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Abstract

The quantization of linear automorphisms of the torus, is an arithmetic model for a quan-
tum system with underlying chaotic classical dynamics. This model was studied over the
last three decades, in an attempt to gain better understanding of phenomena in quantum
chaos. In this thesis, we study a multidimensional analogue of this model. This multi-
dimensional model exhibits some new phenomena that did not occur in the original (two
dimensional) model.

The classical dynamics underlying the model, is a discrete time dynamics given by
the action of a symplectic linear map A ∈ Sp(2d,Z) on a torus T2d = R2d/Z2d. This
dynamical system is ergodic and mixing, and presents a good model for chaotic dynamics.
The quantization of this system, introduced by Hannay and Berry, consists of a family of
finite dimensional Hilbert spaces of states HN (of dimensions Nd), together with unitary
operators UN(A) acting on HN referred to as the quantum propagator. The semiclassical
limit in this model is achieved by taking N →∞.

Any quantum state can be interpreted as a distribution on the torus, by considering
the corresponding matrix element of a quantum observable. For a stationary state (i.e.,
an eigenstate of the quantum propagator), this distribution is invariant under the classical
dynamics. The Quantum Ergodicity Theorem, states that in the semi-classical limit almost
all of the quantum distributions (corresponding to stationary states), converge to Lebesgue
measure on the torus. The system is said to be Quantum Uniquely Ergodic, if the only
limiting measure obtained from stationary states is the Lebesgue measure.

For the two dimensional model (d = 1), after taking into account certain arithmetic
symmetries, Kurlberg and Rudnick showed that the only limiting measure is the volume
measure (this notion is referred to as Arithmetic Quantum Unique Ergodicity). With
out taking the arithmetic symmetries into account, this is no longer true. Indeed, Faure,
Nonnenmacher and De Bièvre demonstrated the existence of scars, a subsequence of eigen-
functions for which the corresponding distributions concentrate around a periodic orbit.

In this thesis, we study the multidimensional model (d > 1). We show that for a
symplectic linear map that leaves no invariant isotropic rational subspaces, similar to the
two dimensional model, the system is Arithmetically QUE. However, if there are invariant
isotropic rational subspaces, then the induced system is no longer Arithmetically QUE. To
show this, we demonstrate the existence of super-scars, limiting measures (that are stable
under the arithmetic symmetries) and are localized on an invariant sub-manifold.

This thesis includes several more results concerning the fluctuations of the matrix el-
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ements of an observable around their limit. In the approach to the limit, the different
matrix elements fluctuate around their limit. We compute the variance of these fluctua-
tions, and present a conjecture for their limiting distribution, generalizing the a conjecture
of Kurlberg and Rudnick for the two dimensional model.

This work was accepted for publication by the Annals of Mathematics [25]. Preliminary
results were also published in International Mathematics Research Notices [24].
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Introduction

Quantization of discrete chaotic dynamics over a compact phase space, has proved to be
an effective toy model for understanding phenomena in quantum chaos. The first such
model was the quantization of the cat map, a symplectic linear map acting on the 2-
dimensional torus [21]. This thesis deals with the multidimensional analog of this model,
the quantization of symplectic linear maps on a multidimensional torus. We generalize some
of the results obtained for the two dimensional case, and present some new phenomena
occurring in higher dimensions.

Quantum Cat Map

In an attempt to gain better understanding of the correspondence between classical and
quantum mechanics and in particular phenomena in quantum chaos, Hannay and Berry
introduced a model for quantum mechanics on the torus [21]. The classical dynamics
underlying this model is simply the iteration of a symplectic linear map, A ∈ Sp(2,Z),
acting on the 2-torus, known colloquially as a cat map. For quantizing the torus, one takes
a family of finite dimensional Hilbert spaces of states, HN = L2(Z/NZ) (where N stands
for the inverse of Planck’s constant). The quantization of smooth observables f ∈ C∞(T2)
are operators OpN(f) acting on HN , and the quantization of the classical dynamics, is
a unitary operator UN(A), known as the quantum propagator. The connection with the
classical system is achieved through an exact form of “Egorov’s theorem”:

UN(A)−1OpN(f)UN(A) = OpN(f ◦ A), ∀f ∈ C∞(T2).

Quantum Ergodicity

When the matrix A has no eigenvalues that are roots of unity, the induced classical dy-
namics is ergodic and mixing. The quantum analog of this, following the correspondence
principle, is that the expectation values of an observable, 〈OpN(f)ψ, ψ〉 (in an eigenfunc-
tion ψ s.t UN(A)ψ = λψ), should tend to the phase space average of the observable in the
semiclassical limit.

By an analog of Shnirelman’s theorem, one can show that indeed almost all of these
matrix elements converge to the phase space average [6]. This notion is usually referred
to as “Quantum Ergodicity” (QE), and was shown to hold for a large class of ergodic
dynamical systems [6, 10, 35, 39]. However, the stronger notion of “Quantum Unique
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Ergodicity” (QUE), where there are no exceptional subsequences of eigenfunctions, doesn’t
hold for this model. Indeed, in [15] Faure, Nonnenmacher and De Bièvre managed
to construct a subsequence of eigenfunctions, for which the diagonal matrix elements do
not converge to the phase space average but concentrate around a periodic orbit. Such
exceptional subsequences are also referred to as scars.

Arithmetic Quantum Unique Ergodicity

The existence of scars for the quantum cat map, is related to high degeneracies in the spec-
trum of the quantum propagator. If we denote by ord(A,N) the smallest integer such that
As ≡ I (mod N), then the quantum propagator satisfies that UN(A)ord(A,N) = I, implying
spectral degeneracies of order N

ord(A,N)
. In particular, since there are infinitely many values

of N for which ord(A,N) is of order log(N), there could be spectral degeneracies of order
N

log(N)
. It is precisely for these values of N , that the scars in [15] were constructed.

In [27] Kurlberg and Rudnick introduced a group of symmetries of the system, i.e.,
commuting unitary operators that commute with UN(A), that remove most of the spectral
degeneracies. These operators are called Hecke operators, in an analogy to a similar setup
on the modular surface [23, 34]. The space HN has an orthonormal basis consisting of joint
eigenfunctions called “Hecke eigenfunctions”. For the desymmetrized system, Kurlberg

and Rudnick showed that indeed 〈OpN(f)ψ, ψ〉 N→∞−→
∫

T2 f , for any sequence, ψ = ψ(N),
of “Hecke eigenfunctions” [27]. This notion is referred to as Arithmetic Quantum Unique
Ergodicity, due to the arithmetic nature of these Hecke operators (both here and in the
setting on the modular surface).

Higher dimensions

The Hannay-Berry model for the quantum cat map, can be naturally generalized for sym-
plectic linear automorphisms of higher dimensional tori. As in the two dimensional model,
the dynamical system on T2d induced by the action of A ∈ Sp(2d,Z) is ergodic and mixing
if and only if the matrix A has no eigenvalues that are roots of unity. For quantizing maps
on the 2d-dimensional torus, the Hilbert space of states, HN = L2(Z/NZ)d, is of dimension
Nd (where, again, N stands for the inverse of Planck’s constant). The group of quantizable
elements is the subgroup Spθ(2d,Z) defined

Spθ(2d,Z) :=

{(
E F
G H

)
∈ Sp(2d,Z)

∣∣EF t, GH t are even matrices

}
.

The quantization of observables f ∈ C∞(T2d) and maps A ∈ Spθ(2d,Z), again satisfy
“exact Egorov”:

UN(A)−1OpN(f)UN(A) = OpN(f ◦ A), ∀f ∈ C∞(T2d).

Many of the results obtained on the two dimensional model (i.e, d = 1), can be naturally
generalized to higher dimensions. Nevertheless, there are still some new and surprising
phenomena that occur in higher dimensions.
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Results

One new phenomenon that occur in high dimensions, is the existence of super-scars, that
is, joint eigenfunctions of the propagator and all the Hecke operators localized on certain
invariant manifolds 1.

Remark 0.1. The scars constructed in [15] (for d = 1) are related to the large spectral
degeneracies of the propagator. We note that for d > 1, there are values of N for which
the order ord(A,N) could grow like N (whenever the characteristic polynomial for A splits
modulo N) and possibly even slower (see [33] for some numerical data on the order of A
modulo N). Consequently, for these values there are large spectral degeneracies of order
Nd−1. However, the scarring described here is not related to these degeneracies. In fact, the
action of the Hecke operators reduce almost all of the spectral degeneracies (see proposition
4.4).

Let A ∈ Spθ(2d,Z) be a quantizable symplectic map. To any invariant rational isotropic
subspace E0 ⊆ Q2d, we assign a manifold X0 ⊆ T2d of dimension 2d − dimE0, invariant
under the dynamics.

Theorem 1. Let A ∈ Spθ(2d,Z) with distinct eigenvalues. Let E0 ⊆ Q2d, be an invariant
subspace that is isotropic with respect to the symplectic form. Then, there is a subsequence
of Hecke eigenfunctions ψ ∈ HNi, such that the corresponding distributions

f 7→ 〈OpNi(f)ψ, ψ〉,

converge to Lebesgue measure on the manifold X0.

To illustrate this phenomenon, consider the following simple example (previously pre-
sented by Gurevich [18] and by Nonnenmacher [32]). Let Ã ∈ GL(d,Z) and take A =(
Ãt 0

0 Ã−1

)
∈ Sp(2d,Z). As long as none of the eigenvalues of Ã are roots of unity, the clas-

sical dynamics on T2d induced by this map is mixing. (For a concrete example with d = 2

one could take the matrix Ã =

(
1 2
2 3

)
.) The space E0 =

{
(~n1, 0) ∈ Q2d

}
is then an invari-

ant isotropic subspace, and the corresponding invariant manifold is X0 =

{(
0
~p

)
∈ T2d

}
.

The action of the quantum propagator corresponding to such a matrix is given by the
formula UN(A)ψ(~x) = ψ(Ã~x) (where the action of Ã ∈ GL(d,Z) on ~x ∈ (Z/NZ)d is
the obvious one). One can then easily verify that the function ψ0(~x) =

√
Nδ0(~x) is an

eigenfunction of UN(A). On the other hand for any f ∈ C∞(T2d) a simple computation
gives 〈Op(f)ψ0, ψ0〉 =

∫
X0
fdmX0 , that is the distribution f 7→ 〈Op(f)ψ0, ψ0〉 is Lebesgue

measure on X0.

Remark 0.2. In [1] Anantharaman showed that for Anosov flows on a compact manifold,
for any limiting quantum measure the Kolmogorov-Sinai entropy is positive. In [2, 3, 4]

1The name super-scars has been used before in a different context [7]
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Anantharaman, Nonnenmacher and Koch made some improvements on this result giving
lower bounds for the entropy of such quantum measures. In particular, for surfaces of
constant negative curvature [2, 3] and for the baker map [4], the entropy of any limiting
quantum measure is shown to be at least half of the maximal entropy of the corresponding
system. They also conjectured that this bound of half the maximal entropy should hold
for more general Anosov system. (Note that having entropy equal to the maximal entropy
is equivalent to QUE). It is easy to verify (see section 5.5), that the limiting measures
corresponding to the super-scars always satisfy this bound. Moreover, in the case where
dimE0 = d, the entropy of the limiting measure is exactly half of the maximal entropy.

Theorem 1 implies that any matrix A ∈ Spθ(2d,Z) that has a rational invariant isotropic
subspace is not arithmetically QUE. We show that these are the only counter examples.

Theorem 2. Let A ∈ Spθ(2d,Z) be a matrix with distinct eigenvalues. Then, a necessary
and sufficient condition for the induced system to be Arithmetically QUE, is that there are
no rational subspaces E ⊆ Q2d, that are invariant under the action of A, and are isotropic
with respect to the symplectic form.

Remark 0.3. Note that the existence of a rational invariant isotropic subspace, is equivalent
to the existence of an isotropic closed connected invariant subgroup of the torus. We can
thus reformulate this theorem in these terms, i.e., the condition for Arithmetic QUE, is
the absence of invariant isotropic sub-tori.

Remark 0.4. It is interesting to note, that the sufficient conditions to insure Arithmetic
QUE, do not rule out matrices that have roots of unity for eigenvalues. So in a sense, Arith-
metic QUE can hold also for matrices that are not classically ergodic. This phenomenon

already occurs for matrices in SL(2,Z), for example A =

(
2 −5
1 −2

)
is not ergodic (because

A4 = I), nevertheless it has two distinct eigenvalues and no rational invariant subspaces,
hence arithmetic QUE does hold for this matrix.

For systems that are arithmetically QUE, we can also give a bound on the rate of
convergence. For ~n ∈ Z2d we denote by 2d~n the dimension of the smallest (symplectic)
invariant subspace E ⊆ Q2d such that ~n ∈ E. For a smooth observable f ∈ C∞(T2d) define
d(f) = minf̂(~n) 6=0 d~n.

Theorem 3. In the case where there are no rational isotropic subspaces, for any smooth
f ∈ C∞(T2d) and any normalized Hecke eigenfunction ψ ∈ HN , the expectation values of
OpN(f) satisfy:

|〈OpN(f)ψ, ψ〉 −
∫

T2d

f | �f,ε N
− d(f)

4
+ε.

Remark 0.5. The exponent of d(f)
4

in this theorem is not optimal. The correct exponent

is probably d(f)
2

, in consistence with the fourth moments (proposition 3.5) and with the
bounds for prime N (corollary 4.8). For N prime, in the case where there are no invariant
rational subspaces the bound O(N−d/2) was independently proved by Gurevich and Hadani
[20].
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We note that the behavior of the matrix elements of an observable OpN(f), is related
to the decomposition of N to its prime factors. Consequently, if we restrict ourselves to
the case where N is prime, we can obtain much sharper results (e.g., for the bounds on
the number of Hecke operators and the dimension of the joint eigenspaces).

We now consider only prime N , and restrict to the case where there are no isotropic
invariant rational subspaces. In this case the matrix elements of a smooth observable
f ∈ C∞(T2d) with respect to a Hecke basis {ψi} converge to their average

∫
T2d f and

fluctuate around it. To study these fluctuations, we first give an asymptotic formula for
their variance:

S
(N)
2 (f) =

1

Nd

∑
i

|〈OpN(f)ψi, ψi〉 −
∫
fdx|2.

Consider the decomposition Q2d =
⊕

Eθ, into symplectic irreducible invariant sub-
spaces. To each space, we assign a quadratic form Qθ : Z2d → Z[λθ], where λθ is an
eigenvalue of the restriction of A to Eθ, and define the product Q =

∏
Qθ (see section

6.1 for an explicit construction). For a smooth observable f ∈ C∞(T2d) and an element
ν ∈

∏
Z[λθ], define modified Fourier coefficients

f ](ν) =
∑

Q(~n)=ν

(−1)~n1~n2 f̂(~n).

Define dν = 1
2

∑
νθ 6=0 dimEθ and df = minf](ν) 6=0 dν . Note that if ν = Q(~n), then dν = d~n

as defined in theorem 3, hence for any smooth f we have d(f) ≤ df . For f ∈ C∞(T2d)
define V (f) =

∑
dν=df

|f ](ν)|2.

Theorem 4. In the case where there are no rational isotropic subspaces, for a smooth
observable f ∈ C∞(T2d), as N → ∞ through primes, the quantum variance in the Hecke
basis satisfies

S
(N)
2 (f) =

V (f)

Ndf
+O(

1

Ndf+1
).

Remark 0.6. We note that when there are symplectic invariant rational subspaces, one can
construct observables for which df < d. We can thus produce a large family of examples
(similar to the ones we described in [24]), for which the quantum variance is of a different
order of magnitude from the one predicted for generic systems by the Feingold- Peres
formula [13, 14].

Remark 0.7. In the case that there are isotropic invariant rational subspaces, the distri-
bution can become degenerate (see remark 4.6) and there is no definite behavior for the
variance.

After establishing the quantum variance, we renormalize to have finite variance V (f)
and give a conjecture for the limiting distribution, generalizing the Kurlberg-Rudnick con-
jecture for the two dimensional case [28]. To simplify the discussion, we will restrict
ourselves to elementary observables of the form e~n(~x) = exp(2πi~n · ~x) (see section 6.2 for
treatment of any smooth observables).
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For an observable OpN(e~n), the matrix elements in the Hecke basis can be expressed
as a product of certain exponential sums. The sums in the product are of the form:

Eq(ν, χ) =
1

|C|
∑

1 6=x∈C

eq(νκ
x+ 1

x− 1
)χ(x)χ2(x),

where q is some power of N , C is either the multiplicative group F∗q or the group of norm
one elements in the quadratic extension Fq2/Fq, χ is a character of C and χ2 is the quadratic
character of C, ν ∈ Fq and κ ∈ Fq2 satisfies: ∀x ∈ C, κx+1

x−1
∈ Fq.

The Kurlberg-Rudnick conjecture regarding the limit distribution [28], is naturally
generalized to a conjecture regarding these exponential sums.

Conjecture 5. For each finite field Fq, fix an element 0 6= ν ∈ Fq and consider the
set of points on the line defined by the normalized exponential sums

√
qEq(ν, χ) for all

characters χ : C → C∗. Then, as q →∞ these points become equidistributed on the interval
[−2, 2] with respect to the Sato-Tate measure. Furthermore, if for each field Fq we fix a
number of distinct elements ν1, . . . , νr ∈ Fq, then the limiting distributions corresponding
to
√
qEq(ν1, χ), . . . ,

√
qEq(νr, χ) are that of r independent random variables.

We now wish to deduce from this, a conjecture regarding the limiting distribution of
the matrix elements. However, to do this we need to consider the decomposition of F2d

N

into invariant subspaces under the action of A (mod N) (rather than the decomposition
of Q2d we used for the variance). For ~n ∈ Z2d, let E ⊂ F2d

N be the smallest (symplectic)
invariant subspace containing ~n (mod N). Let E =

⊕
Eϑ̄ be the decomposition of E into

irreducible symplectic invariant subspaces, and let 2dϑ̄ = dimEϑ̄. Then a matrix element
for a Hecke eigenfunction 〈OpN(e~n)ψ, ψ〉, can be expressed as the product

∏
ϑ̄Eqϑ̄(νϑ̄, χϑ̄),

where qϑ̄ = Ndϑ̄ , the elements νϑ̄ are determined by the projections of ~n (mod N) to Eϑ̄,
and the characters χϑ̄ are determined by the eigenfunction. Consequently, if we denote
by Pk the set of primes for which there are precisely k invariant subspaces Eϑ̄ in the
decomposition we can deduce:

Conjecture 6. As N →∞ through primes from Pk, the limiting distribution of normal-
ized matrix elements Nd~n/2〈OpN(e~n)ψi, ψi〉, is that of a product of k independent random
variables, each obeying the semi-circle law.

It is interesting, that while the expression for the variance depends only on the rational
properties of A, the limiting distribution already depends specifically on the action of A on
F2d
N , and can vary for different values of (prime) N . Moreover, notice that at least one of

the sets Pk is always infinite, so there is a sequence of primes for which there is a limiting
distribution. However, there could be other values of k for which the sets Pk are also
infinite, resulting in different limiting distributions (see section 6.2 for some examples).

Outline

This work is composed of three main parts. In the first part (chapter 1), we describe in
detail the quantization procedure. In the second part (chapters 2, 3), we develop Hecke
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theory and give the proof of theorem 3. In the third part (chapters 4,5,6), we restrict the
discussion to the case where Planck’s constant is an inverse of a prime number. For these
values of Planck’s constant the Hecke operators and eigenfunctions reveal structure closely
related to the Weil representation over finite fields. We use this structure to construct
scars proving theorem 1, and to study the fluctuations of the matrix elements.
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Chapter 1

Quantized Linear Toral
Automorphisms

The quantization of the cat map on the 2-torus, was originally introduced by Hannay and
Berry [21], and is further described in [11, 26, 27]. For higher dimensions, the procedure is
mostly analogous, and is described in [5, 33]. We take an approach towards the quantization
procedure through representation theory, similar to the one taken in [27].

1.1 Quantization procedure

We start by giving the outline for the quantization of arbitrary symplectic maps. For
a discrete time dynamical system, given by the iteration of a symplectic map A on a
phase space X, the quantization procedure can be described as follows: The first step,
is constructing a one parameter family of Hilbert spaces Hh, parametrized by Planck’s
constant. For each space, there is a procedure that assigns to each smooth function
f ∈ C∞(X), an operator Oph(f) acting on Hh. The connection with the classical sys-
tem is fulfilled by the requirement that in the limit h → 0, the commutator of the
quantization of two observables f, g reproduce the quantization of their Poisson bracket
{f, g} =

∑
j(∂f/∂pj)(∂g/∂qj)− (∂f/∂qj)(∂g/∂pj):∥∥∥∥ 1

i~
[Oph(f),Oph(g)]−Oph({f, g})

∥∥∥∥ h→0−→ 0. (1.1)

The dynamical part of the quantization, is given by discrete time evolution of the algebra
of operators. The evolution is through conjugation by a unitary map Uh(A) of Hh (referred
to as the quantum propagator). We require that in the limit h→ 0 the classical dynamics
is reproduced, in the sense that∥∥Uh(A)−1Oph(f)Uh(A)−Oph(f ◦ A)

∥∥ h→0−→ 0. (1.2)

In our case, the classical phase space is the multidimensional torus and the classi-
cal observables are smooth function on the torus. For quantizing the torus, the ad-
missible values of Planck’s constant are inverses of integers h = 1/N, N ≥ 1. The
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space of states, is HN = L2((Z/NZ)d) of dimension Nd with inner product given by
〈ψ, φ〉 = 1

Nd

∑
~x (mod N) ψ(~x)φ(~x). To each observable f ∈ C∞(T2d), by an analog of Weyl

quantization, we assign an operator OpN(f) satisfying (1.1). The classical dynamics is
given by an iteration of a symplectic linear map A ∈ Sp(2d,Z) acting on the torus, so that

~x = (
~p
~q

) ∈ T2d 7→ A~x is a symplectic map of the torus. Given an observable f ∈ C∞(T2d),

the classical evolution is defined by f 7→ f ◦ A. For a certain subset of matrices A, there
is a unitary operator UN(A) acting on HN satisfying an exact form of (1.2), i.e.,

UN(A)−1OpN(f)UN(A) = OpN(f ◦ A). (1.3)

We now turn to describe these procedures in more detail.

1.1.1 Quantizing observables

In an analogous way to the quantization of observables on T2 [21, 27], introduce elementary
operators TN(~n) (with ~n = (~n1, ~n2) ∈ Z2d), acting on ψ ∈ HN via:

TN(~n)ψ(~y) = e2N(~n1 · ~n2)eN(~n2 · ~y)ψ(~y + ~nt1), (1.4)

where we use the notation eN(x) = e
2πix
N . For notational convenience we also define a

twisted version of these operators:

T̃N(~n) := (−1)N~n1·~n2TN(~n).

Remark 1.1. The twisted operators were originally introduced in [18], and make some of
the arguments simpler (e.g., the trace formula (1.5)). Moreover, these operators satisfy the
intertwining equation (1.6) for all of the symplectic group rather than for the subgroup
Spθ(2d,Z).

The main properties of the twisted elementary operators T̃N(~n) are summarized in the
following proposition.

Proposition 1.1. For the operators T̃N(~n) defined above:

1. T̃N(~n)∗ = T̃N(−~n) = T̃N(~n)−1 are unitary operators.

2. The composition of two elementary operators is given by

T̃N(~m)T̃N(~n) = e2N((1 +N2)ω(~m,~n))T̃N(~m+ ~n),

implying commutation relation

T̃N(~m)T̃N(~n) = eN(ω(~m,~n))T̃N(~n)T̃N(~m).

where ω(~m,~n) = ~m1 · ~n2 − ~m2 · ~n1 is the symplectic inner product.

9



3. For even N , T̃N(~n) only depends on ~n modulo 2N , while for odd N it only depends
on ~n modulo N .

The proof is straightforward from (1.4).
For any smooth classical observable f ∈ C∞(T2d) with Fourier expansion f(~x) =∑
~n∈Z2d f̂(~n) exp(2πi~n · ~x), where ~n · ~x = ~n1 · ~p+ ~n2 · ~q, define its quantization by

OpN(f) :=
∑
~n∈Z2d

f̂(~n)TN(~n),

or alternatively in terms of the twisted operators

OpN(f) =
∑
~n∈Z2d

f̂(~n)(−1)N~n1·~n2T̃N(~n).

Using the commutation relation given above, and the rapid decay of the Fourier coefficients,
relation (1.1) can be verified.

1.1.2 The Heisenberg group

The operators T̃N(~n) defined above, are connected to a certain representation of a Heisen-
berg group HN .

For N ≥ 1 the corresponding Heisenberg group is taken to be

HN =
{
(~n, t)|~n ∈ (Z/2NZ)2d , t ∈ Z/2NZ

}
,

with a multiplication law given by

(~n, t) · (~n′, t′) = (~n+ ~n′, t+ t′ + ω(~n, ~n′)).

It is easily verified that the center of this group is given by

Z(HN) = {(~n, t) ∈ HN |~n ≡ 0 (mod N)} .

We now construct a unitary representation of HN on the space HN = L2((Z/NZ)d) by
setting:

π(~n, t) = e2N((N2 + 1)t)T̃N(~n).

The relations given in proposition 1.1, insure that this is indeed a representation. Further-
more, the center of HN acts through the character ξ(~n, t) = e2N((N2 + 1)t).

Remark 1.2. This representation can be realized as an induced representation. It is induced
from the one dimensional representation of the normal subgroup {(~n, t)|~n2 = 0 (mod N)},
given by (~n, t) 7→ e2N((N + 1)t) for odd N and (~n, t) 7→ e2N(t+ ~n1~n2) for even N .

Proposition 1.2. Let π be a representation of the Heisenberg group, which is given by ξ
on the center (where ξ is the character defined above), then:
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• The characters of the representation π, are supported on the center.

• π is irreducible if and only if the dimension of the representation is Nd. In this case,
the class of the representation π is determined by the character ξ.

Proof. See [17, lemma 1.2].

In our case, the dimension dim(π) = dim(HN) = Nd, and hence the representation π
is irreducible. Furthermore, from the condition on the characters of π, we deduce that the
trace of the elementary operators T̃N(~n) is given by

Tr(T̃N(~n)) =

{
Nd ~n ≡ 0 (mod N)
0 otherwise

(1.5)

In particular, for fixed ~n 6= 0 and sufficiently large N , the trace of T̃N(~n) vanishes.

Corollary 1.3. For any orthonormal basis for HN , and any smooth observable f ∈
C∞(T2d), the average of the diagonal matrix elements of OpN(f) converge to the phase
space average as N →∞.

1.1.3 Quantizing maps

In this section we show how to assign to a symplectic linear map A ∈ Spθ(2d,Z) acting on
T2d, a unitary operator UN(A) acting on L2((Z/NZ)d) s.t for all observables f ∈ C∞(T2d),

UN(A)−1OpN(f)UN(A) = Op(f ◦ A).

Any symplectic matrix A ∈ Sp(2d,Z), naturally acts on HN by automorphism via
(~n, t)A = (~nA, t). Composing the representation π with the action of A, thus gives a new
representation πA(~n, t) = π(~nA, t), that is again irreducible and acts on the center through
the same character ξ(~n, t) = e2N((1 +N2)t).

Therefore by proposition 1.2, for any A ∈ Sp(2d,Z) the representations π, πA are uni-
tarily equivalent, i.e., there is a unitary intertwining operator UN(A) satisfying

πA(~n, t) = UN(A)−1π(~n, t)UN(A), ∀(~n, t) ∈ HN ,

and in particular ∀~n ∈ Z2d

UN(A)−1T̃N(~n)UN(A) = T̃N(~nA).

Assume now that in addition A belongs to the subgroup

Spθ(2d,Z) =

{(
E F
G H

)
∈ Sp(2d,Z)

∣∣∣∣EF t, GH t, are even matrices

}
.

Then ∀~n ∈ Z2d, the image ~m = ~nA satisfies ~n1 · ~n2 ≡ ~m1 · ~m2 (mod 2), hence for all
observables f ∈ C∞(T2d),

UN(A)−1OpN(f)UN(A) = Op(f ◦ A).
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Because the operators T̃N(~n), only depend on ~n modulo 2N (respectively modulo N for
odd N), the representation πA also depends only on A mod 2N (respectively (mod N)).
We can thus take the intertwining operator UN(A), to depend only on A modulo 2N
(respectively N).

Remark 1.3. Note that UN(A) is defined as an intertwining operator for any A ∈ Sp(2d,Z).
However, if A /∈ Spθ(2d,Z) then the operator UN(A) no longer satisfies the Egorov identity.
When restricting to the subgroup Spθ(2d,Z) the definition given here coincides with the
standard definition given in [27] (for d = 1).

1.2 Formulas for the quantized cat map

The irreducibility of π imply (through Schur’s lemma), that the map UN(A) is unique up
to multiplication by phase. In other words, if U is a unitary map acting on HN , satisfying
the intertwining equation

UT̃N(~nA) = T̃N(~n)U, ∀~n ∈ Z2d, (1.6)

then after multiplying by some phase, eiαUN(A) = U . On the other hand the contrary is
also true, that is, if U = eiαUN(A), then it obviously satisfies (1.6).

In what follows, we give formulas for operators satisfying (1.6), thus obtaining formulas
for the quantized maps.

1.2.1 Formulas through generators

The group Sp(2d,Z) (and hence also Sp(2d,Z/2NZ)) is generated by the family of matrices(
I F
0 I

)
,

(
Et 0
0 E−1

)
,

(
0 I
−I 0

)
,

with E ∈ GL(d,Z) and F ∈ Mat(d,Z) symmetric [22, theorem 2].
For these matrices the corresponding operators act by the following formulas (up to

phase):

UN

(
I F
0 I

)
ψ(~x) = e2N((1 +N2)~x · F~x)ψ(~x). (1.7)

UN

(
Et 0
0 E−1

)
ψ(~x) = ψ(E~x). (1.8)

UN

(
0 I
−I 0

)
ψ(~x) =

1

Nd/2

∑
~y∈(Z/NZ)d

eN(~x · ~y)ψ(~y). (1.9)

One can verify directly that these formulas indeed satisfy (1.6). Consequently, the action
of any element UN(A), A ∈ Sp(2d,Z) can be obtained, by composing the appropriate
operators given above for the generators.
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1.2.2 Formulas through averaging

A different approach to obtain formulas for the operators UN(A) is through averaging of
the representation over the Heisenberg group. With this approach, for any A ∈ Sp(2d,Z)
satisfying A ≡ ±I (mod 4), we obtain a formula for the propagator UN(A) in terms of the
elementary operators T̃N(~n) (if N is odd the formula is valid with out the parity condition).
This formula (which is based on the p-adic formula given in [30, page 37]), is new in this
context and we will make repeated use of it in what follows.

Recall that we defined the operator UN(A) to be an intertwining operator of the rep-
resentations π and πA. It is easily verified that an operator defined by averaging of the
form

F (π, πA) =
∑

h∈HN/Z(HN )

π(h)πA(h−1),

is always an intertwining operator of these representations. Therefore, (by Schur’s lemma)
it will coincide with the original operator, after multiplication by some constant (i.e.,
F (π, πA) = c(A)UN(A)). Note that in general this constant might be zero.

Proposition 1.4. Let A ∈ Sp(2d,Z) be a matrix satisfying A ≡ −I (mod 4). Denote
by kerN(A − I), the kernel of the map (A − I) : (Z/NZ)2d → (Z/NZ)2d. Then, the
intertwining operator F (π, πA) = c(A)UN(A) with |c(A)|2 = N2d| kerN(A − I)|, and in
particular c(A) 6= 0.

Proof. Identify the quotient HN/Z(HN) with (Z/NZ)2d, so that

F (π, πA) =
∑

(Z/NZ)2d

T̃N(~n)T̃N(−~nA). (1.10)

Since the operator UN(A) is unitary, F (π, πA)F (π, πA)∗ = |c(A)|2I. On the other hand,
plugging in (1.10) gives,

F (π, πA)F (π, πA)∗ =
∑
~n,~m

T̃N(~n)T̃N(−~nA)T̃N(~mA)T̃N(−~m) =

=
∑
~n,~m

eN(ω((~n− ~m)A, ~m))T̃N(~n)T̃N(−~m)T̃N(−~nA)T̃N(~mA) =

=
∑
~n,~m

eN(ω((~n− ~m)A, ~m)− ω(~n, ~m))T̃N(~n− ~m)T̃N(−(~n− ~m)A).

Now, change summation variable ~k = ~n− ~m to get

F (π, πA)F (π, πA)∗ =
∑
~k,~m

eN(ω(~k(A− I), ~m))T̃N(~k)T̃N(−~kA) =

=
∑
~k

T̃N(~k)T̃N(−~kA)
∑
~m

eN(ω(~k(A− I), ~m)).
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Since the second sum vanishes whenever ~k(A− I) 6= 0 (mod N), we get that

F (π, πA)F (π, πA)∗ = N2d
∑

~k≡~kA(N)

T̃N(~k)T̃N(−~kA).

Finally, when A ≡ −I (mod 4) the condition ~k ≡ ~kA (mod N) implies that the product

T̃N(~k)T̃N(−~kA) = I, which concludes the proof.

When A ≡ −I (mod 4) the constant c(A) does not vanish and we can divide by it to
get a formula for UN(A):

UN(A) =
1

c(A)
F (π, πA), (∀A ≡ −I (mod 4)). (1.11)

When A ≡ I (mod 4) the constant c(A) might be zero. However, in this case c(−A) 6= 0
and since UN(A) = UN(−A)UN(−I) we get the formula:

UN(A) =
1

c(−A)
F (π, π−A)UN(−I), (∀A ≡ I (mod 4)). (1.12)

Remark 1.4. When N is odd, the condition ~k ≡ ~kA (mod N) implies that the product

T̃N(~k)T̃N(−~kA) = I for any A ∈ Sp(2d,Z) (without the parity condition). Thus, for odd
N we can use both formulas for any symplectic matrix.

From these formulas we get the following corollaries:

Corollary 1.5. Let A,B ∈ Sp(2d,Z) be matrices that commute modulo N . If B ≡ ±I
(mod 4) (or if N is odd), then the corresponding operators UN(A),UN(B) commute as well.

Proof. If B ≡ −I (mod 4) (or if N is odd), use formula (1.11) for UN(B) and apply the
intertwining equation (1.6) for the action of UN(A).

UN(B)UN(A) = UN(A)
1

c(B)

∑
~n∈(Z/NZ)2d

T̃N(~nA)T̃N(−~nBA).

Now, change summation variable ~n 7→ ~nA (using the fact that A and B commute), to get
UN(B)UN(A) = UN(A)UN(B).

Otherwise, use formula (1.12) for UN(B). The operators F (π, π−B) and UN(−I) both
commute with UN(A) and hence UN(B) commutes with UN(A) as well.

Corollary 1.6. The trace of UN(A) is given (up to phase) by:

• For A ≡ −I (mod 4) (or for odd N),

|Tr(UN(A))| =
√
| kerN(A− I)|.
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• For N even, and A ≡ I (mod 4), either Tr(UN(A)) = 0 or

|Tr(UN(A))| =

√
| ker2N(A2 − I)|
| kerN(A+ I)|

.

In particular |Tr(UN(A))| ≤ 2d
√
| kerN(A− I)|.

Proof. In the first case, use formula (1.11) and take trace (noting that when ~n 6= ~nA
(mod N), then Tr(T̃N(~n)T̃N(−~nA)) = 0). Now, plug in |c(A)| from proposition 1.4 to get
the result.

Otherwise, use formula (1.12). Using formula (1.11) for UN(−I) and taking trace we
get that ∀~n ∈ Z2d,

Tr(T̃N(~n(A+ I))UN(−I)) = 2d.

Therefore,

|Tr(UN(A))| = 2d

|c(−A)|
|
∑
~n(N)

e2N(ω(~n, ~nA))|.

Finally, similar to a Gauss sum, when the sum
∑
e2N(ω(~n, ~nA)) does not vanish, its abso-

lute value is given by

|
∑
~n(N)

e2N(ω(~n, ~nA))| =
Nd

√
| ker2N(A2 − I)|

2d
.

The bound |Tr(UN(A))| ≤ 2d
√
| kerN(A− I)|, is a consequence of the following observa-

tion,
| ker2N(A2 − I)| ≤ 22d| kerN(A2 − I)| ≤ 22d| kerN(A− I)|| kerN(A+ I)|.

1.3 Multiplicativity

The quantum propagators, UN(A), are unique up to a phase factor and thus define a
projective representation of Sp(2d,Z/2NZ), that is:

UN(AB) = c(A,B)UN(A)UN(B). (1.13)

From corollary 1.5 we infer that: For oddN , ifAB = BA (mod N), then c(A,B) = c(B,A)
as well. For even N , this holds if AB = BA (mod 2N) and we restrict to the subgroup of
matrices congruent to ±I modulo 4. This property by itself already allows us to define the
Hecke operators (see chapter 2). However, it is more convenient to work with a quantization
such that the map A 7→ UN(A) forms a representation of the symplectic group. In this
section we show that such a quantization indeed exists:
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Theorem 7. For each N > 1, there is a special choice of phases for the propagators, such
that the map A 7→ UN(A) is a representation of Sp(2d,Z/NZ) when N is odd. Whereas
for even integers, this map is a representation of the subgroup of Sp(2d,Z/2NZ) composed
of all matrices congruent to ±I modulo 4.

In order to prove theorem 7 for all integers, it is sufficient to prove it separately for odd
integers, and for integers of the form N = 2k (see [27, section 4.1]).

1.3.1 Odd integers

When N is an odd integer, we follow a proof of Neuhauser [31]. As we apply this proof
for the rings Z/NZ (rather than finite fields as done in [31]) we review the proof in some
detail:

Let N ≥ 1 be an odd integer. Since −I is in the center of Sp(2d,Z/NZ), by corollary
1.5, ∀A ∈ Sp(2d,Z/NZ)

UN(−I)UN(A) = UN(A)UN(−I).

On the other hand, the operator UN(−I) acts by UN(−I)ψ(x) = ψ(−x) (formula 1.8).
Hence, the space H+

N = {ψ ∈ HN |ψ(−x) = ψ(x)}, is an invariant subspace under the
action of Sp(2d,Z/NZ).

Denote by U+(A), the restriction of UN(A) to H+
N , to get that

U+(AB) = c(A,B)U+(A)U+(B). (1.14)

By taking determinants of equations (1.13) and (1.14) we get:

det(UN(AB)) = c(A,B)N
d

det(UN(A)) det(UN(B)),

det(U+(AB)) = c(A,B)
Nd+1

2 det(U+(A)) det(U+(B)),

(note that the dimension ofH+ is Nd+1
2

). Define κ(A) = det(UN (A))
det(U+(A))2

, then c(A,B) = κ(A)κ(B)
κ(AB)

,

and A 7→ κ(A)UN(A) is a representation of Sp(2d,Z/NZ).

1.3.2 Dyadic powers

We now give the proof for integers of the form N = 2k. In the case of d = 1 this was proved
in [27, section 4.4] by prescribing explicit phases for all generators and proving that it is
indeed a representation (this amounted to proving an identity on Gauss sums). However,
for d > 1, we found this approach too difficult to follow through. We thus take a different
approach by induction on the exponent k. We define a subspace H0

N ⊂ HN of dimension
Md = (N/2)d, invariant under the action of Sp2(2d, 2N) (i.e., the matrices congruent to
I modulo 2) and under the action of certain elementary operators. We then construct a
representation of the Heisenberg group HM on this space, and show that it is equivalent
to the original representation on L2(Z/MZ)d. We can thus connect the restriction of the
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quantum propagators to the subspaceH0
N with the quantum propagators onHM , for which

by induction we already have multiplicativity.
Define the subspace

H0
N = {ψ ∈ HN |ψ(~y) = 0, ∀~y 6= 0 (mod 2)} ,

and the congruence subgroup

Sp2(2d, 2N) = {A ∈ Sp(2d,Z/2NZ)|A ≡ I (mod 2)} .

Lemma 1.7. For N = 2k, k ≥ 2 and any A ∈ Sp2(2d, 2N), the space H0
N is invariant

under the action of UN(A).

Proof. For any matrix

(
E F
G H

)
∈ Sp2(2d, 2N) we have a Bruhat decomposition:(

E F
G H

)
=

(
H t−1

0
0 H

) (
I H tF
0 I

) (
I 0

H−1G I

)
.

Consequently, the group Sp2(2d, 2N) is generated by the family of matrices

u+(X) =

(
I X
0 I

)
, u−(Y ) =

(
I 0
Y I

)
, s(T ) =

(
T t 0
0 T−1

)
where X,Y, T ∈ Mat(d,Z/2NZ) , X = X t , Y = Y t , X ≡ Y ≡ 0 ( mod 2) , T ≡ I (
mod 2). Therefore, it is sufficient to show that H0

N is invariant under the action of the
corresponding operators. This can be done directly, using the formulas given in section
1.2.1.

Lemma 1.8. For N = 2k, k ≥ 2, the space H0
N is invariant under the action of T̃N(~n) for

all ~n = (~n1, ~n2) such that ~n1 ≡ 0 (mod 2). Furthermore, if ~n1 ≡ 0 (mod N) and ~n2 ≡ 0
(mod N/2) then the restriction T̃N(~n)|H0

N
= I.

Proof. Direct computation using (1.4).

Define two subgroups of Sp2(2d, 2N),

S2(2N) =

{(
E F
G H

)
∈ Sp2(2d, 2N)

∣∣∣∣F ≡ 0 (mod 4)

}
Ŝ2(2N) =

{(
E F
G H

)
∈ Sp2(2d, 2N)

∣∣∣∣G ≡ 0 (mod 4)

}
Let J =

(
0 I
−I 0

)
, then the map A 7→ −JAJ is an obvious isomorphism of these groups

(in both directions). Another, less trivial isomorphism is given by the map j : S2 → Ŝ2,
defined by

j(

(
E F
G H

)
) =

(
E F/2
2G H

)
. (1.15)
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Proposition 1.9. For any N = 2k, there is a choice of phases so that for any A,B ∈
S2(2N), UN(AB) = UN(A)UN(B). There is another choice such that for any A,B ∈
Ŝ2(2N), UN(AB) = UN(A)UN(B).

Proof. First note that it suffices to prove multiplicativity for S2(2N). For any B ∈ Ŝ2(2N)
there is B̃ ∈ S2(2N) such that B = −JB̃J . Therefore, if we have multiplicativity for
S2(2N), we can define for any B ∈ Ŝ2(2N)

UN(B) = UN(J)∗UN(B̃)UN(J),

to get a multiplicativity for Ŝ2(2N).
We now show multiplicativity for S2(2N) by induction on k. For k = 1, the group

S2(4) includes only lower triangular matrices, for which the formulas given in 1.2.1 are
multiplicative.

For k ≥ 2, by lemma 1.7 the space H0
N is invariant under the action of Sp2(2d, 2N) and

hence also under the subgroup S2(2N). For A ∈ S2(2N) denote by U0
N(A) the restriction

of UN(A) to H0
N .

Let M = 2k−1 = N/2 and consider the Heisenberg group HM defined in section 1.1.2,
together with the representation on L2(Z/MZ):

π(~n, t) = e2M(t)T̃M(~n).

We now construct another representation on H0
N ⊆ L2(Z/NZ):

π̃(~n, t) = eN(t)T̃ 0
N((2~n1, ~n2)),

where T̃ 0
N((2~n1, ~n2)) is the restriction of T̃N((2~n1, ~n2)) to H0

N (by lemma 1.8 this is well
defined). From the second part of lemma 1.8 we see that the action on the center is
given by π̃(Mn, t) = eN(t)I. Consequently, by proposition 1.2 there is a unitary operator
U : H0

N → L2(Z/MZ) such that π̃ = U−1πU .
The intertwining equation for UN(A), imply that the restricted operators satisfy

U0
N(A)∗π̃(n, t)U0

N(A) = π̃(nj(A), t),

where j : S2 → Ŝ2 is the isomorphism defined in (1.15). Consequently, UU0
N(A)U−1 is the

intertwining operator between π and πj(A), and by the uniqueness of the quantization we
get:

UU0
N(A)U−1 = κ(A)UM(j(A)).

We can assume by induction that A 7→ UM(A) restricted to Ŝ2(2M) is multiplicative.
Finally, for A,B ∈ S2(2N) we have

UN(A)UN(B) = c(A,B)UN(AB),

hence the restricted operators satisfy U0
N(A)U0

N(A) = c(A,B)U0
N(AB) as well. Conjugating

by U we get

κ(A)UM(j(A))κ(B)UM(j(B)) = c(A,B)κ(AB)UM(j(AB)),
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implying c(A,B) = κ(A)κ(B)
κ(AB)

. Therefore the map A 7→ κ(A)UN(A) defined on S2(N), is
multiplicative.

Because the subgroup of matrices congruent to ±I modulo 4 is a subgroup of S2(N),
this concludes the proof of theorem 7.
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Chapter 2

Hecke Theory

In this chapter we introduce Hecke theory for the multidimensional torus. For a given
symplectic matrix A ∈ Spθ(2d,Z) with distinct eigenvalues, we follow the lines of [27]
and construct “Hecke operators”, a group of commuting operators that commute with the
propagator UN(A). We show that this group of symmetries reduces almost all degeneracies
in the spectrum.

Remark 2.1. The requirement that the matrix A has distinct eigenvalues, is crucial for
our construction. In fact when there are degenerate eigenvalues, the group of matrices
commuting with A modulo N is not necessarily commutative. In such a case, it is not
clear how one should define the Hecke group and Hecke operators.

Remark 2.2. In sections (2.3) and (2.5), in order to simplify the discussion, we will assume
there are no rational isotropic subspaces invariant under the action of A. However, we
note that the results presented in these sections (i.e., the bound on the number of Hecke
operators in lemma 2.7 and the dimensions of the joint eigenspaces in proposition 2.8) are
still valid with out this assumption, and the proofs are analogous.

2.1 Hecke operators

In [27] Kurlberg and Rudnick constructed the Hecke operators (for A ∈ Sp(2,Z)) by
identifying integral matrices with elements of the (commutative) integral ring of a certain
quadratic extension of the rationals. We follow the same idea, except that for A ∈ Sp(2d,Z)
the correct ring to work with is the integral ring of a higher extension or rather a product
of several such rings.

Let A ∈ Spθ(2d,Z) with 2d distinct eigenvalues. Let {λi}2d
i=1 be all of it’s eigenvalues

ordered so that λd+i = λ−1
i . Denote by Di = Z[λi] = Z[λ−1

i ], i = 1, 2, . . . , 2d, and define
the ring

D =

{
β = (β1, . . . , β2d) ∈

2d∏
i=1

Di|∃f ∈ Z[t], f(λi) = βi

}
.
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This ring is naturally isomorphic to the ring Z[t]/(PA), where PA is the characteristic
(and minimal) polynomial for A. Thus, there is an embedding ι : D ↪→ Mat(2d,Z)
(contained in the centralizer of A), given by

D → Z[t]/(PA) ↪→ Mat(2d,Z)
β 7→ f 7→ f(A)

Lemma 2.1. To any element β = f(λ) ∈ D define an element β∗ ∈
∏
Di, such that

β∗i = f(λ−1
i ). Then, the map β 7→ β∗ is an automorphism of D. Furthermore, to any

~n, ~m ∈ Z2d and any β ∈ D, the symplectic form ω satisfies:

ω(~nι(β), ~m) = ω(~n, ~mι(β∗)).

Proof. The map β 7→ β∗ is obviously injective, and it respects addition and multiplication.
Therefore, to show that it is an automorphism it is sufficient to show that for any β ∈ D,
β∗ ∈ D as well.

Since A is a symplectic map, the polynomial h(t) = 1−PA(t)
t

has integer coefficients.
Therefore, for all f ∈ Z[t] the polynomial g = f ◦ h has integer coefficients as well. Notice
that this polynomial satisfies g(λi) = f(λ−1

i ) for all eigenvalues. Hence, if β ∈ D such that
β = f(λ) then β∗ = g(λ) ∈ D as well.

The second part is straightforward, indeed if β = f(λ) ∈ D, then

ω(~nι(β), ~m) = ω(~nf(A), ~m) = ω(~n, ~mf(A−1)) = ω(~n, ~mι(β∗)).

Corollary 2.2. For any β ∈ D, the matrix ι(β) is symplectic if and only if ββ∗ = 1.
Furthermore, for any integer M > 1, if ββ∗ ≡ 1 (mod MD) then ι(β) is symplectic
modulo M .

Define a “norm map” N : D → D sending β 7→ ββ∗. Given an integer M > 1, the
inclusion ι : D ↪→ Mat(2d,Z) induces a map ιM : D/MD → Mat(2d,Z/MZ), and the
norm map N induces a well defined map NM : (D/MD)∗ → (D/MD)∗. The norm map is
multiplicative, hence the map NM is a group homomorphism and it’s kernel correspond to
symplectic matrices. Consequently

ιM(kerNM) ⊆ Sp(2d,Z/MZ),

is a commutative subgroup of symplectic matrices, that commute with A modulo M . We
are now ready to define the Hecke group.

Definition 2.3. Define the Hecke group

CA(N) =

{
{ιN(β)|β ∈ kerNN} N odd
{ι2N(β)|β ∈ kerN2N , β ≡ ±1 (mod 4)} N even

Now take the Hecke operators to be UN(B), B ∈ CA(N).

Remark 2.3. Note that if A 6≡ ±I (mod 4) and N is even, then UN(A) is not one of the
Hecke operators. Nevertheless, corollary 1.5 ensures that it still commutes with all of them.
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2.2 Galois orbits and invariant subspaces

The structure of the Hecke group CA(N) is closely related to the decomposition of the
rational vector space Q2d =

⊕
Eθ, into irreducible invariant subspaces under the right

action of A. We now make a slight detour, and describe this decomposition in terms of
Galois orbits of the eigenvalues of A.

Let ΛQ denote the set of eigenvalues of A, and GQ the absolute Galois group. The group
GQ acts on ΛQ, and we denote by ΛQ/GQ the set of Galois orbits. Since the matrix A is
symplectic, if λ ∈ ΛQ is an eigenvalue, then λ−1 ∈ ΛQ as well. To each orbit θ ∈ ΛQ/GQ
there is a unique orbit θ∗ such that λ ∈ θ ⇔ λ−1 ∈ θ∗. If θ = θ∗ we say that the orbit is
symmetric, and otherwise nonsymmetric. For any orbit θ we define the symplectic orbit
θ̄ = θ ∪ θ∗.

Proposition 2.4. There is a unique decomposition into irreducible left invariant subspaces:
Q2d =

⊕
ΛQ/GQ

Eθ.

• To each orbit θ ∈ ΛQ/GQ, there is a corresponding subspace (denoted by Eθ), such
that the eigenvalues of the restriction A|Eθ are the eigenvalues λ ∈ θ.

• For any two orbits θ, θ′, unless θ′ = θ∗, then Eθ and Eθ′ are orthogonal with respect
to the symplectic form.

• Let ~vθ∗ be a left eigenvector for A with eigenvalue in θ∗. Then, the projection of ~n to
Eθ with respect to the above decomposition vanishes, if and only if ω(~n,~vθ∗) = 0.

Proof. Appendix A, lemma A.1 and corollary A.4.

Remark 2.4. There is an alternative way to describe this decomposition, using the Char-
acteristic polynomial PA of A. Any invariant irreducible subspace corresponds to an irre-
ducible factor of PA (which is integral by Gauss’s lemma). The roots of this irreducible
factor are then precisely the eigenvalues in the Galois orbit. As a consequence we can
deduce, that the product of all eigenvalues in one orbit is an integer that divides 1 and can
thus be only ±1 (for a symmetric orbit by its definition the product is always +1).

For each symplectic orbit θ̄ we define the space Eθ̄ = Eθ + Eθ∗ . Proposition 2.4 then
implies that for θ symmetric Eθ = Eθ̄ is a symplectic space (i.e., the restriction of the
symplectic form to this subspace is non-degenerate), while for θ nonsymmetric the spaces
Eθ, Eθ∗ are both isotropic (i.e., the restriction of the symplectic form vanishes) and Eθ̄ =
Eθ ⊕ Eθ∗ is again symplectic.

2.3 Reduction to Galois orbits

Consider the action of the absolute Galois group GQ, on the set of eigenvalues ΛQ =
{λ1, . . . , λ2d}. For each orbit θ ∈ ΛQ/GQ fix a representative λθ (for nonsymmetric orbits
we take λθ∗ = λ−1

θ ). Let Kθ = Q(λθ) be field extensions, and OKθ the corresponding
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integral rings. For any symmetric orbit, λθ and λ−1
θ are Galois conjugates. Consequently,

if we denote by Fθ = Q(λθ + λ−1
θ ), then Kθ/Fθ are quadratic field extensions.

Note that every element β ∈ D, is uniquely determined by its components on each orbit
βθ ∈ Z[λθ] ⊆ OKθ (because if λi = λσθ for some σ ∈ GQ, then βi = f(λi) = f(λσθ ) = βσθ ).
We can thus identify the ring D as a subring of

∏
ΛQ/GQ

OKθ .

Lemma 2.5. The norm map N , acts on a component corresponding to a symmetric or-
bit θ, through the corresponding field extension norm map, NKθ/Fθ , and on a component
corresponding to a nonsymmetric orbit θ by βθ 7→ βθβθ∗.

Proof. Let β ∈ D, then βθ = f(λθ) for some f ∈ Z[t]. For any orbit θ, (N (β))θ =
f(λθ)f(λ−1

θ ). When the orbit θ is symmetric this is precisely NKθ/Fθ(βθ)), and when it is
nonsymmetric it is βθβθ∗ .

Lemma 2.6. There is s ∈ N, such that

s
∏

ΛQ/GQ

OKθ ⊆ D ⊆
∏

ΛQ/GQ

OKθ .

Proof. The rings OKθ are isomorphic (as Z modules) to Z|θ|, and hence the product∏
ΛQ/GQ

OKθ
∼= Z2d. On the other hand D ∼= Z[t]/PA ∼= Z2d as well (again as Z mod-

ules). The result is now immediate since any subgroup of Z2d with the same rank satisfies
this property.

We can now estimate the number of Hecke operators.

Lemma 2.7. The number of elements in CA(N), satisfy

Nd−ε �ε |CA(N)| �ε N
d+ε

Proof. To simplify the discussion, we will assume that there are no rational isotropic in-
variant rational subspaces (i.e., all orbits are symmetric). The Hecke group (for N even)
is a subgroup of ι2N(kerN2N) with index bounded by 2d

2
, it is thus sufficient to show that

for all N ,
Nd−ε � | kerNN | � Nd+ε.

For each orbit θ ∈ ΛQ/GQ, the norm map NKθ/Fθ , induces a map on the group of
invertible elements

NNOFθ : (OKθ/NOKθ)
∗ → (OKθ/NOKθ)

∗.

Let C(NOFθ) be the kernel of this map. For any β ∈ D, denote by β̄ ∈ D/ND its class
modulo ND, by βθ its component in OKθ , and by β̄θ the class of βθ modulo NOKθ . Then
the map β̄ 7→ β̄θ is well defined ( because, if β ∈ ND then obviously βθ ∈ NOKθ), and by
lemma 2.6, the map

D/ND →
∏

θ∈ΛOKθ/NOKθ

β̄ 7→ (β̄θ)θ

23



has kernel and co-kernel of order bounded by |D/sD| = s2d. Furthermore, the restriction
of this map to the multiplicative group and to the subgroup of norm one elements also has
bounded kernel and co-kernel. Thus, it is suffices to show that ∀θ ∈ ΛQ/GQ

Ndθ−ε � |C(NOFθ)| � Ndθ+ε,

where dθ = |θ|
2

= [Fθ : Q]. This is the estimate on the number of norm one elements in the
ring OKθ/NOKθ which is proved in appendix B (proposition B.3).

Remark 2.5. If there are invariant rational isotropic subspaces the proof is analogous. For
any symplectic orbit θ̄ = θ∪θ∗ corresponding to a nonsymmetric orbit, instead of evaluating
the number of elements in C(NOKθ) one needs to evaluate the size of (OKθ/NOKθ)

∗ and
show

Ndθ−ε � |(OKθ/NOKθ)
∗| � Ndθ+ε,

where now dθ = |θ̄|
2

= |θ|.

2.4 Additional structure

So far we have identified a set of commuting integral matrices with the commutative ring
D. We are now going to identify the action of these matrices on Z2d, with the action of D
on an appropriate ideal I. This identification allows us think of both the matrices and the
lattice points on which they act as elements of the same space D,

For every orbit θ ∈ ΛQ/GQ, take a left eigenvector ~vθ with eigenvalue λ−1
θ and coefficients

in sOKθ . Therefore ~v = (~vθ)θ is a (left) eigenvector with coefficients in
∏
sOKθ ⊆ D, such

that ~vι(β∗) = β~v. Define the map ι∗ : Z2d → D, by ι∗(~n) = ω(~n,~v), and the ideal
Im(ι∗) = I ⊆ D. To see that I is indeed an ideal notice that if ν = ι∗(~n) ∈ I and β ∈ D
with B = ι(β) then

βν = βι∗(~n) = βω(~n,~v) = ω(~n,~vι(β∗)) = ω(~nι(β), ~v) = ι∗(~nB),

so βν ∈ I as well. Furthermore, by the third part of proposition 2.4, we see that (ι∗(~n))θ =
0 if and only if the projection of ~n to Eθ vanishes. In particular ι∗(~n) = 0 implies ~n = 0
and the map ι∗ : Z2d → I is an isomorphism of Z modules.

Now, for any integerM ∈ N, the map ι∗ induces a group isomorphism ι∗M : (Z/MZ)2d →
I/MI. This map is compatible with the map ιM : D/MD → Mat(2d,Z/MZ), in the sense
that for any B = ιM(β̄), and ~n ∈ (Z/NZ)2d we have ι∗M(~nB) = β̄ι∗M(~n) in I/MI.

2.5 Hecke eigenfunctions

Since all the Hecke operators commute with UN(A), and with each other, there is a basis
of joint eigenfunctions of UN(A) and the Hecke operators. Such a basis is called a Hecke
basis. We now show that the Hecke symmetries cancel most of the degeneracies in the
spectrum of UN(A), implying that the Hecke basis is essentially unique.
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The action of the Hecke group on the Hilbert space HN , induces a decomposition into
joint eigenspaces

HN =
⊕
χ

Hχ,

where χ runs over the characters of the Hecke group.

Proposition 2.8. The dimension of any Hecke eigenspace satisfies

dimHχ �ε N
ε.

Proof. Again, for simplicity we will assume all orbits are symmetric. The operator

Pχ =
1

|CA(N)|
∑
CA(N)

χ(B)−1UN(B)),

is a projection operator to the eigenspace Hχ. Consequently, the dimension of Hχ is given
by its trace, dimHχ = Tr(Pχ).

By corollary 1.6, for any B ∈ CA(N),

|Tr(UN(B))| ≤ 2d
√

kerN(B − I).

Note that while for even N the operator UN(B) depends on B modulo 2N , this bound
only depends on B modulo N . Hence if B = ιN(β) (mod N), then using the identification
ι∗N : Z/NZ → I/NI we can write this bound as,

|Tr(UN(B)| ≤ 2d
√

# {ν ∈ I/NI|ν(β − 1) ≡ 0 (mod NI)}.

Since both D and the ideal I are isomorphic (as Z modules) to Z2d, there is s′ ∈ N such
that s′D ⊆ I ⊆ D and we can replace I/NI by D/ND to get

|Tr(UN(B)| ≤ (2s′)d
√

# {ν ∈ D/ND|ν(β − 1) ≡ 0 (mod ND)}.

We now replace the sum over CA(N) with a sum over ker(NN) in the bound dim(Hχ) ≤
1

|CA(N)|
∑

CA(N) |Tr(UN(A))| (losing at most a constant factor) to get the bound

dim(Hχ) �
1

|CA(N)|
∑

β∈kerNN

√
# {ν ∈ D/ND|ν(β − 1) ∈ ND},

Because the map ker(NN) →
∏

ΛQ/GQ
C(NOFθ) has bounded kernel (as in the proof of 2.7),

we can replace D/ND with
∏

ΛQ/GQ
OKθ/NOKθ , and the sum over the group kerNN , to a

sum over
∏

ΛQ/GQ
C(NOFθ) to get

dim(Hχ) �
1

|CA(N)|
∏

ΛQ/GQ

S1(NOKθ),
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where,

S1(NOFθ) =
∑

β∈C(NOFθ )

√
# {ν ∈ OKθ/NOKθ |ν(β − 1) = 0}.

It now suffices to show that ∀θ ∈ ΛQ/GQ, S1(NOFθ) �ε N
dθ+ε (recall 1

CA(N)
= Oε(N

−d+ε).

This is a counting argument on elements in the ring OKθ/NOKθ that is proved in appendix
B (proposition B.6).

Remark 2.6. The proof in the nonsymmetric case is analogous. For any nonsymmetric
orbit one needs to bound sums of the form∑

(OFθ/NOFθ )
∗

√
# {ν1, ν2 ∈ OKθ/NOKθ |ν2(β − 1) = ν2(β−1 − 1) = 0}.

This can be done using the same methods.
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Chapter 3

Arithmetic Quantum Unique
Ergodicity

This chapter is devoted to the proof of Arithmetic Quantum Unique Ergodicity (theorem
3). We fix a matrix A ∈ Spθ(2d,Z) with distinct eigenvalues and no invariant isotropic
rational subspaces, and show that for any smooth observable f ∈ C∞(T2d), the expectation
values for OpN(f) in any Hecke eigenfunction ψ, satisfy:

|〈OpN(f)ψ, ψ〉| �ε,f N
− d(f)

4
+ε,

where d(f) = minf̂(~n) 6=0 d~n, and 2d~n is the dimension of the smallest invariant subspace
containing ~n.

Much of the proof goes along the lines of [27]. The first step is to make a reduction
to a theorem regarding elementary observables. Next, we reduce the problem to a bound
on the fourth moment of the matrix elements. However, unlike the two dimensional case,
for this approach to work here we first need to restrict the elementary operator to an
appropriate subspace. Finally, we use averaging over the Hecke group, to transform the
moment calculation into a counting problem, which is then solved using the connection of
the Hecke group with the groups C(NOFθ) ⊆ (OKθ/NOKθ)

∗.

3.1 Reduction to elementary observables

In order to prove theorem 3 it is sufficient to prove it for elementary observables of the
form OpN(e~n), 0 6= ~n ∈ Z2d, that is, to show that the following theorem holds.

Theorem 8. Let 0 6= ~n ∈ Z2d and let ψ be an eigenfunction of all the Hecke operators.
Then, the diagonal matrix elements satisfy

|〈T̃N(~n)ψ, ψ〉| �ε ‖~n‖4d2 N−d~n/4+ε

The proof of theorem 3 from theorem 8 is immediate, due to the rapid decay of the
Fourier coefficients.
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Remark 3.1. The estimate in theorem 8 is in fact valid also when there are invariant rational
isotropic subspaces, as long as ~n is not contained in any of these subspaces.

3.2 Reduction to a moment calculation

In order to prove theorem 8, we estimate the fourth moment of the diagonal matrix elements
in a Hecke basis, ∑

ψ

|〈T̃N(~n)ψ, ψ〉|4.

However, when summing over all the Hecke eigenfunctions, the fourth moment is of order
Nd−2d~n (where 2d~n the dimension of the smallest (symplectic) invariant subspace containing
~n). Thus, when ~n is contained in an invariant subspace of dimension ≤ d, we can not use
this method directly to bound the size of the individual matrix elements. Instead, we would
like to make the sum only over a subset of the Hecke eigenfunctions. For that purpose, for
each ~n ∈ Z2d, and Hecke eigenfunction ψ, we introduce a subspace H~n,ψ ⊆ HN , invariant
under the action of T̃N(~n) and the Hecke operators. Theorem 8 is then proved by estimating
the fourth moment for the restriction of T̃N(~n) to H~n,ψ.

Let ~n ∈ Z2d. Recall the decomposition into irreducible invariant subspaces Q2d =
⊕

Eθ
described in section 2.2, and let Λ~n/GQ be the set of orbits θ ∈ ΛQ/GQ for which the
projection of ~n to Eθ vanishes. Denote by E~n the minimal invariant subspace containing
~n. We can decompose E~n =

∑
θ 6∈Λ~n/G

Eθ, and in particular

2d~n = dimE~n =
∑

θ 6∈Λ~n/GQ

2dθ,

where 2dθ = dimEθ = |θ| (recall that Eθ is of even dimension because it is symplectic).
Define the lattice Z~n = E~n ∩ Z2d, then by the third part of proposition 2.4 we have

Z~n =
{
~m ∈ Z2d|ι∗(~m)θ = 0, ∀θ ∈ Λ~n/GQ

}
.

Definition 3.1. For ψ ∈ HN a Hecke eigenfunction, define the subspace H~n,ψ ⊆ HN to be
the minimal subspace containing ψ and invariant under the action of all T̃N(~m), ~m ∈ Z~n.

Lemma 3.2. The space H~n,ψ, is invariant under the action of the Hecke operators.

Proof. For B = ι2N(β̄) ∈ CA(N) and ~m ∈ Z~n, let ~m′ = ~mι(β), where β ∈ D is a represen-
tative of β̄. Then ~m′ ≡ ~mB (mod 2N) and ~m′ ∈ Z~n (because ∀θ ∈ Λ~n/GQ, ω(~m′, ~vθ) =
βθω(~m,~vθ) = 0). Now, if φ′ = UN(B)φ ∈ UN(B)H~n,ψ (for some φ ∈ H~n,ψ), then

T̃N(~m)φ′ = UN(B)T̃N(~mB)φ = UN(B)T̃N(~m′)φ,

hence T̃N(~m)φ′ ∈ UN(B)H~n,ψ as well (since H~n,ψ is invariant under T̃N(~m′)). Therefore,
the space UN(B)H~n,ψ contains ψ and is invariant under the action of T̃N(~m), ∀~m ∈ Z~n.
Thus, from the minimality condition H~n,ψ ⊆ UN(B)H~n,ψ, and since UN(B) is invertible we
have UN(B)H~n,ψ = H~n,ψ.
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When Λ~n = ∅ then Z~n = Z2d and H~n,ψ = HN , but otherwise it is a proper subspace
and we can give an estimate for its dimension.

Proposition 3.3. The dimension of the subspace H~n,ψ satisfies

dim(H~n,ψ) �ε N
d~n+ε,

where the implied constant does not depend on ~n or on ψ.

Proof. Consider a subgroup of the Hecke group

C0(N) =
{
ιN(β̄) ∈ CA(N)|βθ = 1, ∀θ /∈ Λ~n/GQ

}
,

in the sense that there is a representative β ∈ D ⊆
∏
OKθ satisfying this condition. Notice

that this group acts trivially on Z~n modulo 2N (i.e., ∀B ∈ C0(N) and ∀~m ∈ Z~n, ~mB ≡ ~m
(mod 2N)).

Let χ(B), B ∈ CA(N), be the eigenvalues corresponding to ψ, and consider the sub-
space

H0
χ = {φ ∈ HN |UN(B)φ = χ(B)φ, ∀B ∈ C0(N)} .

Since C0(N) acts trivially on Z~n, then ∀~m ∈ Z~n and B ∈ C0(N), UN(B)T̃N(~m) =
T̃N(~m)UN(B) commute, hence H0

χ is invariant under T̃N(~m), ∀~m ∈ Z~n. Obviously ψ ∈ H0
χ,

hence from minimality H~n,ψ ⊆ H0
χ and it suffices to bound the dimension of H0

χ.
The eigenspace H0

χ decomposes into joint eigenspaces of all the Hecke operators

H0
χ =

⊕
Hχ′ ,

where the sum is only on characters χ′ that identify with χ on C0(N). Note that χ′|C0(N)
=

χ|C0(N)
imply that they differ by a character of CA(N)/C0(N) (and vice versa). Therefore

(by proposition 2.8) the dimension

dimH0
χ =

∑
χ′|C0

=χ|C0

dimHχ′ �ε N
ε[CA(N) : C0(N)].

Following the same lines as in the proof of lemma 2.7, one can show [CA(N) : C0(N)] �ε

Nd~n+ε, concluding the proof. Notice that the implied constants depend only on the set of
orbits Λ~n/GQ. But, as there are at most 2d possibilities for such subsets, we can take the
same constant for all the spaces H~n,ψ.

For ~m ∈ Z~n, denote by T̃ 0
N(~m) the restriction of T̃N(~m) to H~n,ψ. Then, similar to the

original operators, the trace of the restricted operators vanishes for sufficiently large N .

Lemma 3.4. There is r ∈ N (depends only on Z~n) such that for any ~m ∈ Z~n,

|Tr(T̃ 0
N(~m))| ≤

{
dimH~n,ψ ~m ≡ 0 (mod N ′)

0 otherwise
,

where N ′ = N
gcd(N,r2)

.
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Proof. Recall that the space E~n is a symplectic subspace. Let {ei, fi} be a symplectic basis
(i.e., ω(ei, fj) = δi,j and ω(ei, ej) = ω(fi, fj) = 0), and let r ∈ Z such that rei, rfi ∈ Z2d.

Fix ~m ∈ E~n, and consider the decomposition ~m =
∑d~n

i=1(aiei + bifi). Then rai = ω(~m, rfi)
and rbi = −ω(~m, rei) are integers.

Notice that for all i = 1, . . . , d~n,

Tr(T̃ 0
N(~m)) = Tr(T̃ 0

N(−rfi)T̃ 0
N(~m)T̃ 0

N(rfi)) = eN(rai)Tr(T̃ 0
N(~m)),

and by a similar argument Tr(T̃ 0
N(~m)) = eN(rbi)Tr(TN0(~m)). Consequently, if rai 6≡ 0

(mod N) or rbi 6≡ 0 (mod N) then Tr(T̃ 0
N(~m)) = 0. On the other hand if ∀i, rai ≡ rbi ≡ 0

(mod N), then r2 ~m =
∑d~n

i=1(rairei + rbirfi) ≡ 0 (mod N) and ~m ≡ 0 (mod N ′).

Remark 3.2. The integer r in the above lemma, depends only on the lattice Z~n, that is
determined by the subset Λ~n/GQ. We can thus take r to be the same for all ~n (by taking
the lcm for the 2d possibilities).

The Hecke operators act on the spaceH~n,ψ so there is a basis {ψi} of joint eigenfunctions
of all the Hecke operators (we can assume ψ1 = ψ). To prove theorem 8, we will prove a
stronger statement regarding the forth moment of matrix elements in this basis.

Proposition 3.5. Let {ψi} be a basis for H~n,ψ composed of joint eigenfunctions of all the
Hecke operators. Then, the fourth moment satisfies∑

i

|〈T̃N(~n)ψi, ψi〉|4 �ε ‖~n‖16d2~n N−d~n+ε.

The proof of theorem 8 from proposition 3.5 is now immediate. The first element in
the sum is obviously bounded by the whole sum, so

|〈T̃N(~n)ψ, ψ〉|4 �ε ‖~n‖16d2~n N−d~n+ε ≤ ‖~n‖16d2 N−d~n+ε.

3.3 Reduction to a counting problem

We now reduce proposition 3.5 in to a counting problem, which is then solved in the
following section.

Proposition 3.6. Let {ψi} be a basis for H~n,ψ composed of joint eigenfunctions of all the
Hecke operators. Then, the fourth moment,∑

i

|〈T̃N(~n)ψi, ψi〉|4,

is bounded by
dimH~n,ψ
|CA(N)|4 times the number of solutions to

~n(B1 −B2 +B3 −B4) ≡ 0 (mod N ′), Bi ∈ CA(N).

where N ′ is as in lemma 3.4.
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Proof. Define an operator, D = D(~n), acting on H~n,ψ through averaging over the Hecke
group:

D =
1

|CA(N)|
∑

B∈CA(N)

T̃ 0
N(~nB).

Recall that for B ∈ CA(N) there is ~m ∈ Z~n such that ~nB ≡ ~m (mod 2N), so this is
indeed well defined. The identity T̃N(~nB) = UN(B)∗T̃N(~n)UN(B) implies 〈D(~n)ψi, ψi〉 =
〈T̃N(~n)ψi, ψi〉, and since for any complex matrix D = (di,j),

∑
i |di,i|4 ≤ Tr((DD∗)2), it

is sufficient to bound Tr((DD∗)2). Now, expand (DD∗)2 as a product of 4 sums, and take
trace (using lemma 3.4) to get the result.

By proposition 2.8, and lemma 2.7, we know

dimH~n,ψ

|CA(N)|4
�ε

1

N4d−d~n−ε
.

Therefore, in order to prove proposition 3.5 from proposition 3.6, it remains show that the
number of solution to

~n(B1 −B2 +B3 −B4) ≡ 0 (mod N ′), Bi ∈ CA(N), (3.1)

is bounded by O(‖~n‖16d2~nN4d−2d~n+ε).

3.4 Counting solution

We now bound the number of solutions to (3.1), thus completing the proof of theorem 3.

Proposition 3.7. The number of solution to (3.1 ) is bounded by Oε(‖~n‖16d2~nN4d−2d~n+ε).

Proof. Let ν = ι∗(~n) ∈ I, then the number of solutions to (3.1 ) is the same as the number
of solutions to

ν(β1 − β2 + β3 − β4) ≡ 0 (mod N ′I), βi ∈ kerN2N . (3.2)

In the same way as in the proof of proposition 2.8, it is sufficient to bound for each θ the
number of solutions to

νθ(β1 − β2 + β3 − β4) ≡ 0 (mod N ′OKθ), βi ∈ C(NOFθ), (3.3)

the product of which gives the number of solutions to (3.2) up to some bounded constant.
If θ ∈ Λ~n/GQ, then νθ = 0 and the best bound is the trivial bound of |C(NOFθ)|4 =

Oε(N
4dθ+ε). Otherwise, 0 6= NKθ/Q(νθ) ∈ Z and the number of solutions to (3.3) is bounded

by the number of solutions to

β1 − β2 + β3 − β4 ≡ 0 (mod MOKθ), βi ∈ C(NOFθ) (3.4)
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where M = N ′

gcd(N ′,NKθ/Q(νθ))
. The natural map C(NOFθ) → C(MOFθ) has kernel of order

at most (N
M

)2dθ ≤ (r|NKθ/Q(νθ)|)2dθ � ‖~n‖4d2θ , hence the number of solutions to (3.4) is

bounded by ‖~n‖16d2θ times the number of solutions to

β1 − β2 + β3 − β4 ≡ 0 (mod MOKθ), βi ∈ C(MOFθ) (3.5)

Equation (3.5) is invariant under the action of Gal(Kθ/Fθ). We thus get a second
equation,

β−1
1 − β−1

2 + β−1
3 − β−1

4 ≡ 0 (mod MOKθ), βi ∈ C(MOFθ) (3.6)

The set of equation (3.5,3.6) is equivalent to the following set of equations (see [27,
lemma 15] ): {

(β3 − β1)(β3 − β2)(β1 + β2) = 0 (mod MOKθ)

β4 = β1 − β2 + β3 = 0 (mod MOKθ)
(3.7)

Since β4 is determined by β1, β2, β3, ignoring the second equation only increases the num-
ber of solutions. Finally the number of solutions to the first equation is bounded by
|C(MOFθ)|S2(MOFθ) where S2(MOFθ) is the number of solutions to

(1− β1)(1− β2)(β1 + β2) = 0 (mod MOKθ), βi ∈ C(MOFθ), (3.8)

that satisfies S2(MOFθ) = O(Mdθ+ε) (proposition B.8).
To conclude, for θ ∈ Λ~n/GQ the number of solutions to (3.3) is bounded by O(N4dθ+ε).

Otherwise, it is bounded by O(‖~n‖16d2θ N2dθ+ε). Therefore, since
∑

θ/∈Λ~n/GQ
dθ = d~n, the

number of solutions to (3.1) is bounded by

O(
∏

θ∈Λ~n/GQ

N4dθ+ε
∏

θ/∈Λ~n/GQ

‖~n‖16d2θ N2dθ+ε) = O(‖~n‖16d2~n N4d−2d~n+ε).
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Chapter 4

Hecke Theory For Prime N

In this chapter we restrict the discussion to the case where N = p is a large prime. For this
case, the structure of the Hecke group (hence also the behavior of Hecke eigenfunctions
and matrix elements) is determined by the decomposition of the vector space F2d

p (rather
than Q2d) into irreducible invariant subspaces. This decomposition can be described using
the Frobenius orbits of the eigenvalues of A. Analyzing the action of A on F2d

p enables us
to obtain much sharper results from the ones presented above for composite N .

The main difference between composite and prime N , is that instead of integral rings
(we used in chapter 2) here we work with finite fields so that the counting arguments
become sharp. For example, we can describe precisely the structure of the Hecke group
(lemma 4.2), and obtain sharp bounds for the dimension of the joint Hecke eigenspaces
(proposition 4.12). Compare this to lemma 2.7 and proposition 2.8 obtained for composite
N .

4.1 Hecke operators

Let A ∈ Spθ(2d,Z) be a matrix with distinct eigenvalues. Fix a large prime N = p >
∆(PA) (the discriminant of the characteristic polynomial), then we can think of A, also
as an element of Sp(2d,Fp) with distinct eigenvalues. In fact, in order to ensure that A
(mod p) has distinct eigenvalues it is sufficient to assume that ∆(PA) 6= 0 (mod p). For
A ∈ Sp(2d,Fp) with distinct eigenvalues, the centralizer of A (in the symplectic group) is
a commutative subgroup

Cp(A) ⊆ Sp(2d,Fp),

and we can take the Hecke operators to be Up(B), B ∈ Cp(A). Note that p is odd, hence
the operator Up(B) depends only on B modulo p and this definition of the Hecke operators
makes sense.

Remark 4.1. when N = p is a prime ≥ 5, the map B 7→ Up(B) (which is a representation
of Sp(2d,Fp)) identifies with the celebrated Weil representation of the symplectic group
over the finite field Fp. Consequently, the Hecke operators can be obtained by restricting
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the Weil representation to a maximal torus. These representations are described at length
in [17], and we follow the same lines in our analysis.

4.2 Reduction to irreducible orbits

Let Λp/Gp denote the Frobenius orbits of the eigenvalues of A modulo p. To each orbit
ϑ ∈ Λp/Gp (with representative λϑ) denote by ϑ∗ the orbit of λ−1

ϑ and by ϑ̄ = ϑ ∪ ϑ∗
the symplectic orbit. We say that an orbit ϑ is symmetric if ϑ = ϑ∗ and nonsymmetric
otherwise. Denote by Λp/±Gp the set of symplectic orbits and let

F2d
p =

⊕
Λp/±Gp

Eϑ̄,

be the orthogonal decomposition into invariant irreducible symplectic subspaces (see ap-
pendix A for more details). For each symplectic orbit ϑ̄ ∈ Λp/±Gp let 2dϑ̄ = dim(Eϑ̄) = |ϑ̄|
denote the dimension of the corresponding subspace.

Remark 4.2. Note, that while this decomposition is similar to the decomposition of Q2d

into invariant symplectic subspaces described in proposition 2.4, they are not the same.
The relation between the two decompositions is described in section 5.2.

To each invariant subspace Eϑ̄, take a symplectic basis. For any ~n ∈ F2d
p , let ~nϑ̄ ∈ F2dϑ̄

p

be the projection of ~n to Eϑ̄ in the symplectic basis. Since the decomposition is orthogonal
then for any ~n, ~m ∈ F2d

p

ω(~m,~n) =
∑

Λp/±Gp

ω(~mϑ̄, ~nϑ̄). (4.1)

We thus get an embedding, ∏
Sp(2dϑ̄,Fp) ↪→ Sp(2d,Fp), (4.2)

through the action of each factor on the corresponding subspace. Denote by S ⊆ Sp(2d,Fp)
the image of

∏
Sp(2dϑ̄,Fp). For each B ∈ S denote by Bϑ̄ ∈ Sp(2dϑ̄,Fp) the restriction

of B to Eϑ̄ in the symplectic basis. In order to keep track of dimensions, we denote by

T̃
(d)
p (·), U (d)

p (·), the quantized elementary operators and propagators for T2d.

Proposition 4.1. There is a unitary map

U : L2(Fdp ) →
⊗

Λp/±Gp

L2(Fdϑ̄p ),

such that

1. For any ~n ∈ F2d
p ,

U T̃ (d)
p (~n)U−1 =

⊗
Λp/±Gp

T̃ (dϑ̄)
p (~nϑ̄).
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2. For any B ∈ S,

UU (d)
p (B)U−1 =

⊗
Λp/±Gp

U (dϑ̄)
p (Bϑ̄).

Proof. Define T⊗p (~n) =
⊗

Λp/±Gp T̃
(dϑ̄)
p (~nϑ̄). It is easily verified from (4.1), that T⊗p (~n) obey

the same commutation relation as in proposition 1.1. Therefore, there is a unitary map U
such that U T̃ (d)

p (~n)U−1 = T⊗p (~n) for all ~n ∈ F2d
p .

As for the second part, recall U
(dϑ̄)
p (Bϑ̄) all satisfy the intertwining equation, and from

the first part U T̃ (d)
p (~n)U−1 = T⊗p (~n). Consequently, if we define

Ũp(B) = U−1
⊗

Λp/±Gp

U (dϑ̄)
p (Bϑ̄)U ,

then Ũp(B) is also an intertwining operator:

Ũp(B)−1T̃ (d)
p (~n)Ũp(B) = T̃ (d)

p (~nB).

Thus, from uniqueness of the quantization the operators Ũp(B) and U
(d)
p (B) differ by a char-

acter of S (recall that the quantization is multiplicative). Finally, since S ∼=
∏

Sp(2dϑ̄,Fp)
has no nontrivial multiplicative characters, indeed

U−1U (d)
p (B)U =

⊗
Λp/±Gp

U (dϑ̄)
p (Bϑ̄).

Notice that any element in B ∈ Cp(A) leaves the spaces Eϑ̄ invariant, hence Cp(A) ⊆ S.
Let Cp(Aϑ̄) ⊂ Sp(2dϑ̄,Fp) be the centralizer of Aϑ̄ in Sp(2dϑ̄,Fp), then the embedding (4.2)
induce an isomorphism ∏

Λp/±Gp

Cp(Aϑ̄) → Cp(A). (4.3)

We can thus recover the quantization of any element in B ∈ Cp(A), from the tensor product
of the quantization of corresponding elements Bϑ̄ ∈ Cp(Aϑ̄).

We now want to look at the quantization of Aϑ̄ together with its centralizer Cp(Aϑ̄) ⊂
Sp(2dϑ̄,Fp), for one irreducible symplectic orbit ϑ̄ ∈ Λp/±Gp. For the rest of this section,
the orbit ϑ̄ will be fixed and for notational convenience the subscript will be omitted.

4.3 Irreducible orbit

Let A ∈ Sp(2d,Fp) be a matrix with 2d distinct eigenvalues, such that there is only one ir-
reducible symplectic orbit (symmetric or nonsymmetric). We now look at the quantization
of A together with its centralizer Cp(A).
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Remark 4.3. For a symplectic matrix A ∈ Sp(2d,Z), d ≥ 2, the requirement that A
(mod p) has only one irreducible orbit can not hold for all primes. However, for a two
dimensional matrix A ∈ SL(2,Z) this is indeed the case (since for any A ∈ SL(2,Fp) there
could be only one orbit). The distinction between symmetric and nonsymmetric orbits in
this case, correspond to inert and splitting primes respectively (c.f [12, 28]).

4.3.1 Identification with finite fields

We now identify the action of the Hecke group Cp(A) on the vector space F2d
p with the

action of (a multiplicative subgroup) of the finite field F∗
p2d

on itself by multiplication.

Compare this to the identification ι∗N : (Z/NZ)2d → I/NI that we defined in section 2.4
(note that the identification of the Hecke group here is more precise from the inclusions
we used in the proof of lemma 2.7 to estimate the number of Hecke operators).

Take a pair of eigenvalues λ, λ−1 in a field extension of Fp. If we denote by q = pd,
then in the symmetric case Fp(λ) = Fq2 and in the nonsymmetric Fp(λ) = Fq. Let ~v,~v∗

be eigenvectors for λ, λ−1 respectively. In the symmetric case, where the eigenvalues are
Galois conjugates, τ(λ) = λ−1, we take ~v∗ = τ(~v) to be Galois conjugates as well. By
lemma A.3, in the nonsymmetric case (respectively symmetric), the map

(ν1, ν2) 7→ TrFq/Fp(ν1~v) + TrFq/Fp(ν2~v
∗)

(respectively ν 7→ TrFq2/Fp(ν~v)) is an isomorphism from Fq ⊕ Fq (respectively Fq2) to F2d
p .

By lemma A.5, under this identification,

ω(~n, ~m) = TrFq/Fp(2κ(µν
∗ − νµ∗)), (4.4)

where, ν = ω(~n,~v∗), ν∗ = ω(~n,~v), µ = ω(~m,~v∗), µ∗ = ω(~m,~v), and κ = (2ω(~v,~v∗))−1

This identification with finite fields, enables us to identify the centralizer as a subgroup
of the multiplicative group F∗q2 , and to identify the orbits of elements in F2d

p under the
action of the centralizer.

Lemma 4.2. In the symmetric case, Cp(A) ∼= ker(NFq2/Fq), while in the nonsymmetric

case, Cp(A) ∼= F∗q .

Proof. First for the symmetric case. For any B ∈ Cp(A) the vectors ~v,~v∗ are eigenvectors
with eigenvalues β, β−1 ∈ Fq2 . Therefore the action of B ∈ Cp(A) on Fq2 is given by

ν = ω(~n,~v∗) 7→ ω(~nB,~v∗) = ω(~n,~v∗B−1) = βν.

On the other hand, any element β ∈ Fq2 defines (by multiplication) a linear transformation
on Fq2 that commutes with the action of A. Given formula (4.4) for the symplectic form,
the condition for the action of β ∈ Fq2 to be symplectic, is precisely that βτ(β) = 1. We
can thus identify Cp(A) with the norm one elements in Fq2/Fq.

For the nonsymmetric case, the action of Cp(A) on Fq ⊕ Fq is given by (ν1, ν2) 7→
(βν1, β

−1ν2). Here any element (β1, β2) ∈ Fq × Fq defines a linear action that commutes
with the action of A, and the elements that preserve the symplectic form, are precisely the
elements (β, β−1). We can thus identify these elements with F∗q .
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Corollary 4.3. For ~n ∈ F2d
p define Q(~n) = ω(~n,~v)ω(~n,~v∗) ∈ Fq. Let ~n, ~m ∈ F2d

p . If
Q(~n) = Q(~m) 6= 0 then there is B ∈ Cp(A) s.t ~nB = ~m.

Proof. We use the identification with finite fields. In the symmetric case, let ν = ω(~n,~v∗)
and µ = ω(~m,~v∗). We thus need to find β ∈ kerNFq2/Fq , such that βν = µ. The requirement

that Q(~n) = Q(~m) 6= 0 implies that NFq2/Fq(µν
−1) = 1 and we can take β = µν−1.

In the nonsymmetric case, denote by (ν, ν∗) = (ω(~n,~v∗), ω(~n,~v)) and by (µ, µ∗) =
(ω(~m,~v∗), ω(~m,~v)). Then the requirement Q(~n) = Q(~m) 6= 0, implies that ν

µ
= µ∗

ν∗
. Set

β = µν−1, then (βν, β−1ν∗) = (µ, µ∗).

Remark 4.4. Notice that the converse is obviously true, that is, if ~m = ~nB for some
B ∈ Cp(A) then Q(~n) = Q(~m).

4.3.2 Hecke eigenspaces

Consider the quantization of an irreducible element A ∈ Sp(2d,Fp), together with its
centralizer Cp(A). To any character χ of Cp(A) letHχ denote the corresponding eigenspace.
Both in the symmetric and nonsymmetric cases, the centralizer is a cyclic group of even
order. Therefore, there is a unique quadratic character of Cp(A), that we will denote by
χ2.

Proposition 4.4. For any character χ 6= χ2, dimHχ = 1. In the symmetric case, the char-
acter χ2 does not appear in the decomposition, and in the nonsymmetric case dimHχ2 = 2.

Proof. Consider the projection operator

Pχ =
1

|Cp(A)|
∑

B∈Cp(A)

χ−1(B)Up(B).

The dimension of the corresponding eigenspace is then given by its trace

dim(Hχ) = Tr(Pχ) =
1

|Cp(A)|
∑

B∈Cp(A)

χ−1(B)Tr(Up(B)). (4.5)

From corollary 1.6 we have that,

|Tr(Up(B))| =
√
| ker(B − I)|.

For any B ∈ Cp(A), all eigenvalues are Galois conjugates and their inverses, hence 1 is an
eigenvalue of B if and only if B = I. Therefore, for all I 6= B ∈ Cp(A), |Tr(Up(B))| = 1
(and obviously Tr(Up(I)) = pd = q).

In the symmetric case, Cp(A) is isomorphic to the norm one elements in Fq2/Fq and
hence of order q + 1. We can thus bound

dimHχ ≤
2q

q + 1
< 2,
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but since the dimension is an integer, dim(Hχ) ≤ 1. Finally, there are q+1 characters and
dimHp = q, so q characters appear with multiplicity one. For now, denote the character
that does not appear by χ̃0.

In the nonsymmetric case, |Cp(A)| = q − 1 and the corresponding bound is

dimHχ ≤
2q − 2

q − 1
= 2.

However, this inequality is actually an equality only if there is no cancellation in the sum
(4.5), that is,

∀I 6= B ∈ Cp(A), χ(B) = Tr(Up(B)).

Such an equality can hold for at most one character. Thus, for any other character there
is a strict inequality and dimHχ ≤ 1. Now, from dimension consideration we can deduce
that there is a character with multiplicity 2 (denoted again by χ̃0), and that all the other
characters appear with multiplicity one.

We now show that in both cases χ̃0 is the quadratic character. Notice, that for a cyclic
group of even order the product of all the characters is the quadratic character. Therefore,
for any B ∈ Cp(A) the determinant of Up(B) is χ2(B)χ̃0(B)−1 in the symmetric case, and
χ2(B)χ̃0(B) in the nonsymmetric. But since Sp(2d,Fp) has no nontrivial characters, then
∀B ∈ Sp(2d,Fp), det(Up(B)) = 1 and χ̃0 = χ2.

Since for B ∈ Cp(A) − {1} the sum over all the characters vanish, the trace of Up(B)
is −χ2(B) in the symmetric case and χ2(B) in the nonsymmetric. Consequently, we can
find the constant in formula 1.11.

Corollary 4.5. For any B ∈ Cp(A),

Up(B) = ±χ2(B)

q

∑
~n∈Fdp

T̃p(~n)T̃p(−~nB),

where the minus sign is for the symmetric case and the plus sign for the nonsymmetric.

4.3.3 Explicit formulas and exponential sums

We now show that the matrix elements of elementary operators can be written explicitly as
exponential sums. In [19] Gurevich and Hadani observed that matrix elements of elemen-
tary observables could be expressed as Tr(T̃p(~n)Pχ) (where Pχ) is the projection operator
to the corresponding eigenspace). Using this observation, together with the formula for
the propagator (corollary 4.5), we obtain explicit formulas for the matrix elements.

Denote by eq(x) = ep(TrFq/Fp(x)) the corresponding additive character of Fq. For nota-
tional convenience, we will denote by C ∼= Cp(A), the group of norm one elements in Fq2/Fq
in the symmetric case, and the multiplicative group of Fq, in the nonsymmetric.
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Definition 4.6. For any character χ of C, and any element ν ∈ Fq, define the exponential
sum:

Eq(ν, χ) =
1

|C|
∑

1 6=x∈C

eq(νκ
x+ 1

x− 1
)χχ2(x)

where κ = (2ω(~v,~v∗))−1 ( note that in the symmetric case, indeed κx+1
x−1

∈ Fq so this is well
defined).

Proposition 4.7. Let 0 6= ~n ∈ F2d
p and T̃p(~n) the corresponding elementary operator. Let

Q(~n) = ω(~n,~v)ω(~n,~v∗) ∈ Fq, as in corollary 4.3. Let ψ be a joint eigenfunction, with
corresponding character χ. Then, when χ 6= χ2 is not the quadratic character (relevant
only in the nonsymmetric case),

〈T̃p(~n)ψ, ψ〉 = ±Eq(Q(~n), χ),

where the minus sign is for symmetric case and plus for nonsymmetric.

Proof. Since the joint eigenspaces are one dimensional, an alternative way to write the
matrix element is:

〈T̃p(~n)ψ, ψ〉 = Tr(T̃p(~n)Pχ),

where Pχ = 1
|Cp(A)|

∑
Cp(A) χ

−1(B)Up(B), is the projection operator to Hχ [19]. Plugging

in the formula for Up(B) (corollary 4.5) gives,

〈T̃p(~n)ψ, ψ〉 =
±1

q|Cp(A)|
∑
Cp(A)

χ−1χ2(B)
∑
F2d
p

Tr(T̃p(~n)T̃p(~m)T̃p(−~mB)).

(where the minus sign is for the symmetric case). Notice that when ~n = ~m(B − I),

Tr(T̃p(~n)T̃p(~m)T̃p(−~mB)) = qep(
p+ 1

2
ω(~n, ~m)),

and that otherwise the trace vanishes. Therefore, when B = I we get no contribution from
the inner sum, and otherwise the only contribution is from ~m = ~n(B− I)−1. Consequently

〈T̃p(~n)ψ, ψ〉 =
±1

|Cp(A)|
∑

Cp(A)\{I}

χ−1χ2(B)ep(
p+ 1

2
ω(~n, ~n(B − I)−1)).

We now use the identification with finite fields described in section 4.3.1. Replace the
sum over the elements in the centralizer with a sum over the elements in C, and for the
symplectic form use formula (4.4). Consequently, the formula for the matrix elements now
takes the form

〈T̃p(~n)ψ, ψ〉 =
±1

|C|
∑
C−{1}

eq(Q(~n)κ
1 + β

1− β
)χχ2(β

−1).

Changing summation variable x = β−1 concludes the proof.
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We note that in both the symmetric and nonsymmetric cases for χ 6= χ2, the Riemann
Hypothesis for curves over finite fields imply the bound |Eq(ν, χ)| ≤ 2√

q
+ O(1

q
) (see e.g.

[37, chapter 6] or [29]). We can thus deduce:

Corollary 4.8. For any 0 6= ~n ∈ F2d
p and any ψ ∈ Hχ with χ 6= χ2

|〈T̃p(~n)ψ, ψ〉| ≤ 2
√
q

+O(
1

q
).

Remark 4.5. Note that for d = 1, this gives an alternative proof of the Kurlberg-Rudnick
rate conjecture originally proved by Gurevich and Hadani [19].

For the quadratic character (in the nonsymmetric case), Eq(Q(~n), χ2) is no longer a
formula for the corresponding matrix element, but rather for

Tr(T̃p(~n)|Hχ2
) = 〈T̃p(~n)ψ0, ψ0〉+ 〈T̃p(~n)ψ1, ψ1〉,

where {ψ0, ψ1} is an orthonormal basis for Hχ2 . Nevertheless, in this case we can find
formulas for the eigenfunctions and use them to bound the individual matrix elements.

Lemma 4.9. In the nonsymmetric case, there is a normalized eigenfunction ψ0 ∈ Hχ2,
such that

〈T̃p(~n)ψ0, ψ0〉 =

{
0 ω(~n,~v) 6= 0
1 ω(~n,~v) = 0

Furthermore, if Q(~n) 6= 0 then for any normalized ψ ∈ Hχ2.

|〈T̃p(~n)ψ, ψ〉| ≤ 2
√
q

Proof. We use a similar construction to the eigenfunctions constructed by Degli Esposti,
Graffi and Isola for two dimensional cat maps for splitting primes [12].

In the nonsymmetric case, there is a decomposition F2d
p = E ⊕ E∗ into two invariant

Lagrangian subspaces. Therefore, there is M ∈ Sp(2d,Fp) such that for any B ∈ Cp(A),

M−1BM =

(
B̃t 0

0 B̃−1

)
. Consequently (by formula 1.8), the functions ψ0 =

√
qUp(M)δ0

and ψ1 =
√

q
q−1

Up(M)(1 − δ0), are two orthonormal joint eigenfunctions of Up(B), B ∈
Cp(A) with the same eigenvalues, and hence a basis for Hχ2 .

Denote by Ti,j = 〈T̃p(~n)ψi, ψj〉. If we denote ~m = ~nM , then (by the intertwining
equation)

T0,0 = 〈T̃p(~n)ψ0, ψ0〉 = q〈T̃p(~m)δ0, δ0〉.
By lemma A.3, the projection of ~n to the Lagrangian subspace E vanishes (i.e., ~m =
(0, ~m2)), if and only if ω(~n,~v∗) = 0. Now calculate directly,

T0,0 =
∑
~x

ep(
1

2
~m1 · ~m2)ep(~m2 · ~x)δ0(~x+ ~m1)δ0(~x).
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Therefore, indeed T0,0 = 0 if ~m1 6= 0 and T0,0 = 1 if ~m1 = 0.
When Q(~n) 6= 0, the projections to both Lagrangian subspaces do not vanish. By a

similar computation, one can show that T1,0 and T0,1 are bounded by 1√
q−1

, and that T1,1 is

bounded by 2
q−1

. Therefore, since any normalized ψ ∈ Hχ2 is of the form ψ = a0ψ0 + a1ψ1,

with |a0|2 + |a1|2 = 1, we have

|〈T̃p(~n)ψ, ψ〉| ≤
1∑

i,j=0

|aiajTi,j| ≤
2
√
q
.

4.3.4 Moments

Let A ∈ Sp(2d,Fp) be a matrix with one irreducible symplectic orbit (symmetric or non-
symmetric), and fix ~n ∈ F2d

p with Q(~n) 6= 0. Let {ψi} be an orthonormal basis of joint

eigenfunctions of Cp(A). The different matrix elements 〈T̃p(~n)ψi, ψi〉 fluctuate around their
average

1

q

∑
i

〈T̃p(~n)ψi, ψi〉 =
1

q
Tr(T̃p(~n)) = 0.

Remark 4.6. In the nonsymmetric case, for 0 6= ~n ∈ F2d
p such that Q(~n) = 0, proposition

4.7 imply that for all characters χ 6= χ2 the corresponding matrix elements are identical
(and equal − 1

p−1
), so that the fluctuations are trivial.

In [28] Kurlberg and Rudnick gave a conjecture regarding the limiting distribution of
these fluctuations (for d = 1). Considering that in the formula for the matrix elements
(proposition 4.7), the dimension d only determines the ground field Fq = Fpd , we can
reformulate their conjecture to predict the fluctuations of the corresponding exponential
sums (formulated here as conjecture 5). We now calculate (asymptotically) the second and
fourth moments and show agreement with this conjecture.

Proposition 4.10. Let ~n, ~m ∈ F2d
p with Q(~n),Q(~m) 6= 0. Then the mixed second moment,

satisfies
1

q

∑
i

〈T̃p(~n)ψi, ψi〉〈T̃p(~m)ψ, ψ〉 =

{ 1
q

+O( 1
q2

) Q(~n) = Q(~m)

O( 1
q2

) Q(~n) 6= Q(~m)

Proof. First, we can replace the sum over eigenfunction to a sum over characters and the
matrix element by corresponding exponential sums. By lemma 4.9, the error that comes
from the quadratic character, is bounded by O( 1

q2
) (recall Q(~n),Q(~m) 6= 0). Now, since

the sum over the characters χ(x) vanish unless x = 1,

1

q

∑
χ

Eq(Q(~n), χ)Eq(Q(~m), χ) =
1

q|C|
∑
x 6=1

eq((Q(~n)−Q(~m))κ
x+ 1

x− 1
).
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If Q(~n) = Q(~m) we indeed get |C|−1
q|C| = 1

q
+ O( 1

q2
). Otherwise, note that the map x 7→ x+1

x−1

is injective, hence the sum is over q − 2 distinct points in Fq (or q in the symmetric case),
and is therefore bounded by O( 1

q2
).

Proposition 4.11. For ~n ∈ F2d
p with Q(~n) 6= 0, the fourth moment satisfies

1

q

∑
i

|〈T̃p(~n)ψi, ψi〉|4 =
2

q2
+O(

1

q5/2
).

Proof. We follow the same lines as in the proof of proposition 3.5. Consider the averaged
operator

D =
1

|C|
∑

B∈Cp(A)

T̃p(~nB).

Then, for any eigenfunction ψi, the diagonal matrix elements are the same 〈Dψi, ψi〉 =
〈T̃p(~n)ψi, ψi〉, and for any two eigenfunctions ψi, ψj, corresponding to different characters
the corresponding off diagonal terms 〈Dψi, ψj〉 = 0 vanish. Consequently,

1

q

∑
i

|〈T̃p(~n)ψi, ψi〉|4 =
1

q
Tr((DD∗)2) +O(

1

q3
),

where the error comes from the eigenfunctions corresponding to the quadratic character.
We can calculate Tr((DD∗)2) differently, by writing it as a product of 4 sums and then

taking trace, recalling that

Tr(T̃p(~n)T̃p(~m)) =

{
q ~n+ ~m = 0
0 ~n+ ~m 6= 0

Define the set X = {B1, . . . , B4 ∈ Cp(A)|~n(B1 −B2 +B3 −B4) = 0}, then this calculation
gives

1

q
Tr((DD∗)2) =

1

|Cp(A)|4
∑
X

ep(
1

2
(ω(~nB2, ~nB1) + ω(~nB4, ~nB3)))

Rewrite this expression using the identification with finite fields. The set X transforms to

X =

{
β1, . . . , β4 ∈ C|

ν(β1 − β2 + β3 − β4) = 0
ν∗(β−1

1 − β−1
2 + β−1

3 − β−1
4 ) = 0

}
and

1

q
Tr((DD∗)2) =

1

|C|4
∑
X

eq(νν
∗κ(β2β

−1
1 − β−1

2 β1 + β4β
−1
3 − β−1

4 β3)),

where ν = ω(~n,~v∗), ν∗ = ω(~n,~v) and κ = (2ω(~v,~v∗))−1 as in section 4.3.1.
Since we assumed Q(~n) = νν∗ 6= 0, the set X is actually

X =

{
β1, . . . , β4 ∈ C|

β1 − β2 = β4 − β3

β−1
1 − β−1

2 = β−1
4 − β−1

3

}
.
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Now make a change of variables:

x = β2β
−1
1 , y = β4β

−1
3 , z = β3β

−1
1 , w = β1,

or equivalently β1 = w, β2 = xw, β3 = zw and β4 = yzw. In these variables we get

1

q
Tr((DD∗)2) =

1

|C|4
∑
Y

eq(Q(~n)κ(x− x−1 + y − y−1)),

where the set

Y =

{
x, y, z, w ∈ C

∣∣∣∣ (1− x) = z(y − 1)
yz(x− 1) = x(1− y)

}
.

The set Y can be rewritten as

Y =

x, y, z, w ∈ C

∣∣∣∣∣∣
x = y = 1 or
x = z = y−1 or

x = y and z = −1

 .

Indeed, if x = 1, then from the second equation y = 1 and z is arbitrary. Otherwise, replace
y − 1 = z−1(1 − x) in the second equation to get yz2(x − 1) = x(x − 1), implying that
x = yz2. Plug this back to the first equation to get 1− yz2 = z(y − 1), that is equivalent
to (yz− 1)(1 + z) = 0. Hence, either z = −1 or yz = 1 which imply (by the first equation)
x = y, or x = z respectively.

Therefore,

1

q
Tr((DD∗)2) =

1

|C|3

( ∑
z∈C

1 +
∑
x∈C

1 +
∑
x∈C

eq(2Q(n)κ
x2 − 1

x
)− 3

)
.

Both in the symmetric and nonsymmetric cases , C is an irreducible algebraic curve
of genus 1, defined over the field Fq, and the function x2−1

x
has two simple poles at 0,∞.

Hence, by [8, theorem 5]

|
∑
x∈C

eq(2Q(n)κ
x2 − 1

x
)| ≤ 2

√
q,

(in fact, in the nonsymmetric case C = F∗q and this is a Kloosterman sum). This estimate
implies,

1

q
Tr((DD∗)2) =

2

q2
+O(

1

q5/2
),

concluding the proof.

4.4 Formulas for matrix elements

Let A ∈ Spθ(2d,Z), be a matrix with distinct eigenvalues, and let p > ∆(PA) be a suffi-
ciently large prime. We showed that the quantization of the centralizer Cp(A), is equivalent
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to a tensor product of the quantizations of Cp(Aϑ̄) ⊂ Sp(2dϑ̄,Fp). To each irreducible el-
ement, we showed that the joint eigenfunctions are essentially unique, and found explicit
formulas for the matrix elements. We now describe the Hecke eigenfunctions and corre-
sponding matrix elements in the general case.

Since Cp(A) ∼=
∏

ϑ̄Cp(Aϑ̄), we can identify any character of Cp(A) as a product χ =∏
ϑ̄ χϑ̄, where χϑ̄ are characters of Cp(Aϑ̄). Denote by Hϑ̄

χϑ̄
⊆ L2(Fdϑ̄p ), the joint eigenspace

of all the operators U
(dϑ̄)
p (Bϑ̄), Bϑ̄ ∈ Cp(Aϑ̄) (with eigenvalues χϑ̄). Then, the map U

from proposition 4.1, maps the eigenspace Hχ isomorphically on to the space
⊗
Hϑ̄
χϑ̄

.
Furthermore, from proposition 4.4 we know that these eigenspaces are essentially one
dimensional. We can thus deduce:

Proposition 4.12. Let χ =
∏

ϑ̄ χϑ̄ be a character of Cp(A).

• If ∀ϑ̄, χϑ̄ is not the quadratic character, then dimHχ = 1.

• If χϑ̄ = χ2 is the quadratic character for some symmetric orbit ϑ̄, then dimHχ = 0.

• Otherwise, dimHχ = 2k, where k is the number of (nonsymmetric) orbits ϑ̄ for which
χϑ̄ is the quadratic character.

• A basis for this space is given by
{
ψηχ|η ∈ (Z/2Z)k

}
,

ψηχ = U−1
( ⊗
χϑ̄ 6=χ2

ψϑ̄χϑ̄ ⊗
⊗
χϑ̄=χ2

ψϑ̄ηϑ̄
)
,

where
{
ψϑ̄0 , ψ

ϑ̄
1

}
is a basis for Hϑ̄

χ2
.

Note that the number of characters for which the quadratic character appears in the
decomposition is bounded by O(pd−1). Hence, the set Jp ⊆ {ψ1, . . . , ψpd} of Hecke eigen-
functions for which the quadratic character does not appear in the decomposition is of
density one (i.e., limp→∞

]Jp
pd

= 1). For these eigenfunctions we can express the matrix
elements as a product of exponential sums.

For ~n ∈ Z2d, and any symplectic Frobenius orbit ϑ̄ ∈ Λp/ ± Gp, let νϑ̄ = Qϑ(~nϑ̄) =
ω(~nϑ̄, ~vϑ̄)ω(~nϑ̄, ~v

∗
ϑ̄
) as in proposition 4.7 (where ~vϑ̄, ~v

∗
ϑ̄

are eigenvectors of Aϑ̄ and ~nϑ̄ is
the projection of ~n (mod p) to Eϑ̄). Let ψ be a Hecke eigenfunction with corresponding
character χ =

∏
χϑ̄. Define

Eϑ̄(~nϑ̄, χϑ̄) =


−Eqϑ̄(νϑ̄, χϑ̄) ~nϑ̄ 6= 0, ϑ = ϑ∗

Eqϑ̄(νϑ̄, χϑ̄) ~nϑ̄ 6= 0, ϑ 6= ϑ∗

1 ~nϑ̄ = 0
,

where Eqϑ̄(νϑ̄, χϑ̄) are the exponential sums defined in 4.6 and qϑ̄ = pdϑ̄ .
If χϑ̄ 6= χ2 is not the quadratic character for any orbit, then ψ is uniquely determined

and Eϑ̄(~nϑ̄, χϑ̄) = 〈T (dϑ̄)(~nϑ̄)ψ
ϑ̄
χϑ̄
, ψϑ̄χϑ̄〉. Consequently, the corresponding matrix element is
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a product of exponential sums,

〈T̃p(~n)ψ, ψ〉 =
∏

Λp/±Gp

Eϑ̄(~nϑ̄, χϑ̄). (4.6)

For characters χ, such that the quadratic character appears in the decomposition, the
corresponding eigenfunction is no longer unique. However, any ψ ∈ Hχ is of the form
ψ =

∑
η aηψ

η
χ, where ψηχ are defined in proposition 4.12 and

∑
|aη|2 = 1. Consequently,

the corresponding matrix element is of the form

〈T̃p(~n)ψ, ψ〉 = F (~n, ψ)
∏
ϑ̄ 6∈Wχ

Eϑ̄(~nϑ̄, χϑ̄), (4.7)

where Wχ is the set of nonsymmetric orbits ϑ̄ for which χϑ̄ is the quadratic character and

F (~n, ψ) =
∑
η,η′

aηaη′
∏
ϑ∈Wχ

〈T̃ (dϑ̄)
p (~nϑ̄)ψ

ϑ̄
ηϑ
, ψϑ̄η′ϑ〉.
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Chapter 5

Super Scars

In this chapter we show the existence of the super scars (theorem 1). To any rational
isotropic subspace E0 ⊂ Q2d that is invariant under the action of A ( i.e., ~n ∈ E0 ⇒
~nA ∈ E0), we assign a corresponding submanifold of the torus X0 ⊆ T2d, of dimension

dimX0 = 2d − dimE0 that is invariant under the induced dynamics (i.e., ~x = (
~p
~q

) ∈

X0 ⇒ A~x ∈ X0). We then construct, for each prime N = p, a corresponding Hecke
eigenfunction ψ = ψ(p) such that the distribution on the torus given by f 7→ 〈Opp(f)ψ, ψ〉,
weekly converges to Lebesgue measure on X0.

5.1 Invariant manifolds

Let A ∈ Spθ(2d,Z) be a matrix with distinct eigenvalues. To any invariant isotropic
rational subspace E0 ⊂ Q2d, define the lattice Z0 = E0 ∩Z2d and assign a closed subgroup
of the torus XE0 ⊆ T2d defined

XE0 =
{
~x ∈ T2d|~n · ~x = 0 (mod Z), ∀ ~n ∈ Z0

}
.

The group XE0
∼= T2d−d0 is a submanifold with codimension d0 = dimE0, and is invariant

under the action of A. In general the submanifold XE0 is co-isotropic, nevertheless, when
E0 is a Lagrangian subspace, XE0 is also Lagrangian.

Lemma 5.1. Let E0 be an invariant rational isotropic subspace. Then there is ~x0 ∈ T2d

such that

~n · ~x0 =
~n1 · ~n2

2
(mod Z), ∀~n ∈ Z0.

Proof. It is sufficient to show that there is ~x ∈ R2d such that

~n · ~x ≡ ~n1 · ~n2 (mod 2), (5.1)

for all ~n ∈ Z0 (then ~x0 is the class of 1
2
~x modulo Z). Notice, that if (5.1) is satisfied for

~n, ~m ∈ Z0, then it is also satisfied for ~n + ~m. Indeed, for any ~n, ~m ∈ Z0, because E0 is
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isotropic we have ~n1 · ~m2 = ~m1 · ~n2, hence

(~n1 + ~m1) · (~n2 + ~m2) ≡ ~n1 · ~n2 + ~m1 · ~m2 (mod 2).

Therefore, it is sufficient to check the condition for an integral basis of the lattice Z0.
Let {~n(i)}d0i=1 be an integral basis. The vectors ~n(i) are linearly independent, hence the

set of equations ~n(i) · ~x = bi has a solution for any (b1, . . . , bd0) ∈ Rd0 and in particular for

bi = ~n
(i)
1 · ~n(i)

2 .

We can now define the manifold X0 to be the coset X0 = ~x0 +XE0 , that is,

X0 =

{
~x ∈ T2d

∣∣~n · ~x =
~n1 · ~n2

2
(mod Z), ∀~n ∈ Z0

}
.

The condition that A ∈ Spθ(2d,Z) is quantizable, implies that X0 is still invariant under
the induced dynamics.

5.2 Rational orbits and Frobenius orbits

For the proof of theorem 1, we would like to use the properties of the Hecke eigenfunctions
and matrix elements described in chapter 4. However, since all the results in chapter 4
were described in terms of the finite field Fp, we first need to establish the correspondence
between invariant rational subspaces for A and invariant subspaces for A modulo p.

Let A ∈ Spθ(2d,Z) with distinct eigenvalues. Then for any prime p > ∆(PA), we
can think of A also as an element of Sp(2d,Fp) with distinct eigenvalues. Denote by ΛQ,
the set of complex eigenvalues of A, and by Λp the set of eigenvalues of A (modulo p)
in F̄p (the algebraic closure of Fp). Let Q2d =

⊕
λQ/GQ

Eθ, and F2d
p =

⊕
Λp/Gp

Eϑ be the
decompositions into irreducible invariant subspaces.

To each rational orbit θ ∈ ΛQ/GQ, denote by Pθ = irrQ(θ) the minimal polynomial
for some λθ ∈ θ (this is independent of representative). We say that a Frobenius orbit,
ϑ ∈ Λp/Gp, lies under θ (denoted by ϑ|θ) if irrFp(ϑ) divides Pθ modulo p. We denote by θ∗

the orbit of λ−1
θ and note that ϑ|θ ⇔ ϑ∗|θ∗, in particular if θ is nonsymmetric (i.e., θ 6= θ∗)

then so is any Frobenius orbit ϑ that lies under θ.
For every rational orbit θ ∈ ΛQ/GQ, fix an eigenvalue λθ. For every Frobenius orbit ϑ ∈

Λp/Gp lying under θ, fix a representative λϑ. For any such choice, there is a corresponding
ring homomorphism

πλθ,λϑ : Z[λθ] → Fp(λϑ),

sending λθ to λϑ.

Lemma 5.2. Let DK ⊆ OK be a subring of the integral ring of a number field K/Q, let Fq
be a finite field of characteristic p, and let π : DK → Fq be any ring homomorphism. Then,
for any α ∈ OK such that NK/Q(α) 6= 0 (mod p), the image π(α) 6= 0 as well.
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Proof. Let f = irrQ(α), then f is a monic integral polynomial such that f(α) = 0. Con-
sequently, if we take f̄ ∈ Fq[t] (by reduction of f modulo p), then f̄(π(α)) = 0 as well.
On the other hand we have that f(0) = ±NK/Q(α) 6= 0 (mod p), hence f̄(0) 6= 0 and in
particular π(α) 6= 0.

For any rational orbit θ ∈ ΛQ/GQ, take eigenvectors ~vθ, ~v
∗
θ with coefficients in Z[λθ] and

eigenvalues λθ, λθ
−1 respectively. For ~n ∈ Z2d define

Nθ(~n) = NQ(λθ)/Q(ω(~n,~v∗θ)).

Lemma 5.3. For any element ~n ∈ Z2d and any orbit θ ∈ ΛQ/GQ.

• If the projection of ~n to Eθ vanishes, then for any ϑ|θ the projection of ~n (mod p) to
Eϑ also vanishes.

• If p > Nθ(~n) and the projection of ~n to Eθ does not vanish, then for any ϑ|θ, the
projection to Eϑ doesn’t vanish as well.

Proof. For any Frobenius orbit ϑ|θ, let ~v∗ϑ = πλθ,λϑ(~v
∗
θ). The vectors ~v∗ϑ, are then eigenvec-

tors with eigenvalues λ−1
ϑ , and

ω(~n,~v∗ϑ) = πλθ,λϑ(ω(~n,~v∗θ)).

By corollary A.4 the projection of ~n to Eθ vanishes if and only if ω(~n,~v∗θ) = 0 and the
projection of ~n (mod p) to Eϑ vanishes if and only if ω(~n,~v∗ϑ) = πλθ,λϑ(ω(~n,~v∗θ)) = 0. The
first part is now immediate, and the second part follows from lemma 5.2.

5.3 Construction of eigenfunctions

Let Q2d =
⊕

ΛQ/GQ
Eθ be the unique decomposition into irreducible (rational) invariant

subspaces. Then, any invariant isotropic subspace E0 is a direct sum

E0 =
⊕
θ∈Θ

Eθ,

where Θ ⊆ ΛQ/GQ, is a subset containing nonsymmetric orbits such that θ ∈ Θ ⇒ θ∗ 6∈ Θ.
Fix a large prime p ≥ ∆(PA), and recall the reduction to irreducible orbits described

in chapter 4 and the formulas for the eigenfunctions given in proposition 4.4. We will now
construct a Hecke eigenfunction by prescribing the characters χϑ̄ and eigenstates ψϑ̄ for
each symplectic Frobenius orbit ϑ̄ ∈ Λp/±Gp.

We first determine the characters. For any symmetric orbit ϑ̄ fix an arbitrary character
χθ̄ 6= χ2. For any nonsymmetric orbit ϑ̄, there is a unique nonsymmetric rational orbit θ̄
such that ϑ̄|θ̄. If θ̄ = θ∪θ∗ with θ, θ∗ 6∈ Θ then we take χϑ̄ 6= χ2 to be any character except
the quadratic, and otherwise we take χϑ̄ = χ2 to be the quadratic one.
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Now for the eigenfunctions, when χϑ̄ 6= χ2 the eigenspace Hϑ̄
χϑ̄

is one dimensional and

ψϑ̄χϑ̄ is determined. Otherwise, there is θ ∈ Θ such that θ̄ = θ∪θ∗. Let ϑ|θ be the Frobenius
orbit under θ and let ~vϑ be an eigenvector for Aϑ̄ with eigenvalue λϑ ∈ ϑ. We then take
ψϑ̄0 ∈ Hϑ̄

χ2
, to be the eigenfunction (constructed in lemma 4.9) satisfying

〈T̃p(~nϑ̄)ψϑ̄0 , ψϑ̄0 〉 =

{
1 ω(~nϑ̄, ~vϑ) = 0
0 otherwise.

To conclude, we take the character χ =
∏
χϑ̄ and eigenfunction

ψ = ψχ = U−1
( ⊗
χϑ̄ 6=χ2

ψϑ̄χϑ̄ ⊗
⊗
χϑ̄=χ2

ψϑ̄0
)

as in proposition 4.12.

Proposition 5.4.

|〈T̃p(~n)ψ, ψ〉| =
{

1 ~n ∈ E0

O(p−1/4) ~n 6∈ E0
,

Proof. The matrix elements corresponding to ψ are of the form.

〈T̃p(~n)ψ, ψ〉 =
∏

Λp/±Gp

〈T̃p(~nϑ̄)ψϑ, ψϑ〉.

First for ~n ∈ E0. For any rational orbit θ ∈ ΛQ/GQ such that θ, θ∗ 6∈ Θ and any ϑ|θ, by
lemma 5.3, ~nϑ̄ = 0 and 〈T̃p(~nϑ̄)ψϑ, ψϑ〉 = 1. On the other hand, for θ ∈ Θ, the projection of
~n to Eθ∗ vanishes. Since ϑ|θ ⇒ ϑ∗|θ∗, again by lemma 5.3, the projection to Eϑ∗ vanishes
implying ω(~nϑ̄, ~vϑ̄) = 0. Therefore, by construction again 〈T̃p(~nϑ̄)ψϑ, ψϑ〉 = 1. This covers
all symplectic Frobenius orbits in the product, hence 〈T̃p(~n)ψ, ψ〉 = 1.

Now for ~n 6∈ E0. There is some θ 6∈ Θ such that the projection of ~n to Eθ does not
vanish. Then, by the second part of lemma 5.3 (we can assume p is sufficiently large) for any
ϑ|θ, the projection ~nϑ 6= 0. There are two possibilities, either θ∗ ∈ Θ or θ∗ 6∈ Θ. If θ∗ ∈ Θ,
then ~nϑ∗ 6= 0 implying that ω(nϑ̄, ~vϑ) 6= 0 so 〈T̃p(~nϑ̄)ψϑ, ψϑ〉 = 0 by our construction.
Otherwise, the corresponding character is not the quadratic character, and by corollary
4.8 we have |〈T̃p(~nϑ̄)ψϑ, ψϑ〉| = O(p−dϑ̄/2). Therefore, the whole product satisfies

|〈T̃p(~n)ψ, ψ〉| ≤ O(
∏
ϑ|θ

p−dϑ̄/2) = O(p−dθ/2).

The eigenfunctions constructed above, satisfy 〈T̃p(~n)ψ, ψ〉 = 1 for all ~n ∈ Z0. This
implies, that ψ is also a joint eigenfunction of the operators T̃p(~n) with trivial eigenvalue 1.
This property can be used in order make an alternative construction of these eigenfunctions.

1I thank Stéphane Nonnenmacher for pointing that out.
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Given the isotropic invariant subspace E0, the operators T̃p(~n), ~n ∈ Z0 all commute
(because it is isotropic) and one can consider the decomposition into joint eigenspaces.
The joint eigenspace corresponding to the trivial eigenvalue is not empty, and is invariant
under the action of all Hecke operators (because the space E0 is invariant). Therefore there
is a basis for this space composed of Hecke eigenfunctions each satisfying 〈T̃p(~n)ψ, ψ〉 = 1
for any ~n ∈ Z0. Furthermore, if ~m ∈ E∗

0 (the symplectic complement of E0) then there
is ~n ∈ Z0 such that ω(~n, ~m) 6= 0. Consequently, for a sufficiently large p, T̃p(~m)ψ is an
eigenfunction of T̃p(~n) with eigenvalue 6= 1 and so 〈T̃p(~m)ψ, ψ〉 = 0. If we assume in
addition that the space E0 is a maximal isotropic invariant subspace, then any ~n ∈ Z2d is
either in E0 ∪ E∗

0 or that is does not belong to any invariant isotropic subspace, in which

case we have the estimate 〈T̃p(~n)ψ, ψ〉 = O(p−
1
2 ). We thus see that any Hecke eigenfunction

constructed in this manner, also satisfies proposition 5.4.

5.4 Super-Scars

We now turn to prove theorem 1, that is we prove the following proposition.

Proposition 5.5. As p→∞ through primes, the distribution on the torus given by

f 7→ 〈Opp(f)ψ, ψ〉,

where ψ are the Hecke eigenfunctions constructed above, converge to Lebesgue measure on
X0.

Proof. It is sufficient to show convergence for the test functions e~n(~x) = exp(2πi~n ·~x), ~n ∈
Z2d. For these functions,∫

T2d

e~n(~x)dµX0(~x) =

{
(−1)~n1·~n2 ~n ∈ Z0

0 otherwise

where µX0 is Lebesgue measure on X0. For N = p a large (and in particular odd) prime
the corresponding operator Opp(e~n) = (−1)~n1·~n2T̃p(~n). Therefore, it is sufficient to show
that as p→∞

〈T̃p(~n)ψ, ψ〉 →
{

1 ~n ∈ Z0

0 otherwise
,

and this follows from proposition 5.4.

5.5 Entropy of super-scars

In this section we compute the Kolmogorov-Sinai entropy (also known as the metric en-
tropy), hKS(µX0), of the invariant measures µX0 obtained from the super-scars. For the
general definition and properties of the Kolmogorov-Sinai entropy we refer to [36]. We
note that for any automorphism of the torus, the Kolmogorov-Sinai entropy of Lebesgue’s

50



measure is equal to the topological entropy which is given by hm =
∑

|λi|>1 log |λi| (where

λi are the eigenvalues of the automorphism)[36, Theorem 8.15]. Moreover, the entropy of
any invariant measures µ satisfies 0 ≤ hKS(µ) ≤ hm [36, Theorem 8.6 ].

We now wish to show that, in accordance to the results of Anantharaman, Nonnen-
macher and Koch [2, 3, 4], the entropy of µX0 is at least half the maximal entropy and
that in the extreme case, where the dimension of X0 is as small as possible, the entropy is
precisely half of the maximal entropy.

Proposition 5.6. Let µX0 be as above. Then hKS(µX0) ≥ hm
2

, and there is equality in the
case where d0 = d.

Proof. Let λ1, . . . , λd, λ
−1
1 , . . . , λ−1

d denote the eigenvalues of A, ordered so that λ1, . . . , λd0
are the eigenvalues of the restriction of A to E0 (recall that E0 is isotropic so from each
pair λj, λ

−1
j at most one is an eigenvalue of A|E0

). We can write the maximal entropy

hm =
∑
|λi|>1

| log(|λi|) +
∑

|λ−1
i |>1

log(|λ−1
i |) =

d∑
i=1

| log(|λi|)|.

Now let
E⊥

0 =
{
~x ∈ R2d|~n · ~x = 0, ∀~n ∈ E0

}
.

The entropy of µX0 with respect to A is precisely the entropy of Lebesgue’s measure on
T2d−d0 ∼= E⊥

0 /(E
⊥
0 ∩ Z2d) with respect to the toral automorphism given by the action

of the restriction of A to E⊥
0 . Since the eigenvalues of the restriction of A to E⊥

0 are
λd0+1, . . . , λd, λ

−1
1 , . . . , λ−1

d we have

hKS(µX0) = hm −
∑

i≤d0,|λi|>1

log(|λi|).

Finally recall that the product of the eigenvalues of A|E0
satisfy λ1λ2 · · ·λd0 = ±1 (see

remark 2.4). Write this equality differently as∑
i≤d0,|λi|>1

log(|λi|) =
1

2

∑
i≤d0,

| log(|λi|)|

to get that

hKS(µX0) = hm −
1

2

∑
i≤d0

| log(|λi|)| =
hm
2

+
1

2

∑
i>d0

| log(|λi|)|.

Hence indeed hKS(µX0) ≥ hm
2

and there is equality if and only if d0 = d.
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Chapter 6

Fluctuation of matrix elements

In this chapter, we assume that A ∈ Spθ(2d,Z) has no invariant isotropic rational sub-
spaces, and study the fluctuation of the matrix elements around their limit when Planck’s
constant is the inverse of a large primeN = p. We compute the variance of these fluctuation
(proving theorem 4), and present a conjecture for their limiting distribution.

6.1 Quantum Variance

In this section, we compute the quantum variance when Planck’s constant is the inverse of
a large prime N = p. First we introduce a quadratic form Q : Z2d → D, that characterizes
the Hecke orbits of an element ~n ∈ Z2d (in the sense of proposition 6.1). We then define
modified Fourier coefficients, grouping together coefficients belonging to the same Hecke
orbits. Finally, we use the structure of the Hecke eigenfunctions described in chapter 4
and the relations between the rational orbits and Frobenius orbits described in section 5.2
to calculate the quantum variance proving theorem 4.

6.1.1 A quadratic form

Let A ∈ Spθ(2d,Z) with 2d distinct eigenvalues. Recall the notation of section 2.3. Let
ΛQ/GQ denote the orbits of the Galois group GQ on the set of eigenvalues ΛQ. Let Q2d =⊕

Eθ be the decomposition in to irreducible invariant subspaces. Further assume, that
there are no invariant rational isotropic subspaces, implying that all orbits are symmetric
θ = θ∗ = θ̄ (hence all Eθ are symplectic). Recall the map ι∗ : Z2d → D (sending ~n 7→
ω(~n,~v)) and the norm map N : D → D (sending β 7→ ββ∗) and define the quadratic form

Q : Z2d → D
~n 7→ N (ι∗(~n))

The projection of Q(~n) to each component is given by

Qθ(~n) = NKθ/Fθ(ω(~n,~vθ)),

where, ~vθ is a left eigenvectors with eigenvalue λθ, Kθ = Q(λθ), and Fθ = Q(λθ + λ−1
θ ).
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Proposition 6.1. Let ~n, ~m ∈ Z2d. Then Q(~n) = Q(~m) if and only if for all sufficiently
large primes, the classes of ~n and ~m modulo p are in the same Cp(A) orbit.

Proof. We now use the relations between rational orbits and Frobenius orbits described in
section 5.2, to relate corollary 4.3 to the rational arithmetics. First assume that Q(~n) =
Q(~m) = ν. Let N0(ν) = maxθ(NFθ/Q(νθ)). We show that for any prime p > N0(ν) there
is B ∈ Cp(A) such that ~nB = ~m (mod p). It is sufficient to show that for any Frobenius
orbit ϑ̄ ∈ Λp/±Gp there is Bϑ̄ ∈ Cp(Aϑ̄) such that ~nϑ̄Bϑ̄ = ~mϑ̄. For θ ∈ ΛQ/GQ such that
Qθ(~n) 6= 0,

NFθ/Q(Qθ(~n)) = NFθ/Q(Qθ(~m)) 6= 0 (mod p).

Notice that ~vϑ̄ = πλθ,λϑ(~vθ) and ~v∗
ϑ̄

= πλθ,λϑ(~v
∗
θ) are eigenvectors for A (mod p) with eigen-

values λϑ and λ−1
ϑ respectively. Consequently, by lemma 5.2, for any ϑ|θ,

Qϑ̄(~nϑ̄) = ω(~nϑ̄, ~vϑ̄)ω(~nϑ̄, ~v
∗
ϑ̄) = πλθ,λϑ(Qθ(~n)) 6= 0,

and by corollary 4.3, there is Bϑ̄ ∈ Cp(Aϑ̄) such that ~nϑ̄Bϑ̄ = ~mϑ̄. On the other hand,
if Qθ(~n) = Qθ(~m) = 0, then by lemma 5.3 for any ϑ|θ, ~nϑ = ~mϑ = 0. Since θ = θ∗ is
symmetric then ~nϑ∗ = ~mϑ∗ = 0 as well, hence ~nϑ̄ = ~mϑ̄ = 0 and we can take any element
of Cp(Aϑ̄).

For the other direction, assume Q(~n) 6= Q(~m). Then there is at least one orbit θ such
that Qθ(~n) 6= Qθ(m). Consequently, for any prime p > NFθ/Q(Qθ(~n)−Qθ(m)) and for any
ϑ|θ we have that Qϑ̄(~nϑ̄) 6= Qϑ̄(~nϑ̄). Therefore ~mϑ̄ and ~nϑ̄ are not in the same Cp(Aϑ̄) orbit
implying that ~n, ~m (mod p) are not in the same Cp(A) orbit.

Corollary 6.2. Let ~n, ~m ∈ Z2d such that Q(~n) = Q(~m) = ν. For any prime p > N0(ν),
and any Hecke eigenfunction ψ ∈ Hp,

〈T̃p(~n)ψ, ψ〉 = 〈T̃p(~m)ψ, ψ〉.

6.1.2 Rewriting of matrix elements

We now use the form Q to define modified Fourierr coefficients and rewrite the matrix
elements, incorporating the Hecke symmetries.

Definition 6.3. For f ∈ C∞(T2d) and ν ∈ D, define modified Fourier coefficients,

f ](ν) =
∑

Q(~n)=ν

(−1)~n1·~n2 f̂(~n).

For ν ∈ D, and any Hecke eigenfunction ψ, define

Vν(ψ) = 〈T̃p(~n)ψ, ψ〉,

where ~n ∈ Z2d is any element such that Q(~n) = ν.
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For ν ∈ D define N0(ν) = maxθ(NFθ/Q(νθ)) (as in the proof of proposition 6.1). For
any trigonometric polynomial f , let N0(f) = maxf̂(~n) 6=0N0(Q(~n)).

Proposition 6.4. For any trigonometric polynomial f , any prime p > N0(f), and any
Hecke eigenfunction ψ ∈ Hp:

〈Opp(f)ψ, ψ〉 =
∑
ν

f ](ν)Vν(ψ).

Proof. Apply corollary 6.2.

Remark 6.1. Notice that it is possible to have f 6= 0 such that all the coefficients f ](ν) = 0
vanish. For example fix some ~n ∈ Z2d and take f(~x) = e~n(~x)− e ~nA(~x) 6= 0.

6.1.3 Computation of Variance

We now want to prove theorem 4, that is to show that as p→∞,

S
(p)
2 (f) =

V (f)

pdf
+O(

1

pdf+1
),

where df = minf](ν) 6=0 dν , dν =
∑

νθ 6=0
|θ|
2

and V (f) =
∑

dν=df
|f ](ν)|2.

First, we compute mixed moments of elementary operators

S
(p)
2 (~n, ~m) =

1

pd

∑
i

〈T̃p(~n)ψi, ψi〉〈T̃p(~m)ψi, ψi〉.

Lemma 6.5. Let 0 6= ~n, ~m ∈ Z2d with Q(~n) = ν, Q(~m) = µ and assume dν ≤ dµ. Then,
for p > max(N0(ν), N0(µ)) the mixed second moment satisfy

S
(p)
2 (~n, ~m) =

{ 1
pdν

+O( 1
pdν+1 ) ν = µ

O( 1
pdν+1 ) ν 6= µ

Proof. First assume that the matrix elements for all Hecke eigenfunctions are in the form
of (4.6). Consequently, we can rewrite

S
(p)
2 (~n, ~m) =

∏
ϑ̄∈Λp/±Gp

(
1

pdϑ̄

∑
χϑ̄

E(ϑ̄)(~nϑ̄, χϑ̄)E
(ϑ̄)(~mϑ̄, χϑ̄)

)
.

Recall that we assumed that there are no nonsymmetric rational orbits so (by the proof of
proposition 6.1) if νθ 6= 0 then ∀ϑ|θ, Qϑ̄(~nθ̄) 6= 0 and if νθ = 0 then ∀ϑ|θ, ~nθ̄ = 0 (similarly
for ~m and µ). The result is now immediate from proposition 4.10.

Now for a general Hecke basis. Any Hecke eigenfunction for which the quadratic charac-
ter does not appear in the decomposition, gives the same contribution to the sum as before
(because such an eigenfunction is unique). It is thus sufficient to show that the contribution
of all other eigenfunctions is bounded by O( 1

pdν+1 ). The number of these eigenfunctions is

bounded by O(pd−1), so it is sufficient to show that each summand contributes at most
O( 1

pdν
) and this is immediate from corollary 4.8 and lemma 4.9.
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Theorem 4, now follows from lemma 6.5 and proposition 6.4.

Proof. We first prove in the case where f is a trigonometric polynomial. Define N0(f) =
maxf̂(~n) 6=0{N0(Q(~n))}. Then for p > N0(f) (by proposition 6.4) we can rewrite,

〈Opp(f)ψi, ψi〉 −
∫
fdx =

∑
0 6=ν∈D

f ](ν)Vν(ψi).

Consequently, (after changing the order of summation), the quantum variance takes the
form

S
(p)
2 (f) =

∑
0 6=ν,µ∈D

f ](ν)f ](µ)
1

pd

∑
i

Vν(ψi)Vµ(ψi).

The second term (by lemma 6.5) contributes 1
pdν

+ O( 1
pdν+1 ) when ν = µ and O( 1

pdν+1 )
otherwise. Therefore, the leading term is indeed

S
(p)
2 (f) =

1

pdf

∑
dν=df

|f ](ν)|2 +O(
1

pdf+1
).

Now for any smooth f ∈ C∞(T2d). Approximate f by trigonometric polynomials

fR =
∑

‖~n‖≤R f̂(~n)e~n. Note that since N0(Q(~n)) � ‖~n‖4d2 , then N0(fR) � R4d2 . We can

thus define R = R(p) ∼ p1/4d2 , so that ‖~n‖ ≤ R implies N0(Q(~n)) ≤ p. We can take p
sufficiently large, so that df = dfR , then from the first part

S
(p)
2 (fR) =

V (fR)

pdf
+O(

1

pdf+1
).

On the other hand, we can bound the difference

|S(p)
2 (f)− S

(p)
2 (fR)| �f

∑
‖n‖>R

f̂(~n) �f,δ
1

Rδ
,

for any power Rδ. In particular |S(p)
2 (f) − S

(p)
2 (fR)| �f

1
pd+1 , and in the same way, we

also have |V (f) − V (fR)| �f
1

pd+1 . We thus get that the quantum variance for smooth

f ∈ C∞(T2d) satisfies

S
(p)
2 (f) =

V (f)

pdf
+Of (

1

pdf+1
).

6.2 Limiting Distributions

Let A ∈ Spθ(2d,Z), with distinct eigenvalues and no invariant rational isotropic subspaces
as in the previous section. Given a smooth observable f and a large prime p, consider the
normalized matrix elements in the Hecke basis,

Wi(f, p) = pdf/2(〈Opp(f)ψi, ψi〉 −
∫
fdx).
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As p → ∞ these points fluctuate around zero with variance tending to V (f), and we
can ask whether they converge to some limiting distribution. Throughout this section, we
will assume the validity of the Kurlberg-Rudnick conjecture for the limiting distribution
(formulated here as conjecture 5), and deduce the limiting distributions for Wi(f, p).

First, for any trigonometric polynomial f , and Hecke eigenfunction ψi for which the
quadratic character does not appear the decomposition, by formula 4.6 and proposition
6.4 we have

Wi(f, p) =
∑
dν=df

f ](ν)
∏
νθ 6=0

∏
ϑ|θ

√
qϑ̄Eqϑ̄(νϑ̄, χϑ̄) +O(

1
√
p
), (6.1)

where χ =
∏
χϑ̄ is the character corresponding to ψi, νϑ̄ = πλθ,λϑ(νθ) and the error

term comes from the elements with dν > df . By approximating a smooth function f by
trigonometric polynomials fR (as in the proof of theorem 4) formula 6.1 is also valid for
smooth functions. Finally, recall that the subset Jp ⊆

{
ψ1, . . . , ψpd

}
of eigenfunctions

ψi for which formula 6.1 is valid is of density 1. Therefore, conjecture 5 for the limiting
distributions of the exponential sums, imply the following limiting distributions for the
matrix elements:

Conjecture 9. For any tuple k = (kθ), 1 ≤ kθ ≤ dθ consider the set of primes Pk for
which under every rational (symmetric) orbit θ there are precisely kθ symplectic Frobenius
orbits ϑ̄|θ. Then, as p → ∞ through primes from Pk there is a limiting distribution for
Wi(f, p), and it is that of the random variable

Xf =
∑
dν=df

f ](ν)
∏
νθ 6=0

Xθ
νθ
,

where the random variables Xθ
νθ

are all independent random variables. Furthermore, each
of the variables Xθ

νθ
is a product of kθ independent random variables with Sato-Tate distri-

bution.

In particular, if we restrict to elementary observables e~n = exp(2πi~n · ~x), we recover
conjecture 6.

We now give an algorithm for determining which of the sets Pk are infinite, that is,
to determine for a given matrix A ∈ Spθ(2d,Z) which limiting distributions can actually
occur.

Denote by PA the characteristic polynomial for A, and assume that PA is irreducible
over the rationals (if it is reducible, one can repeat this process for each irreducible factor).
Let λ be a root of PA and denote by P̃A = irrQ(λ+λ−1) the minimal polynomial for λ+λ−1.
Then P̃A is an irreducible integral monic polynomial of degree d. Furthermore, the space
F2d
p =

⊕
ϑ̄Eϑ̄ decomposes into k irreducible invariant symplectic subspaces, if and only if

P̃A =
∏

ϑ̄ P̃ϑ̄ is a product of k irreducible polynomials over Fp (where P̃ϑ̄ = irrFp(λϑ̄+λ−1
ϑ̄

)).

Therefore, the set Pk is precisely the set of primes for which the polynomial P̃A (mod p) is
a product of k irreducible polynomials. The density of these sets, 1

π(X)
# {p ≤ X|p ∈ Pk},

can be calculated by the Chebotarev theorem after calculating the Galois groups for P̃A. To
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do this, consider the Galois group as a subgroup of the symmetric group Sd (via its action
on the roots of P̃A). Recall that any element of Sd can be uniquely presented as a product of
disjoint cycles. The Chebotarev theorem says that the density of the set Pk is the relative
number of elements in the Galois group that are a product of k cycles. Furthermore, if
there are no elements that are a product of k cycles then Pk contains at most finitely many
primes. For a precise statement and some background on the Chebotarev theorem see [16,
theorem 6.3.1]. We demonstrate this calculation for a few simple examples.

Our first example, is a 4-dimensional symplectic matrix A ∈ Sp(4,Z) for which PA
is irreducible (i.e., no invariant rational subspaces). In this case the polynomial P̃A is a
quadratic irreducible polynomial. In fact if PA(t) = t4 − at3 + bt2 − at + 1, then P̃A =
t2− at+ b− 2. Consequently, the condition that p ∈ P2 is equivalent to the condition that
the quadratic polynomial t2 − at+ b− 2 has roots in Fp, which is equivalent to the integer
c = a2 − 4(b − 2) being a square modulo p. Therefore the sets P1,P2 are both unions of
arithmetic progressions, and each have density 1/2.

Our next examples are for matrices A ∈ Sp(6,Z) with an irreducible characteristic
polynomial (i.e., the polynomial P̃A is an irreducible polynomial of degree 3). In this case,
we can no longer describe the sets Pk as arithmetic progressions. However, the classification
of the Galois group for degree 3 polynomials is still relatively easy, and we can give the
corresponding densities in each case. There are only two possible cases, either the splitting
field for P̃A is a degree 6 extension in which case the Galois group is isomorphic to the
symmetric group S3, or that the splitting field is of degree 3 and the Galois group is cyclic
of order 3. We will now consider each case separately.

In the symmetric group S3 there are a total of 6 elements, 2 of them ((1, 2, 3) and
(1, 3, 2)) are composed of one cycle, 3 of them ((1, 2)(3), (1, 3)(2) and (2, 3)(1)) are com-
posed of two cycles and 1 element (the identity) is composed of three cycles. Consequently,
if the Galois group for P̃A is S3 then by the Chebotarev theorem the densities of the sets
P1,P2 and P3, are 2/6, 3/6 and 1/6 respectively.

The cyclic group has 3 elements, 2 of them ((1, 2, 3) and (1, 3, 2)) are composed of
one cycle, and 1 is composed of 3 cycles (there are no elements composed of 2 cycles).
Therefore, when the Galois group for P̃A is cyclic the Chebotarev theorem implies that
the density of P1,P2 and P3 are 2/3, 0 and 1/3 respectively. Furthermore, P2 contains at
most finitely many primes and the corresponding limiting distribution is not obtained.
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Appendix A

Galois Orbits and Invariant
Subspaces

Let E be a 2d dimensional vector space, defined over a perfect field F (we will consider only
the cases where F is a number field or a finite field). Let ω : E × E → F be a symplectic
form, and let A ∈ Sp(E, ω) be a symplectic linear map with distinct eigenvalues acting on
E from the right. Denote by ΛF , the set of eigenvalues of A (in the algebraic closure of F ).
Let GF , be the absolute Galois group and denote by ΛF/GF the orbits of the eigenvalues
under the action of GF (in fact it is sufficient to consider Gal(PA/F ), the Galois group of
the splitting field of the characteristic polynomial PA).

Since the matrix A is symplectic, if λ ∈ ΛF is an eigenvalue, then λ−1 ∈ ΛF as well. To
each orbit θ ∈ ΛF/GF there is a unique orbit θ∗ such that λ ∈ θ ⇔ λ−1 ∈ θ∗. If θ = θ∗ we
say that the orbit is symmetric, otherwise we say that the orbit is nonsymmetric.

Lemma A.1. There is a unique decomposition into irreducible invariant subspaces: E =⊕
ΛF /GF

Eθ.

• To each orbit θ ∈ ΛF/GF , there is a corresponding subspace (denoted by Eθ), such
that the eigenvalues of the restriction A|Eθ are the eigenvalues λ ∈ θ. In particular
dimEθ = |θ|.

• For any two orbits θ, θ′, unless θ′ = θ∗, Eθ and Eθ′ are orthogonal with respect to the
symplectic form.

Proof. Take representatives λθ ∈ θ with eigenvectors ~vθ. The space

Eθ =
{
TrF (λθ)/F (t~vθ)|t ∈ F (λθ)

}
,

is a subspace of E invariant under A, and the eigenvalues of the restriction of A to Eθ
are λ ∈ θ. Furthermore, Eθ and Eθ′ are orthogonal, unless there is σ ∈ GF such that
ω(σ(~vθ), ~vθ′) 6= 0, and this happens only when θ′ = θ∗. It remains to show that this is
the only decomposition. Indeed, if Ẽ is an invariant irreducible subspace, then there is
an eigenvector ~vθ ∈ Ẽ ⊗ F̄ , and since Ẽ is defined over F then all the Galois conjugates
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σ(~vθ) are in this space as well. Therefore, the space Eθ ⊆ Ẽ and since we assumed Ẽ is
irreducible then Ẽ = Eθ.

Definition A.2. To each orbit θ ∈ ΛF/GF we define a symplectic orbit θ̄ = θ ∪ θ∗.
Correspondingly, to each symplectic orbit, we assign the symplectic subspace Eθ̄ = Eθ+Eθ∗ .
Then for symmetric orbits Eθ̄ = Eθ, and for nonsymmetric orbits Eθ̄ = Eθ ⊕ Eθ∗ .

Denote by ΛF/±GF the set of symplectic orbits. Then

E =
⊕

ΛF /±GF

Eθ̄,

is a decomposition to a direct sum of orthogonal symplectic subspaces.

Lemma A.3. Let λθ ∈ θ with corresponding eigenvector ~vθ (with coefficients in F (λθ)).
Let ~v∗θ , be an eigenvector with eigenvalue λ−1

θ . Then the map

F (λθ) → Eθ
t 7→ TrF (λθ)/F (t~vθ)

,

is linear isomorphism, with an inverse map given by

Eθ → F (λθ)

~n 7→ ω(~n,~v∗θ )

ω(~vθ,~v
∗
θ )

.

Proof. The Galois conjugates of ~vθ are all eigenvectors with distinct eigenvalues in θ. There-
fore, they are linearly independent and the map t 7→ TrF (λ)/F (t~vθ) is injective. On the other
hand, F (λθ)/F is a vector space of dimension [F (λθ) : F ] = |θ|, hence it is isomorphic to
Eθ.

Now let ~n ∈ Eθ, from the first part there is a decomposition

~n = TrF (λ)/F (t~vθ) =
∑

σ∈MorF (F (λ),F̄ )

σ(t~vθ).

Note that for any morphism, σ ∈ MorF (F (λ), F̄ ), the symplectic form

ω(σ(~vθ), ~v
∗
θ) = ω(σ(~vθA), ~v∗θA) = σ(λ)λ−1ω(σ(~vθ), ~v

∗
θ).

Therefore, for any nontrivial morphism σ we have ω(σ(~vθ), ~v
∗
θ) = 0, and indeed ω(~n,~v∗θ) =

tω(~vθ, ~v
∗
θ).

Corollary A.4. For any element ~n ∈ E, the projection of ~n to Eθ vanishes if and only if
ω(~n,~v∗θ) = 0, where ~v∗θ is any eigenvector with eigenvalue in θ∗.

To each symplectic orbit θ̄ ∈ ΛF/ ± GF , fix a representative λθ̄ and let ~vθ̄, ~v
∗
θ̄
, be

eigenvectors for λθ̄, λ
−1
θ̄

. In the symmetric case, where λ−1
θ̄

= τ(λθ̄) are Galois conjugates,
we take ~v∗

θ̄
= τ(~vθ̄) to be Galois conjugates as well. To each symplectic orbit we also assign

a field extension, Fθ̄ = F (λθ̄ + λ−1
θ̄

) (note that for θ̄ nonsymmetric F (λθ̄) = Fθ̄ and for θ̄
symmetric [F (λθ̄) : Fθ̄)] = 2).
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Lemma A.5. Let ~n, ~m ∈ E, and denote by ~nθ̄, ~mθ̄ their projection to Eθ̄. Then, the
symplectic form

ω(~nθ̄, ~mθ̄) = TrFθ̄/F (κ(µν∗ − νµ∗)),

where ν = ω(~n,~v∗
θ̄
), ν∗ = ω(~n,~vθ̄), µ = ω(~m,~v∗

θ̄
), µ∗ = ω(~m,~vθ̄), and κ = ω(~vθ̄, ~v

∗
θ̄
)−1.

Proof. We prove first in the symmetric case. By lemma A.3,

~nθ̄ = TrF (λθ̄)/F
(κν~vθ̄) =

∑
σ

σ(κν~vθ̄),

where the sum is over σ ∈ MorF (F (λθ̄), F̄ ). Therefore

ω(~nθ̄, ~mθ̄) = ω(
∑

σ σ(κν~vθ̄),
∑

σ′ σ
′(κµ~vθ̄))

=
∑

σ,σ′ σ(κν)σ′(κµ)ω(σ(~vθ̄), σ
′(~vθ̄))

= TrF (λθ̄)/F
[
∑

σ κνσ(κµ)ω(~vθ̄, σ(~vθ̄))].

Now notice that ω(~vθ̄, σ(~vθ̄)) 6= 0 ⇔ σ = τ , in which case ω(~vθ̄, τ(~vθ̄)) = ω(~vθ̄, ~v
∗
θ̄
) = κ−1 =

−τ(κ−1) and τ(ν) = ν∗. Therefore

ω(~nθ̄, ~mθ̄) = TrF (λθ̄)/F
(−κνµ∗) = TrFθ̄/F (κ(µν∗ − µ∗ν)).

In the nonsymmetric case,

~nθ̄ = TrFθ̄/F (κν~vθ̄) + TrFθ̄/F (−κν∗~v∗θ̄).

Here, ω(~vθ̄, σ(~vθ̄)) = 0 for all automorphisms, and ω(~vθ̄, σ(~vθ̄)
∗) 6= 0 only if σ is the trivial

automorphism. Hence, in this case as well

ω(~nθ̄, ~mθ̄) = TrFθ̄/F (κ(ν∗µ− νµ∗)).
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Appendix B

Counting elements in quotient rings

Let F be a number field, and K/F a quadratic Galois extension. Denote by OF ,OK the
corresponding integral rings. For any ideal a ⊆ OF , consider the map Na : (OK/aOK)∗ →
(OF/a)

∗ induced by the norm map NK/F , and let C(a) = ker(Na) denote its kernel.
To each ideal a ⊆ OF define:

S1(a) =
∑

β∈C(a)

√
# {ν ∈ OK/aOK |ν(β − 1) ≡ 0 (mod aOK)},

S2(a) = # {β1, β2∈C(a)|(1− β1)(1− β2)(β1 + β2) ≡ 0 (mod aOK)} .

Eventually we will be interested in estimating these quantities for ideals of the form
NOF where N ∈ N are large integers. By the Chinese reminder theorem, if a, b ⊆ OF are
co-prime (i.e., a + b = OF ), then OF/ab ∼= OF/a × OF/b and OK/abOK

∼= OK/aOK ×
OK/bOK . Consequently, C(ab) ∼= C(a) × C(b) and the quantities S1, S2 are multiplicative
(i.e., Si(ab) = Si(a)Si(b)). Therefore, it suffices to calculate them for powers of prime
ideals.

B.1 Prime ideals

In the following proposition we summarize some facts regarding factorization of ideals in
extensions of number fields (for proofs and general background on the subject we refer to
[9]).

Proposition B.1. Let K/F be an extension of number fields, and OK , OF the corre-
sponding integral rings. Let P ⊆ OF be a prime ideal, then the ideal POK decomposes into
prime ideals of OK, POK =

∏r
i=1 P

ei
i where the ideals Pi are all the ideals lying above P

(i.e., Pi ∩ OF = P ). Furthermore:

1. The fields OK/Pi are all finite field extensions of OF/P . The degree [OK/Pi :
OF/P ] = fi is called the inertia degree. If the inertia degree fi = 1, then ∀k ∈ N the
corresponding rings are isomorphic OK/Pk

i
∼= OF/P

k.
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2. The exponent ei is called the ramification index. When not all the ramification in-
dices ei = 1, the ideal P is said to be ramified in OK. For any number field F/Q,
there are only a finite number of ramified ideals (all lying above prime factors of the
discriminant).

3. The ramification indices ei and the inertia degrees fi, satisfy [K : F ] =
∑r

i=1 eifi.

4. If K/F is a Galois extension then all prime ideals of OK lying above a prime ideal
P ⊆ OF are Galois conjugates, the ramification indices and the inertia degrees are
fixed ei = e, fi = f , and the former equation takes the form [K : F ] = ref .

In particular, in our case [K : F ] = 2, hence for any fixed prime ideal P ⊆ OF , there
are only 3 possibilities:

1. POK = PP̄ (P splits),

2. POK = P (P is inert),

3. POK = P2 (P is ramified),

where x 7→ x̄ denotes the nontrivial automorphism of K/F .
In the following proposition we describe the norm map NPk in each of these cases.

Proposition B.2. Let P ⊆ OK and P = P ∩ OF be prime ideals.

1. If POK = PP̄ splits, then OK/P
kOK

∼= OF/P
k × OF/P

k as rings. Under this
isomorphism, the norm map NPk induces the map

(OF/P
k)∗ × (OF/P

k)∗ → (OF/P
k)∗

(x, y) 7→ xy.

2. If POK = P is inert then the norm map NPk is onto.

3. If POK = P2 ramifies then the image of NPk is a subgroup of (OF/P
k)∗ with index

2 if P lies above an odd prime and index bounded by 2d+1 if it lies above 2.

Proof. We prove for each case separately:
Part 1. When P splits, by the Chinese reminder theorem OK/P

kOK
∼= OK/Pk×OK/P̄k,

and since the inertia degree f = 1 we can identify OF/P
k ∼= OK/Pk ∼= OK/P̄k. Under this

identification the norm map NPk sends (x, y) ∈ (OF/P
k)∗ × (OF/P

k)∗ to xy ∈ (OF/P
k)∗.

Part 2. When P is inert we prove by induction on k. For k = 1, the inertia degree
[OK/P : OF/P ] = 2 and the nontrivial automorphism of K/F induces the nontrivial
automorphism of (OK/P)/(OF/P ). Consequently, the norm map NP is the field extension
norm map, that is surjective for finite fields. For k > 1 by induction, let α ∈ (OF/P

k)∗,
and α0 ∈ OF its representative. By induction ∃β0 ∈ OK such that NK/F (β0) ≡ α0

(mod P k−1). Denote by η = NK/F (β0) − α0 ∈ P k−1 and let x ∈ OK be an element such
that TrK/F (β̄0x) = −1 (mod P ) (such an element exists because the trace for extension of
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finite fields is onto). Now, NK/F (β0 + ηx) − α0 ∈ P k, hence for β = [β0 + ηx] ∈ OK/Pk

(the class of β0 + ηx), the norm map NPk(β) = α.
Part 3. When P is ramified and lies above an odd prime again by induction. For k = 1, P
ramifies implies [OK/P : OF/P ] = 1. Consequently, the nontrivial automorphism of K/F
induces the trivial automorphism of (OK/P)/(OF/P ), and the induced map NP (after
identifying OK/P ∼= OF/P ) is the squaring map x 7→ x2. When the ideal P lies above an
odd prime p, the multiplicative group (OF/POF )∗ is a cyclic group of an even order (pfP−1)
and the image of the map x 7→ x2 has index 2. For k > 1 by induction. Let α ∈ (OF/P

k)∗

and α0 ∈ OF its representative. Then ∃β0 ∈ OK such that η = ξNK/F (β0) − α0 ∈ P k−1,
where ξ is a representative of one of the classes of (OF/P

k−1)∗/Im(NPk−1). The map
induced by TrK/F on OK/P ∼= OF/P is simply multiplication by 2 and hence onto. We
can thus take x ∈ OK such that ξTr(β0x) = −1 (mod P ). Now ξNK/F (β0 +xη)−α0 ∈ P k,
meaning α is in one of the two classes as well.

When P lies above 2, let h denote the largest integer such that 2 ∈ P h. For any α ∈ OF

we have that α2 ≡ 1 (mod P k) implies α ≡ ±1 (mod P k−h). Consequently, the kernel of
squaring map has order bounded by 2|OF/P

h| ≤ 2|OF/2OF | ≤ 2d+1.

B.2 Counting elements

Proposition B.3. The number of norm one elements satisfy( N

logN

)d � |C(NOF )| � (N logN)d.

We first compute |C(P k)| for P ⊆ OF a prime ideal.

Lemma B.4. Let P ∈ OF be a prime ideal lying above a rational prime p ∈ Z. Then, if
p is odd

|C(P k)| = |OF/P
k| ·


(1− 1

pfP
) P splits

(1 + 1
pfP

) P is inert

2 P is ramified

where fP = [OF/P : Z/pZ] is the inertia degree. If P lies above 2, we can bound

|C(P k)| ≤ 2d+1|OF/P
k|.

Proof. We compute |C(P k)|, in each case separately.
Part 1. When P splits, by proposition B.2 we can identify the group of norm one elements

C(P k) ∼=
{

(x, y) ∈ (OF/P
k)∗

2|xy = 1 (mod P k)
}
∼= (OF/P

k)∗.

Therefore, |C(P k)| = |(OF/P
k)∗| = |OF/P

k|(1− 1
|OF /P |

), and recall that OF/P is the finite

field with pfP elements.
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Part 2. When P is inert the map NPk : (OK/Pk)∗ → (OF/P
k)∗ is onto. Therefore,

|C(P k)| = | ker(NPK )| = |(OK/Pk)∗|
|(OF/P k)∗|

=
|(OK/Pk)||(1− 1

pfP
)|

|(OF/P k)||(1− 1
pfP

)|
.

Now, the inertia degree [OK/P : OF/P ] = 2, which implies fP = 2fP and |OF/P| =
|OF/P |2.
Part 3. For P ramified and odd, the image of NPk is of index 2 in (OF/P

k)∗. Therefore,

|C(P k)| = 2
|(OK/P2k)∗|
|(OF/P k)∗|

= 2
|(OK/P2k)||(1− 1

pfP
)|

|(OF/P k)||(1− 1
pfP

)|
.

In this case the inertia degree [OK/P : OF/P ] = 1, so that fP = fP and |OK/P| = |OF/P |.
When P lies above 2 the image is of index bounded by 2d+1, which implies the bound on
|C(P k)|.

We now give the proof of proposition B.3 for composite N .

Proof. Let NOF =
∏
P ki
i be the decomposition to prime ideals. By the Chinese reminder

theorem,

|C(NOF )| =
r∏
i=1

|C(P ki
i )|.

Using lemma B.4 for each component: For all prime ideals Pi there is a common term of
|OF/P

ki
i |, that contributes precisely∏

|OF/P
ki
i | = |

∏
(OF/P

ki
i )| = |OF/NOF | = Nd.

The additional contribution from the inert primes is bounded from below by 1 and from
above by ∏

i

(1 +
1

pfPi
) ≤

∏
p|N

(1 +
1

p
)d � (logN)d,

(since for every prime p|N there are at most d ideal primes that lie above it). Similarly,
the contribution from the split primes is bounded from above by 1 and from below by∏

i

(1− 1

pfPi
) ≥

∏
p|N

(1− 1

p
)d �

( 1

logN

)d
.

Finally, the contribution from the even and ramified primes, is bounded by some constant
(recall that there are a bounded number of ramified primes).

Given a prime ideal P ⊂ OF , with ramification index e ∈ {1, 2} and any 1 ≤ l ≤ ek
consider the congruence subgroup

C(l)(P k) =
{
β ∈ C(P k)|β ≡ 1 (mod P l)

}
,

where P ⊂ OK is a prime ideal above P (note that it is indeed well defined and does not
depend on P).
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Lemma B.5. If P lies above an odd prime then

|C(l)(P k)| = |OF/P |k−b
l
e
c.

Otherwise,

|OF/P |k−b
l
e
c ≤ |C(l)(P k)| ≤ 2d+1|OF/P |k−b

l
e
c.

Proof. We prove it separately for P split inert or ramified.
Part 1. When P splits we can identify

C(P k) ∼=
{
(x, x−1) ∈ (OF/P

k)∗ × (OF/P
k)∗

} ∼= (OF/P
k)∗.

Denote by (1 + P l)/(1 + P k) the kernel of the natural projection (OF/P
k)∗ → (OF/P

l)∗.
Then, under this identification C(l)(P k) ∼= (1 + P l)/(1 + P k), and hence of order

|C(l)(P k)| = |(1 + P l)/(1 + P k)| = |OF/P |k−l.

Part 2. For P inert, denote by N (l)

Pk
the restriction of the norm map to (1 +P l)/(1 +Pk)

(then C(l)(P k) = ker(N (l)

Pk
)). We now show that for P odd N (l)

Pk
is onto (1 + P l)/(1 + P k),

whereas if P lies above 2, it’s image has index bounded by 2d+1 (this would conclude the

proof for the inert case). First, the image of N (l)

Pk
is indeed a subgroup of (1+P l)/(1+P k)

(because if β = 1 (mod Pk) then NK/F (β) = 1 (mod P k)). Next, note that the image of

N (l)

Pk
contains all the squares in (1 + P l)/(1 + P k). Now, for odd prime, |(1 + P l)/(1 +

P k)| = |OF/P |k−l is a power of p and hence odd. Consequently, the map x 7→ x2 is an

automorphism of (1 + P l)/(1 + P k), and N (l)

Pk
is onto. When P lies above 2 the map

x 7→ x2 has kernel bounded by 2|OF/P |h (as in the proof of lemma B.2). Consequently,

the image of the squaring map (and hence also the image of N (l)

Pk
) has index bounded by

2|OF/P |h ≤ 2d+1.
Part 3. For P ramified as in the previous case we can restrict the norm map to the group
(1 + P l)/(1 + P2k). Here, (again by the squaring argument) the restricted map N (l)

Pk
is

onto (1 + P d l
2
e)/(1 + P k) for P odd and has image of index bounded by 2d+1 if 2 ∈ P .

Consequently, in this case for P odd,

|C(l)(P k)| = |OF/P |k−b
l
2
c,

while for even prime ideals,

|OF/P |k−b
l
2
c ≤ |C(l)(P k)| ≤ 2d+1|OF/P |k−b

l
2
c.

Proposition B.6.
S1(NOF ) �ε N

d+ε.

Again we start by computing S1(P
k) for powers of prime ideals.
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Lemma B.7. Let P ∈ OF be a prime ideal.
If P lies above an odd prime then

S1(P
k) ≤ |OF/P

k| ·
{

(k + 1) P is inert or splits

(k + 1)
√
|OF/P | P is ramified

If P lies above 2, then

S1(P
k) ≤ 2d+2|OF/P

k| ·
{

(k + 1) P is inert or splits

(k + 1)
√
|OF/P | P is ramified

Proof. Let e ∈ {1, 2} be the ramification index of P in OK . The group C(P k) decomposes
into a disjoint union

⋃ek
l=0 C(l)(P k) \ C(l+1)(P k). We can thus rewrite

S1(P
k) =

ek∑
l=0

∑
C(l)(Pk)\C(l+1)(Pk)

√
# {ν ∈ OK/P kOK |ν(β − 1) = 0}.

For fixed l and any β ∈ C(l)(P k) \ C(l+1)(P k), we have β − 1 ∈ P l \ P l+1. Therefore,
the number of elements ν ∈ OK/P

kOK satisfying ν(β − 1) = 0 is precisely |OF/P |2l/e
independent of β. We can thus take it out of the sum to get

S1(P
k) =

ek∑
l=0

(|C(l)(P k)| − |C(l+1)(P k)|)|OF/P |l/e.

The result now follows directly from lemma B.5.

We now give the proof of proposition B.6 for composite N .

Proof. Decompose NOF =
∏r

i=1 P
ki
i into prime ideals. For each prime ideal apply lemma

B.7 to get the bound

S1(NOF ) =
r∏
i=1

S1(P
ki
i ) � |OF/NOF |

r∏
i=1

(ki + 1),

where the implied constant comes from the contribution of the ramified and even prime
ideals. The first term |OF/NOF | = Nd and the second term can be bounded by

∏r
i=1(ki+

1) �ε N
ε completing the proof.

Proposition B.8.
S2(NOF ) �ε N

d+ε.

As before, we start by a computation for powers of prime ideals.
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Lemma B.9. Let P ∈ OF be a prime ideal. If P lies above an odd prime, then

S2(P
k) ≤ |OF/P

k|
{

6(k + 1) P is inert or splits
6(k + 1)|OF/P | P is ramified

If P is even, then
S2(P

k) ≤ 24d6(k + 1)|OF/P
k|.

Proof. First note that when P splits, the equation

(1− β1)(1− β2)(β1 + β2) ≡ 0 (mod P kOK), βi ∈ C(P k),

is invariant under Galois conjugation. Thus, it is equivalent to the equation

(1− β1)(1− β2)(β1 + β2) ≡ 0 (mod Pk), βi ∈ C(P k),

where P is a prime ideal above P . Therefore, in any case S2(P
k) is the number of solutions

to
(1− β1)(1− β2)(β1 + β2) ≡ 0 (mod Pek), βi ∈ C(P k). (B.1)

When P lies above an odd prime, then 2 /∈ P and β1 ≡ β2 ≡ 1 (mod P) ⇒ β1 + β2 ≡
2 6≡ 0 (mod P). Therefore, the number of solutions to (B.1) is bounded by 3 times the
number of solutions to

(1− β1)(1− β2) ≡ 0 (mod Pek), βi ∈ C(P k). (B.2)

Since any solution β1, β2 of (B.2), satisfies β1 ∈ Cl(P k) \ Cl+1(P k), β2 ∈ C(ek−l)(P k) for
some 0 ≤ l ≤ ek, the number of solutions is bounded by

S2(P
k) ≤ 3

ek∑
l=0

(|Cl(P k)| − |Cl+1(P k)|)|Cek−l(P k)|,

and the result follows from lemma B.5.
When 2 ∈ P denote by h the largest integer such that 2 ∈ P h ( so that, Peh|2OK).

Now, if β1 ≡ β2 ≡ 1 (mod Peh+1) then β1 +β2 6= 0 (mod Peh+1). Therefore, as in the case
of the odd prime, the number of solutions to (B.1) is bounded by 3 times the number of
solutions to

(1− β1)(1− β2) ≡ 0 (mod Pek−eh), βi ∈ C(P k). (B.3)

Now, any such solution satisfies that β1 ∈ C(l)(P k) \ C(l+1)(P k) and β2 ∈ C(ek−eh−l)(P k) for
some 0 ≤ l ≤ ek − eh, hence

S2(P
k) ≤ 3

ek−eh∑
l=0

(|Cl(P k)| − |C(l+1)(P k)|)|Cek−eh−l(P k)|,

and the result follows from lemma B.5.
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Now for the general case.

Proof. Decompose NOK =
∏t

i=1 P
ki
i , and apply lemma B.9 for each component

S2(NOK) =
r∏
i=1

S2(P
ki
i ) �

r∏
i=1

|OF/P
ki
i |6(ki + 1) = Nd

r∏
i=1

6(ki + 1),

where the implied constant comes from the even and ramified ideals. The estimate of∏r
i=1 6(ki + 1) �ε N

ε concludes the proof.
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