1 9

)
corresponds to O8 in

K = Q(
√

5). The corresponding form is x2−80y2, which is
equivalent to the reduced form Q(x, y) = −16x2+16xy+y2

which is not equivalent to −Q. Hence this matrix is not
conjugate to its inverse matrix.

• d ≡ 0(mod 4): d = 8, d0 = 2, n = 2, D=32, t = 6. The

matrix g =

(
3 8

1 3

)
corresponds to O2 in K = Q(

√
2).

The corresponding form is x2− 8y2, which is equivalent to
the reduced form Q(x, y) = −4x2 + 4xy + y2, which is not
equivalent to −Q, hence g is not conjugate to its inverse.
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(2) Matrices with trace= 3. D = 32 − 4 = 5 = d = d0, by the algo-
rithm described in Section 2.7 we find that there is a single class
of quadratic forms with discriminant 5: Q(x, y) = −x2+xy+y2.
Complete chain is [-1,1,1], [1,1,-1]. By the correspondence be-
tween forms and matrices ((14) in Section 2.8.2), we see that

this form corresponds to the matrix g = g(Q) =

(
1 −1

−1 2

)
.

g is a symmetric matrix and is conjugate to its inverse, for

h =

(
0 1

−1 0

)
we have g = hg−1h−1. The corresponding ideal

is:

I(g) = [
(δ − α)−

√
d

2
, γ]
√

d = [
1−√5

2
,−1]

√
5 = OK

√
5

By the general theory N(η1) < 0 and h(5) = 1 and so by (24)
we have h+(5) = h(5) = 1, meaning that Ig is equivalent to its
inverse.

(3) Matrices with trace= 5. D = 52 − 4 = 21 = d = d0, by the
algorithm described in Section 2.7 we find that there are two
classes of quadratic forms with discriminant 21, and both are
not reversible (not equivalent to the ”inverse” form, meaning
the form that corresponds to the inverse matrix):
(a) Q1(x, y) = −x2 + 3xy + 3y2, complete chain is [-1,3,3],

[3,3,-1].
(b) Q2(x, y) = x2+3xy−3y2, complete chain is [1,3,-3], [-3,3,1].
By the correspondence between forms and matrices ((14) in Sec-
tion 2.8.2), we see that these forms correspond to the matrices

(a) g1 = g(Q1) =

(
1 −3

−1 4

)
,

(b) g2 = g(Q2) =

(
1 3

1 4

)

Which are not conjugate to their inverse.
The corresponding ideals are ideals of OK and therefore invert-
ble:
(a) I(g1) = [−√21, 3−√21

2

√
21] = [3−

√
21

2
,−1]

√
21 = OK

√
21

(b) I(g2) = [1, 3−√21
2

] = OK

It is easy to see that I(g1) = I(g1)
′, and I(g2) = I(g2)

′. By the
general theory N(η1) > 0. We can again conclude that neither
g1 nor g2 is conjugate to its inverse.
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(4) Matrices with trace= 6. D = 62 − 4 = 32. In this case the
discriminant is not square free, 32 = 2 · 42, d = 8, d0 = 2,
n = 2. By the algorithm described in Section 2.7 we find the
following classes of quadratic forms with discriminant 32:
(a) Q1(x, y) = −x2 + 4xy + 4y2 not reversible
(b) Q2(x, y) = x2 + 4xy − 4y2 not reversible
(c) Q3(x, y) = −2x2 + 4xy + 2y2 reversible

By the correspondence between forms and matrices ((14) in Sec-
tion 2.8.2), we see that these forms correspond to the matrices

(a) g1 = g(Q1) =

(
1 −4

−1 5

)
,

(b) g2 = g(Q2) =

(
1 4

1 5

)

(c) g3 = g(Q3) =

(
1 −2

−2 5

)

From the information about the forms we know that g1 and
g2 are not conjugate to their inverse, but g3 is, and indeed for

h =

(
0 −1

1 0

)
we have g3 = hg−1

3 h−1.

The corresponding ideals are:

(a) I(g1) = [ (δ−α)−n
√

d
2

, γ]n
√

d = [4−2
√

8
2

,−1]2
√

8 = O24
√

2

(b) I(g2) = [γ, (δ−α)−n
√

d
2

] = [1, 4−2
√

8
2

] = Z[2
√

2] = O2

(c) I(g3) = [ (δ−α)−n
√

d
2

, γ]n
√

d = [4−2
√

8
2

,−2]2
√

8 = [2
√

2, 2](−4
√

2)
We already know that the sign of the fundamental unit is posi-
tive. We can calculate it directly: η1 = 1+

√
2 is the fundamen-

tal unit of Q(
√

2) and has negative norm, and η2
1 = 3 + 2

√
2 is

the fundamental unit of O2, with a positive norm.
I(g2) = O2 = I(g2)

′, we conclude that g2 is not conjugate to its
inverse.
I(g1) and I(g3) are non-invertible ideals of O2. We cannot con-
clude from this whether g1 or g3 are conjugate to their inverses.
From the information about the forms we know that g1 is con-
jugate to its inverse, and g3 is not. We can calculate and find
that both I(g1) and I(g3) are equal to their conjugates:
I(g1) = O24

√
2 = (O24

√
2)′ = I(g1)

′.
I(g3) = [−8

√
2,−16], I(g3)

′ = [−16, 8
√

2] and they are equal
by the SL2(Z) transformation:

[−8
√

2,−16]

(
0 −1

1 0

)
= [−16, 8

√
2]

Hence I(g3) = I(g3)
′.
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(5) Matrices with trace= 7. D = 72 − 4 = 45 = 32 · 5, here n = 3,
d = d0 = 5. By the algorithm described in Section 2.7 we find
the following classes of quadratic forms with discriminant 45:
(a) Q1(x, y) = −3x2 + 3xy + 3y2 reversible
(b) Q2(x, y) = −x2 + 5xy − 5y2 not reversible
(c) Q3(x, y) = x2 + 5xy − 5y2 not reversible

By the correspondence between forms and matrices ((14) in Sec-
tion 2.8.2), we see that these forms correspond to the matrices:

(a) g1 = g(Q1) =

(
2 −3

−3 5

)
,

(b) g2 = g(Q2) =

(
1 −5

−1 6

)

(c) g3 = g(Q3) =

(
1 5

1 6

)

By the conclusion about the forms we know that g1 is conjugate

to to its inverse, but g2 and g3 are not. Indeed, for h =

(
0 −1

1 0

)

we have g1 = hg−1
1 h−1.

The corresponding ideals are:

(a) I(g1) = [ (δ−α)−n
√

d
2

, γ]n
√

d = [3−3
√

5
2

,−3]3
√

5

(b) I(g2) = [ (δ−α)−n
√

d
2

, γ]n
√

d = [5−3
√

5
2

,−1]3
√

5 = O33
√

5

(c) I(g3) = [γ, (δ−α)−n
√

d
2

] = [1, 5−3
√

5
2

] = O3

We already know that the sign of the fundamental unit is posi-

tive. We can calculate it directly: η1 = 1+
√

5
2

is the fundamental

unit of Q(
√

5), and η4
1 = 7+3

√
5

2
is the fundamental unit of O3,

and indeed N(η4
1) = 1.

I(g3) = O3 is an invertible ideal, and is strictly equivalent to its
conjugate. We conclude that g3 is not conjugate to its inverse.
I(g1) and I(g2) are non-invertible ideals of O3. We cannot con-
clude from this whether g1 or g2 are conjugate to their inverse
or not. By conclusion from forms we know that g1 is conjugate
to its inverse, but g2 is not. We find that both these ideals are
equal to their conjugates:
I(g2) = O33

√
5 = (O33

√
5)′ = I(g2)

′.
Also, I(g1) = [−9

√
5, 9

√
5−45
2

], and by the following SL2(Z)
transformation:

[−9
√

5,
−45 + 9

√
5

2
]

(
1 −1

1 0

)
= [

−45− 9
√

5

2
, 9
√

5]

we have I(g1) = I(g1)
′.
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(6) Matrices with trace= 15. D = 152 − 4 = 221, d = d0 = 221,
n = 1. By the algorithm described in Section 2.7 we find the
following classes of quadratic forms with discriminant 221:
(a) Q1(x, y) = 7x2 + 9xy − 5y2 reversible, complete chain is

[-7,5,7], [7,9,-5], [-5,11,5], [5,9,-7].
(b) Q2(x, y) = 7x2 + 5xy − 7y2 reversible, complete chain is

[7,5,-7], [-7,9,5], [5,11,-5], [-5,9,7].
(c) Q3(x, y) = −x2+13xy+13y2 not reversible, complete chain

is [-1,13,13], [13,13,-1].
(d) Q4(x, y) = x2 + 13xy− 13y2 not reversible, complete chain

is [1,13,-13], [-13,13,1].
By the correspondence between forms and matrices in (14), we
see that these forms correspond to the matrices:

(a) g1 = g(Q1) =

(
3 5

7 12

)

(b) g2 = g(Q2) =

(
5 7

7 10

)

(c) g3 = g(Q3) =

(
1 −13

−1 14

)

(d) g4 = g(Q4) =

(
1 13

1 14

)

From the information about the forms we know that g1 and g2

are conjugate to their inverse, but g3 and g4 are not. It is easy to
verify that g2 is conjugate to its inverse, as it is is symmetric. g1

is conjugate to its inverse with h =

(
1 2

−1 −1

)
, as g1 = hg−1

1 h−1.

The corresponding ideals are:

(a) I(g1) = [γ, (δ−α)−n
√

d
2

] = [7, 9−√221
2

]

(b) I(g2) = [γ, (δ−α)−n
√

d
2

] = [7, 5−√221
2

]

(c) I(g3) = [ (δ−α)−n
√

d
2

, γ]n
√

d = [13−√221
2

,−1]
√

221 = OK

√
221

(d) I(g4) = [γ, (δ−α)−n
√

d
2

] = [1, 13−√221
2

] = OK

We know that the sign of the fundamental unit is positive, we

can also calculate it directly: η1 = 15+
√

221
2

, with norm of +1.

As easy to see: I(g3) = OK

√
221 = I(g3)

′, and I(g4) = OK =
I(g4)

′, and we conclude again that neither g3 nor g4 is conjugate
to its inverse. I(g1) and I(g2) are (invertible) ideals of OK .
From the information about forms we can conclude that these
ideals are weakly but not strictly equivalent to their conjugates,
respectively.
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Appendix A: Discriminant, order and fundamental unit by trace

|trace| D d d0 n N(η)
3 5 5 5 - -1
4 12 12 3 - +1
5 21 21 21 - +1
6 32 8 2 2 +1
7 45 5 5 3 +1
8 60 60 15 - +1
9 77 77 - - +1
10 96 24 6 2 +1
11 117 13 13 3 +1
12 140 140 35 - +1
13 165 165 165 - +1
14 192 12 3 22 +1
15 221 221 221 - +1
16 252 28 7 3 +1
17 285 285 285 - +1
18 320 5 5 23 +1
19 357 357 357 - +1
20 396 44 11 3 +1
21 437 437 437 - +1
22 480 120 30 2 +1
23 525 21 21 5 +1
24 572 572 143 - +1
25 621 69 69 3 +1
26 672 168 42 2 +1
27 725 29 29 5 +1
28 780 780 195 - +1
29 837 93 93 3 +1
30 896 56 14 22 +1
31 957 957 957 - +1
32 1020 1020 255 - +1
33 1085 1085 1085 - +1
34 1152 8 2 22 · 3 +1
35 1221 1221 1221 - +1
36 1292 1292 323 - +1
37 1365 1365 1365 - +1
38 1440 40 10 2 · 3 +1
39 1517 1517 1517 - +1
40 1596 1596 399 - +1
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|trace| D d d0 n N(η)
41 1677 1677 1677 - +1
42 1760 440 110 2 +1
43 1845 205 205 3 +1
44 1932 1932 483 - +1
45 2021 2021 2021 - +1
46 2112 132 33 22 +1
47 2205 5 5 3 · 7 +1
48 2300 92 23 5 +1
49 2397 2397 2397 - +1
50 2496 156 39 22 +1
51 2597 53 53 7 +1
52 2700 12 3 3 · 5 +1
53 2805 2805 2805 - +1
54 2912 728 182 2 +1
55 3021 3021 3021 - +1
56 3132 348 87 3 +1
57 3245 3245 3245 - +1
58 3360 840 210 2 +1
59 3477 3477 3477 - +1
60 3596 3596 899 - +1
61 3717 413 413 3 +1
62 3840 60 15 23 +1
63 3965 3965 3965 - +1
64 4092 4092 1023 - +1
65 4221 469 469 3 +1
66 4352 17 17 24 +1
67 4485 4485 4485 - +1
68 4620 4620 1155 - +1
69 4757 4757 4757 - +1
70 4896 136 34 2 · 3 +1
71 5037 5037 5037 - +1
72 5180 5180 1295 - +1
73 5325 213 213 5 +1
74 5472 152 38 2 · 3 +1
75 5621 5621 5621 - +1
76 5772 5772 1443 - +1
77 5925 237 237 5 +1
78 6080 380 95 22 +1
79 6237 77 77 32 +1
80 6396 6396 1599 - +1
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